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Flexible and inflexible CR submanifolds

Judith Brinkschulte and C. Denson Hill

Abstract. In this paper we prove new embedding results for compactly supported defor-
mations of CR submanifolds of Cn+d: We show that if M is a 2-pseudoconcave CR submanifold
of type (n, d) in Cn+d, then any compactly supported CR deformation stays in the space of glob-
ally CR embeddable in Cn+d manifolds. This improves an earlier result, where M was assumed
to be a quadratic 2-pseudoconcave CR submanifold of Cn+d. We also give examples of weakly
2-pseudoconcave CR manifolds admitting compactly supported CR deformations that are not
even locally CR embeddable.

1. Introduction

In a previous paper [BH2] we introduced the concept of flexible versus inflexible
CR submanifolds. This is related to the CR embeddability of deformations of CR

structures. Roughly speaking a flexible submanifold admits a compactly supported
CR deformation that “pops out” of the space of globally CR embeddable manifolds.
On the other hand, for an inflexible CR submanifold, any compactly supported CR

deformation stays in the space of globally CR embeddable manifolds.
Much work has been concentrated on CR manifolds M of hypersurface type

which form the boundaries of strictly pseudoconvex domains. In that situation, M
is inflexible when dimCR M≥2, and M is flexible when dimCR M=1 (even without
the assumption of strict pseudoconvexity). See Example 1 in Section 4.

Even in the situation of codimCRM=1 (hypersurface type) it is of interest to
study what happens for split signature of the Levi form. In that hypersurface case,
1-pseudoconcavity means that the Levi form has at least 1 negative eigenvalue, and
at least 1 positive eigenvalue; 2-pseudoconcavity means that the Levi form has at
least 2 negative and at least 2 positive eigenvalues, etc.
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And CR manifolds can have higher CR-codimension, in which case q-pseudo-
concavity also seems to be a fruitful concept. It means that for every x∈M and
every characteristic conormal direction ξ at x, the scalar Levi form Lx(ξ, ·) in this
conormal direction has at least q positive and q negative eigenvalues. (See Section
2 for the precise definitions.)

The theory of pseudoconcave CR manifolds was initiated approximately 25
years ago (see [HN]). Since that time it has slowly come to light that CR manifolds
of higher codimension arise naturally in mathematics; i.e., such manifolds abound,
but for a long time it was ignored that they have a natural CR structure. Besides
typical examples of quadratic CR submanifolds of Cn+d, they also arise naturally
as minimal orbits for the holomorphic action of real Lie groups on flag manifolds.
These are even homogeneous and almost always are q-pseudoconcave, for some q.
In fact in [MN] the authors follow the general method initiated by N. Tanaka of
investigating manifolds endowed with partial complex structures that come from
Levi-Tanaka algebras which are the canonical prolongations of pseudocomplex fun-
damental graded Lie algebras. A lot of explicit such examples can be found in [MN],
[HN] or [HN1].

When M is of hypersurface type, there are some hints that the 1-pseudoconcave
case (Lorentzian case) and the q-pseudoconcave (q≥2) differ. For example, it is in
the Lorentzian signature case where it is possible to generalize Nirenberg’s example
[Ni] to dimCR>1, as was done in [JT]. But when q≥2, that construction does
not work. Indeed in example 6 of section 4 we present a CR manifold N , of any
CR-codimension, which is only 1-pseudoconcave (but weakly 2-pseudoconcave) and
it is flexible. This shows that our Theorem 1.1 below is almost optimal. However,
our N is not globally CR embedded into Euclidean space. Therefore it remains an
open problem to find a 1-pseudoconcave CR submanifold of some Euclidean space
that is flexible.

