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1. Introduction

For a sequence of differentiable real-valued functions f=(..., f−1, f0, f1, ... ) with domain

R, and coordinates x⩽y and n⩽m, define the last passage value as

f [(x,m)! (y, n)] = sup
π

∫ y

x

f ′
π(t)(t) dt. (1.1)

Here the supremum is over non-increasing functions π: [x, y]!Z with π(x)=m and

π(y)=n. The integral is just a sum of increments of f (see Figure 1), so the same

can be defined for continuous f , in particular for a sequence B of independent 2-sided

Brownian motions. This model, Brownian last passage percolation, is a representative

of a class of models that have been the focus of intense research in recent years. By

continuity, optimizing paths exist in (1.1); let πn denote one for B[(0, n)!(1, 1)]. As one

of the highlights of this paper, we show that πn has a scaling limit.

Theorem 1.1. There exists a random continuous function Π: [0, 1]!R and a new

coupling of all the paths πn such that

sup
s∈[0,1]

∣∣∣∣πn(s)−n(1−s)

2n2/3
−Π(s)

∣∣∣∣! 0 almost surely.

The limit Π is the directed geodesic, a random Hölder- 23
−
continuous function defined

in terms of a new limiting object, the directed landscape. The directed landscape is the

full 4-parameter scaling limit of Brownian last passage percolation, see Definition 1.4.

To describe it completely, we must first discuss the parabolic Airy line ensemble.

The parabolic Airy line ensemble is a random sequence of ordered functions

A1 >A2 > ... .

The shifted process

{Ai(t)+t2 : i∈N},

constructed by Prähofer and Spohn [47] via a determinantal formula, is stationary. The

process A1(t)+t2 is known as the Airy process (sometimes Airy2) and describes the

large-n scaling limit of the function

y 7−!B[(0, n)! (y, 1)].

The remaining lines have interpretations in terms of last passage percolation with multiple

disjoint paths. The process A satisfies an important Brownian Gibbs property which

allows for a probabilistic understanding of the object. This was shown by Corwin and

Hammond [13]. They used this property to rigorously show that Airy lines are non-

intersecting and locally absolutely continuous with respect to Brownian motion with

variance 2. For brevity, in the remainder of the paper we often omit the word parabolic

and simply refer to A as the Airy line ensemble.
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(x, 3)

(y, 1)

Figure 1. An example of last passage across three functions. The purple path is the last

passage path from (x, 3) to (y, 1). It can be viewed as either maximizing the sum of increments
along the path, or minimizing the sum of gaps. We will always think of our sequences of

functions as being labelled so that fi sits above fi+1. Our notions of ‘right’ and ‘left’ in the

paper are with respect to this picture.

The Airy line ensemble doubles as the limiting eigenvalue process of Brownian mo-

tion on Hermitian matrices. Construction of the Airy sheet, the scaling limit of the

2-parameter function (x, y) 7!B[(x, n)!(y, 1)] (conjectured in [15]) does not follow from

the integrable methods that give convergence to the Airy line ensemble. This is partly

because the Airy sheet seems to be fundamentally different from random matrix lim-

its. As the first step in our construction of the directed landscape, we show that the

Airy sheet law can be described in terms of last passage percolation across the Airy line

ensemble.

Definition 1.2. The Airy sheet is a random continuous function S:R2!R such that

the following conditions hold:

(1) S has the same law as S( ·+t, ·+t) for all t∈R;
(2) S can be coupled with a parabolic Airy line ensemble so that S(0, ·)=A1( ·) and

for all (x, y, z)∈Q+×Q2 there exists a random integer Kx,y,z such that for all k⩾Kx,y,z

almost surely

A
[(

−
√

k

2x
, k

)
! (z, 1)

]
−A

[(
−
√

k

2x
, k

)
! (y, 1)

]
=S(x, z)−S(x, y). (1.2)

Theorem 1.3. The Airy sheet exists and is unique in law. Moreover, for every n,

there exists a coupling so that

B

[(
2x

n1/3
, n

)
!

(
1+

2y

n1/3
, 1

)]
=2

√
n+2(y−x)n1/6+n−1/6(S+on)(x, y),

where on are random functions asymptotically small in the sense that on every compact

set K⊂R2 there exists a>1 with

EasupK |on|3/2 ! 1.
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Remark 1.1. (1) In Proposition 8.2 we will prove that Definition 1.2 uniquely de-

termines a probability measure on random continuous functions. In other words, the

Airy sheet, as defined here, exists and is unique in law. The Airy sheet exists because it

is the limit of Brownian last passage percolation, see Theorem 8.3. Theorem 1.3 is the

combination of these two results.

(2) Equation (1.2) can be loosely interpreted as saying that the Airy sheet value

S(x, y) is the renormalized limit, as k!∞, of the last passage value in A from(
−
√

k

2x
, k

)
to (y, 1). While we were not able to prove that such a limit exists, we believe that such

a description is possible, see Conjecture 14.2. Instead, we make sense of this picture by

analyzing differences of last passage values. See Remark 8.2 for more discussion about

why it is easier to look at differences.

(3) We show in the preprint [17] that the Airy sheet is also the limit of classical in-

tegrable models of last passage percolation: geometric, exponential, and Poisson models.

We expect it to be a universal limit object in the Kardar–Parisi–Zhang (KPZ) univer-

sality class, see [11] for an informal description. We prove convergence of Brownian last

passage percolation to the Airy sheet in this paper. However, one consequence of the

work [17] is that any limiting formula established in one of these models will apply to all

others as well.

(4) Definition 1.2 is not in terms of explicit formulas for distributions, which has

traditionally been the main approach to KPZ limits. A celebrated example of such a

definition in a different context is that of the Schramm–Loewner evolution. As is the case

there, what may be more desirable than exact formulas is a set of tools to work directly

with this limiting object. In this paper we concentrate on establishing the Airy sheet

and the directed landscape as a limit; in upcoming work we use the present description

of the Airy sheet and the directed landscape to understand the limiting geometry.

(5) Tightness for the Airy sheet limit for certain models is known, e.g. see [46]; a

short proof for Brownian last passage percolation is provided in Lemma 8.4. Uniqueness

of the limit is much harder, and is one of the main results of this paper. Theorem 1.3 says

that Brownian last passage percolation looks the same on all scales in a precise sense.

(6) The process S(x, y)+(x−y)2 is stationary in both variables, see Lemma 9.1, and

S(0, 0) has GUE Tracy–Widom distribution. The GUE Tracy–Widom limit for S(0, 0)
is well known; for Brownian last passage percolation it was independently shown in [4]

and [23].

(7) By monotonicity, (1.2) is equivalent to the following Busemann function def-

inition. For every triple x, y, z∈R+×R2, the left-hand side of (1.2) converges to the
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right-hand side as k!∞, see Remark 8.1. Busemann functions have been used previ-

ously in last passage percolation to study problems around infinite geodesics, e.g. see [10]

and [22].

A direct consequence of Theorem 1.3 is the celebrated 1-2-3 (or KPZ) scaling for

Airy sheets. Define the Airy sheet of scale s by

Ss(x, y)= sS
(

x

s2
,
y

s2

)
.

Let Ss and St be independent Airy sheets of scale s and t. Then, the metric composition

is an Airy sheet of scale r:

Sr(x, z)=max
y∈R

Ss(x, y)+St(y, z), with r3 = s3+t3.

The metric composition law is a semigroup property for the max-plus algebra. The Airy

sheet is an analogue of the Gaussian distribution in this semigroup, inspiring a definition

of the analogue of Brownian motion there. Define the parameter space directed R4 by

R4
" = {(x, s; y, t)∈R4 : s< t}.

We will think of R4
" as representing ordered pairs of points in spacetime with a 1-

dimensional space. The coordinates x and y are spatial, and the coordinates s and t

are temporal.

Definition 1.4. The directed landscape is a random continuous function L:R4
"!R

satisfying the metric composition law

L(x, r; y, t)=max
z∈R

L(x, r; z, s)+L(z, s; y, t) for all (x, r; y, t)∈R4
" and s∈ (r, t), (1.3)

and with the property that L( · , ti; · , ti+s3i ) are independent Airy sheets of scale si for

any set of disjoint time intervals (ti, ti+s3i ).

Remark 1.2. (1) We will prove in §10 that Definition 1.4 uniquely determines a

probability measure on random continuous functions from R4
" to R. See Figure 2 for an

illustration of the construction.

(2) We show in the preprint [17] that the directed landscape is also the limit of

classical integrable models of last passage percolation: geometric, exponential, and Pois-

son models. We expect it to be a universal limit object in the KPZ universality class,

capturing all important limiting information. We prove the Brownian last passage case

in this paper. One consequence of the work [17] is that any limiting formula established

in one of these models will apply to all others as well.
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t

s

r

L(·, s; ·, t)

L(·, r; ·, s)

z∗z

(y, t)

(x, r)

Figure 2. An illustration of the metric composition law for the directed landscape. The

geodesic from (x, r) to (y, t) passes through a point (z∗, s) for some z∗∈R, giving that the

right-hand side of (1.3) is greater than or equal the left. See (1.5) and surrounding discussion
for a precise definition of a geodesic in L. Also, for any z∈R, a concatenation of the geodesic

from (x, r) to (z, s) with the geodesic from (z, s) to (y, t) gives a candidate for a maximizing

path from (x, r) to (y, t), yielding the opposite inequality. The original Brownian lines that
give rise to L( · , r; · , s) and L( · , s; · , t) are independent. This allows us to build up L at

any finite set of times using metric composition with independent increments, and hence

construct the directed landscape from independent Airy sheets analogously to the construction
of Brownian motion.

(3) Independent increment processes on semigroups are more complicated than those

on groups; for example, for Brownian motion, B(s)−B(0) and B(t)−B(0) clearly deter-

mine the increment B(s)−B(t). In semigroups, the increments cannot be computed in

this way and have to be specified for all pairs of times s<t. This is what the directed

landscape does for the metric composition semigroup.

(4) The 2-time formula of Johansson [31] gives the joint distribution of any pair

of directed landscape values of the form (L(x, r; y1, s1),L(x, r; y2, s2)). Johansson and

Rahman [33] and Liu [37] independently extended this to multiple endpoints (yi, si).

(5) The KPZ fixed point of Matetski, Quastel, and Remenik [38] is a Markov process

in t that can be written in terms of the directed landscape and its initial condition h0 as

ht(y)= sup
x∈R

h0(x)+L(x, 0; y, t). (1.4)

Matetski, Quastel, and Remenik [38] first established the KPZ fixed point h as the limit

of TASEP i.e. essentially exponential last passage percolation. They showed that the

finite-dimensional distributions of h can be expressed in terms of a tractable Fredholm

determinant formula involving Brownian hitting probabilities. Recently, Nica, Quastel,

and Remenik [39] showed that Brownian last passage percolation also converges to the

KPZ fixed point, thus rigorously showing (1.4).
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(6) The directed landscape contains more information than the KPZ fixed point,

namely the joint distribution of the coupled evolution for all initial conditions. This

allows for a full description of the law of limiting geodesics as in Theorem 1.1. As will be

shown in upcoming work, this also allows for a description of the scaling limit of TASEP

second class particle trajectories.

(7) Since convergence to the directed landscape is uniform on compact sets and

the directed landscape is continuous, this immediately implies that last passage values

ù space-like curve converge uniformly to an Airy process. Previous approaches to such

results include finding explicit determinantal formulas for space-like curves, see [9] and

[8], and geometric analysis of slow decorrelations, see [19] and [12].

(8) The negative of the directed landscape can be thought of as a “signed directed

metric” on R2; it satisfies the triangle inequality for points in the right time order. Signed

directed metrics occur naturally in fields such as geometry, e.g. Perelman’s L-distance,
see [45].

Letting

(x, s)n =

(
s+

2x

n1/3
,−⌊sn⌋

)
,

the translation between limiting and pre-limiting locations, we have the following theo-

rem.

Theorem 1.5. (Full scaling limit of Brownian last passage percolation) There exists

a coupling of Brownian last passage percolation and the directed landscape L such that

Bn[(x, s)n! (y, t)n] = 2(t−s)
√
n+2(y−x)n1/6+n−1/6(L+on)(x, s; y, t).

Here, each Bn is a sequence of independent Brownian motions. Each on is a random

function asymptotically small in the sense that on every compact set K⊂R4
" there exists

a>1 with

EasupK |on|3/4 ! 1.

Theorem 1.5 is restated and proven in the body as Theorem 11.1. We have strong

control over the modulus of continuity of the directed landscape. In this next proposition

and throughout the paper, by a random constant we simply mean an almost surely finite

random variable.

Proposition 1.6. Let

R(x, t; y, t+s)=L(x, t; y, t+s)+
(x−y)2

s
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denote the stationary version of the directed landscape. Let K⊂R4
" be a compact set.

Then,

|R(u)−R(v)|⩽C(τ1/3 log2/3(τ−1+1)+ξ1/2 log1/2(ξ−1+1)).

for all ξ, τ>0 and points u, v∈K with spatial and temporal coordinates of distance at most

ξ and τ , respectively. Here C is a random constant depending on K with EaC3/2

<∞
for some a>1.

See Proposition 10.5 for a version of Proposition 1.6 that keeps track of the depen-

dence on the compact set. The spatial fluctuations of L have been known to be locally

Brownian since [13]. The temporal modulus of continuity has also been previously ob-

tained in the context of Poisson last passage percolation, see [27], building on related

work from [6] and [5]. Rather than using such results as a starting point for the proof of

Proposition 1.6, we deduce the proposition from explicit probability bounds on 2-point

differences (see Lemmas 2.8 and 10.4).

The directed landscape is a rich object containing all asymptotic information about

last passage percolation in this scaling. In particular, as advertised above, we can take

limits of last passage paths. For a continuous path h: [t, s]!R, define the length of h by∫
dL�h= inf

k∈N
inf

t=t0<t1<...<tk=s

k∑
i=1

L(h(ti−1), ti−1;h(ti), ti). (1.5)

This is the analogue of defining the length of a curve in Euclidean space by piecewise

linear approximation. We call h a directed geodesic if equality holds for all subdivisions

before taking any infima. We show that with probability one, directed geodesics exist

between every pair of endpoint, see Lemma 13.2. Moreover, the directed geodesic between

any fixed pair of endpoints is almost surely unique and Hölder- 23
−
continuous. Note that

uniqueness may fail for some exceptional pairs. In particular, the directed geodesic is

more regular than a Brownian path!

Theorem 1.7. (Continuity of directed geodesics) Fix u=(x, t; y, s)∈R4
" . Then, al-

most surely, there is a unique directed geodesic Πu from (x, t) to (y, s). Its distribution

only depends on u through scaling : as random continuous functions from [0, 1]!R, we
have

Π(x,t;y,s)(s+(t−s)r)
d
=Π(0,0;0,1)(r)+x+(y−x)r.

Moreover, for u=(0, 0; 0, 1), we have

|Πu(t+s)−Πu(t)|⩽Cs2/3 log1/3
(
2

s

)
for all s>0 with t, t+s∈[0, 1]. The random constant satisfies EaC3

<∞ for some a>1.



the directed landscape 209

Theorem 1.7 is proven in §12. For u=(x, s; y, t)∈R4
" and n∈N, let πn,u be a path

from (x, s)n to (y, t)n that maximizes (1.1). We also show that the joint limit of last

passage paths is given by the joint distribution of directed geodesics. Since each last

passage path πn,u has domain [s+2xn−1/3, t+2yn−1/3], we need to first compose πn,u

with the affine shift hn,u that maps the interval [s, t] to [s+2xn−1/3, t+2yn−1/3] to talk

about convergence to Πu. Note that this shift is not necessary when x=y=0, as in

Theorem 1.1.

Theorem 1.8. (Convergence of last passage paths) In the coupling of Theorem 1.5

there exists an event A of probability 1 such that the following holds. For u∈R4
" , let Cu

be the set where the directed geodesic Πu is unique in L. Then, for any u∈R4
" , we have

that
πn,u�hn,u+nhn,u

2n2/3
!Πu uniformly, on the event A∩Cu.

Theorem 1.8 is restated and proven in §13 as Theorem 13.5.

Our approach to the proofs is probabilistic. It is based on understanding the geom-

etry of last passage percolation using a continuous version of the Robinson–Schensted–

Knuth (RSK) correspondence. Our reliance on formulas is minimal—we only use es-

timates about the Airy line ensemble from [16], which rely solely on the determinantal

nature of the Airy point process and the Brownian Gibbs property of the Airy line en-

semble. On the other hand, our results imply convergence of formulas. For example, the

super-exponential control of the error term in Theorem 1.3 guarantees uniform conver-

gence of moment generating functions.

The starting point for our proofs is a combinatorial fact about the continuous RSK

correspondence. This correspondence and its application to Brownian paths was devel-

oped in [44] and [42]. The continuous RSK correspondence maps an n-tuple of continuous

functions

f : [0, 1]×{1, ..., n}−!R,

(x, i) 7−! fi(x)

to an n-tuple Wf in the same space, which we call the melon of f . The functions in the

melon are ordered decreasingly: Wf1⩾Wf2⩾...⩾Wfn. The main property used in the

last passage literature is that the melon satisfies

(Wf)1(t)= f [(0, n)! (t, 1)]. (1.6)

We use the stronger fact that, for any s<t, remarkably

Wf [(s, n)! (t, 1)]= f [(s, n)! (t, 1)]. (1.7)
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The identity (1.6) is equivalent to (1.7) when s=0 by the ordering of Wf . A general-

ization of (1.7) to k disjoint paths with arbitrary start and end points (si, n) and (ti, 1),

for i=1, ..., k, is proven as Proposition 4.1. This proposition is the crucial deterministic

input in our construction of the Airy sheet, and we use it throughout the first part of

the paper.

Long after completing the first version of the paper, we learned that Proposition 4.1

was proven by Biane, Bougerol, and O’Connell in [7, Lemma 4.8], for the case of disjoint

paths with all equal start and end points. Noumi and Yamada also obtained close relatives

of this result in a discrete setting, see [40, Theorem 1.7]. A version of this formula in

the special case when si=0 for all i was previously obtained and studied in the planar

positive temperature setting by [43], see the discussion directly below equation (20) and

Theorem 3.4 from that paper.

With B restricted to the first n lines, WB has the law of Brownian motions con-

ditioned not to intersect; these converge to the Airy line ensemble in the right scaling.

So one might hope that the properly rescaled last passage problem in WB converges to

a last passage problem in the Airy line ensemble. This seems incredible at first because

a large part of the last passage percolation is taking place in parts of the melon that

disappear in the limit. Indeed, the limit only sees the top few lines and a time window

of order n−1/3.

The technical part of the proof is to show that the last passage path from (2xn−1/3, n)

to (1, 1) in WB follows a parabola of the form

k 7−!
(
1−2

√
k

2x
n−1/3, k

)
. (1.8)

These asymptotics follow from a multi-step path transformation lemma (Lemma 5.2), a

detailed analysis of a last passage problem on the Airy line ensemble (§6), and an analysis

of an optimization problem (Lemma 7.1). Analyzing the last passage problem across the

Airy line ensemble is the most technical part of the paper. It requires delicate structural

results about the Airy line ensemble from [16]. In this paper, we take these structural

results as black box inputs for the proof.

For nearby starting points x and x′, the parabolas in (1.8) diverge as k!∞, while

the last passage values should be close. This suggests that there is not much information

contained in these paths away from the top corner. We turn this intuition into a proof

of Theorem 1.3 in §7 and §8. In order to facilitate the proof, one key idea is to look

at differences of last passage values. It is easier to directly show that these differences

only depend on the top corner, and then extract the result for the last passage values

themselves by averaging, see Remark 8.2.
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The directed landscape can be patched together from Airy sheets. For the conver-

gence of last passage percolation to the directed landscape, there is a technical tightness

issue that we handle in §11.

The focus of this paper is to construct the limiting objects, and we do not explore

their properties in detail here. However, our description makes several natural questions

about the directed landscape accessible. We will analyze the geometry of this object in

future work.

Our results complete the construction of the central object in the Kardar–Parisi–

Zhang universality class. Although the full construction is new, several aspects of the

directed landscape have been studied previously. We only mention a few results most

directly related to the present work. For a gentle introduction suitable for a newcomer

to the area, see [50]. Review articles and books focusing on more recent developments

include [11], [21], [48], [52] and [54].

The Baik, Deift, and Johansson proof [2] for the length of the longest increasing sub-

sequence was the first to give the single point distribution of L as GUE Tracy–Widom

in a slightly different model, see also [28]. Baryshnikov [4] and Gravner, Tracy, and

Widom [23] showed this convergence for Brownian last passage percolation by showing

that B[(0, n)!(1, 1)] is equal in law to the top eigenvalue of the Gaussian Unitary En-

semble. This connection was extended to all eigenvalues at the level of a last passage

process by O’Connell and Yor [44].

Prähofer and Spohn [47] proved convergence of last passage values to L(0, 0; y, 1)
jointly for different values of y. This the top line of the Airy line ensemble. Corwin,

Quastel, and Remenik [14] extended the analysis to continuum statistics of functions

of y. Corwin and Hammond [13] showed the Brownian Gibbs property of the Airy line

ensemble, making it more amenable to probabilistic analysis. Corwin, Quastel, and

Remenik [15] predicted many of the results of the present paper.

After predictions by Dotsenko [18], Johansson [31], [32] gave the joint distribution

of L(a, b) and L(a, c) for fixed a, b, and c. Matetski, Quastel, and Remenik [38] derived

a formula for the distribution of gS, the metric composition of a fixed function g and the

Airy sheet S. Baik and Liu [3] found formulas for the joint distribution of {L′(a, bi):i∈
{1, ..., k}} for any fixed a, b1, ..., bk for a related limiting object L′ that in our language

would be the directed landscape on the cylinder. We note the conjectured limit L′ can

be described by wrapping the directed landscape L around the cylinder and redefining

path lengths locally. Recently, Johansson and Rahman [33] and Liu [37] proved formulas

analogous to those of Baik and Liu with L in place of L′.

Probabilistic and geometric methods have been used previously to prove qualitative

statements about last passage percolation. As an early example, Johansson [29] studied
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transversal fluctuations. More recently, Pimentel [46] showed tightness of the Airy sheet

in a different model, and proved that the Airy sheet locally looks like a sum of independent

Brownian motions. Ferrari and Occelli [20] analyzed the covariance of last passage values

at two different times. For other probabilistic and geometric approaches, see [6], [5], and

[27] discussed above.

Hammond [26] used a probabilistic approach to prove Radon-Nikodym derivative

and other regularity bounds for the Airy line ensemble with respect to Brownian bridges.

