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1. Introduction

This paper gives improved restriction estimates for the paraboloid in high dimensions.

Recall that the extension operator for the paraboloid can be written in the form

Ef(x) :=

∫
Bn−1

ei(x1ω1+...+xn−1ωn−1+xn|ω|2)f(ω) dω, (1.1)

where Bn−1 denotes the unit ball in Rn−1 and x∈Rn. Stein [S1] conjectured that the

extension operator should obey the inequality

‖Ef‖Lp(Rn) . ‖f‖Lp(Bn−1) (1.2)

for all p>2n/(n−1). We prove new partial results towards this conjecture in dimension

n>4.

Theorem 1.1. For n>2, the operator E obeys the estimate (1.2) if

p> 2
3n+1

3n−3
for n odd, (1.3)

p> 2
3n+2

3n−2
for n even. (1.4)

The best previous estimates for the problem were proven by Tao [T2] for n=4 and

by Bourgain and the author [BG] for n>5. For n=4, the conjecture is that (1.2) holds

for p>2 2
3 . Theorem 1.1 gives the range p>2.8, and the best previous estimate was p>3.

Asymptotically, for large n, the conjecture is that (1.2) holds for p bigger than the lower

bound
2n

n−1
= 2+2n−1+O(n−2).
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The lower bound for p in Theorem 1.1 is

2+ 8
3n
−1+O(n−2),

and the lower bound in the best previous estimate was 2+3n−1+O(n−2).

The new ingredient of our argument has to do with algebraic structure. Roughly

speaking, the argument shows that, if ‖Ef‖Lp is large, then the region where |Ef | is large

must be organized into thin neighborhoods of low-degree algebraic varieties. Exploiting

this structure leads to improved bounds on ‖Ef‖Lp . We find this algebraic structure

using the tool of polynomial partitioning, which was introduced by Katz and the author

in [GK].

Polynomial partitioning was first applied to the restriction problem in [G], which

gave the best current restriction estimate in dimension 3. In this paper we combine that

approach with ideas from [BG]. Besides making incremental progress on the restriction

conjecture, the methods in this paper are related to sharp results for some other problems

in the field, which we describe in the next two subsections.

1.1. Related work

In this subsection, we describe two papers which build on this one, and adapt the methods

to other problems.

In [GHI], Hickman, Iliopoulou and the author generalize Theorem 1.1 to the setting

of Hörmander-type operators with positive-definite phase. For this more general class

of operators, the estimates are sharp up to the endpoint. Hörmander-type operators

with positive-definite phase can be thought of as small perturbations of the extension

operator E. To formulate this precisely, we first write E in a slightly different form. We

define the phase function

Ψpar(y, ω) := y1ω1+...+yn−1ωn−1+yn|ω|2. (1.5)

We restrict x to a ball BnR of radius R. For x∈BnR, we can write Ef(x) in the form

Ef(x) =

∫
Bn−1

eiRΨpar(x/R,ω)f(ω) dω.

We think of Ψpar as a function from Bn×Bn−1 to R. We now consider other phase

functions Ψ(y, ω), which are small C∞ perturbations of Ψpar(y, ω) on Bn×Bn−1. For

each such phase function Ψ, and each scale R, we define an operator

Tf(x) =

∫
Bn−1

eiRΨ(x/R,ω)f(ω) dω. (1.6)
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Hörmander introduced this type of operator in [H]. As we said above, operators of

the form (1.6) can be thought of as small perturbations of the extension operator E.

Hörmander raised the question whether all such operators obey the Lp bounds conjec-

tured to hold for E, and he proved that this is the case when n=2. But it turns out

to be false for all n>3. A counterexample was found by Wisewell [Wi] (cf. also [BG]).

These counterexamples build on a well-known counterexample of Bourgain from [Bo1] for

a related but slightly different problem. These counterexamples are surprising, because

they show that a C∞ small perturbation of the phase function can cause a major change

in the behavior of the operator. In this context, it is reasonable to ask about the best

Lp estimates that hold for all operators of the form (1.6)—the best estimates that are

robust to such small perturbations. Hörmander [H] answered this question in dimension

n=2, and Lee [L] did so in dimension n=3. The paper [GHI] does so for all n. It shows

that

‖Tf‖Lp(BnR) . ‖f‖Lp(Bn−1) for the range of p in Theorem 1.1.