The main result obtained in [BH2] was that any 2-pseudoconcave quadratic CR

submanifold of type (n, d) in C
n+d is inflexible. In the present paper we obtain the

same result for CR submanifolds that are not necessarily assumed to be quadratic.
More precisely,

Theorem 1.1. Let M be a CR submanifold of type (n, d) in C
n+d that is

2-pseudoconcave. Let (Ma, HMa, Ja)|a|<ao
be a compactly supported CR deforma-

tion of (M,HM,J). Then, provided a is sufficiently small, given any smooth CR

function f :(M,HM,J)−→C, there is a CR function fa :(Ma, HMa, Ja)−→C such

that for any given �∈N, any given compact K of M and arbitrary small ε>0, one
can find a CR function fa :(Ma, HMa, Ja)−→C such that the C� norm of f−fa on

K is less than ε.
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Moreover, fa can be chosen to coincide with the given f outside a compact of

M . In particular, (Ma, HMa, Ja) is CR embeddable into Cn+d for a sufficiently

close to 0.

Corollary 1.2. Let M be a 2-pseudoconcave CR submanifold of type (n, d) in

Cn+d. Then M is inflexible.

Remark. The same result holds, with the same proof, if Cn+d is replaced by a
strictly pseudoconvex domain in C

n+d. We conjecture that it also holds with C
n+d

is replaced by an (n+d)-dimensional Stein manifold X. However, our proof relies
on the results from [LS]; and it is not clear if these results also hold in the more
general setting of Stein manifolds.

In the proof of Theorem 1.1 we use an L2 vanishing result obtained in [LS],
which involved heavy use of integral formulas. In [BH2] we were able to obtain the
analogous result by employing partial Fourier transform techniques, because of the
quadratic nature of M . However in both [BH2] and in the present paper we also
need certain subelliptic estimates, from [FK] in codimension one, and from [HN]
in higher codimension. Thus, although the results of [BH2] were restricted to the
quadratic case, the proofs there are more self-contained, since they do not rely on
the rather complicated integral formulas upon which [LS] is based.

2. Definitions

An abstract CR manifold of type (n, d) is a triple (M,HM,J), where M is
a smooth real manifold of dimension 2n+d, HM is a subbundle of rank 2n of
the tangent bundle TM , and J :HM→HM is a smooth fiber preserving bundle
isomorphism with J2=−Id. We also require that J be formally integrable; i.e. that
we have

[T 0,1M,T 0,1M ]⊂T 0,1M

where
T 0,1M = {X+iJX |X ∈Γ(M,HM)}⊂Γ(M,CTM),

with Γ denoting smooth sections.
The CR dimension of M is n≥1 and the CR codimension is d≥1.
M admits a CR embedding into some complex manifold X if one can find a

smooth embedding ϕ of M into X such that the induced CR structure ϕ∗(T 0,1M)
on ϕ(M) coincides with the CR structure T 0,1(X)∩CT (ϕ(M)) from the ambient
complex manifold X.

Let (M,HM,J) be a CR manifold of type (n, d) globally CR embedded into
some complex manifold X. We say that (M,HM,J) admits a compactly sup-
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ported CR deformation if there exists a family (Ma, HMa, Ja)|a|<ao
of abstract

CR manifolds depending smoothly on a real parameter a, |a|<ao and converging
to (M,HM,J) as a tends to 0 in the usual C∞ topology; we also require that
(Ma, HMa, Ja)=(M,HM,J) for every a �=0 outside some compact K of M not
depending on a.

Note that when (M,HM,J) is CR embedded into some complex manifold, then
one can always “punch” M as to obtain compactly supported CR deformations (at
least locally). With the exception of n=1 (when the formal integrability condition
is always satisfied), it can be difficult, however, to find compactly supported CR

deformations in the absence of local CR embeddability.
We say that (M,HM,J) is a flexible CR submanifold of X if it admits a com-

pactly supported CR deformation (Ma, HMa, Ja)|a|<ao
such that for every suffi-

ciently small a �=0, the CR structure (Ma, HMa, Ja) is not globally CR embeddable
into X. So, for example, the Heisenberg CR structure H

2 in C
2 is flexible. This fol-

lows from Nirenberg’s famous local nonembeddability examples [Ni], which can be
interpreted as small (local) deformations of the Heisenberg structure on H

2. More
examples will be discussed in the last section.

We say that (M,HM,J) is an inflexible CR submanifold of X if it is not
flexible. That means that (M,HM,J) is inflexible if and only if for every compactly
supported CR deformation (Ma, HMa, Ja)|a|<ao

of (M,HM,J), the CR manifold
(Ma, HMa, Ja) is globally CR embeddable into X.