Subsequent papers (see [24], [25], and [27]) combined this work with geometric reason-

ing to understand problems about the geometry of last passage paths in Brownian last

passage percolation and the roughness of limiting growth profiles in that model.

1.1. Brief outline of the text

The first part of the paper is deterministic. §2 and §3 contain preliminaries and straight-

forward facts. §4 proves the key identity (1.7) and its generalization, Proposition 4.1, and

§5 contains an important consequence of this proposition for last passage percolation in

melons. The probabilistic part of the paper begins in §6. In §§6–8 we construct the Airy

sheet. The remaining sections build the directed landscape and directed geodesics from

the Airy sheet (§9, §10, and §12), prove convergence to the directed landscape (§11), and
prove convergence of last passage paths (§13).

2. Preliminaries

2.1. Last passage across general functions

For an interval I⊂Z, let CI be the space of all continuous functions

f :R×I −!R,

(x, i) 7−! fi(x).

We will often think of f as a sequence of functions {fi :i∈I}. When I={1, ..., n}, we
will simply write Cn. We call a non-increasing function π: [x, y]!I which is cadlag on

[x, y] and satisfies π(x)⩾ℓ and π(y)=m a path from (x, ℓ) to (y,m). Unfortunately, the

left endpoint (x, ℓ) is not specified by the function π and has to be given separately. We

will define the left limit of π at x to be ℓ, and the right limit at y to be m. Our paths

are non-increasing instead of non-decreasing to accommodate the natural indexing of the

Airy line ensemble.
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We define the length of π with respect to a coordinatewise differentiable function

f∈CI by ∫
df �π :=

∫ y

x

f ′
π(t)(t) dt.

For each π, this is just a sum of increments of f , so this definition extends to all continu-

ous f . Note that for many of the cases we are interested in, the functions fi are ordered

so that fi⩾fi+1. Hence, when visualizing non-decreasing path length with respect to a

set of such functions, it is natural to draw non-decreasing paths as rising physically, see

Figure 1.

For x⩽y∈R and m⩽ℓ∈I define the last passage value of f from (x, ℓ) to (y,m) by

f [(x, ℓ)! (y,m)] = sup
π

∫
df �π,

where the supremum is taken over all paths π from (x, ℓ) to (y,m). See Figure 1 for an

illustration of this definition. We say that a point (x, t) lies along a path π: [s, r]!Z if

t∈[s, r] and if

lim
q!t−

π(q)⩾x⩾ lim
q!t+

π(q).

In other words, if the graph of π is connected at its jumps by vertical lines, then (x, t)

will lie on this connected version of the graph.

For f∈CI , define the gap process g=g(f) by gi=fi−fi+1. We can alternately define

path length in terms of the gap process. For a non-increasing path π from (x, ℓ) to (y,m),

we have ∫
df �π= fm(y)−fℓ(x)−

ℓ−1∑
i=m

gi(ti), (2.1)

where

ti ∈ [x, y] is the unique time such that π(s)

{
⩾ i+1, for s< ti,

⩽ i, for s⩾ ti.
(2.2)

We call tm+1, ..., tℓ the jump times of π. Thu,s the last passage value can be thought

of as a difference of endpoints minus a minimal sum of gaps. This definition will be

useful when we deal with non-intersecting sets of lines f∈CI whose gap processes are

non-negative. By (2.1), we have

f [(x, ℓ)! (y,m)] = fm(y)−fℓ(x)− inf
x⩽tℓ−1⩽...⩽tm⩽y

ℓ−1∑
i=m

gi(ti), (2.3)

which implies that the last passage value is continuous in (x, y).
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We now extend the definition of last passage to disjoint collections of paths. Let

U = {(xi, ℓi) : i∈{1, ... k}} and V = {(yi,mi) : i∈{1, ... k}}

be two sequences of ordered pairs in R×I with xi⩽yi and mi⩽ℓi for all i. The points

(xi, ℓi) and (yi,mi) will be endpoints of disjoint paths πi. Define Q(U, V ) to be the set

of disjoint paths π=(π1, ..., πk) from U to V . More precisely, π∈Q(U, V ) if the following

conditions hold:

(1) For all i∈{1, ..., k}, the function πi is a path from (xi, ℓi) to (yi,mi).

(2) For all i∈{1, ..., k−1}, we have that πi(t)<πi+1(t) for all t∈(xi, yi)∩(xi+1, yi+1).

In order to ensure existence of disjoint paths with repeated endpoints, we do not enforce

a disjointness condition at the endpoints.

For a path π∈Q(U, V ), we define the length of π with respect to f by∫
df �π=

k∑
i=1

∫
df �πi.

With the above definition of Q(U, V ), we say that (U, V ) is an endpoint pair if the

following conditions hold:

(1) For all i∈{1, ..., k}, we have that xi⩽yi and ℓi⩾mi.

(2) For all i∈{1, ..., k−1}, we have that xi⩽xi+1 and yi⩽yi+1.

(3) The set of paths Q(U, V ) is non-empty.

For an endpoint pair (U, V ) and a function f∈CI , we define the last passage value

of f across (U, V ) by

f [U!V ] = sup
π∈Q(U,V )

∫
df �π.

In the case when k=1, we recover the previous definition of the last passage path.

We also define the set of last passage paths between U and V by

Pf [U, V ] =

{
π ∈Q(U, V ) :

∫
df �π= sup

σ∈Q(U,V )

∫
df �σ

}
. (2.4)

We will omit the subscript f above when the function f is clear from context or does not

change throughout a proof.

2.2. Melons

Let Cn
+ be the space of continuous functions

f : [0,∞)×{1, ..., n}−!R,

(x, i) 7−! fi(x).
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For f∈Cn
+ , we can define a function Wf∈Cn

+ by the formula

k∑
i=1

(Wf)i(t)= f [(0, n)k! (t, 1)k] for all k∈{1, ..., n} and all t∈ [0,∞).

Here (s, i)k is the sequence with k copies of the point (s, i). The function Wf can be

thought of as the recording tableau of a continuous version of the Robinson–Schensted–

Knuth bijection, see §6 in [41]. We call Wf the melon of f . We will explore the process

of constructing melons more in §4. Paths in the melon Wf are ordered so that

(Wf)1 ⩾ (Wf)2 ⩾ ...⩾ (Wf)n

(see the discussion at the beginning of §4). This is where the term melon comes from:

since paths in Wf avoid each other and all start from zero, they look like stripes on

a watermelon. Note that in physics literature, the term watermelon is often used for

ensembles of non-intersecting random walks or Brownian motions which fit into this

context.

2.3. Brownian melons and the Airy line ensemble

We now introduce the main object of study in this paper, Brownian last passage per-

colation. See [54] for background on the integrable aspects of this model. Let B∈CZ

be a sequence of independent 2-sided Brownian motions. Let Bn be B restricted to

R+×{1, ... n}. We are concerned with finding the scaling limit of last passage values

across the sequence B. By a result in §4, we will be able to relate these last passage

values to last passage values across the Brownian n-melon WBn.

There are many remarkable descriptions of the Brownian n-melon WBn. The de-

scription that will be most useful to us here is that WBn can be described as the distri-

butional limit as ε!0 of a sequence of n independent Brownian motions Bi
ε: [0, 1/ε]!R

with Bi
ε(0)=iε conditioned so that

B1
ε (t)>B2

ε (t)> ...>Bn
ε (t).

This was first proven as Theorem 7 in [44], see also [7]. The top lines of the Brownian n-

melon have a scaling limit known as the Airy line ensemble. This next theorem was proven

in many parts, see [47], [30], [1], [13]. We note that the final version of this theorem in [13]

proves it for non-intersecting Brownian bridges, rather than non-intersecting Brownian

motions. The two convergence statements are equivalent via the scaling relationship

P (s)=
t−s√

t
B

(
s

t−s

)
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O(n−1/3)

O(n−1/6)

Figure 3. A sketch of a ‘Brownian melon’ from time 0 to just after time 1. If we zoom in

around the location (1, 2
√
n ) on a O(n−1/3)×O(n−1/6) parallelogram with slope

√
n, then

we get the Airy line ensemble.

relating a system of non-intersecting Brownian bridges P on [0, t] to a system of non-

intersecting Brownian motions B on [0,∞].

Theorem 2.1. Let WBn be a Brownian n-melon. Define the rescaled melon

An =(An
1 , ..., A

n
n)

by

An
i (y)=n1/6((WBn)i(1+2yn−1/3)−2

√
n−2yn1/6).

Then, An converges to a random sequence of functions A=(A1,A2, ... )∈CN in law with

respect to product of uniform-on-compact topology on CN. For every y∈R and i<j, we

have that Ai(y)>Aj(y). The function A is called the (parabolic) Airy line ensemble.

The shifted line ensemble A(y)+y2 is stationary in time. We will refer to this object

as the stationary Airy line ensemble. However, for our purposes, the parabolic Airy line

ensemble is the object of interest.

The function A1(y)+y2 is known as the Airy process (sometimes Airy2). We now

collect a few key facts about the Airy line ensemble and the Airy process. For this

proposition and throughout the paper, we say that a Brownian motion (or bridge, or

melon) has variance v if its quadratic variation in an interval [s, t] is proportional to

v(t−s).

Proposition 2.2. ([13, Proposition 4.1]) Fix an interval [a, a+b]⊂R and k∈N, and
define Bi(t)=Ai(a+t)−Ai(a) for i∈{1, ..., k}. Then, on the interval [0, b], the sequence

(B1, ..., Bk) is absolutely continuous with respect to the law of k independent Brownian

motions with variance 2.
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The 1-point distributions of the Airy process follow a GUE Tracy–Widom distribu-

tion. This well-known result goes back to [2]. As this will be used throughout the paper,

we state it here as a theorem. The tail bounds on GUE Tracy–Widom random variables

that we use go back to [53], see also [49] for short proofs.

Theorem 2.3. ([53], [2]) For every t∈R, the random variable A1(t)+t2 has GUE

Tracy–Widom distribution. In particular, it satisfies the tail bounds

P(A1(t)+t2 >m)⩽ ce−dm3/2

and P(A1(t)+t2 <−m)⩽ ce−dm3

for universal constants c and d.

We will also use the following bound on 2-point distributions of the Airy process.

Lemma 2.4. ([16], Lemma 6.1) There are constants c, d>0 such that for every t∈R
and every s, a>0, we have

P(|A1(t)+t2−A1(t+s)−(t+s)2|>a
√
s)⩽ ce−da2

.

Finally, we will also need the finite versions of Theorem 2.3 and Lemma 2.4, as well

as a proposition bounding the entire Brownian n-melon below a particular function.

Theorem 2.5. Let Wn
1 be the top line of a Brownian n-melon. There exist constants

c and d such that, for all m>0 and all n⩾1, we have

P(|Wn
1 (1)−2

√
n |⩾mn−1/6)⩽ ce−dm3/2

.

Theorem 2.5 is proven in [36] for m<n2/3. For greater values of m, the result is more

classical and follows from the large deviation theory of the Gaussian unitary ensemble,

see for example [35, equation (2.7)].

Proposition 2.6. Fix a>0. There exist constants c, d>0 such that, for every n∈N,
t>0, s∈[0, atn−1/3], and m>0 we have

P
(∣∣∣∣Wn

1 (t)−Wn
1 (t+s)−s

√
n

t

∣∣∣∣>m
√
s

)
⩽ ce−dm3/2

.

Proposition 2.6 follows from [26, Theorem 2.14], see also [16, Proposition 4.1] for an

alternate proof.

Proposition 2.7. ([16, Proposition 4.3]) There exist positive constants b, c, and d

such that, for all m>0 and n⩾1, with probabity at least 1−ce−dm3/2

we have

Wn
1 (t)⩽ 2

√
nt+

√
tn−1/6[m+b log2/3(n1/3 log(t∨t−1)+1)] for all t∈ [0,∞).

Here, a∨b is the maximum of a and b.
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Frequently in the paper, we use Theorem 2.5 and Propositions 2.6 and 2.7 to bound

last passage values either between two fixed points, or to a single line. The connection

is via the formula for Wf in §2.2. Note that all three of these bounds give optimal or

near-optimal results even in the limiting scaling.

2.4. Modulus of continuity

In order to construct many of the objects in the paper, we will need a way of translating

tail bounds on 2-point differences into modulus of continuity bounds. For this, we use a

generalized version of Lévy’s modulus of continuity for Brownian motion.

Lemma 2.8. ([16, Lemma 3.3]) Let T=I1×...×Id be a product of bounded real in-

tervals of length b1, ..., bd. Let c, a>0. Let H be a random continuous function from T

taking values in a vector space V with norm | · |. Assume that, for every i>0, there exists

αi∈(0, 1), βi, ri>0 such that

P(|H(t+uei)−H(t)|⩾muαi)⩽ ce−amβi
(2.5)

for every coordinate vector ei, m>0, and points t, t+uei∈T with u<ri. Set β=mini βi,

α=maxi αi, and r=maxi r
αi
i . Then, with probability 1, we have

|H(t+s)−H(t)|⩽C

( d∑
i=1

|si|αi log1/βi

(
2r1/αi

|si|

))
, (2.6)

for every t, t+s∈T with |si|⩽ri for all i (here s=(s1, ..., sd)). Here, C is random con-

stant satisfying

P(C >m)⩽

[ d∏
i=1

bi
ri

]
cc0e

−c1m
β

,

where c0 and c1 are constants that depend on α1, ... αd, β1, ..., βd, d, and a. Notably,

they do not depend on b1, ..., bd, c, or r1, ..., rd.

2.5. Notation

We now introduce notation for last passage values across Brownian motions, Brownian

melons, and the Airy line ensemble. This notation will be used throughout the paper

starting in §6. Letting B∈CZ be a sequence of independent 2-sided Brownian motions,

we first define

[x! y]n :=B[(x, n)! (y, 1)],



the directed landscape 219

We will often omit the subscript n from the brackets and simply write [x!y] when the

value of n is clear from context. We will also use the mixed notation

[(x, k)! y]n :=B[(x, k)! (y, 1)] and [x! (y, k)]n :=B[(x, n)! (y, k)].

For last passage values in the melon WBn, we will use all the same notation with curly

brackets {·} in place of square ones [ · ]. We will also use angled brackets ⟨·⟩ for last

passage values across the parabolic Airy line ensemble:

⟨(x, k)! y⟩ :=A[(x, k)! (y, 1)].

We will write π{x, y} for the rightmost last passage path in WBn from (x, n) to (y, 1).

Here a last passage path π is ‘rightmost’ if π⩾τ for any other last passage path τ , see

Lemma 3.5. We similarly write π[x, y] be the rightmost last passage path in Bn from

(x, n) to (y, 1).

To avoid carrying around 2n−1/3 spatial terms, we will often use the notation

x̄=2xn−1/3 and ŷ=1+2yn−1/3,

when the value of n is clear from context.

3. The geometry of last passage paths

Last passage paths can be thought of as geodesics in a metric space. This is a guiding

principle for many of the proofs in the paper. With this intuition in mind, we devote

this section to stating and proving some basic facts about the geometry of last passage

paths. Many of these facts are well known and well used in the context of last passage

percolation.

For the rest of this section, let f∈CZ. The first lemma states that last passage paths

have the geodesic property that they maximize length between any two points on the

path. Its proof is straightforward and hence omitted.

Lemma 3.1. (Geodesic property) Let ((x, ℓ), (y,m)) be an endpoint pair of single

points. Then, for any π in the set of last passage paths Pf [(x, ℓ), (y,m)], and any times

s<t∈[x, y], we have that∫ t

s

df �π=max

{∫ t

s

df �τ : τ is a path from (s, π(s)) to (t, π(t))

}
.

The next fact is a straightforward consequence of Lemma 3.1. Its proof is again

omitted.
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Lemma 3.2. (Metric composition law) Let ((x, ℓ), (y,m)) be an endpoint pair of

single points. Then, for any k∈{m, ..., ℓ}, we have that

f [(x, ℓ)! (y,m)] = sup
z∈[x,y]

f [(x, ℓ)! (z, k)]+f [(z, k)! (y,m)]

and, for any k∈{m+1, ..., ℓ}, we have

f [(x, ℓ)! (y,m)] = sup
z∈[x,y]

f [(x, ℓ)! (z, k)]+f [(z, k−1)! (y,m)].

Lemma 3.2 implies a triangle inequality for last passage values. For any x⩽z⩽y and

m⩽k⩽ℓ, we have

f [(x, ℓ)! (y,m)]⩾ f [(x, ℓ)! (z, k)]+f [(z, k)! (y,m)]. (3.1)

Note that, in this equation, the inequality is reversed compared to the triangle inequality

for metric spaces. It will also be useful to understand the right-hand side above as a

function of z.

Lemma 3.3. Let ((x, ℓ), (y,m)) be an endpoint pair and fix k∈{m, ..., ℓ}. For z∈
[x, y], define

h1(z)= f [(x, ℓ)! (z, k)]−fk(z) and h2(z)= f [(z, k)! (y,m)]+fk(z).

Then,

f [(x, ℓ)! (y,m)] = sup
z∈[x,y]

h1(z)+h2(z),

the function h1 is non-decreasing and the function h2 is non-increasing.

Proof. The representation of f [(x, ℓ)!(y,m)] as a supremum over h1+h2 follows

immediately from Lemma 3.2. By the sum of gaps representation (2.1),

h1(z)=−fℓ(x)−inf

ℓ∑
i=k+1

fi−1(ti)−fi(ti),

where the infimum is over all sequences tℓ⩽...⩽tk+1∈[x, z]. As we increase z, this infi-

mum can only get smaller, so h1 is non-decreasing. The proof that h2 is non-increasing

is similar.

Lemma 3.4. For any endpoint pair ((x, ℓ), (y,m)), the set P [(x, ℓ), (y,m)] is closed

with respect to the topology of convergence of jump times (2.2).
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Lemma 3.4 follows from the continuity of f . The next lemma shows that we can

pick out rightmost and leftmost paths in the set P [(x, ℓ), (y,m)].

Lemma 3.5. Let ((x, ℓ), (y,m)) be an endpoint pair. There exist paths

π−, π+ ∈P [(x, ℓ), (y,m)]

such that, for any π∈P [(x, ℓ), (y,m)] and any z∈[x, y], we have

π−(z)⩽π(z)⩽π+(z).

We refer to π− as the leftmost last passage path and π+ as the rightmost last passage

path.

Proof. The set of last passage paths is closed by Lemma 3.4. Thus, it suffices to show

that, for any paths π1, π2∈P [(x, ℓ), (y,m)], that there exist paths τ1, τ2∈P [(x, ℓ), (y,m)]

such that

τ1(z)⩽πi(z)⩽ τ2(z) for i=1, 2.

Define paths τ1=π1∧π2 and τ2=π1∨π2 from (x, ℓ) to (y,m). Then,∫
df �τ1+

∫
df �τ2 =

∫
df �π1+

∫
df �π2,

since the paths τ1 and τ2 cover the same parts of lines in f as π1 and π2. Since the paths

π1 and π2 maximize length, each of the paths τi must maximize length as well.

Lemma 3.6. (Monotonicity and continuity of last passage paths) For x⩽y, let

π+[x, y] denote the rightmost last passage path in P [(x, n), (y, 1)]. Then, π+[x, y] is a

non-decreasing, right continuous functions of both x and y in the topology of convergence

of jump times. Similarly, the leftmost path π−[x, y] is a non-decreasing, left continuous

function of both x and y.

Proof. We just prove the statements for rightmost paths. Let x1⩽x2, y1⩽y2, and

x2⩽y1. On the interval [x2, y1], define

τ1 =π+[x1, y1]∧π+[x2, y2] and τ2 =π+[x1, y1]∨π+[x2, y2].

We can extend τ1 to the interval [x1, x2] by defining it to be equal to π+[x1, y1] there,

and similarly extend τ2 to [y1, y2] by setting it to be equal to π+[x2, y2]. For i=1, 2, τi is

a path from (xi, n) to (yi, 1). We have∫
df �τ1+

∫
df �τ2 =

∫
df �π+[x1, y1]+

∫
df �π+[x2, y2].
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As π+[x1, y1] and π+[x2, y2] maximize length, we have that τi∈P [(xi, n), (yi, 1)] for i=1, 2.

Moreover, τ2⩾π+[x2, y2] by construction. Since π+[x2, y2] is a rightmost last passage

path, this is in fact equality. Hence, τ1=π+[x1, y1] as well, showing monotonicity.

Now, we prove right continuity in x. The proof of right continuity in y is similar. Fix

y∈R and let xm#x∈R. By monotonicity, the sequence of paths π+[xm, y] has a limit π

in the topology of convergence of jump times. Since path length is a continuous function

in this topology, we have∫
df �π= lim

m!∞

∫
df �π+[xm, y] = lim

m!∞
f [(xm, n)! (y, 1)]= f [(x, n)! (y, 1)].

The final equality follows from the continuity of last passage values in x, see (2.3).

Therefore, π is a last passage path from (x, n) to (y, 1). Moreover, by monotonicity,

π+[x, y]⩽π+[xm, y] on the interval [xm, y] for all m. Therefore π+[x, y]⩽π as well. Since

π+[x, y] is the rightmost last passage path, π=π+[x, y] as desired.

We now show that paths exhibit a tree structure.

Proposition 3.7. Let x1⩽x2<y1⩽y2 be points in R. Let π+[xi, yi] denote the

rightmost last passage path in P [(xi, n), (yi, 1)]. Then, there is a (possibly empty) interval

[a, b]⊂[x2, y1] such that the following conditions hold :

(1) π+[x1, y1](s)=π+[x2, y2](s) for all s∈(a, b);
(2) π+[x1, y1](s)<π+[x2, y2](s) for all s∈[x2, y1]\[a, b].
In particular, if x1=x2, then the last passage paths to y1 and y2 follow the same

path up to time b, and are entirely disjoint afterwards (so they form two branches in a

tree). The same tree structure holds for π− in place of π+.

The discrepancy at the endpoints a and b is due to the fact that the paths are not

continuous.

Proof. Let

I = {t∈ [x2, y1] :π
+[x1, y1](t)=π+[x2, y2](t)}.

For any two points t1<t2∈I, by the geodesic property of last passage paths (Lemma 3.1),

the paths π+[xi, yi]|[t1,t2] are both last passage paths between the points

(t1, π
+[x1, y1](t1)) and (t2, π

+[x1, y1](t2)).

Moreover, both of these paths are rightmost last passage paths on this interval, so they

must be equal. Hence, [t1, t2]⊂I. Since t1 and t2 are arbitrary points in I, it follows that

I is an interval, as desired.