The counterexamples from [Wi] and [BG] show that, up to the endpoint, this is the sharp

range of p in every dimension.

In another direction, in [OW], Ou and Wang adapt the methods here to the case of

the cone. They prove the sharp range of restriction estimates for the cone in dimension

n65. Previously, Wolff [Wol3] proved the sharp range of restriction estimates for the

cone in dimension n64.

1.2. k-linear estimates and k-broad estimates

Multilinear estimates have played a key role in the recent developments in restriction

theory. Our main new result, which leads to Theorem 1.1, is a weaker version of a

k-linear restriction estimate, which we call a k-broad estimate. The exponents in our

k-broad estimate are sharp for all k. We recall some background on multilinear estimates

and then formulate this new result.

We begin by recalling the wave packet decomposition. Suppose we want to study Ef

on a large ball BR⊂Rn. We decompose the domain Bn−1 into balls θ of radius R−1/2.

Then, we decompose f in the form

f =
∑
θ,v

fθ,v,

where fθ,v is supported in θ and has Fourier transform essentially supported in a ball

around v of radius R1/2. In the sum, θ ranges over our set of finitely overlapping balls

covering Bn−1, and v ranges over R1/2Zn−1. For each pair (θ, v), the restriction of
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Efθ,v to BR is essentially supported on a tube Tθ,v with radius R1/2 and length R. The

direction of this tube depends only on θ, and we denote it by G(θ)∈Sn−1. We call Efθ,v

a wave packet.

We can now describe multilinear restriction estimates. Given subsets U1, ... ., Uk

of Bn−1, we say that they are transverse if, for any choice of θj⊂Uj , the directions

G(θ1), ..., G(θk) are quantitatively transverse in the sense that

|G(θ1)∧...∧G(θk)|& 1. (1.7)

Building on important work of Wolff [Wol3], Tao [T2] proved a sharp bilinear esti-

mate for the extension operator E.

Theorem 1.2. (2-linear restriction, [T2]) If U1, U2⊂Bn−1 are transverse, and fj

is supported in Uj , then∥∥∥∥ 2∏
j=1

|Efj |1/2
∥∥∥∥
Lp(BR)

.Rε
2∏
j=1

‖fj‖1/2L2(Bn−1) (1.8)

for p>2(n+2)/n.

By an argument of Tao, Vargas, and Vega, [TVV], this bilinear estimate implies that

‖Ef‖Lp(BR).Rε‖f‖Lp(Bn−1) in the same range p>2(n+2)/n. The ε-removal theorem

([T1]) then implies ‖Ef‖Lp(BR).‖f‖Lp(Bn−1) for all p>2(n+2)/n.

A few years after the bilinear results, Bennett, Carbery, and Tao [BCT] proved a

sharp n-linear estimate for E.

Theorem 1.3. (n-linear restriction, [BCT]) If U1, ..., Un⊂Bn−1 are transverse, and

fj is supported in Uj , then∥∥∥∥ n∏
j=1

|Efj |1/n
∥∥∥∥
Lp(BR)

.Rε
n∏
j=1

‖fj‖1/nL2(Bn−1) (1.9)

for p>2n/(n−1).

This theorem is important and remarkable in part because it involves the sharp ex-

ponent for the restriction problem: p>2n/(n−1). The paper [BG] gives a technique to

exploit multilinear restriction estimates in order to get improved estimates on the orig-

inal restriction problem. Since then, multilinear restriction has had many applications,

including the striking recent work of Bourgain and Demeter on decoupling (see [BD] and

many followup papers).

Given this 2-linear estimate and this n-linear estimate, it is natural to try to prove

a k-linear estimate for all 26k6n which would include these two estimates as special

cases. Here is what looks to me like the natural conjecture, which I first learned from

Jonathan Bennett.
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Conjecture 1.4. (k-linear restriction) If U1, ..., Uk⊂Bn−1 are transverse, and fj is

supported in Uj , then

∥∥∥∥ k∏
j=1

|Efj |1/k
∥∥∥∥
Lp(BR)

.Rε
k∏
j=1

‖fj‖1/kL2(Bn−1) (1.10)

for p>p̄(k, n):=2(n+k)/(n+k−2).

Having the full range of k-linear estimates available would improve the results from

[BG]. Combining Conjecture 1.4 with the method from [BG] would give ‖Ef‖Lp.‖f‖Lp
for exactly the range of p in Theorem 1.1.