We denote by HoM={ξ∈T ∗M |<X, ξ>=0,∀X∈Hπ(ξ)M} the characteristic
conormal bundle of M . Here π :TM−→M is the natural projection. To each ξ∈
Ho

pM \{0}, we associate the Levi form at p in the codirection ξ :

Lp(ξ,X)= ξ([JX̃, X̃])= dξ̃(X, JX) for X ∈HpM

which is Hermitian for the complex structure of HpM defined by J . Here ξ̃ is a
section of HoM extending ξ and X̃ a section of HM extending X.

Following [HN] M is called q-pseudoconcave, with 0≤q≤ n
2 , if for every p∈M

and every characteristic conormal direction ξ∈Ho
pM \{0}, the Levi form Lp(ξ, ·) has

at least q negative and q positive eigenvalues.
For other standard definitions related to CR structures we also refer the reader

to [HN] or [HN1].

3. Proofs

The idea of the proof of Theorem 1.1 is as follows: For a given CR function
f on M we want to find a CR function fa on Ma which is very close to the given
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f on M . Therefore we want to solve the Cauchy-Riemann equations ∂Mau=∂Maf

with u having compact support and the Ck-norms of u being controlled by some
Cl-norms of ∂Ma (uniformly with respect to a). Setting fa=f−ua then gives the
desired CR function on Ma.

Let M be as in Theorem 1.1, and let B be a sufficiently large Euclidean ball
containing the compact K that is the support of the CR deformation of M⊂C

n+d.
Recalling that M is 2-pseudoconcave, we have the following result from [LS, Theo-
rem 1.0.2]:

Proposition 3.1. Let q=n−1 or q=n, and assume f∈L2
n+d,q(M∩B) satisfies

∂Mf=0. Then there exists u∈L2
n+d,q−1(M∩B) satisfying ∂Mu=f .

Here we are considering (unweighted) L2 spaces with respect to the induced
metrics from the Euclidean metric on C

n+d. By classical Hilbert space theory (see
e.g. [H, Theorem 1.1.2]), one deduces from Proposition 3.1 the following

Proposition 3.2. Let q=n−1 or q=n. Then there exists a constant C>0
such that

‖u‖2 ≤C(‖∂Mu‖2+‖∂∗
Mu‖2)

for all u∈L2
n+d,q(M∩B)∩Dom(∂M )∩Dom(∂∗

M ).

Next, we use again that M is 2-pseudoconcave. 2-pseudoconcavity is clearly
stable under smooth, small perturbations. Therefore Ma is also 2-pseudoconcave for
a sufficiently small, and the 2 positive resp. 2 negative eigenvalues of the Levi form
in sufficiently close characteristic conormal directions can be bounded from below
resp. above independent of a. Therefore one obtains a uniform subelliptic estimate
in degrees q∈{0, 1, n−1, n} (by closely looking at the proofs in [FK] for d=1 and
[HN] for higher codimensions): There exists ε>0 such that for every compact K of
M , there exists a constant CK>0 independent of a such that

(3.1) ‖u‖2
ε ≤CK(‖∂Mau‖2+‖∂∗

Ma
u‖2+‖u‖2)

for all smooth forms u∈Dp,q
K (Ma) with support contained in K, 0≤p≤n+d, q∈

{0, 1, n−1, n}.
Combining Proposition 3.2 and (3.1), we can establish an L2 a priori estimate

in degree (n+d, n−1) and (n+d, n), which is uniform with respect to a (in the sense
that the constant involved does not depend on a).

Proposition 3.3. There is a0>0 and a constant C>0 such that for q∈{n−
1, n} we have

‖u‖2 ≤C(‖∂Mau‖2+‖∂∗
Ma

u‖2)

for all u∈L2
n+d,q(M∩B)∩Dom(∂Ma)∩Dom(∂∗

Ma
), |a|<a0.
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Proof. Assume by contradiction that there is a sequence {uaν}∈L2
n+d,q(Maν ∩

B)∩Dom(∂Maν
)∩Dom(∂∗

Maν
), aν→0, such that

(3.2) ‖uaν‖=1,

whereas

(3.3) ‖∂Maν
uaν‖2+‖∂∗

Maν
uaν‖2 <aν .