Part (ii) follows from monotonicity of last passage paths (Lemma 3.6).
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We end this section with a monotonicity result for sums of last passage values.

Proposition 3.8. Let x=(x1, n) and y=(y1, 1), and define x′ and y′ similarly.

Assume that x1⩽x′
1<y1⩽y′1∈R. Then,

f [x! y]+f [x′! y′]⩾ f [x! y′]+f [x′! y].

Proof. By the ordering of the points, there must exist a point z=(t, k) that lies along

the rightmost last passage paths both from x to y′ and x′ to y. Because of the geodesic

property, we have

f [x! y′] = f [x! z]+f [z! y′] and f [x′! y] = f [x′! z]+f [z! y].

The result is then the sum of the triangle inequalities

f [x! y]⩾ f [x! z]+f [z! y] and f [x′! y′]⩾ f [x′! z]+f [z! y′].

4. Melons

Recall that Cn
+ is the space of n-tuples of continuous functions from [0,∞) to R. Recall

also the melon map f 7!Wf , introduced in §2.2, defined so that

k∑
i=1

(Wf)i(t)= f [(0, n)k! (t, 1)k] (4.1)

for all k∈{1, ..., n} and all t∈[0,∞). In this section, we show that certain last passage

values are preserved by the map f 7!Wf .

To do this, we first approach the construction of Wf by successively sorting pairs

of functions. This approach is taken in [44], [7]. Let f1, f2: [0,∞)!R be two continuous

functions. For x<y∈[0,∞), define the minimal gap size

G(f1, f2)(x, y)= min
s∈[x,y]

[f1(s)−f2(s)].

Then, the last passage values satisfy

W (f1, f2)1(t)= f1(t)−f2(0)−G(f1, f2)(0, t),

W (f1, f2)2(t)= f2(t)−f1(0)+G(f1, f2)(0, t).
(4.2)

To see the above formula for W (f1, f2)2 given the formula for W (f1, f2)1, simply note

that

f [(0, n)n! (t, 1)n] =

n∑
i=1

fi(t)−fi(0)
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for any f∈Cn
+ , t⩾0. The formula for W (f1, f2)2 uses the case n=2. Now, for f∈Cn

+ and

i∈{1, ..., n−1}, define

σi(f)= (f1, f2, ..., fi−1,W (fi, fi+1)1,W (fi, fi+1)2, fi+2 ..., fn).

Now, let (i1, ..., i(n2)
) be any sequence of numbers in {1, ..., n−1} such that τi1 ... τi(n2)

is the reverse permutation n (n−1) ... 1, where τi=(i, i+1) is an adjacent transposition.

Then we can alternately define the melon of f by

Wf :=σi1 ... σi
(n2)

(f). (4.3)

By the discussion immediately preceding Proposition 2.8 in [7], the above function is

independent of the choice of reduced decomposition of n ... 1. Moreover, by Corollary 2.9

there,

σiWf =Wf

for any σi. This implies that (Wf)1⩾(Wf)2⩾...⩾(Wf)n. Combining this with the fact

that (Wf)i(0)=0 for all i, we get that, for any t>0, there exists a last passage path from

(0, n)k to (t, 1)k that only uses the top k paths. This implies that

k∑
i=1

(Wf)i(t)=Wf [(0, n)k! (t, 1)k]. (4.4)

The fact that Wf=Wf then follows from our Proposition 4.1.

Biane, Bougerol, and O’Connell [7, §4.5] note that the transformation (4.3) yields a

non-intersecting walk representation of the recording tableaux given by the RSK bijec-

tion. From this, the equivalent formula (4.1) follows from Greene’s theorem, see [51]. A

proof of this connection with RSK can be found in [42]. After posting a previous version

of this paper, we learned from Neil O’Connell that Proposition 4.1 for k identical starting

points and k identical endpoints follows from [7, Lemma 4.8].

Proposition 4.1. Let n, k∈N, and let

U = {(xi, n)}i∈{1,...k} and V = {(yi, 1)}i∈{1,...k}

be an endpoint pair with xi⩾0 for all i. Then, for any f∈Cn
+ , we have that

f [U!V ] =Wf [U!V ].

We will prove this proposition in three steps. We first deal with the case n=2 and

when U and V each have one element.
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Lemma 4.2. Let f=(f1, f2). For every 0⩽x⩽y, we have that

f [(x, 2)! (y, 1)]=Wf [(x, 2)! (y, 1)].

Proof. Last passage values are left unchanged by shifting functions up or down by a

constant. Hence, we may assume that f1(0)=f2(0)=0. To avoid carrying bulky notation,

we also set

s(x, y)= max
s∈[x,y]

[f2(s)−f1(s)].

We have that

f [(x, 2)! (y, 1)]= f1(y)−f2(x)+s(x, y)

and, by (4.2), that

Wf [(x, 2)! (y, 1)]= f1(y)+s(0, y)−f2(x)+s(0, x)+ sup
t∈[x,y]

[f2(t)−f1(t)−2s(0, t)].

Therefore, to prove the lemma, it is enough to show that

s(x, y)−s(0, y)−s(0, x)= sup
t∈[x,y]

[f2(t)−f1(t)−2s(0, t)]. (4.5)

To prove (4.5), we divide into cases. First suppose that s(0, x)=s(0, y). In this case, as

s(0, ·) is an non-decreasing function, we have that s(0, t)=s(0, x)=s(0, y) for all t∈[x, y].
Therefore,

sup
t∈[x,y]

[f2(t)−f1(t)−2s(0, t)] = sup
t∈[x,y]

[f2(t)−f1(t)]−s(0, y)−s(0, x)

= s(x, y)−s(0, y)−s(0, x).

For the case when s(0, x)<s(0, y), observe that

sup
t∈[x,y]

[f2(t)−f1(t)−2s(0, t)]⩽− inf
t∈[x,y]

s(0, t)=−s(0, x). (4.6)

Moreover, as s(0, ·) is non-constant on the interval [x, y], the continuity of the functions

f1 and f2 implies that there exist times t1 and t2 in [x, y] such that

s(0, t1)= f2(t1)−f1(t1)= s(0, x) and f2(t2)−f1(t2)= s(0, y).

The first equation above implies that the inequality in (4.6) is in fact equality, and the

second equation implies that s(x, y)=s(0, y). Combining these facts proves (4.5).

Next, we extend the n=2 case to deal with an arbitrary number of paths.
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Lemma 4.3. Let f=(f1, f2). For every endpoint pair of the form U={(xi, 2)}i∈{1,...k}

and V ={(yi, 1)}i∈{1,...k}, we have that

f [U!V ] =Wf [U!V ].

Proof. Since there are only two lines, there can only be disjoint paths from U to V if

yi⩽xi+2 for all i∈{1, ..., k−2}. For the same reason, whenever xi+1<yi, if π is a k-tuple

of disjoint paths from U to V , then

πi(t)= 1 and πi+1(t)= 2 for all t∈ [xi+1, yi). (4.7)

Therefore, recalling that Q(U, V ) denotes the set of all k-tuples of disjoint paths from U

to V , we can write

sup
π∈Q(U,V )

k∑
i=1

∫
df �πi

= sup
π∈Q(U,V )

( k∑
i=1

∫ yi∧xi+1

xi∨yi−1

df �πi+

k−1∑
i=1

1(xi+1 <yi)[f1(yi)+f2(yi)−f1(xi+1)−f2(xi+1)]

)
.

In the above formula, we treat y0 as 0 and xk+1 as ∞. Now, since

(Wf)1+(Wf)2 = f1+f2,

the second term under the right-hand supremum above is preserved by mapping f 7!Wf .

We need to check that the same is true for the first term. Since the intervals

(xi∨yi−1, yi∧xi+1)

are all disjoint from each other, the only condition that forces interactions between the

coordinates of a path π∈Q(U, V ) is condition (4.7). Therefore,

sup
π∈Q(U,V )

k∑
i=1

∫ yi∧xi+1

xi∨yi−1

df �πi =

k∑
i=1

sup
πi∈Q((xi∨yi−1,2),(yi∧xi+1,1))

∫
df �πi.

By Lemma 4.2, each supremum term in the sum on the right-hand side is preserved by

the map f 7!Wf .

Before proving Proposition 4.1, we record an extension of the metric composition

law in Lemma 3.2. First, for a set of k-tuples Z={(wi,m)}i∈{1,...,k}, define

Z− = {(wi,m−1)}i∈{1,...,k}.
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Lemma 4.4. Let f∈CZ. Let (U, V ) be an endpoint pair, with

U = {(xi, n)}i∈{1,...,k} and V = {(yi, 1)}i∈{1,...,k},

and let m∈{1, ..., n−1}. Then,

f [U!V ] = sup
Z

f [U!Z]+f [Z−
!V ],

where the supremum is taken over all k-tuples Z={(zi,m)}i∈{1,...,k}, such that both

(U,Z) and (Z−, V ) are endpoint pairs.

The proof of Lemma 4.4 is straightforward, and hence we omit it.

Proof of Proposition 4.1. It is enough to show that for any sequence of continuous

paths f=(f1, ..., fn) with fi(0)=0 for all i, and any m∈{1, ..., n−1},

σmf [U!V ] = f [U!V ].

For any f , by Lemma 4.4 applied twice, we can write

f [U!V ] = sup
T,Z

(f [U!T ]+f [T−
!Z]+f [Z−

!V ]). (4.8)

Here, the supremum is over all

T = {(ti,m+2)}i∈{1,...,k} and Z = {(zi,m)}i∈{1,...,k}

such that (U, T ), (T−, Z), and (Z−, V ) are all endpoint pairs. For a fixed pair (T,Z),

when we apply σm to f , the first and third terms under the supremum in (4.8) do not

change since the relevant components fi do not change. The middle term is preserved

under the transformation σm, by Lemma 4.3. Hence, the right-hand side of (4.8) is also

preserved under σm.

We finish this section with a straightforward consequence of Proposition 4.1. As in

§2.1, define two paths π1 and π2 to be disjoint if either π1>π2 or π1<π2 on the entire

interior of both functions’ domains. As before, we define π+

f [x, y] as the rightmost last

passage path in the set Pf [(x, n), (y, 1)]. We define the leftmost path π−
f [x, y] similarly.

Lemma 4.5. Let U=((x1, n), (x2, n)) and V =((y1, 1), (y2, 1)) be an endpoint pair

with 0⩽x1. The paths π−
f [x1, y1] and π+

f [x2, y2] are disjoint if and only if the paths

π−
Wf [x1, y1] and π+

Wf [x2, y2] are disjoint.
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Proof. We first show that the paths π−
f [x1, y1] and π+

f [x2, y2] are disjoint precisely

when

f [(x1, n)! (y1, 1)]+f [(x2, n)! (y2, 1)]= f [U!V ]. (4.9)

To see this, note that if the paths π−
f [x1, y1] and π+

f [x2, y2] are disjoint, then

(π−
f [x1, y1], π

+

f [x2, y2])

forms a last passage path from U to V . Moreover, if equality holds in (4.9), then there

must exist π∈Pf [(x1, n), (y1, 1)] and τ∈Pf [(x2, n), (y2, n)] that are disjoint. Pushing

these paths further left and right, respectively, preserves disjointness.

Now, Proposition 4.1 implies that (4.9) holds if and only if it holds with Wf in place

of f . By the same reasoning as above, this is true if and only if the paths π−
Wf [x1, y1]

and π+

Wf [x2, y2] are disjoint.

5. Properties of melon paths

In this section, we collect some key deterministic facts about last passage paths in melons.

The first is about the location of last passage paths. We state the following lemma for

functions f∈Cn
+ that start at zero and stay ordered, as any melon Wf has this property.

Lemma 5.1. Let f∈Cn
+ be such that fi(0)=0 and fi⩾fi+1 for all i. Fix j⩽k⩽n∈N.

Let U={(xi, n)}i∈{1,...,k}, V ={(yi, 1)}i∈{1,...,k} be an endpoint pair with xi=0 for all

i∈{1, ..., j}. Then, there exists a last passage path π from U to V , see (2.4), such that

πi(t)=i for all t∈[0, y1), i∈{1, ..., j}.

For the proof, it may help the reader to recall the ordering constraints required on

U , V and any set of disjoint paths from U to V , see §2.1.

Proof. Let g be the gap process of f defined by gi=fi−fi+1. By the identity (2.1),

we can write

f [U!V ] = sup
τ

k∑
i=1

(
f1(yi)−fn(xi)−

n−1∑
r=1

gr(ti,r)

)

=

k∑
i=1

(
f1(yi)−fn(xi)−inf

τ

n−1∑
r=1

gr(ti,r)

)
.

(5.1)

Here, the supremum is over all disjoint k-tuples of paths from U to V , and ti,r is the jump

time of the path τi to line r, see (2.2). Hence, any last passage path π across f minimizes

the sum of the gaps. In particular, this implies that if π is a last passage path, then for
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i∈[1, j] when xi=0, we can replace each function πi with a function that immediately

jumps up to line i to take advantage of the zero-sized gaps there: since gi(t)⩾0 for all i

and t, this process cannot decrease the length of the path. By the ordering constraints

on the functions {πi}i∈{1,...,k}, we must also have have that πi(t)⩾i for all t<y1.

Melons opened up at other times

We will introduce melons starting at points other than zero. Let f∈Cn. We define the

melon at z by

Wzf =W [f(z+ ·)].

We also define the reversing maps Rz:C
n!Cn by

Rzfi(t)=−fn+1−i(z−t).

We can now define the reverse melon opened up at z by

W ∗
z f =WRzf. (5.2)

We record the following fact about reverse melon last passage values.

Lemma 5.2. Let f∈Cn and let U={(xi, n)}i∈{1,...,k}, V ={(yi, 1)}i∈{1,...,k} be an

endpoint pair. For any z⩾yk, we have that

f [U!V ] =Rzf [Vz!Uz] =W ∗
z f [Vz!Uz].

Here, Uz={(z−xk+1−i, 1)}i∈{1,...,k} and Vz={(z−yk+1−i, n)}i∈{1,...,k}.

Proof. The first equality follows from the symmetry of the definition of last passage

paths under reversal. The second equality follows from Proposition 4.1.

In the remainder of this section, we will build a path transformation lemma which

represents Wf [(x, n)!(y, k)] in terms of a first passage value across a reverse melon.

For f∈Cn and k<n define the backwards first passage value

f [(x, 1)!f (y, k)] = inf
π

∫
df �π, (5.3)

where the infimum is taken over all non-decreasing cadlag functions π: [x, y]!{1, ..., k}.

Lemma 5.3. Let f∈Cn. For every 0⩽x<z, we have that

Wf [(x, n)! (z, k)] = (Wf)k(z)−W ∗
z f [(z−x, 1)!f (z, k)].
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z − x z
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Figure 4. An illustration of the proof of Lemma 5.3. We want to understand the last passage
value in the melon from (x, n) to (z, k); here n=5 and k=3. To do this, note that this is the

bottom path in a collection of k−1 disjoint last passage paths from (0, n) to (z, 1) and one

path from (x, n) to (z, 1): this is Figure 4 (a). We can then ‘demelonize’ (Figure 4 (b)) and
then ‘remelonize’ at z after reversing the original lines (Figure 4 (c)). These transformations

leave the appropriate last passage values (i.e. the sum of the lengths of the coloured paths)
unchanged. In Figure 4 (c), the last passage paths use the top-3 lines up to time z, except

for the graph of one increasing path from (z−x, 1) to (z, 3): this path gives the first passage

value that appears in the statement of the lemma. This is only a sketch, i.e. Figures 4 (a) and
(c) are not truly the melon and reverse melon of Figure 4 (b).

The proof of this lemma is illustrated in Figure 4.

Proof. To simplify notation in the proof, we write {zk−1, w} for the k-tuple of points

consisting of k−1 copies of z and one copy of w. Similarly, we write {w, zk−1} if the

points are in the opposite order. First, by Lemma 5.1, there is a last passage path π in

Wf from {(0, n)k−1, (x, n)} to (z, 1)k with πi(t)=i for all t∈[0, z] and i⩽k−1. The only

constraint on the remaining path πk is that it avoids the first k−1 lines on [0, z). In other

words, πk must be a last passage path from (x, n) to (z, k) in Wf . More formally, πk

becomes a last passage path from (x, n) to (z, k) if we redefine a single value πk(z):=k.

Moreover,
k−1∑
i=1

∫
d(Wf)�πi =Wf [(0, n)k−1! (z, 1)k−1],

again because of Lemma 5.1. Putting these facts together gives that

Wf [(x, n)! (z, k)]

=Wf [{(0, n)k−1, (x, n)}! (z, 1)k]−Wf [(0, n)k−1! (z, 1)k−1].
(5.4)
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We now analyze the first term on the right-hand side above. By Proposition 4.1, this

term does not change when we replace Wf by the original function f . Then, we use

Lemma 5.2 to rewrite it in terms of the last passage values in the reverse melon W ∗
z f

opened up at z. This gives that

Wf [{(0, n)k−1, (x, n)}! (z, 1)k] =W ∗
z f [(0, n)

k! {(z−x, 1), (z, 1)k−1}]. (5.5)

By Lemma 5.1, there exists a last passage path π from (0, n)k to {(z−x, 1), (z, 1)k−1}
in W ∗

z f such that πi(t)⩽i for all t>0 and i∈{1, ..., k}. Hence π|[0,z−x] will be a last

passage path from (0, n)k to (z−x, 1)k in W ∗
z f . More formally, π|[0,z−x] will be a last

passage path between these points if the endpoint values are redefined to be 1 at z−x.

In particular, this implies that

W ∗
z f [(0, n)

k! {(z−x, 1), (z, 1)k−1}]

=W ∗
z f [(0, n)

k! (z−x, 1)k]+sup
τ

k∑
i=2

∫ z

z−x

dW ∗
z f �τi,

(5.6)

where the supremum above is over all sequences of non-increasing cadlag paths τ=

(τ2, ..., τk) with τi(t)⩽i and τi<τi+1 on the interval (z−x, z). This restriction on the

paths τi implies that, for all i, τi(t)∈{i−1, i} for t∈[z−x, z). Moreover, letting

ti = z∧inf{s∈ [z−x, z] : τi(s)= i−1},

we have z−x⩽t2 ...⩽tk⩽z, and the complement of the union of the graphs of τ2, ..., τk

in [z−x, z]×{1, ..., k} is given by

[z−x, t2)×{1}∪[t2, t3)×{2}∪...∪[tk, z]×{k}.

This is the graph of a non-decreasing cadlag path τ∗ :[z−x, z]!{1, ..., k}. Together, the

paths τ2, ..., τk, τ∗ cover all lines {1, ..., k} on the interval (z−x, z), so we have

k∑
i=2

∫ z

z−x

dW ∗
z f �τi+

∫ z

z−x

dW ∗
z f �τ∗

=

k∑
i=1

W ∗
z f(z)−W ∗

z f(z−x)

=W ∗
z f [(0, n)

k! (z, 1)k]−W ∗
z f [(0, n)

k! (z−x, 1)k].

Here, the final equality follows from (4.4). Hence the right-hand side of (5.6) is equal to

W ∗
z f [(0, n)

k! (z, 1)k]−inf
τ∗

∫ z

z−x

dW ∗
z f �τ∗,
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where the infimum is taken over all non-decreasing paths τ∗: [z−x, z]!{1, ..., k}. This

infimum is simply the backwards first passage value W ∗
z f [(z−x, 1)!f(z, k)]. Finally,

combining this representation with (5.4) and (5.5) implies that

Wf [(x, n)! (z, k)] =W ∗
z f [(0, n)

k! (z, 1)k]

−Wf [(0, n)k−1! (z, 1)k−1]

−W ∗
z f [(z−x, 1)!f (z, k)].

(5.7)

We can rewrite the first term on the right-hand side of (5.7) in terms of a last passage

time across f by using Lemma 5.2. This gives that

W ∗
z f [(0, n)

k! (z, 1)k] = f [(0, n)k! (z, 1)k] =Wf [(0, n)k! (z, 1)k],

where the second equality uses Proposition 4.1. Furthermore, by Lemma 5.1, the above

last passage is equal to (Wf)1(z)+...+(Wf)k(z). The second term on the right-hand

side of (5.7) can similarly be written as (Wf)1(z)+...+(Wf)k−1(z), completing the proof

of the lemma.

6. The Airy line ensemble last passage problem

In this section, we study a last passage problem in the Airy line ensemble that arises

naturally when we try to understand the limit of the right-hand side of the equality in

Proposition 4.1. To motivate the study of this problem, we first see how it arises in the

study of Brownian last passage percolation via the melon identity in Lemma 5.3.

Recall from §2.5 the scaling operations x̄=2xn−1/3 and ŷ=1+2yn−1/3, and the

bracket notation [ · ], {·}, and ⟨·⟩ for last passage across Brownian motions, a Brownian

melon, and the Airy line ensemble. By Proposition 4.1, the Brownian last passage value

from x̄ to ŷ equals a last passage value across Brownian melon. By Lemma 3.2, this

analysis can be broken down into an analysis of a last passage problem across the top

right corner of the melon and a last passage problem up to that corner. By continuity, the

last passage problem across the top-right corner will translate to a last passage problem

in the Airy line ensemble.

The harder part is the last passage up to the top-right corner; these are values of

the form {x̄!(ẑ, k)}n. To tackle this problem, we approximate a variant,

{x̄! (ẑ, k)}n−Wn
k (ẑ),

which has the added advantage of monotonicity in z (see Lemma 3.3). Here and through-

out we use the notation Wn
k :=(WBn)k for the kth line in a Brownian n-melon. In the
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sequel, for a random array {Rn,k :n, k∈N} we will write

Rn,k = o(rk) if, for all ε> 0,

∞∑
k=1

lim sup
n!∞

P
(∣∣∣∣Rn,k

rk

∣∣∣∣>ε

)
<∞. (6.1)

The idea behind this notation is that, if we can pass to a limit in n to get a sequence

Rk, then, by the Borel–Cantelli lemma, Rk/rk!0 almost surely.

Proposition 6.1. For each n, let Wn=WBn be a Brownian n-melon. Let x>0

and let zk be an arbitrary sequence of real numbers. Let

Fn
k (z)=n1/6[{x̄! (ẑ, k)}n−Wn

k (ẑ)+2xn1/6].

Then,

Fn
k (zk)= 2

√
2kx+2zkx+o(

√
k ).

The analysis in Proposition 6.1 will boil down to understanding a last passage prob-

lem across the Airy line ensemble. As mentioned at the beginning of the section, this

Airy line ensemble last passage problem arises out of an application of Lemma 5.3. This

application is dealt with by the following lemma.