For 36k6n−1, Conjecture 1.4 is open. In [Be1] and [Be2], Bejenaru proves multi-

linear estimates for certain curved hypersurfaces, but not including the paraboloid. The

surfaces he considers are foliated by (k−1)-planes and they are curved in the transverse

directions, in an appropriate sense. The main new result of this paper is a weak version of

Conjecture 1.4, which we call a k-broad restriction inequality. To motivate this inequal-

ity, let us recall the approach from [BG] for deducing linear estimates from multilinear

ones.

We decompose Bn−1 into balls τ of radius K−1, where K is a large constant. This

decomposition is much coarser than the decomposition into balls θ of radius R−1/2. We

write f=
∑
τ fτ , where fτ is supported in τ . Next we subdivide BnR into much smaller

balls. In [BG], we used balls of radius K, but it will be slightly more convenient here to

use balls of radius K2. For each BK2⊂BR, we consider
∫
BK2
|Efτ |p for each τ . We say

that τ contributes significantly to BK2 if∫
BK2

|Efτ |p&K−10n

∫
BK2

|Ef |p.

We let S(BK2) denote the set of τ which contribute significantly to BK2 . We now

break the balls BK2 into two classes. We label a ball BK2 as k-transverse if there are k

significant τ ’s which are k-transverse in the sense above. We label a ball BK2 as k-non-

transverse otherwise. A k-linear restriction estimate gives a good bound for the integral

of |Ef |p over the union of all of the k-transverse balls. The paper [BG] then gives an

inductive argument to control the contribution from the k-non-transverse balls.

This inductive argument can be described most cleanly using the language of decou-

pling. Building on [BG], Bourgain proved a decoupling theorem in [Bo4] which implies

that, for each k-non-transverse ball BK2 , one has

‖Ef‖2Lp(BK2 ) .
∑

τ∈S(BK2 )

‖Efτ‖2Lp(BK2 )
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for a certain range of p which covers the exponents we study. For a k-non-transverse

ball BK2 , all the significant τ have direction G(τ) within K−1 of some (k−1)-plane. In

particular, |S(BK2)|.Kk−2. Using this bound and Hölder’s inequality, we get∫
BK2

|Ef |p.Kα
∑

τ∈S(BK2 )

∫
BK2

|Efτ |p, (1.11)

with α=(Kk−2)(p−2)/2, which is optimal. Summing this inequality over all the k-non-

transverse balls gives∫
⋃
k-non-transverse balls

|Ef |p.Kα
∑
τ

∫
BR

|Efτ |p.

The right-hand side may then be controlled by induction on scales.

To make this strategy work, we do not need a full k-linear bound. The decoupling

estimate that we used to control the k-non-transverse balls applies whenever all the

significant τ for a ball BK2 have directions G(τ) lying within the O(K−1)-neighborhood

of O(1) (k−1)-planes. We call such a ball k-narrow. To get the argument to work, we

only need to bound
∫
|Ef |p over the remaining balls—the k-broad balls.

Here is a little notation using which we can state our k-broad bound precisely.

We let G(τ)=
⋃
θ⊂τ G(θ). The set G(τ)⊂Sn−1 is a spherical cap with radius ∼K−1,

representing the possible directions of wave packets in Efτ . If V ⊂Rn is a subspace, then

we write Angle(G(τ), V ) for the smallest angle between any non-zero vectors v∈V and

v′∈G(τ). For each ball BK2⊂BR, we consider
∫
BK2
|Efτ |p for every τ . To define the

k-broad norm, we discount the contributions of fτ with G(τ) lying near a few (k−1)-

planes, and we record the largest remaining contribution. More formally, for a parameter

A, we define

µEf (BK2) := min
V1,...,VA

(
max
τ

∫
BK2

|Efτ |p
)
, (1.12)

where the minimum is over (k−1)-subspaces of Rn and the maximum is over all τ such

that Angle(G(τ), Va)>K−1 for all a.

We can now define the k-broad part of ‖Ef‖Lp(BR) by

‖Ef‖p
BLpk,A(BR)

:=
∑

BK2⊂BR

µEf (BK2). (1.13)

Our main new result is an estimate for this k-broad norm.