We now want to show that {uaν} is a Cauchy sequence.
Remember that Maν =M outside K. We now choose a slightly larger compact

K1 containing K in its interior, and a smooth cut-off function χ such that χ≡1
outside K1 and χ≡0 in a neighborhood of K. Since ∂Maν

, ∂∗
Maν

coincide with ∂M ,
∂
∗
M outside K, we obtain from Proposition 3.2

‖χu‖2 ≤C(‖∂M (χu)‖2+‖∂∗
M (χu)‖2)

for all u∈L2
n+d,q(Ma∩B)∩Dom(∂Maν

)∩Dom(∂∗
Maν

), which implies

(3.4) ‖χu‖2 ≤C ′(‖∂Mu‖2+‖∂∗
Mu‖2+

∫
K1\K

|u|2dV )

for some constant C ′>0.
On the other hand, let η be a smooth cut-off function so that η≡1 in a neigh-

borhood of K1. Then ‖ηuaν‖ε is bounded by (3.1), so the generalized Rellich lemma
implies that the sequence {uaν} restricted to K1 is precompact in L2

n+d,q(K1). Thus
it is no loss of generality to assume that the restriction of {uaν} to K1 is a Cauchy
sequence. But this combined with (3.4) implies that {uaν} is a Cauchy sequence in
L2
n+d,q(M∩B).

Denote by u0 the limit of this sequence. From (3.3) it follows that ∂Mu0 and
∂
∗
Mu0, defined in the distribution sense, both vanish. But from (3.2) it also follows

that ‖u0‖=1. This contradicts Proposition 3.2 and therefore completes the proof
of the proposition. �

By duality, we obtain from Proposition 3.3 that one can solve the ∂Ma -equation
with support in M∩B in degree (0, 1) with a uniform constant. For this, we consider
an L2 variant of ∂Ma defined in the following way: Let u∈L2

p,q(Ma∩B). We say that
u∈Dom(∂c

Ma
) and ∂

c

Ma
u=f if there exists a sequence of test forms uj∈Dp,q(Ma∩B)

such that uj→u in L2 and ∂Mauj→f in L2.

Proposition 3.4. There is a0>0 and a constant C>0 independent of a such

that for every f∈L2
0,1(Ma) with ∂Maf=0 and f compactly supported in M∩B, one

can find u∈L2
0,0(Ma) such that ∂

c

Ma
u=f and ‖u‖≤C‖f‖.
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Proof. Consider the operator

Tf : L2
n+d,n(Ma∩B) −→ C

ψ �→
∫
Ma∩B

f∧ϕ,

where ϕ∈L2
n+d,n−1(Ma∩B) satisfies ∂Maϕ=ψ in the weak sense and ‖ϕ‖≤C‖ψ‖

(such a ϕ exists by Proposition 3.3). Tf is well defined. Indeed, if ∂Maϕ=0, then we
may apply Proposition 3.3 again and conclude that there exists h∈L2

n+d,n−2(Ma∩
B) satisfying ∂Mah=ϕ. By Stokes’ theorem this implies

(3.5)
∫
Ma∩B

f∧ϕ=
∫
Ma∩B

f∧∂Mah=
∫
Ma∩B

∂Ma(f∧h)= 0.

Note also that Tf is continuous of norm ≤C. Using Riesz’s theorem, we conclude
that there exists u∈L2

0,0(Ma) satisfying

∫
Ma∩B

u∧∂Maϕ=Tf (∂Maϕ)=
∫
Ma∩B

f∧ϕ

for all ϕ∈L2
n+d,n(Ma∩B). Let ϑa be the formal adjoint of ∂Ma on L2

·,·(Ma∩B). It
is easy to see that ∂

c

Ma
and ϑa are adjoint operators on L2

·,·(Ma∩B). (3.5) implies
that (u, ϑaϕ)=(f, ϕ) for any ϕ∈Dom(ϑa), which is equivalent to ∂

c

Ma
u=f . �

Proof of Theorem 1.1. Let f be a CR function on M . Then ∂Maf has compact
support and tends to zero when a tends to zero. Proposition 3.4 implies that we
can solve the equation ∂Maua=∂Maf with ‖ua‖≤C‖∂Maf‖ and ua supported in
M∩B. Hence ua is as small as we wish in L2