Lemma 6.2. Fix k∈N. Then, in the setup of Proposition 6.1, we have

Fn
k (zk)−2zkx

d−−! ⟨(0, k)! (x, 1)⟩ as n!∞. (6.2)

Proof. By Lemma 5.3, we have

Fn
k (zk)= 2xn1/3−n1/6W ∗

ẑk
Bn[(ẑk−x̄, 1)!f (ẑk, k)], (6.3)

where the notation f refers to the backwards first passage value, see (5.3), and W ∗
ẑk

is the

reverse melon opened up at ẑk, see (5.2). By time-reversal symmetry of Brownian motion,

W ∗
ẑk
Bn is equal to WBn in distribution. Therefore by Theorem 2.1, the top corner of

W ∗
ẑk
Bn converges in distribution after proper rescaling to the Airy line ensemble.

Now, for f, ĝ=(g, ..., g)∈Cn, and α∈R, backwards first passage values across f and

αf+ĝ are simply related by scaling by α and translation by an increment of g. Using this,

we can rewrite the right-hand side of (6.3) as a backwards first passage value across a

sequence of functions that converge uniformly on compact sets to the Airy line ensemble.

Since backwards first passage values are continuous with respect to uniform convergence

on compact sets, this implies that the right-hand side of (6.3) converges to

−A[(zk−x, 1)!f (zk, k)]. (6.4)
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By flip symmetry of Airy line ensemble, (6.4) is equal in distribution to

A[(−zk, k)! (x−zk, 1)]. (6.5)

This is equal in distribution to the right-hand side of (6.2) plus 2zkx, since

t 7−!A(t)+t2

is stationary.

We can now state the key theorem about last passage values across the Airy line

ensemble. Together with Lemma 6.2, this implies Proposition 6.1.

Theorem 6.3. Fix x>0, and recall that ⟨(0, k)!x⟩ is the last passage value across

the Airy line ensemble A from line k at time zero to line 1 at time x. Then, there exists

a constant d∈N such that, for every ε>0, we have

∑
k∈N

P
(
⟨(0, k)!x⟩−2

√
2kx

k3/7 logd k
>ε

)
<∞.

The intuition behind Theorem 6.3 is as follows. Since the Airy line ensemble arises

as the scaling limit at the edge of Dyson’s Brownian motion, we can loosely interpret

it as an infinite sequence of Brownian motions conditioned never to intersect. This

intuition is made rigorous by the Brownian Gibbs property for the Airy line ensemble.

This property states that conditioned on the values of A on the boundary of a region,

inside that region A consists of independent Brownian bridges, conditioned so that the

whole process remains non-intersecting and continuous. The typical spacing between the

kth and (k+1)st Airy lines is O(k−1/3), so this picture, along with Brownian scaling,

suggests that on o(k−2/3) time scales, Ak behaves like an independent Brownian motion.

It is reasonable to expect that the last passage path across A from (0, k) to (x, 1)

spends roughly the same amount of time, namely O(k−1), on each Airy line. By the

above heuristic, Airy lines behave like Brownian motions on this scale, suggesting that

⟨(0, k)!x⟩ should be close to the corresponding Brownian last passage value of 2
√
2kx.

Theorem 6.3 proves this.

We believe that ⟨(0, k)!x⟩ still behaves like a Brownian last passage value at a finer

precision. In particular, we expect that the true fluctuation of ⟨(0, k)!x⟩ around 2
√
2kx

should be O(k−1/6) as in Brownian last passage percolation. While the o(k3/7 logd k)

error we get could be improved by a more careful application of our methods, even our

most optimistic heuristic proofs of the above theorem did not yield this error. It would be

of interest to improve the above result to get a bound that is o(1) as k!∞, as this would

yield a slightly nicer representation of the Airy sheet in the limit; see Problem 14.2.
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To prove Theorem 6.3 we require structural results about the Airy line ensemble

from [16]. The Brownian Gibbs property suggests that, if we sample the points in A on a

fine grid, then what lies in between is simply independent Brownian motions, conditioned

not to intersect only when the grid points are close together. This picture was made

rigorous in [16]. To state the results of that paper, we need two definitions. These

definitions are illustrated in Figure 5.

Definition 6.4. Fix t>0. For a fixed ℓ>0, define sr=rt/ℓ for all r∈{0, 1, ..., ℓ}. For
k, δ>0, we define a random graph Gk(t, ℓ, δ) on the set

Sk(ℓ)= {1, ..., k}×{1, ..., ℓ},

where the points (i, r) and (i+1, r) are connected if the two lines Ai and Ai+1 are close

at one of the two endpoints sr−1 and sr. That is, if

|Ai(sr−1)−Ai+1(sr−1)|⩽ δ or |Ai(sr)−Ai+1(sr)|⩽ δ.

Definition 6.5. The bridge representation Bk(t, ℓ, δ) of the Airy line ensemble A is

a sequence (B1, ...,B2k) of functions from [0, t] to R constructed as follows. For every

line i∈{1, ..., 2k} and every r∈{1, ..., ℓ}, sample a Brownian bridge Bi,r: [sr−1, sr]!R of

variance 2 with

Bi,r(sr−1)=Ai(sr−1) and Bi,r(sr)=Ai(sr).

The bridges Bi,r and Bi′,r are conditioned not to intersect if (i, r) and (i′, r) are in

the same component of G2k(t, ℓ, δ). We then define the ith line Bi of the line ensemble

Bk(t, ℓ, δ) by concatenating the bridges Bi,r. That is, Bi|[sr−1,sr]=Bi,r for all r∈{1, ..., ℓ}.

We now state the main structural result about the Airy line ensemble from [16].

Theorem 6.6. ([16], Theorem 7.2) There exist constants c, d>0 such that the fol-

lowing holds for all k⩾3, t>0, γ∈(c log(log k)/ log k, 2], and ℓ⩾tk2/3+γ . The total vari-

ation distance between the laws of Bk(t, ℓ, k−1/3−γ/4)|{1,...,k}×[0,t] and A|{1,...,k}×[0,t] is

bounded above by

ℓe−dγkγ/12

.

Theorem 6.6 shows that, at the right scale, the Airy line ensemble can be represented

as sequences of concatenated Brownian bridges. It will allow us to relate last passage

across the Airy line ensemble to last passage across concatenated Brownian bridges, and

then in turn to Brownian last passage percolation. The precise scale is essentially optimal

given that the typical distance between the kth and (k+1)-st Airy lines is O(k−1/3). See

[16] for more discussion of the scaling parameters in Theorem 6.6. Note that in Theo-

rem 6.6 we are required to sample bridges for 2k Airy lines, even though our comparison
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(a) (b)

Figure 5. An illustration of the bridge representation B of the Airy line ensemble. Figure 5 (a)

is the Airy line ensemble, with points at three times identified. Points with the same time
coordinate are grouped together if they are close. To sample the bridge representation on

this grid, we erase all lines between the specified points and resample independent Brownian

bridges that are conditioned not to intersect each other if either of their endpoints are close
(i.e. have the same colour). The result is Figure 5 (b). If we only look at the top half of the

lines in the bridge representation, then with high probability they do not intersect each other

and resemble the Airy line ensemble.

only concerns the top k lines. The bridges with indices from k+1 to 2k take the place of

the lower boundary condition in the usual Gibbs resampling. An index smaller than 2k

is also possible, but for practical purposes this does not improve any of our estimates.

We will also need a structural result showing that edges in the graph G2k(t, ℓ, δ) are

rare, and a modulus of continuity result for the Airy line ensemble.

Proposition 6.7. ([16, Proposition 7.4]) Fix γ∈(0, 2], and let k∈N, t∈(0,∞), and

ℓ∈N. Let the graph

G :=G2k(t, ℓ, k
−1/3−γ/4)

be as in Definition 6.4. For each r∈{1, ..., ℓ}, let

Vr = {i∈{1, ..., 2k} : degG(i, r)⩾ 1}.

In other words, Vr is the set of vertices in G with second coordinate r that are connected

to at least one other vertex. Then, for any α∈(0, 1], there exist constants cα and dα

such that, for all k∈N, i∈{⌊kα⌋+1, ..., 2k}, and m⩽kα/2, we have that

P(|Vr∩{i−⌊kα⌋, ..., i}|>mkα−3γ/4)⩽ cαe
−dαm. (6.6)

Theorem 6.8. ([16, Theorem 8.1]) There exists a constant d>0 such that, for any

t>0, we have that∑
k∈N

P
(

sup
s,s+r∈[0,t]

|Ak(s)−Ak(s+r)|
√
r log1/2(1+r−1) logd k

> 1

)
<∞. (6.7)
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The proof of Theorem 6.3 relies on rewriting each line in the bridge representation

of the Airy line ensemble as a Brownian motion plus error terms. Understanding last

passage in this case can be handled by the following subadditivity lemma. The proof is

straightforward, and so we omit it.

Lemma 6.9. Let f=(f1, ..., fn) and

L(f)= f [(0, n)! (t, 1)]

be the last passage value across f from time zero to time t, and let F (f)=−L(−f) be the

first passage value across f , again from the point (0, n) to (t, 1). Then, for any f, g∈Cn,

we have that

L(f)+F (g)⩽L(f+g)⩽L(f)+L(g).

Proof of Theorem 6.3. We set x=1 for notational simplicity as the value of x plays

no important role. Let Bk=Bk(1,
⌈
k2/3+γ

⌉
, k−1/3−γ/4) be the bridge representation in-

duced the division of time {sr :r∈{1, ...,
⌈
k2/3+γ

⌉
}} and the graph

G2k =G2k(1, ⌈k2/3+γ⌉, k−1/3−γ/4).

Here γ∈
(
0, 1

3

)
is a parameter that we will optimize over later in the proof. By The-

orem 6.6, we can couple all the representations Bk with the Airy line ensemble A so

that ∑
k∈N

P(Bk|{1,...,k}×[0,1] ̸=A|{1,...,k}×[0,1])<∞. (6.8)

Hence, it suffices to analyze the last passage time L(Bk) from (0, k) to (x, 1).

Step 1. Splitting up the paths. By representing each of the Brownian bridges used

to create Bk=(Bk,1, ...,Bk,k) as a Brownian motion minus a random linear term, we can

write

Bk,i =Hk,i+Rk,i+Xk,i.

Here, the k-tuple Hk=(Hk,1, ...,Hk,k) consists of k independent Brownian motions of

variance 2 on [0, 1]. The functions Rk,i are piecewise linear with pieces defined on the time

intervals [sr−1, sr] for r∈{0, ...,
⌈
k2/3+γ

⌉
}, and the error term Xk,i is equal to zero, except

for on intervals [sr−1, sr] where the vertex (i, r) is in a component of size greater than 1

in the graph G2k. On such intervals, Xk,i is the difference between a Brownian bridge

from zero to zero and a Brownian bridge conditioned to avoid Ui,r−1 other Brownian

bridges with certain start and endpoints. Here, Ui,r is the size of the component of (i, r)

in G2k and the two Brownian bridges used in the definition of Xk,i are independent.
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By Lemma 6.9 applied twice, we have that

L(Hk)+F (Rk)+F (Xk)⩽L(Bk)⩽L(Hk)+L(Rk)+L(Xk). (6.9)

By Theorem 2.5, the main term

L(Hk)= 2
√
2k+Ykk

−1/6, (6.10)

where {Yk}k∈N is a sequence of random variables satisfying a tail bound

P(|Yk|>m)⩽ ce−dm3/2

,

for c and d not depending on m and k. To translate Theorem 2.5 to a bound on last

passage values, we have used the identity (4.1).

Step 2. Bounding the piecewise linear term. First, we have the bound

|L(Rk)|, |F (Rk)|⩽Mk,

where Mk is the maximum absolute slope of any of the piecewise linear segments in Rk.

The slopes in Rk come from increments in the Airy line ensemble minus the increments of

the Brownian motions Hk on the grid points. Recalling that Sk(ℓ)={1, ..., k}×{1, ..., ℓ},
we have the following upper bound for Mk:

⌈k2/3+γ⌉
[

max
(i,r)∈Sk(⌈k2/3+γ⌉)

|Hk,i(sr)−Hk,i(sr−1)|+ max
(i,r)∈Sk(⌈k2/3+γ⌉)

|Ai(sr)−Ai(sr−1)|
]
.

By a standard Gaussian bound on the first term and Theorem 6.8 for the second term,

for some d∈N we have that∑
k∈N

P(Mk ⩾ k1/3+γ/2 logd k)<∞. (6.11)

Step 3. Bounding the large component error. To bound L(Xk) and F (Xk), we

divide {1, ..., k} into n=
⌈
k2/3+γ

⌉
intervals

Ik,i =

{⌊
(i−1)k

n

⌋
+1, ...,

⌊
ik

n

⌋}
, i∈{1, ..., n}.

This, and the division of time into the intervals [sr−1, sr] for r∈{1, ..., n} breaks the line

ensemble Xk into n2 boxes. Each last passage path can meet at most 2n−1 of these

boxes. So we have that

L(Xk)⩽ (2n−1)Zk, (6.12)
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where Zk is the maximal last passage value among all values that start and end in the

same box (including the boundary). Specifically,

Zk = max
(i,r)∈[1,n]2

max {Xk[(ℓ1, t1)! (ℓ2, t2)] : ℓ1, ℓ2 ∈ Ik,i and t1, t2 ∈ [sr−1, sr]} .

We have that Zk⩽NkDk, where

Nk = max
(i,r)∈[1,n]2

|{ℓ∈ Ik,i :Xk,ℓ|[sr−1,sr] ̸=0}|,

Dk =max{|Xk,ℓ(t)−Xk,ℓ(m)| : ℓ∈ [1, k] and t,m∈ [sr−1, sr] for some r∈{1, ..., n}}.

That is, Nk is the maximum number of non-zero line segments in any box, and Dk is

the maximum increment over any line segment in a box. Since Xk,ℓ=Bk,ℓ−Hk,ℓ−Rk,ℓ,

we can bound Dk in terms of the deviations of the other paths. To bound the deviation

of Rk,ℓ, we use the bound on Mk above. The deviation of Hk,ℓ can be bounded with

standard bounds on Gaussian random variables. On the event where

Bk|{1,...,k}×[0,1] =A|{1,...,k}×[0,1],

we can bound the deviation of Bk,ℓ using Theorem 6.8. Therefore, for some constant

d∈N, we have
∞∑
k=1

P(Dk >k−1/3−γ/2 logd k,Bk =A|{1,...,k}×[0,1])<∞. (6.13)

Combining equations (6.13) and (6.8) gives
∞∑
k=1

P(Dk >k−1/3−γ/2 logd k)<∞. (6.14)

The quantity Nk is equal to the maximum number of edges in the graph Gk in a region of

the form Ik,i×{r} for some r∈{1, ..., n}. This can be bounded by using Proposition 6.7

and a union bound, which yields∑
k∈N

P(Nk >k1/3−γk−3γ/4 log2 k)<∞.

Combining this with the bound in (6.12) and (6.14) implies that, for some constant d>0,∑
k∈N

P(L(Xk)>k2/3−5γ/4 logd k)<∞. (6.15)

We can symmetrically bound F (Xk).

Step 4. Putting it all together. By combining the inequalities (6.9)–(6.11) and (6.15),

we get that, for some d∈N,∑
k∈N

P(|L(Bk)−2
√
2k|>k2/3−5γ/4 logd k+k1/3+γ/2 logd k)<∞.

Taking γ= 4
21 and increasing the power of log k from d to d+1 completes the proof.
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7. Melon paths are parabolas

In this section we use the results of §6 to establish bounds on the location of melon last

passage paths. We will also establish that last passage paths that start or end close

together meet with high probability. These facts will allow us to construct the Airy

sheet in §8. Throughout the section, we write W=WBn for the melon, and use the last

passage and scaling notation x̄=2xn−1/3 and ŷ=1+2yn−1/3 introduced in §2.5.
Let Ẑn

k (x, y)=1+n−1/3Zn
k (x, y) denote the jump time from line k+1 to k on the

rightmost last passage path from x̄ to ŷ in the melon, see (2.2). Observe that Zn
k (x, y)

is non-increasing in k, and Zn
k (x, y) is a non-decreasing function in both x and y by

monotonicity of last passage paths, Lemma 3.6. The next lemma gives asymptotics

for Zn
k .

Lemma 7.1. Let K be a compact subset of (0,∞)×R. Then,

sup
(x,y)∈K

∣∣∣∣Zn
k (x, y)+

√
k

2x

∣∣∣∣= o(
√
k) (7.1)

and Zn
k (x, y) is tight as a function of n for each fixed k∈N and (x, y)∈(0,∞)×R.

Proof. We first fix x, y∈K, rescale by n1/6 and center so that the triangle inequality

{x̄! (ẑ, k)}+{(ẑ, k)! ŷ}⩽ {x̄! ŷ}

reads

Fn
k (x, z)+Gn

k (z, y)⩽Hn(x, y), (7.2)

with

Hn(x, y)=n1/6{x̄! ŷ}−2n2/3−2(y−x)n1/3,

Fn
k (x, z)=n1/6({x̄! (ẑ, k)}−Wn

k (ẑ))+2xn1/3,

Gn
k (z, y)=n1/6(Wn

k (ẑ)+{(ẑ, k)! ŷ})−2yn1/3−2n2/3.

The basic proof strategy for bounding Zn
k (x, y) is as follows. On the one hand,

Fn
k (x, Z

n
k (x, y))+Gn

k (Z
n
k (x, y), y)=Hn(x, y). (7.3)

On the other hand, we can show that Fn
k (x, z)+Gn

k (z, y)<Hn(x, y), whenever z is suffi-

ciently far away from −
√
k/(2x). To show this inequality, we use the bound on melon

last passage values given in Proposition 6.1 to control Fn
k , and Theorem 2.5 which implies

that Hn(x, y) is tight in n for x and y fixed.
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We will show that for every ε∈(0, 1) we have

sup
z: |z+

√
k/(2x)|>ε

√
k

Fn
k (x, z)+Gn

k (z, y)⩽−ε2
√
kx

2
+o(

√
k). (7.4)

By Lemma 3.3, Fn
k (x, ·) is monotonically increasing and Gn

k ( · , y) is monotonically de-

creasing. We can use this monotonicity to bound the left-hand side of (7.4) by a supre-

mum over a finite set. Let A=(12ε2)−1Z∩
[
1
4 , 2

]
, and for z∈[−n1/3+x, y], define

⌊z⌋n,k =max

{
w∈−

√
k

x
A∪{x−n1/3} :w<z

}
,

⌈z⌉n,k =min

{
w∈−

√
k

x
A∪{y} :w>z

}
.

(7.5)

We also set
⌊
x−n1/3

⌋
n,k

=x−n1/3 and ⌈y⌉n,k=y. The monotonicity of Fn
k (x, ·) and

Gn
k ( · , y) implies that the left-hand side of (7.4) is bounded above by

sup
z: |z+

√
k/(2x)|>ε

√
k

Fn
k (x, ⌈z⌉n,k)+Gn

k (⌊z⌋n,k, y). (7.6)

Therefore to show (7.4), we just need to show that (7.6) is bounded above by

−ε2
√
kx

2
+o(

√
k).

The quantity in (7.6) is easier to work with, since we are taking a supremum over only

finitely many distinct terms. Moreover, the number of terms is uniformly bounded in

n and k, so it is enough to control the terms individually. Note that the bound on

Fn
k (x, z)+Gn

k (z, y) in (7.6) is much cruder when z /∈−
√
k/xA. This crude estimate will

suffice for our purposes since the quantity inside the supremum in (7.4) is not close to

the maximum for such z.

In particular, setting zk,a=−a
√
k/x, it is enough to show that

Fn
k (x, ⌈zk,a⌉n,k)+Gn

k (⌊zk,a⌋n,k, y)⩽−ε2
√
kx

2
+o(

√
k) (7.7)

for every fixed a∈
[
1
4 , 1/

√
2−ε

]
∪[1/

√
2+ε, 2].

To prove (7.7), we establish pointwise bounds on Fn
k and Gn

k . Proposition 6.1 gives

that, for a fixed a>0, we have

Fn
k (x, zk,a)= 2

√
kx(

√
2−a)+o(

√
k). (7.8)
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Proposition 6.1 also yields the bound

Fn
k (x, y)= 2

√
2kx+o(

√
k). (7.9)

The triangle inequality (7.2) with x′=x/(2a2) gives

Gn
k (zk,a, y)⩽Hn(x

′, y)−Fn
k (x

′, zk,a). (7.10)

Now, Hn(x
′, y) is equal to a rescaled and shifted Brownian last passage value by Propo-

sition 4.1. Therefore by Theorem 2.5 and (4.1), which together give bounds on single

Brownian last passage values, it is tight in n, and hence Hn(x
′, y)=o(

√
k ). Moreover,

Proposition 6.1 gives that

Fn
k (x

′, zk,a)= 2
√
2kx′+2zk,ax

′+o(
√
k )=

√
kx

a
+o(

√
k ),

and so

Gn
k (zk,a, y)⩽−

√
kx

a
+o(

√
k ). (7.11)

We also have the bound

Gn
k (x−n1/3, y)⩽Hn(0, y)−Fn

k (0, x−n1/3)=Hn(0, y)= o(
√
k ). (7.12)

The first equality here follows from the fact that Fn
k (0, ·)=0, and the second equality

again follows from Theorem 2.5.

Finally, the bound in (7.7) follows from (7.8) and (7.12) when a⩽inf A, from (7.8)

and (7.11) when a∈(inf A, supA), and from (7.9) and (7.11) when a⩾supA.

Now, by Theorem 2.5, Hn(x, y) is tight in n. With (7.4) and (7.3), this implies that

Zn
k (x, y)=

√
k/(2x)+o(

√
k) for x and y fixed. Since Zn

k (x, y) is monotone in x and y, the

claim (7.1) follows.

For every k, x, and y, the sequence Zn
k (x, y) is tight in n since

Zn
k (x, y)+

√
k

2x
= o(

√
k),

and we have the monotonicity

y=Zn
1 (x, y)⩾Zn

2 (x, y)⩾ ... .

Lemma 7.1 has an important consequence for disjointness of last passage paths.

Recall that two paths π and τ are disjoint if either π>τ or τ>π on the intersection of

the interiors of both their domains. Recall that π{x, y} is the rightmost last passage

path in the melon from (x, n) to (y, 1).
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Lemma 7.2. Fix x>0 and y1<y2∈R. Then,

lim
ε!0+

lim sup
n!∞

P(π{x̄−ε̄, ŷ1} and π{x̄+ε̄, ŷ2} are disjoint)= 0. (7.13)

Proof. We will prove a stronger statement, with the leftmost last passage path

π−{x̄−ε̄, ŷ1} replacing one of the rightmost paths π{x̄−ε̄, ŷ1}. Disjointness of π{x̄−ε̄, ŷ1}
and π{x̄+ε̄, ŷ2} implies disjointness of π−{x̄−ε̄, ŷ1} and π{x̄+ε̄, ŷ2} by monotonicity.