Theorem 1.5. For any 26k6n and any ε>0 there is a large constant A such that

the following holds (for any value of K):

‖Ef‖BLpk,A(BR) .K,εR
ε‖f‖L2(Bn−1), (1.14)

for p>p̄(k, n)=2(n+k)/(n+k−2).
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The range of p in Theorem 1.5 is sharp for all k and n. Using the method from [BG]

outlined above, Theorem 1.5 implies the restriction estimate Theorem 1.1.

We should mention that BLpk,A is not literally a norm, but it has some similar

properties, which is why we use the norm notation. In particular, BLpk,A obeys the

following weak version of the triangle inequality: if f=g+h, then

‖Ef‖BLpk,A(BR) . ‖Eg‖BLpk,A/2(BR)+‖Eh‖BLpk,A/2(BR). (1.15)

The reason for introducing the parameter A is to use this version of the triangle inequality.

If we choose A(ε) very large, then we can effectively use the triangle inequality Oε(1)

times during our proof, and so BLpk,A behaves almost like a norm. We were not able to

prove Conjecture 1.4, and the main issue is that in the true k-linear setting, we do not

have a substitute for this triangle inequality.

1.3. Examples

To help digest Theorem 1.5, we describe a couple of examples. These examples show

that the range of exponents p in Theorem 1.5 is sharp.

In one example, the wave packets Efθ,v concentrate in the R1/2-neighborhood of a

k-plane. We denote this neighborhood by W. Each wave packet Efθ,v has |Efθ,v(x)|∼1

on the tube Tθ,v, and rapidly decaying outside Tθ,v. It is not hard to arrange that each

point in the slab W lies in many wave packets Tθ,v, pointing in many directions within the

k-plane. For each ball BK2 in the slab, only a tiny fraction of the wave packets through

this ball lie near any (k−1)-plane. In this scenario, ‖Ef‖BLpk,A(BR)∼‖Ef‖Lp(BR). We

can also arrange that |Ef(x)|2∼
∑
θ,v |Efθ,v(x)|2 at most of the points x, by replacing

fθ,v by ±fθ,v with independent random sings. We can distribute the wave packets evenly,

so that |Ef(x)| is roughly constant on the slab. Moreover, by a standard orthogonality

argument ‖Ef‖L2(BR)∼R1/2‖f‖L2 . Therefore, we get

‖Ef‖BLpk,A(BR)

‖f‖L2

∼R1/2 ‖Ef‖Lp(BR)

‖Ef‖L2(BR)
∼R1/2|W |1/p−1/2.

Since |W |∼RkR(1/2)(n−k), a short calculation shows that the ratio ‖Ef‖Lp(BR)/‖f‖L2 is

bounded for p>p̄(k, n) and blows up for p<p̄(k, n).

But there are also more complicated sharp examples, coming from low-degree al-

gebraic varieties. This type of example was first pointed out to me by Josh Zahl. For

instance, consider the quadric hypersurface Z⊂R4 defined by(x1

R

)2
+
(x2

R

)2
−
(x3

R

)2
−
(x4

R

)2
= 1.
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Each point of Z lies in a 1-parameter family of lines in Z. The union of the lines through

a given point form a 2-dimensional cone. For example, the point (R, 0, 0, 0) lies in the

cone defined by

x1 =R and
(x2

R

)2
−
(x3

R

)2
−
(x4

R

)2
= 0.

If we take the R1/2-neighborhoods of lines in Z, we can find many tubes in the R1/2-

neighborhood of Z. We can now build an example like the one above using wave packets

concentrated in the R1/2-neighborhood of Z. For each ball BK2 in this neighborhood,

the wave packets through BK2 fill out a 2-dimensional cone, and very few of them lie

near any 2-dimensional plane. Therefore, ‖Ef‖BLp3,A(BR)∼‖Ef‖Lp(BR). The rest of the

discussion in the planar slab example applies also here, and so we see that this example

is sharp for Theorem 1.5 in dimension 4 with k=3.

For larger n, there are more variations on this example. The dimension of the

variety Z in these examples is k. The degree of Z may be larger than 2, although in the

known examples it is always bounded by C(n). Similar examples apply to Conjecture 1.4.

These examples help to suggest that algebraic varieties could be relevant to Theo-

rem 1.5. Polynomial partitioning is a tool that helps us to find and exploit the type of

algebraic structure in these examples. If we run through the proof of Theorem 1.5 on

this type of examples, then the argument will find the variety Z.