0,0(Ma), provided a is small enough.
It is well-known that the subelliptic estimate (3.1) in degree q=0 implies also the
following: Suppose given a compact K ′⊂Ma and two smooth real functions ζ, ζ1
with suppζ⊂suppζ1⊂K ′ and ζ1=1 on suppζ, then for any integer m∈N there exists
a constant CK,m such that

‖ζu‖2
m+ε ≤CK,m(‖ζ1∂Mau‖2

m+‖ζ1u‖2)

Here ‖ ‖m denotes the Sobolev norm of order m. But then also the C�-norm of ua

over a given compact K ′⊂Ma can be controlled by some Cm-norm of ∂Maua=f ,
and hence made small when letting a tend to zero. Setting fa=f−ua proves the
theorem. �
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4. Examples of flexible CR submanifolds

The aim of this section is to provide known and new examples of flexible CR

submanifolds.

1. Rossi [R] constructed small real analytic deformations of the standard CR

structure on the 3-sphere S3 in C2, and such that the resulting abstract CR struc-
tures fail to CR embed globally into C

2. Hence S3 is a flexible CR submanifold of
C

2.
This is in contrast to higher dimensions: Any strictly pseudoconvex CR mani-

fold M of CR dimension n≥2 is globally CR embeddable into some C
N by [BdM].

If, in addition, M is the boundary of a strictly pseudoconvex domain in C
n+1, then

M is inflexible. This follows from a result by [T], since in this situation we have
H0,1(M)=0.

2. Nirenberg’s famous local nonembeddability examples [Ni] can be interpreted
as small (local) deformations of the Heisenberg structure on H

2⊂C
2. Since the

formal integrability condition for CR structures is always satisfied in dimension 3,
one can use a cut-off function to make the local deformations a compactly supported
deformation of the global Heisenberg group.

3. More generally, any 3-dimensional CR submanifold is flexible. Indeed, if M
has a point of strict pseudoconvexity, then one can use the local nonembeddability
result of [JT] to produce a small, non-locally embeddable CR deformation which is
compactly supported near that point.

If M is Levi-flat, then one first makes arbitrary small bumps near a fixed point
to get points of strict pseudoconvexity and proceeds as before.

4. S3×S3∈C4 is an example of a flexible CR submanifold of codimension 2
(because each factor is flexible). Depending on the conormal direction, its Levi-
forms have signature ++, −−, +0 or −0. By adding more products one can obtain
flexible CR submanifolds of any CR codimension.

5. Let X be any compact Riemann surface. Then S3×X is flexible.
6. Let M be a compact 1-pseudoconcave CR submanifold of type (2, d) of some

complex manifold X, d arbitrary. Then N=M×CP
1 is again 1-pseudoconcave, and

even weakly 2-pseudoconcave (the Levi form has signature (+−0) in every nonzero
conormal direction). Using ideas from [Hi1] we will now show that N is flexible,
which indicates that Theorem 1.1 is close to being optimal. Indeed, by Theorem 3.2
of [BH1] there exists a smooth (0, 1)-form ω on M satisfying ∂Mω=0 on M such
that ω is not ∂M -exact on any neighborhood of any point p on M . We will use this
form ω to deform the CR structure on M×CP

1.
On CP

1 we use the two standard holomorphic charts V+=CP
1\{∞} and V−=

CP
1\{∞} given by the stereographic projection, with coordinates z+∈V+�C and
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z−∈V−�C, where z−z+=1 on V−∩V+. Then the usual complex structure on CP
1

is given by ∂
∂zβ

on Vβ for β=(+,−).
Let U be an open set of M such that T 0,1M is spanned over U by L1, L2. We

define T 0,1Na to be spanned over U×Vβ by the basis

(4.1)