By Lemma 4.5, disjointness of the paths π−{x̄−ε̄, ŷ1} and π{x̄+ε̄, ŷ2} is equivalent

to disjointness of the original Brownian last passage paths π−[x̄−ε̄, ŷ1] and π[x̄+ε̄, ŷ2].

Here, π−[x̄−ε̄, ŷ1] is the leftmost last passage path in Bn from x̄−ε̄ to ŷ1. Hence, the

probability in (7.13) is bounded above by

P(π−[x̄−ε̄, ŷ1] and π[x̄+ε̄, ŷ2] are disjoint). (7.14)

By time-reversal symmetry of the increments of Brownian motion under the map t 7!1−t,

the probability in (7.14) equals

P(π−[−ȳ2, 1−x̄−ε̄] and π[−ȳ1, 1−x̄+ε̄] are disjoint). (7.15)

By translation invariance and Brownian scaling, the probability (7.15) remains unchanged

if the points −ȳ2, 1−x̄−ε̄, −ȳ1, and 1−x̄+ε̄ are replaced by their images under any linear

function L(t)=at+b for some a>0. In particular, for each n, we may choose the linear

function L=Ln,ε sending −ȳ1 7!ȳ :=2(ȳ2−ȳ1) and 1−x̄+ε̄ 7!1. For t∈[−1, 2], we have

Ln,ε(t)= (1−2ȳ2+ȳ1+x̄−ε̄)t+2ȳ2−ȳ1+O(n−2/3).

Therefore for all large enough n, we have

Ln,ε(−ȳ2)= ȳ2−ȳ1+O(n−2/3)⩾ 0,

Ln,ε(1−x̄−ε̄)= 1−2ε̄+O(n−2/3)⩾ 1−3ε̄.
(7.16)

For such n, after translating back to melon paths we get that the probability in (7.15) is

equal to

P(π−{Ln,ε(−ȳ2), Ln,ε(1−x̄−ε̄)} and π{ȳ, 0̂} are disjoint).

By monotonicity of last passage paths (Lemma 3.6) and (7.16), this is bounded above by

P(π−{0, 1−3ε̄} and π{ȳ, 0̂} are disjoint). (7.17)

Now, the path π−{0, 1−3ε̄} starts at zero and therefore simply follows the top line in the

melon, so the paths π−{0, 1−3ε̄} and π{ȳ, 0̂} are disjoint if and only if π{ȳ, 0̂} jumps up

to line 1 after time 1−3ε̄. This jump time is Ẑn
1 (y, 0), so (7.17) is equal to

P(Zn
1 (y, 0)⩾−3ε).
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Hence, to prove (7.13), we just need to show that

lim
ε!0+

lim sup
n!∞

P(Zn
1 (y, 0)⩾−3ε)= 0. (7.18)

To prove (7.18), we just need to show that any subsequential limit Z1(x, 0) of the sequence

of random variables {Zn
1 (x, 0):n∈N} is strictly negative almost surely. Note that this

sequence is tight, by Lemma 7.1.

Let An denote the rescaling of the melon WBn in Theorem 2.1. By that theorem

and Lemma 7.1, the collection of random variables (An, {Zn
k (x, 0):k∈N}) is tight. Let

(A, {Zk(x, 0):k∈N}) denote a joint subsequential limit of these random variables. The

asymptotics in Lemma 7.1 guarantee that

lim
k!∞

Zk(x, 0)=−∞ (7.19)

almost surely. Moreover, for any k∈N, the points {(Zi(x, 0), i):i⩽k} are jump times

along a last passage path from (Zk(x, 0), k) to (1, 0) in A, since the prelimiting points

satisfied this property.

By (7.19), there exists a random K∈N such that Z1(x, 0) is a jump time on a last

passage path in A from (−1,K) to (0, 1). Now, by Proposition 2.2, the top k lines of A
restricted to the interval [−1, 0] are absolutely continuous with respect to k independent

Brownian motions. Therefore, for every k∈N, all jump times on any last passage path in

A from (−1, k) to (0, 1) are contained in the open interval (−1, 0). Hence, all jump times

on a last passage path in A from (−1,K) to (0, 1) are contained in the open interval

(−1, 0). In particular, Z1(x, 0)<0 almost surely, as desired.

8. Constructing the Airy sheet

In this section, we construct the joint limit of last passage values at two times, known as

the Airy sheet. We start by recalling the definition given in the introduction. Recall the

notation ⟨·⟩ for last passage values across A from §2.5.

Definition 8.1. The Airy sheet is a random continuous function S:R2!R such that

the following conditions hold:

(1) S has the same law as S( ·+t, ·+t) for all t∈R;
(2) S can be coupled with an Airy line ensemble A so that S(0, ·)=A1( ·) and, for all

(x, y, z)∈Q+×Q2, there exists a random variable Kx,y,z∈N such that, for all k⩾Kx,y,z,

almost surely〈(
−
√

k

2x
, k

)
! z

〉
−
〈(

−
√

k

2x

)
, k

)
! y

〉
=S(x, z)−S(x, y).
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We leave the existence of the Airy sheet to Theorem 8.3, and first show that it is

unique.

Proposition 8.2. The Airy sheet is unique in law.

Proof. By [47, equation (5.15)], A1(z)+z2 is stationary and ergodic. By Birkhoff’s

ergodic theorem, for any fixed y we have that, almost surely,

S(0, y)= lim
m!∞

1

2m

∫ m

−m

[S(0, y)−(S(0, z)+z2)] dz+EA1(0).

We can then use property (i) to translate the above formula (applied to S(0, y−x)) to

get an almost sure formula for any S(x, y):

S(x, y)= lim
m!∞

1

2m

∫ m

−m

[S(x, y)−(S(x, z+x)+z2)] dz+EA1(0).

When (x, y)∈Q+×Q, the integrand on right-hand side above is determined by condition

(ii) for rational values of z, and hence is determined by that condition for all values

of z by continuity. Therefore, {S(x, y):(x, y)∈Q+×Q} is determined by the definition

of S. By stationarity and continuity, this implies that the distribution of S is uniquely

determined by its definition.

Remark 8.1. We can exchange condition (ii) in Definition 8.1 for the following Buse-

mann function definition. Almost surely, for all x>0 and y, z∈R, we have that

lim
k!∞

(〈(
−
√

k

2x
, k

)
! z

〉
−
〈(

−
√

k

2x
, k

)
! y

〉)
=S(x, z)−S(x, y). (8.1)

The proof of Proposition 8.2 implies that this definition gives rise to a unique object.

Moreover, condition (ii) of Definition 8.1 implies this definition, and so they must be the

same. To see this, note that it clearly implies (8.1) for rational triples. To extend to

x∈Q+ and y, z∈R, observe that

〈(
−
√

k

2x
, k

)
! z+ε

〉
⩾

〈(
−
√

k

2x
, k

)
! z

〉
+A1(z+ε)−A1(z).

Therefore, since the left-hand side of (8.1) is continuous when restricted to rational x,

y, and z, it is continuous for x∈Q+ and y, z∈R. To extend to x∈R+, note that the

left-hand side of (8.1) is monotone in x by Proposition 3.8. Therefore, it must again be

continuous since it is continuous on rationals.
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The Airy sheet exists because it is the limit of Brownian last passage percolation.

More precisely, we have the following. For n∈N let Bn be an n-tuple of independent

2-sided Brownian motions and let [x!y]n be the last passage value there from (x, n)

to (y, 1). Recall the scaling x̄=2xn−1/3 and ŷ=1+2yn−1/3. Define the sequence of

prelimiting Airy sheets Sn(x, y) by the formula

[x̄! ŷ]n =2
√
n+(y−x)n1/6+n−1/6Sn(x, y).

Theorem 8.3. The Airy sheet S exists. Moreover, there exists a coupling such that

Sn−S is asymptotically small in the sense that

for every compact K ⊂R2 there exists a> 1 with EasupK |Sn−S|3/2 ! 1. (8.2)

We first show tightness and then prove that all subsequential limits satisfy the

definition.

Lemma 8.4. Sn is a tight sequence of random functions in C(R2,R). Moreover, if

S is a limit of Sn along any subsequence, then there exists a coupling of Sn and S such

that (8.2) holds.

For the proof, c and d will be constants that may change from line to line and are

independent of n. They will depend on an initial choice of a compact set.

Proof. It suffices to prove tightness and (8.2) for S restricted to compact sets of the

form K=[−b, b]2. First, by Theorem 2.3, we have

P(|Sn(0, 0)|>m)⩽ ce−dm3/2

. (8.3)

Second, Sn(x, ·) and Sn( · , y) are both given by the rescaled top line of a Brownian melon.

Therefore, tail bounds for the melon in Proposition 2.6 and the modulus of continuity of

Lemma 2.8 imply that, on [−b, b]2, we have

|Sn(x, y)−Sn(x
′, y′)|⩽Cn∥(x, y)−(x′, y′)∥1/2 log1/2

(
2b

∥(x, y)−(x′, y′)∥

)
for a sequence of constants Cn satisfying

P(Cn >m)⩽ ce−dm3/2

. (8.4)

By the Kolmogorov–Chentsov criterion, see [34, Corollary 16.9], this uniform modulus

of continuity bound coupled with the bound (8.3) implies tightness of Sn|K . Moreover,

if Sn|K!S|K in distribution along a subsequence, then, by Skorokhod’s representation
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theorem, we can find a coupling such that Sn!S almost surely. In particular, this

implies that asupK |Sn−S|3/2!1 almost surely for every a>1. The limit S satisfies the

same modulus of continuity estimate as the sequence Sn, with a random constant C

satisfying the tail bound in (8.4). Therefore, we have the bound

asupK |Sn−S|3/2 ⩽ ac(|Sn(0,0)|3/2+|S(0,0)|3/2+C3/2
n +C3/2).

All four of the random variables in the exponent above satisfy tail bounds of the form

(8.3) or (8.4), and so the above random variable is uniformly integrable for small enough

a>1. Hence, we can conclude the desired convergence in expectation.

Any subsequential limit S of Sn satisfies property (i) of the Airy sheet, since the Sn

are stationary by stationarity of Brownian increments. So it suffices to show that any

limit restricted to Q+×Q satisfies property (ii) in Definition 8.1.

With this in mind, let S be any subsequential limit of Sn along a subsequence Y ′.

We first show that there is a further subsequence Y ⊂Y ′, and a coupling of the processes

Bn, n∈Y , with limiting objects S and A such that the following convergences hold on a

set Ω of probability 1. All limits and claims about n are for n∈Y .

(1) Sn!S uniformly on compact sets in R2.

(2) Let An denote the rescaling of the melon WBn in Theorem 2.1. Then An

converges to the Airy line ensemble A uniformly on compact sets in Z×R.
(3) For every (x, y)∈Q+×Q and n∈N the sequence Zn

k (x, y) has some limit Zk(x, y).

Moreover, as k!∞,
Zk(x, y)√

k
!− 1√

2x
. (8.5)

(4) For every triple (x, y, z)∈Q+×Q2, with y<z, there exist random points X1

and X2, with X1<x<X2∈Q+ such that the melon paths

π{�X1, ŷ}n and π{�X2, ẑ}n

are not disjoint for n large enough.

Proof of the existence of such a coupling. Define indicator functions

In(x, y, z, ε)=1{π{x̄−ε̄, ŷ}n andπ{x̄+ε̄, ẑ}n are not disjoint}.

Each of the following countably many sequences in n is tight:

Sn, An,

{Zn
k (x, y) : k∈N, (x, y)∈Q+×Q},

{In(x, y, z,m−1) : (x, y, z,m)∈Q+×Q2×N}.
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This uses Lemma 8.4 for Sn, Theorem 2.1 for An, Lemma 7.1 for Zn
k (x, y), and the

boundedness of In(x, y, z, ε). Thus, they are jointly tight in the product of the appropriate

topologies.

By Skorokhod’s representation theorem, along any subsequence where Sn
d−!S, we

can find a further subsequence and a coupling of the environments such that all of

these random variables converge almost surely. Property (1) clearly holds along this

subsequence. The limit of An is an Airy line ensemble A by Theorem 2.1, giving prop-

erty (2). The limits Zk(x, y) of Zn
k (x, y) satisfy (8.5) almost surely by the asymptotics

in Lemma 7.1, giving property (3). The limits of each In(x, y, z,m
−1) is an indicator

function I(x, y, z,m−1). Lemma 7.2 implies that for all (x, y, z)∈Q+×Q2 we have

P(I(x, y, z,m−1)= 1)! 1 as m!∞. (8.6)

Monotonicity of last passage paths guarantees that In(x, y, z,m
−1) is non-decreasing

in m, and this carries over to the limit I(x, y, z,m−1). This monotonicity and (8.6)

guarantees that there exists a random M(x, y, z)∈N such that

I(x, y, z,M(x, y, z)−1)= 1

almost surely. Since

In(x, y, z,M(x, y, z)−1)! I(x, y, z,M(x, y, z)−1)

almost surely, we have

In(x, y, z,M(x, y, z)−1)= 1

for all large enough n, giving property (4) with

X1 =x−M(x, y, z)−1 and X2 =x+M(x, y, z)−1.

Theorem 8.3 then follows immediately from the following deterministic statement

about the relationship between the subsequential limit S and the Airy line ensemble A.

Indeed, this next lemma shows that any distributional subsequential limit S of Sn must

be an Airy sheet. Hence, by the uniqueness of the Airy sheet law (Proposition 8.2) and

the tightness of Sn (Lemma 8.4), the sequence Sn converges in distribution to the Airy

sheet.

Lemma 8.5. On the set Ω, the processes S and A satisfy condition (ii) of Defini-

tion 8.1.
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y z

X1
x

X2

Figure 6. The idea of the proof of Lemma 8.5. We start with points �X1 and �X2 on either side
of a rational x̄ whose melon last passage paths to ŷ and ẑ are not disjoint. These last passage

paths both follow particular parabolas, so the place where they meet has to be in the part of

the melon that converges to the Airy line ensemble. The last passage paths from x̄ to ŷ and
ẑ are squeezed by these outer paths, and hence the branch point between the paths from x̄

must also occur in the part of the melon that converges to the Airy line ensemble.

Lemma 8.5 puts together all the bounds that we have developed over the previous

few sections. See Figure 6 for a sketch of its proof.

To prove Lemma 8.5, it will be convenient to translate condition (3) into a statement

about limits of last passage paths. Fix (x, y)∈Q+×Q. The function k 7!Ẑn
k (x, y) records

the time when the rightmost last passage path π{x̄, ŷ}n jumps from (possibly below) k+1

to (possibly above) k. Thus, the function k 7!Ẑn
k (x, y) acts as the inverse of the non-

increasing function π{x̄, ŷ}n. Now, for every k, Zn
k (x, y)!Zk(x, y), and Zk(x, y)!−∞

as k!∞. It follows deterministically that there is a non-increasing cadlag integer-valued

function π⟨x, y⟩: (−∞, y]!N such that

π{x̄, ŷ}n(t̂)!π⟨x, y⟩(t)

for every t not in the set of jump times {Zk(x, y):k∈N}. Moreover, even at these jump

times we have

π⟨x, y⟩(t−)⩾π{x̄, ŷ}n(t̂−)⩾π{x̄, ŷ}n(t̂)⩾π⟨x, y⟩(t) (8.7)

for all large enough n. This and (8.5) imply that

lim
t!−∞

π⟨x, y⟩(t)
t2

=2x. (8.8)
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Proof of Lemma 8.5. The proof proceeds deterministically for a fixed ω∈Ω. We

have S(0, y)=A(y) for all y∈R, because Sn(0, y)=An(y). Now fix (x, y, z)∈Q+×Q2 with

y<z, and let X1<x<X2 be as in property (4) above. By property (3) and (8.8), there

exists a random T<y such that, for all t<T , we have

π⟨X1, y⟩(t−)<π⟨x, y⟩(t) and π⟨X1, y⟩(t−)< 2xt2 <π⟨X2, z⟩(t). (8.9)

Let k be arbitrary but large enough so that −
√

k/(2x)<T . Let t=−
√

k/(2x) and let N

be a large enough random integer so that (8.7) holds at the point t for the three paths

π⟨X1, y⟩, π⟨x, y⟩, and π⟨X2, z⟩. Further, by property (4), we can require that N is large

enough so that, for all n⩾N , there is a point lying along both π{�X1, ŷ}n and π{�X2, ẑ}n.
We call this point (R,W ); it may depend on n. By monotonicity of last passage paths,

(R,W ) must also lie along π{x̄, ŷ}n and π{x̄, ẑ}n. Our next goal is to show that (R,W )

also lies along the melon last passage paths π{(t̂, k), ŷ}n and π{(t̂, k), ẑ}n, which go from

(t̂, k) to (ŷ, 1) and from (t̂, k) to (ẑ, 1).

To this end, observe that (8.7) and (8.9) imply that

π{�X1, ŷ}n(t̂) ̸=π{x̄, ŷ}n(t̂) and π{�X1, ŷ}n(t̂)<k<π{�X2, ẑ}n(t̂) (8.10)

for n⩾N . Now, the set

I = {s∈R :π{�X1, ŷ}n(s)=π{x̄, ŷ}n(s)}

is an interval, by Proposition 3.7. Since R, ŷ∈I and t̂<ŷ, the first condition in (8.10)

guarantees that t̂<R. The second condition in (8.10) and monotonicity of last passage

paths guarantees that π{(t̂, k), ŷ}n and π{(t̂, k), ẑ}n are sandwiched between π{�X1, ŷ}n
and π{�X2, ẑ}n restricted to the interval [t̂, ŷ]. Since R∈[t̂, ŷ], the point (R,W ) must lie

along these paths as well.

Next, since metric composition holds at any point lying along a last passage path,

we have

{x̄! ŷ}= {x̄! (R,W )}+{(R,W )! ŷ},

{x̄! ẑ}= {x̄! (R,W )}+{(R,W )! ẑ},

{(t̂, k)! ŷ}= {(t̂, k)! (R,W )}+{(R,W )! ŷ},

{(t̂, k)! ẑ}= {(t̂, k)! (R,W )}+{(R,W )! ẑ}.

Adding these equations with signs −,+,+,−, we get

{x̄! ẑ}−{x̄! ŷ}= {(t̂, k)! ẑ}−{(t̂, k)! ŷ}.
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By this and the definition of Sn, we have

Sn(x, z)−Sn(x, y)=n1/6
[
{(t̂, k)! ẑ}−{(t̂, k)! ŷ}

]
−2(z−y)n1/3. (8.11)

As n!∞ the uniform convergence of An to A on [t, z]×{1, ..., k} implies the convergence

of last passage values. Taking limits of (8.11), we get

S(x, z)−S(x, y)= ⟨(t, k)! z⟩−⟨(t, k)! y⟩. (8.12)

Since this holds for any k large enough and t=−
√

k/(2x), the proof is complete.

Remark 8.2. One of the crucial ideas in Definition 8.1 is to look at differences of

last passage values, rather than just the last passage values themselves. Hopefully, the

reader can now appreciate the importance of this. We showed that differences of last

passage values are contained in A via coalescence arguments, which only required that

last passage paths starting at distinct points x̄ ̸=x̄′ diverge away from the Airy line

ensemble corner. Ultimately, this just required that the error estimate on the Fn
k in

Proposition 6.1 was of lower order than the leading O(
√
k) terms. On the other hand,

to prove convergence of last passage values directly, we would have needed a much finer

error estimate: o(1), rather than o(
√
k).

9. Properties of the Airy sheet

In this section we prove a few basic properties of the Airy sheet.

Lemma 9.1. As a random continuous function in R2, for any c∈R the Airy sheet

satisfies

S(x, y) d
=S(−y,−x) and S(x, y) d

=S(x, y+c)+2c(y−x)+c2.

Moreover, for x⩽x′ and y⩽y′, we have

S(x, y)+S(x′, y′)⩾S(x, y′)+S(x′, y).

Proof. The first distributional equality in Lemma 9.1 is inherited from the station-

arity of Brownian increments under the map t 7!1−t. The second distributional equality

follows from Brownian scaling. Indeed, letting a=1+2cn−1/3, we have that

Bn[(2xn−1/3, n)! (1+2yn−1/3, 1)]

d
= a−1/2Bn[(2xn−1/3+O(n−2/3), n)! (1+2(y+c)n−1/3+O(n−2/3), 1)],

jointly as functions in x and y, where on every compact set K, the error terms O(n−2/3)

are bounded above by cKn−2/3 for some constant cK . Taking the limit of this equa-

tion after proper rescaling and centering yields the second distributional equality. The

quadrangle inequality is inherited from Proposition 3.8.
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The metric composition law is also inherited from Brownian last passage percolation.

For the proof, we have to guarantee that the prelimiting optimal location is tight. Recall

from the introduction that an Airy sheet of scale s is given by

Ss(x, y)= sS(xs−2, ys−2).

Proposition 9.2. (Metric composition law) Let Ss and St be independent Airy

sheets of scale s and t, resepectively. For (x, z)∈R2, define

Q(x, z)= sup
y∈R

Ss(x, y)+St(y, z), (9.1)

The function Q is an Airy sheet of scale r, where r3=s3+t3. Moreover, the largest value

Z+(x, z) where the maximum in (9.1) is achieved is non-decreasing in both x and z. The

same holds for Z− defined analogously.

We have a true maximum, rather than a supremum. To prove Proposition 9.2, we use

the following lemma which gives tightness of the maximum location for two prelimiting

Airy processes.

Lemma 9.3. For n∈N and t∈{1/n, ..., (n−1)/n}, let k=nt and m=n(1−t), and

set s=min(t, 1−t). Let W k
1 and Wm

1 be the top lines of two independent Brownian

melons with k lines and m lines, respectively. Define the melon sum

A(z)=W k
1 (z)+Wm

1 (1−z).

Let

S=
{
z :A(z)= max

w∈[0,1]
A(w)

}
.

Then, there exist constants c and d such that, for all r>0, we have

sup
n∈N

sup
t∈{1/n,...,(n−1)/n}

P(S ̸⊂ [t−rs1/3n−1/3, t+rs1/3n−1/3])⩽ ce−dr3/4 .

To understand Lemma 9.3, think of each point (s, k), s∈S as lying along a Brownian

last passage path from (0, n) to (1, 1). We expect such paths to closely follow the straight

line between (0, n) and (1, 1), and hence hit line k around time t=k/n. Lemma 9.3

quantifies the fluctuations from this guess.