The new difficulty in this paper, compared with [G], is that it is harder to find a

k-dimensional variety for small k than it is to find a hypersurface. In the next section, we

will describe the polynomial partitioning process and give a sense of the issues involved.

1.4. A direction for further improvement

The paper [G] applies polynomial partitioning to the restriction problem in three dimen-

sions. It proves an estimate which is stronger than Theorem 1.1, namely ‖Ef‖Lp(R3).

‖f‖L∞ for p>3.25. This estimate relies on one additional ingredient: an estimate for how

many different θ can be represented by wave packets Tθ,v in the R1/2-neighborhood of a

low-degree variety Z. In the 3-dimensional case, recall that there are ∼R balls θ⊂B2,

each with radius R−1/2. Let Θ(Z) denote the set of θ such that at least one wave packet

Tθ,v is contained in the R1/2-neighborhood of Z. Lemma 3.6 of [G] proves that, if Z is

a 2-dimensional variety in R3 of degree .1, then |Θ(Z)|.εR1/2+ε. (If Z is a 2-plane,

then |Θ(Z)|∼R1/2, and so the result says that the example of a plane is nearly the worst

possible.)

When ‖Ef‖Lp is large, the polynomial partitioning method locates algebraic pieces

that contribute most of ‖Ef‖Lp . The bound for |Θ(Z)| gives a stronger estimate for the
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contribution of each such piece in terms of ‖f‖L∞ or ‖f‖Lp . Notice that, for Hörmander-

type operators of positive-definite phase in three dimensions, the estimate ‖Tf‖Lp(B3
R).

Rε‖f‖L∞(B2) is false for all p< 10
3 . To prove the bound ‖Ef‖Lp.‖f‖L∞ for all p>3.25,

the argument from [G] has to distinguish E from more general Hörmander-type operators

of positive-definite phase. The bound on |Θ(Z)| is the step that does this. In the

Hörmander case, Tfθ,v is concentrated on a curved tube. And in the counterexample

from [Wi] or [BG], there is a low-degree variety Z whose R1/2-neighborhood contains

one such curved tube for every θ.

I have not been able to prove a good bound for |Θ(Z)| in higher dimensions. Such

a bound would lead to further improvements in the restriction exponents in high dimen-

sions. We will discuss this issue more in the final section of the paper.

Acknowledgements. I was supported by a Simons Investigator Award during this

work. I would also like to thank Marina Iliopoulou, Jongchon Kim, and the referee for

helpful comments on a draft of the paper.

2. Sketch of the proof

In this section, we sketch the proof of the k-broad estimate, Theorem 1.5. We actually

give two sketches. The first sketch aims to show the main ideas of the argument. The

second sketch brings into play more of the technical issues, and it provides a detailed

outline of the argument in the paper.

The proof begins with a wave packet decomposition. We decompose the domain

Bn−1 into balls θ of radius R1/2. We then decompose the function f :Bn−1
!C as

f =
∑
θ,v

fθ,v,

where fθ,v is supported on θ and the Fourier transform of fθ,v is essentially supported

on a ball of radius R1/2 around v. In the sum, v ranges over R1/2Zn−1. On BR, Efθ,v

is essentially supported on a tube Tθ,v of radius R1/2 and length R. In addition, the

functions fθ,v are essentially orthogonal. In particular, we have

c2L2 ∼
∑
θ,v

‖fθ,v‖2L2 . (2.1)

Our goal is to prove that

‖Ef‖BLpk,A(BR) 6C(ε)Rε‖f‖L2 for p= p̄(k, n) :=
2(n+k)

n+k−2
. (2.2)
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The proof will be by induction. So we assume that (2.2) holds for balls of smaller

radii, and in lower dimension.

Recall that

‖Ef‖p
BLpk,A(BR)

=
∑

BK2⊂BR

µEf (BK2),

where µEf (BK2) was defined in (1.12). We can extend µEf to be a measure on BR,

making it a constant multiple of the Lebesgue measure on each BK2 . In particular

µEf (BR)=‖Ef‖p
BLpk,A(BR)

.

We now introduce polynomial partitioning. We let D be a large constant that we

can choose later. For a polynomial P on Rn, we write Z(P ) for the zero set of P . By

[G, Theorem 1.4], there is a (non-zero) polynomial P of degree at most D on Rn such

that Rn\Z(P ) is a disjoint union of ∼Dn open cells Oj , and the measures µEf (Oj) are

all equal.