⎧⎪⎪⎨
⎪⎪⎩
X0 = ∂

∂zβ

Xj = Lj+βaω(Lj)zβ
∂

∂zβ
, j =1, 2

This gives a well defined CR structure on N . To see that the integrability condition
is valid, first note that [X0, Xj ]=0 for j=1, 2. Moreover, by assumption on ω we
have

0 = ∂M (L1, L2)=L1(ω(L2))−L2(ω(L1))−ω([L1, L2]),

thus

[X1, X2] = [L1, L2]+[L1, βaω(L2)zβ
∂

∂zβ
]+[βaω(L1)zβ

∂

∂zβ
, L2]

= [L1, L2]+βa
(
L1(ω(L2))zβ

∂

∂zβ
−L2(ω(L1))zβ

∂

∂zβ

)
= [L1, L2]+βaω([L1, L2])zβ

∂

∂zβ
,

thus T 0,1Na is stable under the Lie bracket.
However, for a �=0, local CR embeddability of Na implies the local ∂M -exactness

of ω. The argument follows [Hi2] or [Hi3]. In fact the argument shows that Na is
not even locally CR embeddable at any point (to, zoβ) of Na=M×CP

1: Near to, M
is locally CR embeddable into C

2+d with coordinate functions ζ1, ..., ζ2+d. We may
assume that t=(t1, ..., t4+d)=(Reζ1, ...,Reζ2+d, Imζ1, Imζ2) are real coordinates on
M with to=0 in these coordinates.

Suppose now that we have a local CR embedding of Na near (to, zoβ) by CR

functions u1(t, zβ), u2(t, zβ), ..., u3+d(t, zβ) with du1∧...∧du3+d �=0 at (to, zoβ). Then
each uj is holomorphic in zβ in view of (4.1).

It is then not difficult to see that ∂uj

∂zβ
�=0 for some j at (to, zoβ). By renaming,

we may assume ∂u3+d

∂zβ
�=0.

The coordinates on (z1, ..., z3+d) on C
3+d also define CR functions on Na and

dz1∧...∧dz2+d∧du3+d �=0 at (to, uo
β). So we arrive at a new local embedding map

ϕ : (t, zβ) �−→ (z1(t, zβ), ..., z2+d(t, zβ), u3+d(t, zβ))
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of some neighborhood W of (to, zoβ) into C
3+d. ϕ(W ) is a piece of a real hypersurface

in C3+d. Let w=(w1, ..., w3+d) denote the coordinates in C3+d, and consider, for
points on ϕ(W ), the function

F (w)=ϕ∗
(
−[∂u3+d

∂zβ
]−1),

where ϕ∗ is the push-forward by the diffeomorphism ϕ of W onto ϕ(W ). It follows
that F is a CR function on ϕ(W ); in particular, it is holomorphic in w3+d by the
inverse mapping theorem for holomorphic functions of one variable. On ϕ(W ) we
may define the function

(4.2) G(w)=
∫ w3+d

0
F (w1, ..., w2+d, η)dη

by a contour integral in the w3+d-plane. This is well defined by the open mapping
theorem from one complex variable. We now pull back to get a function g(t, zβ)=
ϕ∗G on V , which is a CR function there. This can be seen by replacing F in (4.2)
by a smooth extension F̃ of F off of ϕ(W ) such that ∂F̃|ϕ(V )=0 and differentiating.
Next we have

(4.3) ∂g

∂zβ
=F (w1, ..., w2+d, u3+d(t, zβ))∂u3+d

∂zβ
(t, zβ)=−1,

so g(t, zβ)=−zβ+χ(t), where χ(t) is a smooth “constant of integration”. Now the
fact that g is a CR function implies that Xjg=0, hence Ljχ−βaω(Lj)=0 for j=1, 2.
But for a �=0, this means that there exists a neighborhood V ′ of to on M such that
ω is ∂M -exact on V ′. This is a contradiction to the assumption on ω. Therefore
for a �=0, Na is not locally CR embeddable on any open neighborhood of (to, zoβ) on
Na. �
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