To prove Lemma 9.3, we need the following calculation.

Lemma 9.4. Let b>0 be a fixed constant. Then, there exists a constant c such that,

for all n∈N, t∈{1/n, 2/n, ..., (n−1)/n}, r>1, and

z ∈ [0, t−c(min[t, 1−t])1/3r2n−1/3]∪[t+c(min[t, 1−t])1/3r2n−1/3, 1],
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we have that

2(
√
ntz+

√
n(1−t)(1−z) ) (9.2)

+r(
√
z(nt)−1/6+

√
1−z(n(1−t))−1/6) (9.3)

+
√
z(nt)−1/6b log2/3

(
(nt)1/3 log

(
t

z
∨ z

t

)
+1

)
(9.4)

+
√
1−z(n(1−t))−1/6b log2/3

(
(n(1−t))1/3 log

(
1−t

1−z
∨ 1−z

1−t

)
+1

)
(9.5)

⩽ 2
√
n−rn−1/6.

Here, the notation a∨b means the maximum of a and b.

We leave the proof of Lemma 9.4 to the end of the section. Instead, we proceed with

the proof of Lemma 9.3. Throughout the proof, c and d are universal constants that may

change from line to line.

Proof of Lemma 9.3. Define Ln=maxz∈[0,1] A(z). The value W k
1 (z) can be thought

of as a last passage value across k independent Brownian motions B1, ..., Bk in the in-

terval [0, z], and the value Wm
1 (1−z) can be thought of as a last passage value across

m independent Brownian motions Bk+1, ..., Bn in the interval [z, 1]. In particular, by

Lemma 3.2, this means that Ln is simply a Brownian last passage value, and so, by

Theorem 2.5, there exist constants c, d>0 such that, for all n∈N and r>0, we have

P(Ln ⩾ 2
√
n−rn−1/6)⩾ 1−ce−dr3/2 . (9.6)

Now, by Proposition 2.7, there exist constants b, c, d>0 such that, for any n∈N and r>0,

the probability that

Wn
1 (t)⩽ 2

√
n
√
t+

√
tn−1/6[r+b log2/3(n1/3 log(t∨t−1)+1)] for all t∈ [0,∞) (9.7)

is bounded below by 1−ce−dr3/2 . The logarithmic error above is chosen to be minimized

at s=1. However, using the Brownian scaling Wn
1 (s ·)

d
=
√
sWn

1 ( ·), we can get that

Wn
1 (st) is bounded above by

√
s times the left-hand side of (9.7) for all t with probability

at least 1−ce−dr3/2 . This minimizes the error for Wn
1 at s.

In particular, we will bound the sum A(z)=W k
1 (z)+Wm

1 (1−z) by choosing to min-

imize the error term in W k
1 (z) at t and in Wm

1 (1−z) at 1−t. This gives that with

probability at least 1−ce−dr3/2 , we have

A(z)⩽ 2(
√
kz+

√
m(1−z) )+

√
zk−1/6

(
r+b log2/3

(
k1/3 log

(
t

z
∨ z

t

)
+1

))
+
√
1−z m−1/6

(
r+b log2/3

(
m1/3 log

(
1−t

1−z
∨ 1−z

1−t

)
+1

))
.

(9.8)
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Now, by Lemma 9.4, there is a constant c such that for all r>1, n∈N, and

t∈
{
1

n
, ...,

n−1

n

}
,

the right-hand side above is bounded by 2
√
n−rn−1/6 for all

z ∈ [0, t−cr2s1/3n−1/3]∪[t+cr2s1/3n−1/3, 1].

Combining the bound on the probability of the event in (9.8) with the bound on Ln in

(9.6) implies the lemma.

Proof of Proposition 9.2. By rescaling, we may assume that r=1. We set up a

Brownian last passage percolation converging to an Airy sheet S as in the previous

section. Then, last passage across the first s3 proportion of the Brownian motions and

last passage through the second t3 proportion of the Brownian motions converge jointly

in distribution to independent Airy sheets Ss and St. Set Sn, Sn
t , and Sn

s to be the

corresponding prelimiting Airy sheets, so that

Sn(x, z)=max
w

Sn
s (x,w)+Sn

t (w, z)

for all x and z, by Lemma 3.2. To prove that the Q in Proposition 9.2 is an Airy sheet,

it is then enough to show that the right-hand side above converges to

max
w

Ss(x,w)+St(w, z),

in the uniform-on-compact topology on continuous functions from R2 to R. For this, set

Mn(x, z)=
{
y : max

w
Sn
s (x,w)+Sn

t (w, z)=Sn
s (x, y)+Sn

t (y, z)
}
.

It is enough to show that, for any compact set K, the random variables

In(K) := inf
(x,z)∈K

infMn(x, z) and Sn(K) := sup
(x,z)∈K

supMn(x, z) (9.9)

are tight. When K consists of a single point, this follows from Lemma 9.3. For a general

compact set K, note that points y∈Mn(x, z) lie along last passage paths. In particular,

monotonicity of last passage paths (Lemma 3.6) guarantees that both infMn(x, z) and

supMn(x, z) are increasing functions in both coordinates. Therefore for any compact

set K, there are points u, v∈R2 such that

In(u)⩽ In(K)⩽Sn(K)⩽Sn(v)

for all n, so tightness for general K follows from tightness for single points. Finally, the

fact that Z+ and Z− are monotone in both coordinates follows from monotonicity in the

finite case.
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The monotonicity of Z+ and Z− can also be proved without any reference to the

prelimiting Airy sheets by using the inequality in Lemma 9.1.

Our next goal is to give a near optimal bound on the location of the maximum in

Proposition 9.2. This can be stated in terms of the parabolic Airy process A=A1, the

first line of the parabolic Airy line ensemble. We define the parabolic Airy process of

scale σ from the standard one by setting Aσ( ·)=σA( ·/σ2). This is analogous to the

scaling of Airy sheets. The GUE Tracy–Widom law of these processes is scaled by σ, and

the Brownian component of an Airy process of any scale has variance 2. The stationary

version is

Aσ(z)+σ−3z2. (9.10)

At small scales the parabola becomes more dominant.

Lemma 9.5. Fix 0<s⩽t, and let As and At be two independent Airy processes of

scale s and t. Then, A=As+At has a unique maximum A at some location S almost

surely. Moreover, for any m>0, we have

P(S /∈ [−ms2,ms2])⩽ ce−dm3

and P(A−A(0)>ms)⩽ ce−dm3/2

.

Here, c, d>0 are constants that are independent of s and t.

In this proof, c and d are constants that may change from line to line.

Proof. By rescaling, we may also assume that s+t=1. Consider the stationary

versionsRs andRt of the Airy processesAs andAt, defined as in (9.10). LetR=Rs+Rt.

When t⩾281/3s, Lemma 2.4 and rescaling imply that, for all z>0, we have

P
(
|Rt(z)−Rt(0)|> 1

4s
−3z2

)
⩽ ce−dz3/s6 . (9.11)

When t∈[s, 281/3s], we can use the Tracy–Widom 1-point bound on tRt(z) and tRt(0)

(Theorem 2.3) to get the same bound. Using this same 1-point bound on sRs, we also

get

P
(
|Rs(z)−Rs(0)|> 1

4s
−3z2

)
⩽ ce−dz3/s6 .

Combining these bounds gives

P
(
R(zs2)>R(0)+ 1

2sz
2
)
⩽ ce−dz3

,

which after translating back to A gives that

P
(
A(zs2)>A(0)− 1

2sz
2
)
⩽ ce−dz3

. (9.12)
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Now, let a>0. By Lemma 2.4, for any z∈R and y∈[0, as2], with R=Rs+Rt we have

that

P(|R(z+y)−R(z)|>ℓ
√
y)⩽ ced(49a

3−ℓ2) (9.13)

for ℓ>0. By Lemma 2.8, the process R satisfies the modulus of continuity bound

|R(z+y)−R(z)|⩽Ca,b
√
y log1/2

(
2as2

y

)
(9.14)

on any interval [b, b+as2] where Ca,b is a random constant that satisfies

P(Ca,b >ℓ+ca3/2)⩽ ce−dℓ2 .

In particular, we can use (9.14) and a union bound over intervals of the form [b, b+s2] to

get that there exists a constant C satisfying the same tails as each of the constants C1,b

(with possibly different c and d) such that

max
z∈[−m,m]

R(zs2)−R(z∗s
2)⩽Cs log1/2 m,

where z∗=⌊z⌋ for z⩾0 and ⌈z⌉ otherwise. Here we have approximated z with an integer

closer to zero so that the same bound holds for the non-stationary process A: this way

the parabolic decay does not affect the bound. In particular, this bound combined with

the bound (9.12) applied to integers gives that

P(A(z)>A(0) for some |z|>ms2)⩽ ce−dm3

.

This proves the bound on S in the lemma. The processes As(z)−As(0) and At(z)−At(0)

are absolutely continuous with respect to Brownian motion of variance 2 on a compact

interval by Proposition 2.2, and hence so is A(z)−A(0). Hence, it has a unique maximum

on any compact interval almost surely. By the above bound on S, this implies that A
has a unique maximum almost surely.

Now, we can use (9.14) again to get that, for any m>0, we have

max
z∈[−m,m]

A(zs2)−A(0)⩽ (C+cm3/2)s
√
m

for a constant C satisfying

P(C >ℓ)⩽ ce−dℓ2

for ℓ>0. We get the desired bound on A−A(0) by writing

P(A−A(0)>ms)⩽P
(
|S|⩾

√
m

3
s2
)
+P

(
max

|z|⩽
√

m/3

A(zs2)−A(0)>ms
)
.
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Now we prove Lemma 9.4. The proof of this lemma is essentially Taylor expansion.

However, keeping track of what is happening with all the terms gets rather complex,

and so we have included a proof here. Throughout the proof, c0, c1, and c2 are positive

constants that may change from line to line and may depend on the constant b in the

statement of the lemma.

Lemma 9.4. By symmetry, it is enough to prove the lemma for t⩽ 1
2 . We will also

write z=t+α, where α∈[−t, 1−t].

Step 1. Bounding the main term (9.2). We have the bounds

√
1+x⩽ 1+

x

2
− x2

12
, for x∈ [−1, 1],

√
1+x⩽

√
2+

x−1

2
√
2
, for x⩾ 1.

(9.15)

Using the first bound above, we can bound the term (9.2) on the interval α∈[−t, t]:

2(
√
ntz+

√
n(1−t)(1−z) )= 2

√
n

(
t

√
1+

α

t
+(1−t)

√
1− α

1−t

)
⩽ 2

√
n

(
1− α2

12t

)
, α∈ [−t, t].

(9.16)

We can similarly bound (9.2) on the interval α∈[t, 1−t] by using the first bound in (9.15)

on the t term and the second bound on the 1−t term. This gives

2(
√
ntz+

√
n(1−t)(1−z) )⩽ 2

√
n(1−c0α), α∈ [t, 1−t]. (9.17)

Step 2. Bounding the error terms (9.3)–(9.5). We first consider the case α∈[−t, 0].

As t⩽ 1
2 and z=t+α⩽t, (9.3) is bounded by 3rn−1/6. Now by using that log(x)⩽x−1

and that
√
t+α⩽

√
t, we can bound (9.4) above by

n−1/6

(
(t+α)1/3b log2/3

(
(nt)1/3

|α|
t+α

+1

))
= c1n

−1/6((t+α)1/3 log2/3((nt)1/3|α|+t+α)−(t+α)1/3 log2/3(t+α))

⩽ c1n
−1/6(log(n1/3|α|+1)+1).

(9.18)

We can also use the bound log(x)⩽x−1 and the fact that 1−t and 1−z are bounded

away from zero to get, for α∈[−t, 0], that (9.5) is bounded above by

√
1−z(n(1−t))−1/6b log2/3

(
(n(1−t))1/3

|α|
1−t

+1

)
⩽ c1n

−1/6(log(|α|n1/3+1)+1).
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Combining this with the bound (9.18) and the bound of 3rn−1/6 on (9.3) for α∈[−t, 0]

gives that

(9.3)+(9.4)+(9.5)⩽ c1n
−1/6(log(n1/3|α|+1)+1+3r)

⩽ c1n
−1/6(log(n1/3|α|+1)+r) α∈ [−t, 0].

(9.19)

We have folded the constant term into the r term by using the fact that r⩾1. Now, when

α∈[0, 1−t], we can bound (9.3) by

rcn−1/6(1+t−1/6
√
α ). (9.20)

Again, using that log(x)⩽x−1, we can bound the term (9.4) for α∈[0, 1−t] by

√
t+α(nt)−1/6b log2/3

(
(nt)1/3

α

t
+1

)
⩽ (

√
t+

√
α )t−1/6n−1/6b(log2/3(n1/3α+t2/3)+log2/3(t−2/3))

⩽ c1n
−1/6(1+

√
αt−1/6 log(t−2/3)+(

√
αt−1/6+1) log(n1/3α+1)).

(9.21)

We can also bound (9.5) for α∈[0, 1−t] by

√
1−t−α(n(1−t))−1/6b(log2/3((n(1−t))1/3α+1−t−α)−log2/3(1−t−α))

⩽ c1n
−1/6(1+log(n1/3α+1)).

Combining this with the bounds (9.20) and (9.21) implies that

(9.3)+(9.4)+(9.5)⩽ c1n
−1/6((

√
αt−1/6+1) log(n1/3α+1)+r+r

√
αt−1/6 log(t−2/3))

(9.22)

for α∈[0, 1−t]. Note that, on the interval [0, t], this reduces to the bound (9.19).

Step 3. The case α∈[−t, t]. By combining the inequalities (9.16), (9.19), and (9.22),

we get that the inequality in the lemma holds whenever

c1
α2n2/3

t
−c2 log(n

1/3|α|+1)>c3r.

Making the substitution α=βr2t1/3n−1/3 and using that t<1, the above statement is

implied by the inequality

c1r
4β2−c2 log(|β|r+1)>c3r.

This holds for all r>1 as long as β is large enough.
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Step 4. The case α∈[t, 1−t]. By combining the inequalities (9.17) and (9.22), we

get that the inequality in the lemma holds whenever

c0n
2/3α−c1((

√
αt−1/6+1) log(n1/3α+1)+r+r

√
αt−1/6 log(t−2/3))> 0.

Again, making the substitution α=βr2t1/3n−1/3, the left-hand side above is equal to

c0n
1/3βr2t1/3−c1((1+

√
βrn−1/6) log(βr2t1/3+1)+r(1+

√
βrn−1/6 log(t−2/3))).

Since t⩾n−1, this is bounded below by

c0βr
2−c1((1+r

√
β ) log(βr+1)+r(1+

√
βr)).

For all large enough β, this is strictly greater than zero for all r>1.

10. The directed landscape

The goal of this section is to construct the directed landscape, a scale-invariant, station-

ary, independent increment process with respect to metric composition. The following

definition is based on analogies from last passage percolation. Recall that

R4
" = {(x, t; y, s)∈R4 : t< s}.

Let C(R4
" ,R) be the space of continuous functions from R4

" to R with the uniform-on-

compact topology.

Definition 10.1. A directed landscape is a random function L taking values in the

space C(R4
" ,R) that satisfies the following properties.

(I) (Airy sheet marginals) For any t∈R and s>0 the increment over time interval

[t, t+s3),

(x, y) 7−!L(x, t; y, t+s3)

is an Airy sheet of scale s.

(II) (Independent increments) For any disjoint time intervals {(ti, si):i∈{1, ... k}},
the random functions

L( · , ti; · , si), i∈{1, ..., k},

are independent.

(III) (Metric composition law) Almost surely, for any r<s<t and x, y∈R, we have

that

L(x, r; y, t)=max
z∈R

[L(x, r; z, s)+L(z, s; y, t)] for all x, y ∈R.
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We note here that the metric composition law implies a reverse triangle inequality

for the directed landscape. For any r<s<t and x, y, z∈R, we have that

L(x, r; y, t)⩾L(x, r; z, s)+L(z, s; y, t). (10.1)

Condition (III) could be weakened so that the metric composition law only holds at

every fixed quintuple (r, s, t, x, y) almost surely, rather than at all quintuples simultane-

ously.

We need to show that an object satisfying the above properties exists and is unique.

Before constructing the directed landscape, we note that if such an object L exists and

is unique, then it must have the following symmetries.

Lemma 10.2. Let L denote the directed landscape. Assuming that L exists and is

unique, we have the following equalities in distribution as functions in C(R4
" ,R). Here,

r, c∈R and q>0.

(1) (Time stationarity)

L(x, t; y, t+s)
d
=L(x, t+r; y, t+s+r).

(2) (Spatial stationarity)

L(x, t; y, t+s)
d
=L(x+c, t; y+c, t+s).

(3) (Flip symmetry)

L(x, t; y, t+s)
d
=L(−y,−s−t;−x,−t).

(4) (Skew stationarity)

L(x, t; y, t+s)
d
=L(x+ct, t; y+ct+sc, t+s)+s−1[(x−y)2−(x−y−sc)2].

(5) (Rescaling)

L(x, t; y, t+s)
d
= qL(q−2x, q−3t; q−2y, q−3(t+s)).

Proof. All of these statements can be checked by straightforward computation. The

only tools needed are symmetries and rescaling properties of the Airy sheet, along with

the definition of the directed landscape.
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We will also work with the process

L(x, t; y, t+s)+
(x−y)2

s
, (10.2)

which satisfies the skew-stationarity statement in Lemma 10.2 without the parabolic

correction term. We first construct the directed landscape on an appropriate dense

subset of R4
" . Define the sets

Sk = {(x, t; y, s)∈R4
" : t< s, 2kt, 2ks∈Z}.

and let S=
⋃

k Sk.

Lemma 10.3. There exist a random function L:S!R satisfying conditions (I)–(III)

in the definition of the directed landscape, suitably modified so that all times are dyadic

rationals. Its law is unique.

Proof. Any process L:S!R can be viewed as a random function from the countable

set

D= {s< t : 2ks, 2kt∈Z for some k∈N}

to the space of functions from R2!R. As conditions (I)–(III) above determine the

joint distribution of L(d1), ...,L(dk) for any d1, ..., dk∈D, the distribution of a process

satisfying these conditions is unique. We now show that L exists.

First, we define L for parameters in the set Sk. For this, pick independent Airy

sheets Bi for each i∈Z. For t=i/2k and s3=1/2k we define

Lk(x, t; y, t+s3)= sBi

(
x

s2
,
y

s2

)
.

Moreover, for j=i+ℓ, ℓ⩾2, we define

Lk

(
x0,

i

2k
;xℓ,

j

2k

)
= max

(x1,...,xℓ−1)∈Rℓ−1

ℓ∑
q=1

Lk

(
xq−1,

i+q−1

2k
;xq,

i+q

2k

)
.

By the metric composition law for Airy sheets (Proposition 9.2) the following holds.

First, Lk satisfies properties (I)–(III) on the set Sk. Also, for k<k′, the process Lk′

restricted to Sk has the same law as Lk. Kolmogorov’s extension theorem then provides

a limiting process L on S=
⋃

k Sk, which when restricted to Sk has the same law as Lk

for all k. Therefore, the process L satisfies properties (I)–(III).

In order to show that L has a unique continuous extension to R4
" , it suffices to check

that L is uniformly continuous on a set of probability 1 on K∩S∩Q4 for any compact

set K⊂R4
" . This follows by proving an explicit tail bound on 2-point differences for L.
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Lemma 10.4. Let L be any random function defined on the dyadic set S that satisfies

conditions (I)–(III) in the definition of the directed landscape. Let K be the stationary

version of L as defined in (10.2). Let ui=(xi, ti; yi, si), for i=1, 2, be points in S.

Define û2=(x̂2, t1; ŷ2, s1)∈S, where the points x̂2 and ŷ2 are chosen to so that (x̂2, t1)

and (ŷ2, s1) lie on the line containing the two points (x2, t2) and (y2, s2). Define

χ= ∥(x1, y1)−(x̂2, ŷ2)∥ and τ = ∥(t1, s1)−(t2, s2)∥.

Then,

P(|K(u1)−K(u2)|⩾mτ1/3+ℓχ1/2)⩽ ce−dm3/2

+ce−dℓ2 .

for universal constants c and d.

In the statement of Lemma 10.4, using χ rather than the spatial difference

ξ= ∥(x1, y1)−(x2, y2)∥

may seem a bit strange. The best way to see why this is the right choice is to observe

that χ is invariant under the skew transformations in Lemma 10.2, whereas ξ is not.

Throughout the proof, c and d are constants that may change from line to line.

Proof. First, L and K satisfy all symmetries of Lemma 10.2 for symmetries that

preserve the set S, so we may use these to simplify the proof. Observe that the time

stationarity, spatial stationarity and skew stationarity transformations in Lemma 10.2

will not affect the quantities χ and τ . Because of this, we can take t2=x2=0 (by time and

spatial stationarity), and then y2=0 (by skew stationarity). This implies that x̂2=ŷ2=0

as well.

To get the bound in this case, we will first change spatial coordinates and then

change time coordinates. By the tail bound on 2-point distributions of the Airy process,

Lemma 2.4, applied twice, we have the bound

P(|K(u1)−K(û2)|>ℓχ1/2)⩽ ce−dℓ2 .

This uses the fact that K has rescaled stationary Airy sheet marginals. We now bound

the difference when we change time. By the triangle inequality on R, it suffices to show

that both

P(|K(û2)−K(0, t1; 0, s2)|>mτ1/3) and P(|K(u2)−K(0, t1; 0, s2)|>mτ1/3)

are bounded above by ce−dm3/2

. We will just bound the first term, as the second term

can be bounded similarly. For this, by symmetry, we may assume that s2>s1. By the

metric composition law for L, we have that

L(0, t1; 0, s1)+L(0, s1; 0, s2)⩽L(0, t1; 0, s2)=max
z∈R

[L(0, t1; z, s1)+L(z, s1; 0, s2)]. (10.3)
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By Lemma 9.5, we have that

max
z∈R

[L(0, t1; z, s1)+L(z, s1; 0, s2)]⩽m|s1−s2|1/3+L(0, t1; 0, s1)+L(0, s1; 0, s2) (10.4)

with probability at least 1−ce−dm3/2

. The random variable L(0, s1; 0, s2) has rescaled

GUE Tracy–Widom distribution. By Theorem 2.3, it satisfies

P(|L(0, s1; 0, s2)|>m|s1−s2|1/3)⩽ ce−dm3/2

.