Next, we consider how the wave packets Efθ,v interact with this partition. We note

that a line can cross Z(P ) at most D times, and so a line can enter at most D+1 of the

∼Dn cells Oj . The tube Tθ,v can still enter many or all cells Oj , but it can only penetrate

deeply into D+1 cells. To make this precise, we define W to be the R1/2-neighborhood

of Z(P ), and we define O′j to be Oj\W. If a tube Tθ,v enters O′j , then the axis of Tθ,v

must enter Oj , and so we get that

each tube Tθ,v enters at most D+1 cells O′j . (2.3)

We now have

µEf (BR) =
∑
j

µEf (O′j)+µEf (W ).

We say that we are in the cellular case when the contribution of the cells dominates

and in the algebraic case when the contribution of W dominates. If we are in the cellular

case, then there must be ∼Dn cells O′j such that

‖Ef‖p
BLpk,A(BR)

.DnµEf (O′j). (2.4)

Next, we study Ef on each of these cells O′j . We define fj by

fj :=
∑
θ,v

Tθ,v∩O′j 6=∅

fθ,v. (2.5)

Since Efθ,v is essentially supported on Tθ,v, we see that Efj is almost equal to Ef

on O′j . Therefore, µEfj (O
′
j)∼µEf (O′j). Now we study µEfj (O

′
j) using induction. Since
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fj involves fewer wave packets than f , it is a simpler object, and so it makes sense to

assume by induction that our theorem holds for fj . This leads to the following bound:

µEf (O′j)∼µEfj (O′j)6 ‖Efj‖
p
BLpk,A(BR)

. (C(ε)Rε)p‖fj‖pL2 . (2.6)

Next, we analyze ‖fj‖L2 . By the orthogonality of the fθ,v, we have∑
j

‖fj‖2L2 ∼
∑
j

∑
θ,v

Tθ,v∩O′j 6=∅

‖fθ,v‖2L2 ∼
∑
θ,v

#{O′j :Tθ,v∩O′j 6=∅}‖fθ,v‖2L2 .

By (2.3), each tube Tθ,v enters .D cells O′j , and so we get∑
j

‖fj‖2L2 .D
∑
θ,v

‖fθ,v‖2L2 ∼D‖f‖2L2 .

Since there are ∼Dn cells O′j that obey (2.4), we see that most of them must also obey

‖fj‖2L2 .D1−n‖f‖2L2 . (2.7)

Combining this bound with (2.4) and our inductive assumption (2.6), we get

‖Ef‖p
BLpk,A(BR)

6CDn+(1−n)p/2(C(ε)Rε)p‖f‖pL2 .

In this equation, the constant C is the implicit constant from the various .’s. It

does not depend on D. The induction closes as long as the term in brackets is 61. Since

we can choose the constant D, we can arrange that the induction closes as long as the

exponent of D is negative. Given our value of p, we can check that the exponent of D is

60, and the induction closes.

Now we turn to the algebraic case. In this case, the measure µEf is concentrated

in W—the R1/2-neighborhood of Z(P )—a degree-D algebraic variety of dimension n−1.

There are two types of wave packets that contribute to µEf on W, which we describe

roughly as follows:

• Tangential wave packets: wave packets that are essentially contained in W. For

these wave packets, the direction of the tube Tθ,v is (nearly) tangent to Z=Z(P ).

• Transverse wave packets: wave packets that cut across W.

We first discuss the case that the tangential wave packets dominate. To simplify the

exposition, let us imagine for the moment that the variety Z is a hyperplane, so W is

a planar slab of dimensions R1/2×R×...×R. We can also imagine that f has the form

f=
∑
θ,v fθ,v, where all the tubes Tθ,v are contained in W.
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We study this case using induction on the dimension. In the tangential algebraic

case, the behavior of Ef on the hyperplane Z can be controlled by applying Theorem 1.5

in dimension n−1. Here is one way to set this up. There is a standard L2 estimate giving

‖Ef‖L2(BR) .R1/2‖f‖L2 . (2.8)

It is not hard to reduce Theorem 1.5 to the case that ‖Ef‖L2(BR)∼R1/2‖f‖L2 , and

so we can think of Theorem 1.5 in the equivalent form

‖Ef‖BLpk,A(BR) .R−1/2+ε‖Ef‖L2(BR).