Together with (10.3) and (10.4), this gives that

P(|K(û2)−K(0, t1; 0, s2)|>mτ1/3)=P(|L(0, t1; 0, s1)−L(0, t1; 0, s2)|>mτ1/3)

⩽ ce−dm3/2

.

The process L constructed in Lemma 10.3 thus has a unique continuous extension

to R4
" . We cannot quite conclude that it satisfies Definition 10.1, since we need to check

that the metric composition law extends outside of S. To prove this, we first prove

various uniform bounds on L. These will also be used later when constructing directed

geodesics.

The first result gives an essentially optimal modulus of continuity, up to constant

factors. For this, we define

Kε
b = [−b, b]4∩{(x, t; y, t+s)∈R4

" : s⩾ ε}.

Proposition 10.5. Let

K(x, t; y, t+s)=L(x, t; y, t+s)+
(x−y)2

s

denote the stationary version of the directed landscape. For two points

ui =(xi, ti; yi, ti+si), i=1, 2,

let

ξ= ξ(u1, u2)= ∥(x1, y1)−(x2, y2)∥,

τ = τ(u1, u2)= ∥(t1, t1+s1)−(t2, t2+s2)∥.

Then, for any b⩾2, ε⩽1 and u1, u2∈Kε
b with τ⩽ε3/b3, we have that

|K(u1)−K(u2)|⩽C(τ1/3 log2/3(τ−1)+ξ1/2 log1/2(4bξ−1)),

with a random constant C satisfying

P(C >m)⩽ cb10ε−6e−dm3/2

,

where c and d are universal constants.
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In the proof, the constants c and d may change from line to line.

Proof. Lemma 10.4 implies that for u1, u2∈Kε
2b, with s1=s2 and t1=t2, we have

P(|K(u1)−K(u2)|⩾ ℓξ1/2)⩽ ce−dℓ2 . (10.5)

Now, let u1, u2∈Kε
2b with x1=x2, y1=y2 and τ⩽ε3/b3. With χ as in Lemma 10.4, we

have that χ⩽(4b/ε)τ⩽4τ2/3, and hence, for any m>0,

mτ1/3 ⩾ 1
3mτ1/3+ 1

3mχ1/2.

Using this lower bound and applying Lemma 10.4 to the pair u1, u2 then gives

P(|K(u1)−K(u2)|⩾mτ1/3)⩽ ce−dm3/2

. (10.6)

Now, we can think of Kε
b as a subset of the box T=[−b, b]3×[ε, 2b] with coordinates x,

y, t, and s, which is in turn a subset of the set Kε
2b.

Therefore, by (10.5) and (10.6), we can apply Lemma 2.8 to the box T with

αx=αy=
1
2 , αs=αt=

1
3 , βx=βy=2, βs=βt=

3
2 , rx=ry=2b, and rs=rt=b3/ε3. This gives

the desired result after simplification. The conditions that b⩾2 and ε⩽1 are used only

in the simplification.

We now use the modulus of continuity for L to understand how the values in L blow

up. The first proposition controls blowup as the time increment goes to zero.

Proposition 10.6. For any set B=[−b, b]4∩R4
" with b⩾2, there is a random con-

stant C satisfying the tail bound

P(C >m)⩽ cb12e−dm3/2

such that, for (x, t; y, t+s)∈B, we have

|K(x, t; y, t+s)|⩽Cs1/3 log4/3
(
4b

s

)
.

Here, c and d are universal constants.

Throughout the proof, c1, c, and d are constants that may change from line to line.

Proof. For a large constant m0∈N, define the discrete set

Dk = {(x, t; y, t+s)∈B : t, x, y, s∈Z/(23k+1b3), s∈ [2−k,m0b2
−k]},

and let

D=
⋃
k⩾1

Dk.
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How large we need to take m0 will be made clear in the final step of the proof. In

particular, the choice of m0 is independent of B. By the Tracy–Widom 1-point bound

for the function K, Theorem 2.3, for any (x, t; y, t+s)∈Dk and m>c1, we have

P
(
|K(x, t; y, t+s)|>m log2/3

(
4b

s

)
s1/3

)
⩽ ce−d log(4b/s)m3/2

⩽ c
s13

b13
e−dm3/2

.

Now, each of the sets Dk has at most cb12212k elements, so by a union bound, we get

that

|K(x, t; y, t+s)|⩽Cs1/3 log2/3
(
4b

s

)
for all (x, t; y, t+s)∈D, (10.7)

where C is a random constant satisfying

P(C >m)⩽
∞∑
k=1

cb12212km13
0 2−13ke−dm3/2

⩽ cb12e−dm3/2

for m>c1. The same bound holds for all m by possibly increasing c. We can bound

the values of K outside of D, by the modulus of continuity bound in Proposition 10.5.

By Proposition 10.5 applied to the set Bk=K2−k

b for some k⩾1, for all u1, u2∈Bk with

∥u1−u2∥⩽2−3k/b3, we have that

|K(u1)−K(u2)|⩽Ck∥u1−u2∥1/3 log2/3(∥u1−u2∥−1), (10.8)

where Ck satisfies the following tail bound for m>c1:

P(Ck >m log2/3(2kb))⩽ cb1026ke−d log(2kb)m3/2

⩽ c2−ke−dm3/2

. (10.9)

Now, for points u1=(x1, t1; y1, t1+s1) and u2=(x2, t2; y2, t2+s2)∈B, with

b∥u1−u2∥1/3 ⩽ 1
2 min(s1, s2, 1), (10.10)

the bound (10.8) applies to the pair u1, u2 either for k=1 or for some k with

2−k ⩽ s1∧s2 ⩽ 21−k.

Therefore, for all u1, u2∈B satisfying (10.10), we have

|K(u1)−K(u2)|⩽C ′∥u1−u2∥1/3 log4/3(∥u1−u2∥−1), (10.11)

where

C ′ =sup
k

Ck log
−2/3(2kb).

The constant C ′ satisfies the same tail bound as C, by (10.9) and a union bound. Now,

as long as m0 was chosen large enough, for every point v=(x, t; y, t+s)∈B, there is a

point u=(x′, t′; y′, t′+s′)∈D such that

b∥v−u∥1/3 ⩽ 1
2 min(s, s′, 1) and s′ ⩾ 1

2s.

The inequality in (10.11) then applies with v=u1 and u=u2. Combining this with the

bound on |K(u)| in (10.7) bounds |K(v)|, proving the lemma.



266 d. dauvergne, j. ortmann and b. virag

As a corollary of Proposition 10.6, we can get uniform control over the whole directed

landscape. This follows immediately from a union bound.

Corollary 10.7. There exists a random constant C satisfying

P(C >m)⩽ ce−dm3/2

for universal constants c and d, and all m>0 such that, for all u=(x, t; y, t+s)∈R4
" , we

have ∣∣∣∣L(x, t; y, t+s)+
(x−y)2

s

∣∣∣∣⩽Cs1/3 log4/3
(
2(∥u∥+2)

s

)
log2/3(∥u∥+2).

Finally, we can use the control established in Corollary 10.7 to conclude that the

metric composition law holds for L. The next lemma will also establish control over

where the maximum in the metric composition law is attained.

Lemma 10.8. For u=(x, r; y, t)∈R4
" and s∈(r, t), define

fu,s(z)=L(x, r; z, s)+L(z, s; y, t).

On a set of probability 1, L satisfies the metric composition law

L(u)=max
z∈R

fu,s(z) (10.12)

for every u=(x, r; y, t)∈R4
" and s∈(r, t). Moreover, for any compact set K⊂R4

" , there

exists a random constant BK such that, for all u=(x, r; y, t)∈K and s∈(r, t), the set

where fu,s attains its maximum lies in the interval [−BK , BK ].

Proof. By construction, (10.12) holds almost surely at all dyadic rational u and s.

Now, for any u=(x, r; y, t) and s∈(r, t), let un=(xn, rn; yn, tn) and sn∈(rn, tn) be se-

quences of dyadic rational points converging to u and s, respectively. Corollary 10.7

implies that L decays like a parabola as the distance between x and y grows. Thus, the

sequence of rightmost maximizers zn of fun,sn is bounded, and hence has a subsequential

limit z. By continuity of L, the point z satisfies fu,s(z)=L(u). Moreover, continuity

and metric composition at dyadic rationals guarantees that fu,s(y)⩽L(u) for all y∈R.
Hence, metric composition holds at u.

Now, the left-hand side of (10.12) is uniformly bounded below on any compact set

by continuity. Moreover, Corollary 10.7 guarantees that fu,s(z) converges uniformly to

−∞ as |z|!∞ for all u=(x, r; y, t)∈K and s∈(r, t). Hence the set where fu,s attains its

maximum is uniformly bounded over u=(x, r; y, t)∈K and s∈(r, t).

We can now conclude the existence and uniqueness of the directed landscape.

Theorem 10.9. The directed landscape exists and is unique in law.
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11. Convergence to the directed landscape

In this section, we show that the directed landscape is the distributional limit of last pas-

sage percolation. For each n, let Bn∈CZ be a sequence of independent 2-sided Brownian

motions. Let

(x, t)n =(t+2xn−1/3,−⌊tn⌋)

denote the translation between coordinates before and after the limit. For (x, t; y, s)∈R4
"

we can define the last passage percolation

Ln(x, t; y, s)=n1/6(B[(x, t)n! (y, s)n]−2(s−t)
√
n−2(y−x)n1/6). (11.1)

Note that Ln is not defined at some points in R4
" ; we may formally set its values to −∞

at those points. It is defined on any compact subset of R4
" for all large enough n, so

uniform compact convergence will not be affected. We choose the value −∞ to preserve

the metric composition law.

Let F o(R4
" ,R∪{−∞}) be the space of extended real-valued functions with domain

R4
" that arise as functions of the form (11.1) for a continuous sequence of functions

f=(fi)i∈Z in place of B. We let F (R4
" ,R∪{−∞}) be the closure of this space with the

topology of uniform-on-compact convergence. The reason for defining the space this way

(instead of setting it to be all functions on R4
") is just to ensure that it is separable.

Theorem 11.1. There exists a coupling of Ln and L so that for every compact set

K⊂R4
" there exists a>1 with

EasupK |L−Ln|3/4 ! 1. (11.2)

The key step in the proof of Theorem 11.1 is the following lemma on tails of time in-

crements in last passage percolation. Note that the spatial increments of Ln are bounded

by Proposition 2.6, as in the proof of tightness of the Airy sheet, Lemma 8.4.

Lemma 11.2. Fix b>0, and let

Kb = [−b, b]4∩{(x, t; y, t+s)∈R4 : s⩾ b−1},

and

Kb,n =Kb∩{(x, t; y, t+s)∈R4 : s, t∈n−1Z}.

Then, there exist constants c, d>0 such that, for every n∈N, every

(x, t; y, s), (x, t+r1; y, s+r2)∈Kb,n,

and all a>0, we have that

P(|Ln(x, t; y, s)−Ln(x, t+r1; y, s+r2)|⩾ a∥(r1, r2)∥1/6)⩽ ce−da3/4

.
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Throughout the proof, c and d will be positive constants that may change from line

to line and depend only on the compact set Kb. In particular, they will not depend on

the choice of points in the compact set or on n.

Proof. We will assume that r1=0 and r2=r>0. Extending to the case of general

(r1, r2) follows by symmetry. Since time coordinates for points in Kb,n are in n−1Z,
we may assume that r⩾1/n, as otherwise r=0. By the metric composition law for last

passage percolation (Lemma 3.2), we have that

Ln(y, s; y, s+r)⩽Ln(x, t; y, s+r)−Ln(x, t; y, s)

=Ln(Z, s; y, s+r)+[Ln(x, t;Z, s)−Ln(x, t; y, s)],
(11.3)

where Z is the rightmost maximizer of the function

z 7−!Ln(x, t; z, s)+Ln(z, s; y, s+r).

By Theorem 2.5, we have the lower bound

P(Ln(y, s; y, s+r)<−ar1/3)⩽ ce−da3/2

(11.4)

on the left-hand side of (11.3). The same bound holds with possibly different c and d,

when r1/3 is replaced by r1/6, since r is bounded. To complete the proof, we show that

the probability that the right-hand side of (11.3) is larger than ar1/6 is bounded above

by ce−da3/4

for all a>0.

We can bound the right-hand side of (11.3) by using the bounds from §2 on Brownian

melons. Indeed, recall that the two functions Ln( · , s; y, s+r) and Ln(x, t; · , s) are simply

rescaled and shifted top lines of Brownian melons by (4.1). First, Proposition 2.7 implies

that

P(Ln(Z, s; y, s+r)>ar1/3)⩽ ce−da3/2

, (11.5)

which gives the desired bound on the first term on the right-hand side of (11.3), since

r1/3⩽cr1/6 for the r-values we care about. For the second term, first note that by apply-

ing Proposition 2.7 to the term Ln(x, t;Z, s) and Theorem 2.5 to the term Ln(x, t; y, s),

we have the bound

P(Ln(x, t;Z, s)−Ln(x, t; y, s)⩾ b)⩽ ce−db3/2 . (11.6)

Here, we have used that (t−s)1/3, which enters into the scaling of this difference, is

uniformly bounded on Kb. We will use this bound when b is large, but we will also need

an r-dependent bound that will work for small b.
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When Z is close to y, we can use the Gaussian tail bound on differences between

points in Proposition 2.6 to bound the left-hand side of (11.6). In particular, by combin-

ing the tail bounds in Proposition 2.6 with the modulus of continuity lemma for general

tail-bounded processes (Lemma 2.8), we have that, for every ε∈[0, 1] and b>0,

P
(

max
z∈[−y−ε,y+ε]

|Ln(x, t; z, s)−Ln(x, t; y, s)|⩾ b
)
⩽ ce−db3/2ε−3/4

. (11.7)

To get that c and d do not depend on any parameters, we have used that the distance

|x−y| is bounded above and that the time increment s−t is bounded below on Kb. Also,

by Lemma 9.3 and Brownian scaling, we have control over how much Z differs from its

expected location at fr(x, y)=x+(y−x)(t+s)(t+s+r)−1. We get that

P(|Z−fr(x, y)|>mr1/3)⩽ ce−dm3/4

. (11.8)

Again, the fact that s−t is uniformly bounded below on Kb is necessary to ensure that

the constants c and d are independent of the points (x, t; y, s) and (x, t; y, s+r). Note

that |fr(x, y)−y|⩽c1r on the set Kb, for a Kb-dependent constant c1. Since r is bounded

above on Kb, we can use the triangle inequality to rewrite (11.8) as

P(|Z−y|>mr1/3)⩽ ce−dm3/4

. (11.9)

Combining (11.7) and (11.9) by setting ε=br1/6 and m=br−1/6, we get that

P(Ln(x, t;Z, s)−Ln(x, t; y, s)⩾ b)⩽ ce−db3/4r−1/8

(11.10)

whenever b⩽r−1/6. Also, when b⩾r−1/6, then b3/2⩾b3/4r−1/8, so we can combine (11.10)

with (11.6) to get that (11.10) holds for all b and r. Setting ar1/6=b in (11.10) gives that

P(Ln(x, t;Z, s)−Ln(x, t; y, s)⩾ ar1/6)⩽ ce−da3/4

,

which is the desired bound on the second term on right-hand side of (11.3).

Proof of Theorem 11.1. Replace Ln with a continuous interpolated version Jn. The

version Jn will equal Ln whenever ns, nt∈Z. We can do this in such a way that the

sequence Jn satisfies the tail bound in Lemma 11.2 everywhere on Kb, not just on the

sets Kb,n. It suffices to prove convergence of Jn to L.
By the tail bound in Lemma 11.2 on the time increments of Jn, the tail bound

in Proposition 2.6 which applies to the spatial increments of Jn, and the Kolmogorov–

Chentsov criterion, we can conclude that the sequence Jn is tight. Moreover, if Jn

converges in distribution to a subsequential limit J , then there is a coupling of the Jn
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and J such that in this coupling EasupK |L−Ln|3/4!1 for some a>1, the equivalent of

(11.2). This follows by the same reasoning as in Lemma 8.4.

Now, let J be a subsequential limit of Jn. By the definition of Jn and the Airy sheet

convergence in Theorem 8.3, the marginals J ( · , t, · , s) are all rescaled Airy sheets. Also,

J inherits the metric composition law, property (II) of the directed landscape, from the

sequence Ln. This follows from the tail bounds on maximizing locations of pre-limiting

Airy sheets from Lemma 9.3, exactly as in the proof of Proposition 9.2.

Moreover, J has independent increments on any set of k disjoint intervals since when

[s, t]∩[s′, t′]=∅, the processes Jn( · , t; · , s) and Jn( · , t′; · , s′) are determined by different

sets of Brownian motions for all large enough n. This independence extends to intervals

that share an endpoint by continuity. Thus, J satisfies the conditions of Definition 10.1,

and so J must be the directed landscape.

12. Directed geodesics

In this section, we construct geodesics in the directed landscape L. First, for a continuous

path π: [t, s]!R, we can define the length of π by

∫
dL�π= inf

k∈N
inf

{t=t0<t1<...<tk=s}

k∑
i=1

L(π(ti−1), ti−1;π(ti), ti). (12.1)

In other words, the length of π is the infimum over all partitions of the sum of increments

in L along π. This definition is the analogue of defining curve length in Euclidean space

by piecewise linear approximation. By the triangle inequality (10.1) for L, we always

have ∫
dL�π⩽L(π(t), t;π(s), s).

We say that π is a directed geodesic from (π(t), t) to (π(s), s) if equality holds. This is

equivalent to saying that equality holds in (12.1) for all subdivisions before taking any

infima. A simple induction argument shows that if, for any t0=t<t1<t2<t3=s, we have

∫
dL�π=

3∑
i=1

L(π(ti−1), ti−1;π(ti), ti), (12.2)

then π is a directed geodesic.

Theorem 12.1. Let L be the directed landscape, and fix u=(x, t; y, s)∈R4
" . Then,

almost surely, there exists a unique directed geodesic Πu from (x, t) to (y, s).
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By the properties of the directed landscape in Lemma 10.2, the distribution of Πu

is independent of the point u∈R4
" up to symmetry. Let u=(0, 0; 0, 1). For r>0 the path

Πr3u( ·) has the same distribution as r2Πu( ·/r3). The distribution of Πv for any v can

be obtained as a translated shear of this family. So it suffices to prove Theorem 12.1 for

u=(0, 0; 0, 1).

To obtain tightness on the path locations, we will use Lemma 9.5. This lemma can

be used in conjunction with Proposition 9.2 to give a bound over multiple maximum

locations at once. For (x, t; y, t+r3)∈R4
" , we define Z

+

t,r(x, y) as the rightmost maximizer

of the function

f(z)=L
(
x, t; z, t+ 1

2r
3
)
+L

(
z, t+ 1

2r
3; y, t+r3

)
,

and similarly define Z−
t,r(x, y) as the leftmost maximizer.

Lemma 12.2. Fix t∈R and r>0, and let K=[a, a+b]×[c, c+b]⊂R2. Then,

P
(
there exists (x, y)∈K such that

∣∣∣∣Z+

t,r(x, y)−
x+y

2

∣∣∣∣>mr2
)
⩽

(
b

mr2

)2
c1e

−c2m
3

for constants c1, c2∈R. The same bound holds for Z−.

Proof. The functions Z+

t,r and Z−
t,r are non-decreasing functions of x and y, by

Proposition 9.2. Hence, to prove the theorem, it suffices to take a union bound over

(x, y) in the grid

mr2Z2∩{x∈R2 : d(x,K)⩽
√
2mr2}.

We have enlarged the compact set K to guarantee that we have an outer grid boundary

containing K. The bound then follows if we can show that, for every fixed x and y,

P
(∣∣∣∣Z+

t,r(x, y)−
x+y

2

∣∣∣∣>mr2
)
⩽ c1e

−c2m
3

,

and similarly for Z−. Now, the probability on the left-hand side above is independent of

x and y, by the spatial and skew stationarity of L (Lemma 10.2). Moreover, for x=y=0,

the function f is then a sum of independent Airy processes of scale 2−1/3r. Applying

Lemma 9.5 then yields the desired bound.

We are now ready to prove Theorem 12.1. As in Lévy’s construction of Brownian

motion, our proof gives an essentially optimal modulus of continuity bound on Πu.

Proposition 12.3. There exists a random constant C such that the path Πu in

Theorem 12.1, with u=(0, 0; 0, 1), satisfies

|Πu(t1)−Πu(t2)|⩽C|t1−t2|2/3 log1/3
(

2

|t1−t2|

)
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for all t1, t2∈[0, 1]. Moreover,

P(C >b)⩽ c1e
−c2b

3

for some constants c1 and c2.

Proof of Theorem 12.1 and Proposition 12.3. We first approximate the path Π=Πu

on dyadic rationals. Let Π1: [0, 1]!R be chosen so that Π1(0)=Π1(1)=0 and

L
(
0, 0;Π1

(
1
2

)
, 1
2

)
+L

(
Π1

(
1
2

)
, 1
2 ; 0, 1

)
=L(u),

and so that Π1 is linear at times in between. Now, for n∈N and i∈{0, ... 2n}, define
tn,i=i/2n. We then recursively define Πn: [0, 1]!R so that Πn(tn−1,i)=Πn−1(tn−1,i) for

all i∈{0, 1, ..., 2n−1}, and so that, for odd i∈{0, 1, ..., 2n}, we have

L(Πn(tn,i−1), tn,i−1; Πn(tn,i), tn,i)+L(Πn(tn,i), tn,i; Πn(tn,i+1), tn,i+1)

=L(Πn(tn,i−1), tn,i−1; Πn(tn,i+1), tn,i+1).

Define Πn to be linear at times in between. Such a sequence of paths Πn exists by

property (III) of L. We now show that Πn has a uniform limit satisfying the desired

modulus of continuity.

Fix b>0, and for k∈{1, 2 ... }, define hk=b2−2k/3k1/3. Also, define ℓ0=0 and, for

k⩾1, let ℓk=h1+...+hk. We recall the notation Z+

t,r and Z−
t,r from Lemma 12.2. Let Ak

be the event where there exist (x, y)∈[−ℓk, ℓk]
2 and i∈{1, ..., 2k} such that either∣∣∣Z+

tk,i−1,2−k/3(x, y)−
x+y

2

∣∣∣⩾hk+1 or
∣∣∣Z−

tk,i−1,2−k/3(x, y)−
x+y

2

∣∣∣⩾hk+1.

By Lemma 12.2 and a union bound,

P
( ⋃

k⩾0

Ak

)
⩽ c1e

−c2b
3

(12.3)

for universal constants c1 and c2. On the event Ac
0, we have ∥Π1∥∞⩽ℓ1. Moreover, if

∥Πk−1∥∞⩽ℓk−1 and the event Ac
k−1 holds, then

∥Πk−Πk−1∥∞ <hk and the derivatives satisfy ∥Π′
k−Π′

k−1∥∞ <hk2
k. (12.4)

As a consequence of the first bound in (12.4), ∥Πk∥∞⩽ℓk. Hence, on the complement of

the event A=
⋃

k⩾0 Ak, the bounds in (12.4) hold for all k⩾1. Since the sequence hk is

summable, the first bound in (12.4) implies that Πk is a Cauchy sequence in the uniform
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norm, and hence has a continuous limit Π on the event Ac. The modulus of continuity

of Π can be bounded as follows using (12.4) for any r∈N:

|Π(t2)−Π(t1)|⩽ |t2−t1|
r∑

k=1

2khk+2

∞∑
k=r

hk.

Setting r=1−⌊log2 |t2−t1|⌋, and using the probability bound in (12.3) then proves the

modulus of continuity bound of Proposition 12.3 for Π. Moreover, by construction,

equality holds in (12.1) for all dyadic time subdivisions. Continuity implies the same for

all finite subdivisions. Thus Π is a directed geodesic. Uniqueness follows from Lemma 9.5

applied at rational intermediate times.

13. Joint limits of last passage paths

In this section, we show that last passage paths in Ln, defined in (11.1), converge jointly

to directed geodesics in L. The proof is essentially topological, once we establish a basic

fact about the directed landscape. As a byproduct of the proof, we show that, almost

surely in L, there exists a directed geodesic between every pair of points: Lemma 13.2.

This result is not implied by Theorem 12.1, which only concerns geodesics between single

points. Lemma 13.2 can also be used to give an alternate proof of existence and almost

sure uniqueness of directed geodesics, but does not yield the strong modulus of continuity

bound in Theorem 12.1.

The proof of geodesic convergence is topological and follows from a deterministic con-

vergence statement about particular functions f :R4
"!R∪{−∞}. We say that a function

f :R4
"!R is a landscape if, for every pair x, y∈R and s<r<t∈R, we have that

f(x, s; y, t)=max
z∈R

f(x, s; z, r)+f(z, r; y, t). (13.1)

We say that a landscape f is proper if the following four conditions hold:

(1) The landscape f is continuous;

(2) For every bounded set [−b, b]4∩R4
" , there exists a constant cb such that∣∣∣∣f(x, t; y, t+s)− (x−y)2

s

∣∣∣∣⩽ cb

for all (x, t; y, t+s)∈[−b, b]4;

(3) For every compact set K⊂R4
" , there exists a constant bK>0 such that the set

where the function on the right-hand side of (13.1) attains its maximum is contained in

[−bK , bK ] for all (x, s; y, t)∈K and r∈(s, t);
(4) For all r<t, x⩽x′, and y⩽y′, we have that

f(x, r; y, t)+f(x′, r; y′, t)⩾ f(x, r; y′, t)+f(x, r; y′, t). (13.2)
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For any landscape f , we can define length
∫
df �π as in equation (12.1), with f in

place of L. Again, we say that a continuous function π: [t, s]!R is a geodesic from

(π(t), t) to (π(s), s) if ∫
df �π= f(π(t), t;π(s), s).

The directed landscape L is almost surely a proper landscape. This follows by Lemma 10.8

(for (i) and (iii)), Proposition 10.6 (for (ii)), and Lemma 9.1 and continuity (for (iv)).

Also, the last passage percolations Ln are landscapes. Our goal is to prove a determin-

istic statement about convergence of geodesics. We need a notion of convergence that

accommodates geodesics with different domains.

For this, let G be the set of all continuous functions π: [a, b]!R for any a, b∈R. For
π: [a, b]!R∈G, let

gπ= {(π(r), r) : r∈ [a, b]}.

The set gπ is the graph of π with the coordinates switched. This is the natural order

of coordinates in landscape notation. A sequence of functions πn!π in G if gπn!gπ in

the Hausdorff topology. When πn and π have the same domain, then this is equivalent

to uniform convergence of functions.

Theorem 13.1. Let fn be a sequence of landscapes converging to a proper landscape

f uniformly on compact subsets of R4
" . Suppose that, for a fixed (u, v)∈R4

" , there is a

unique geodesic π from u to v in f . Suppose that (un, vn)!(u, v), and that, for all large

enough n, there exists a geodesic πn from un to vn in fn. Then, πn!π in G as n!∞.

We first show that geodesics exist in any proper landscape. Recall that π is a

rightmost geodesic from (x, t) to (y, s) if π⩾τ for any other geodesic τ from (x, t) to

(y, s). We can similarly define leftmost geodesics.

Lemma 13.2. Let f be a proper landscape. Then, for any (x, t; y, s)∈R4
" , there exist

rightmost and leftmost geodesics from (x, t) to (y, s).

Proof. We will show the existence of a rightmost geodesic π. The leftmost geodesic

exists by a symmetric argument. We define π(t)=x and π(s)=y, and for every r∈(s, t),
set π to be the rightmost maximizer of the function on the right-hand side of (13.1). The

function π is bounded by condition (iii) in the definition of proper landscape. We need

to check that π is continuous and that π is a geodesic.

To check continuity, consider a sequence rn!r∈[s, t]. We will use the equality

f(x, s; y, t)= f(x, s;π(rn), rn)+f(π(rn), rn; y, t). (13.3)

First consider the case when rn!s. By continuity of f and the boundedness of π, the sec-

ond term on the right-hand side of (13.3) remains bounded as n!∞. Therefore, the first
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term f(x, s;π(rn), rn) also remains bounded, and so, by condition (ii) in the definition

of proper landscape, we must have π(rn)!π(r), since otherwise f(x, s;π(rn), rn) would

get arbitrarily large and negative as n!∞. The case when rn!t follows a symmetric

argument.

Now, suppose rn!r∈(s, t), and let w be a limit point of π(rn). By passing to a

subsequence, we may assume that πn(rn)!w, and that either rn<r for all n or rn>r

for all n. These two cases have symmetric arguments, so we will assume rn<r for all n.

By continuity of f , along this subsequence the right-hand side of (13.3) converges to

f(x, s;w, r)+f(w, r; y, t).

In particular, (13.3) and the metric composition law for f implies that w maximizes the

function

z 7−! f(x, s; z, r)+f(z, r; y, t).

Since π(r) is the rightmost maximizer of this function, w⩽π(r). We now prove the

opposite inequality.

Metric composition implies that there exists a point zn∈R such that

f(x, s; y, t)= f(x, s; zn, rn)+f(zn, rn;π(r), r)+f(π(r), r; y, t). (13.4)

Equation (13.4) and the metric composition law for f imply that

f(x, s; y, t)= f(x, s; zn, rn)+f(zn, rn; y, t).

Therefore, both zn and π(rn) maximize the function in the right-hand side (13.1) at rn,

so zn⩽π(rn) since π(rn) is the rightmost maximizer. The sequence zn is bounded by

condition (iii) in the definition of proper landscape. Moreover, f(zn, rn;π(r), r) must

stay bounded as rn!r in order to preserve the equality in (13.4), since all other terms

in (13.4) stay bounded by continuity of f . Therefore, just as in the paragraph following

(13.3), zn!π(r) as n!∞. Since zn⩽π(rn) and π(rn)!w, we have that π(r)⩽w as

desired.

To check that π is a geodesic, just as in (12.2), it is enough to show that, for any

r1<r2∈(s, t), we have

f(x, s; y, t)= f(x, s;π(r1), r1)+f(π(r1), r1;π(r2), r2)+f(π(r2), r2; y, t). (13.5)

By the metric composition law, we can find a point z1 such that

f(x, s;π(r2), r2)= f(x, s; z1, r1)+f(z1, r1;π(r2), r2). (13.6)
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By the construction of π(r2), (13.6) implies that

f(x, s; y, t)= f(x, s; z1, r1)+f(z1, r1;π(r2), r2)+f(π(r2), r2; y, t). (13.7)

By the triangle inequality for f applied at the points (z1, r1), (π(r2), r2), and (y, t),

equality (13.7) implies that

f(x, s; y, t)⩽ f(x, s; z1, r1)+f(z1, r1; y, t).

Metric composition for f implies that the opposite inequality must also hold, and hence

that z1 maximizes the function z 7!f(x, s; z, r1)+f(z, r1; y, t). In particular, z1⩽π(r1)

since π(r1) is the rightmost maximizer of this function. By a similar argument, we can

find a point z2 such that z2⩽π(r2) and

f(x, s; y, t)= f(x, s;π(r1), r1)+f(π(r1), r1; z2, r2)+f(z2, r2; y, t). (13.8)

Now, we can sum the equalities (13.7) and (13.8) and apply property (iv) of proper

landscapes to the points z1⩽π(r1) and z2⩽π(r2) to get that

2f(x, s; y, t)

⩽ f(x, s; z1, r1)+f(z1, r1; z2, r2)+f(z2, r2; y, t) (13.9)

+f(x, s;π(r1), r1)+f(π(r1), r1;π(r2), r2)+f(π(r2), r2; y, t). (13.10)

The triangle inequality for f implies that each of (13.9) and (13.10) are less than or

equal to f(x, s; y, t). By the inequality above, this implies that (13.10) is in fact equal to

f(x, s; y, t), yielding (13.5).

We will also need the following lemma about landscape convergence.

Lemma 13.3. Let fn be a sequence of landscapes converging uniformly on compact

sets to a proper landscape f , and fix a bounded set B=[−b, b]4∩R4
" . Then, there exists a

positive constant cb such that, for all ε∈(0, 1), there exists nε∈N such that, for all n⩾nε

and (x, t; y; t+s)∈B, we have

fn(x, t; y; t+s)⩽ cb−
(x−y)2

s+ε
.

Proof. Fix (x, t; y, t+s)∈B and ε∈(0, 1). By the triangle inequality for fn, we have

that

fn(x, t; y, t+s)⩽ fn(x, t; y, t+s+ε)−fn(y, t+s; y, t+s+ε).

In particular, the right-hand side above converges uniformly to

f(x, t; y, t+s+ε)−f(y, t+s; y, t+s+ε)

for [x, t; y; t+s]∈[−b, b]4 for any b, ε>0. Using condition (ii) in the definition of proper

landscape for f then implies the lemma.
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Proof of Theorem 13.1. Let (u, v)=(x, t; y, s) and (un, vn)=(xn, tn; yn, sn). Suppose

that πn does not converge to π in G. Then, there exists a subsequence Y and an ε>0

such that, for every n∈Y , the Hausdorff distance between gπn and gπ is greater than ε.

Let

Kε =
{
w∈R2 : min

w′∈gπ
∥w−w′∥= ε

}
.

Now, for large enough n, ∥un−u∥<ε and ∥vn−v∥<ε. For such n∈Y , the continuity of

the πn guarantees that gπn must intersect Kε at some point wn. By passing to a further

subsequence, we can guarantee that wn converges to a point w=(z, r)∈Kε. The time

coordinate r is in [t, s]. Since each πn is a geodesic, we have the metric composition law

fn(un, wn)+fn(wn, vn)= fn(un, vn). (13.11)

If r∈(s, t), then both sides above must converge to the corresponding values of f since

all the points involved lie in a common compact subset of R4
" . This yields the equality

f(u,w)+f(w, v)= f(u,w).

By Lemma 13.2, there are geodesics in f from u to w and from w to v. Concatenating

these two geodesics gives a geodesic from u to v. Since w /∈gπ, this contradicts the

uniqueness of π.

Therefore, either rn!t or rn!s. We will only deal with the case rn!t, as the case

where rn!s is similar. In this case, all the points (un, vn) and (wn, vn) are contained in

a common compact set in R4
" , so

fn(un, vn)−fn(wn, vn)! f(u, v)−f(w, v). (13.12)

On the other hand, all the points (un, wn) lie in a bounded subset of R4
" , and they

converge to a point (u,w)=(x, t, x′, t), with x ̸=x′. Therefore, by Lemma 13.3, we have

that

lim
n!∞

fn(un, wn)=−∞.

Combining this with (13.12) contradicts (13.11) for large enough n.

Next, we apply Theorem 13.1 to prove convergence of last passage paths in the

prelimiting last passage percolations Ln, Theorem 1.8. This is not immediate from

Theorem 13.1, since the rescaled last passage paths in Theorem 1.8 are not geodesics

in Ln. However, we can show that these rescaled paths will always be close to geodesics

by tweaking the definitions.

Recall that Ln is the rescaled version of

B[(x, t)n! (y, s)n] =B[(t+2xn−1/3,−⌊tn⌋)! (s+2yn−1/3,−⌊sn⌋)].
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Fix (x, s; y, t)∈R4
" and let

πn =πn[(x, t)n, (y, s)n]

be any last passage path in B from (x, t)n to (y, s)n. Let hn be the increasing affine

function mapping [t, s] onto [t+2xn−1/3, s+2yn−1/3], and define the rescaled last passage

path

τn(r)=
πn�hn(r)+nhn(r)

2n2/3

for r∈[t, s]. We would like to use Theorem 13.1 to show that τn converges to a directed

geodesic in L, but as written the path τn is not a geodesic in Ln. In particular, it is not

continuous. We work around this by constructing geodesics σn which are close to τn.

First, define a function π̃n: [t+2xn−1/3, s+2yn−1/3]!R whose inverse will be continuous

and will help us define σn. The function π̃n has the following specifications.

• Let z1<...<zk be the set of points in [t+2xn−1/3, s+2yn−1/3] where

lim
z!z+

i

πn(z) ̸= lim
z!z−

i

πn(z).

Here we recall the convention that

lim
z!(t+2xn−1/3)−

πn(z)=−⌊tn⌋ and lim
z!(s+2yn−1/3)+

πn(z)=−⌊sn⌋.

Set z0=t+2xn−1/3 and zk+1=s+2yn−1/3. On each of the intervals [zi, zi+1), let π̃n be

equal to the linear function satisfying π̃n(zi)=πn(zi) and π̃n(zi+1)=πn(zi)− 1
2 . Infor-

mally, we are giving the flat parts of πn some slope so that there is a continuous inverse.

The constant 1
2 yields better behavior at the right endpoint than the more natural 1.

• Let π̃n(s+2yn−1/3)=−⌊sn⌋− 1
2 .

The function π̃n is a strictly decreasing function from [t+2xn−1/3, s+2yn−1/3] to[
−⌊sn⌋− 1

2 ,−⌊tn⌋
]
. There is a unique surjective non-increasing function

π̃−1
n :

[
−⌊sn⌋− 1

2 ,−⌊tn⌋
]
−! [t+2xn−1/3, s+2yn−1/3]

such that π̃−1
n �π̃n is the identity map on [t+2xn−1/3, s+2yn−1/3]. The construction

of π̃−1
n guarantees that any point (π̃−1

n (r), ⌈r⌉) lies along the path π, see §2.1 for the

definition of a point lying along a path. Therefore, the geodesic property of π guarantees

that, for any partition r0<...<rk of
[
−⌊sn⌋− 1

2 ,−⌊tn⌋
]
, we have

B[(x, t)n! (y, s)n] =

k∑
i=1

B[(π̃−1
n (ri), ⌈ri⌉)! (π̃−1

n (ri−1), ⌈ri−1⌉)]. (13.13)
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Now, define the function σn:
[
⌊tn⌋/n,

(
⌊sn⌋+ 1

2

)
/n

]
!R by

σn(r)=
n(π̃−1

n (−rn)−r)

2n2/3
.

By equation (13.13), the function σn is a geodesic in Ln from (x+O(n−2/3), t+O(n−1))

to (y+O(n−2/3), s+O(n−1)). Therefore, by Theorem 13.1, in a coupling where Ln!L
almost surely and L has a unique directed geodesic Π from (x, t) to (y, s), the functions

σn will converge to Π in G. That is, the graphs of σn will converge to the graph of Π in

the Hausdorff topology. We want to show that in this case, the functions τn converge to

Π uniformly. This is accomplished by the following lemma.

Lemma 13.4. With all functions defined as above, suppose that σn converges almost

surely in G to a function σ: [t, s]!R. Then, τn!σ uniformly almost surely.

Proof. Fix a point ω in the probability space such that σn(ω)!σ(ω) in G. We show

that τn(ω)!σ(ω) uniformly. We will work with the set

Γn = {(τn(r), hn(r)−2τn(r)n
−1/3) : r∈ [t, s]}.

Let αn be the linear map from R2!R2 given by αn(x, t)=(t+2xn−1/3,−tn). We have

αnΓn = {(hn(r), πn�hn(r)) : r∈ [t, s]}.

The set αnΓn is the graph of πn. Recall that

gσn = {(σn(r), r) : r∈ [t, s]}.

Letting β(x, s)=(x, ⌈s⌉), we also have that

βαngσn =
{
(π̃−1

n (r), ⌈r⌉) : r∈
[
−⌊sn⌋− 1

2 ,−⌊tn⌋
]}

.

The set βαngσn consists of all points that lie along πn. In particular, αnΓn⊂βαngσn,

and so

Γn ⊂α−1
n βαngσn. (13.14)

A straightforward computation yields that

∥α−1
n βαn(u)−u∥⩽ 2n−1/3 (13.15)

for all u∈R2. Thus, all points in Γn are in the 2n−1/3-neighborhood of gσn. The

Hausdorff convergence of gσn to gσ then implies that the sequence of closures �Γn has

subsequential limits, and they are all subsets of gσ.
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Since τn(r) is a coordinate of Γn for all r and n, this implies that there exists a

constant C(ω) such that |τn(r)|⩽C for all n∈N and r∈[t, s]. Also, since hn is the affine

map from [t+2xn−1/3, s+2yn−1/3]![t, s], we have that hn(r)=r+O(n−1/3). Therefore,

(τn(r), hn(r)−τn(r)n
−1/3)= (τn(r), r+O(n−1/3)). (13.16)

Equation (13.16) implies that any subsequential limit of �Γn must intersect each of the

lines R×{r} for every r∈[t, s]. Since gσ intersects each of these lines exactly once and

all subsequential limits of �Γn are subsets of gσ, we get that �Γn!gσ.

Equation (13.16) also implies that the Hausdorff distance between �Γn and gτn is

O(n−1/3), and so gτn!gσ as well. By the equivalence of Hausdorff convergence of

graphs and uniform convergence to continuous functions, this completes the proof.

Theorem 13.1 combined with Lemma 13.4 immediately allows us to conclude joint

convergence of last passage paths to directed geodesics. This next theorem is a restate-

ment of Theorem 1.8.

Theorem 13.5. Let the Brownian last passage percolations Ln and L be coupled so

that Ln!L uniformly on compact sets almost surely. Then, there exists an event A of

probability 1 with the following property. For u=(x, t; y, s)∈R4
" , let Cu be the set where

the directed geodesic Πu is unique in L, and let hu,n be the increasing affine function

mapping [t, s] onto [t+2xn−1/3, s+2yn−1/3].

For any u∈R4
" , and any sequence of last passage paths πu,n from (x, t)n to (y, s)n

in Ln, we have that

πu,n�hu,n+nhu,n

2n2/3
!Πu uniformly on the almost sure event A∩Cu.

In Theorem 13.5, A is the event where L is a proper landscape. This guarantees

that we can apply Theorem 13.1 on A∩Cu. Note that the set Cu is not obviously a

Borel measurable event in itself. However, when L is a proper landscape, uniqueness of

the directed geodesic from (x, t) to (y, s) is equivalent to the statement that each of the

continuous functions

fr(z)=L(x, t; z, r)+L(z, r; y, s)

have a unique maximum, for r∈(t, s)∩Q. Therefore, Cu∩A is Borel measurable since, on

the event A, uniqueness of geodesics can be checked with only countably many conditions.

14. Open questions

There are several natural open questions related to the directed landscape. We collect a

few of these here. Some of these are geometric in nature, while others are about desired

explicit formulas.
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Definition 8.1 constructs the Airy sheet on R+×R as a deterministic function of the

Airy line ensemble A. We believe that the whole Airy sheet should be a deterministic

function of A in the following way. Define H:R2!R so that H|(0,∞)×R is defined by

(8.1) and H(0, y)=A1(y). Now, define H(−x, y) for x>0 by applying the same formulas

to the reflected version of A: A·(−·). This defines H on R2 as a deterministic functional

of A.

Conjecture 14.1. The function H is an Airy sheet.

Since the first version of this paper appeared, we proved Conjecture 14.1, see [17,

Theorem 1.21].

Another way to clarify the Airy sheet definition would be to give the sheet values

directly as a limit. The following would suffice.

Conjecture 14.2. There exists a deterministic function a:R+×N!R so that, for

every x>0, almost surely as k!∞ we have

A
[(

−
√

k

2x
, k

)
! (0, 1)

]
−a(x, k)!S(x, 0).

Conjecture 14.2 would follow from an improved bound on the last passage problem

across the Airy line ensemble that was analyzed in §6. In that section, we show that

A[(0, k)! (x, 1)]= 2
√
2kx+o(

√
k).

We believe that the correct error term here is O(k−1/6), as in Brownian last passage

percolation. This would give that

a(x, k)=EA1(0)−EAk(0)−
√
2kx.

The first term is the expectation of a GUE Tracy–Widom random variable and the second

term is equal to −
(
3
2πk

)2/3
+o(1) as k!∞.

Consider the directed geodesics Πx,y from time (x, 0) to time (y, 1). By invariance,

the following intersection question has only two parameters.

Problem 14.3. Find a formula for the probability that Π0,0 and Πx,y intersect.

Even the most basic distributions related to the directed geodesic Π=Π0,0 are not

known. The first question depends only on two Airy processes, so it should be doable

using continuum statistics.

Problem 14.4. (a) Find the distribution of Π(s) for all s.

(b) Find the distribution of maxs Π(s).
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Proposition 12.3 gives tail bounds on these quantities of the form e−x3

.

We also believe that the beginning of geodesics are special.

Conjecture 14.5. Consider the process ηt:
[
0, 1

2

]
!R defined by

ηt(s)=Π(t+s)−Π(t).

Let t and u be such that 0⩽t<u< 1
2 . The laws of ηt and ηu are mutually absolutely

continuous if and only if t>0.

Finally, there should be a stochastic calculus for the 1-2-3 scaling. A natural precise

question for the development of this theory is the following.

Question 14.6. Let h:R2!R be a smooth function with compact support. Define

the h-shift L′ of the directed landscape L by the length formula:∫
dL′

�π=

∫
dL�π+

∫
h(π(t), t) dt

Is the distribution of L′ absolutely continuous with respect to the directed landscape?

If so, what is the density?
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