We can apply Theorem 1.5 in dimension n−1 to study Ef on Z, and we get the estimate

‖Ef‖
BL

p̄(k,n−1)
k,A (Z∩BR)

.R−1/2+ε‖Ef‖L2(Z∩BR).

Now p̄(k, n−1)>p̄(k, n)=p. Interpolating between this estimate and the L2 estimate

(2.8), we get a bound of the form

‖Ef‖BLpk,A(Z∩BR) .R−1/2+e+ε‖Ef‖L2(Z∩BR),

for p=p̄(k, n), where e is an exponent depending on k and n. The same estimate holds

not just for Z, but for any translate of Z in the slab W. These estimates control the

behavior of Ef in the directions tangent to Z.

To get a good estimate in the tangential algebraic case, we also have to control the

behavior of Ef in the direction transverse to Z. We will show that there is a direction

transverse to the hyperplane Z such that |Ef(x)| is approximately constant as we move

x in this direction for distance .R1/2. We call this behavior a transverse equidistribution

estimate. It implies that

‖Ef‖2L2(BR)∼‖Ef‖
2
L2(W )∼R

1/2‖Ef‖2L2(Z∩BR)

and

‖Ef‖p
BLpk,A(BR)

∼‖Ef‖p
BLpk,A(W )

∼R1/2‖Ef‖p
BLpk,A(Z∩BR)

.

Using these estimates, we can control ‖Ef‖BLpk,A(BR) by induction on the dimension:

‖Ef‖p
BLpk,A(BR)

∼‖Ef‖p
BLpk,A(W )

∼R1/2‖Ef‖p
BLpk,A(Z∩BR)

.R1/2R(−1/2+e+ε)p‖Ef‖pL2(Z∩BR)

∼R1/2R(−1/2+e+ε)p(R−1/2‖Ef‖2L2(BR))
p/2.
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There are a lot of messy powers of R in this computation. But plugging in p=p̄(k, n)

and working out the exponent, one gets ‖Ef‖BLpk,A(BR).R
−1/2+ε‖Ef‖L2(BR).Rε‖f‖L2 ,

which closes the induction in the tangential algebraic case. The exponent

p= p̄(k, n) = 2(n+k)/(n+k−2)

is exactly the exponent needed to make the powers of R work out in this computation.

Next, we sketch the reason for this transverse equidistribution. From the definition

of E, we see that Efθ,v has Fourier transform supported in a ball of radius R−1/2 around

ξ(θ) = (ωθ,1, ..., ωθ,n−1, |ωθ|2),

where ωθ denotes the center of θ. We know that all the wave packets Efθ,v in Ef are

supported in tubes Tθ,v⊂W. This situation restricts the directions G(θ), which in turn

restricts the frequencies ξ(θ). The connection between G(θ) and ξ(θ) is simplest for

a slightly different operator—the extension operator for the sphere. In that case, we

have G(θ)=ξ(θ). Since the tubes Tθ,v all lie in W, the directions G(θ) all lie in the

R−1/2-neighborhood of the subspace V ⊂Rn parallel to Z. Therefore, the frequencies

ξ(θ) all lie in the R−1/2-neighborhood of V as well. So, the Fourier transform of Ef

is supported in the R−1/2-neighborhood of V. If ` denotes a line perpendicular to V

(or to Z), then the restriction of Ef to ` has Fourier transform supported in a ball of

radius R−1/2. Therefore, |Ef | is approximately constant as we move along the line ` for

distances .R1/2.

For the extension operator in the case of the paraboloid, the situation is similar but

a touch messier. We know that the directions G(θ) all lie in the R−1/2-neighborhood

of the plane V. A short calculation shows that the frequencies ξ(θ) all lie in the R−1/2-

neighborhood of an affine hyperplane V ′. The hyperplane V ′ is not equal to V, but

the angle between V and V ′ is fairly small. If ` is perpendicular to the plane V ′, then

it still follows that |Ef | is approximately constant as we move along ` for distances

.R−1/2. The line ` is no longer exactly perpendicular to the original plane Z, but it is

still quantitatively transverse to Z, and this is good enough for our application.

In this sketch, we assumed that Z is a hyperplane. But in the real proof we cannot

assume this. We have to set up the induction on the dimension in a different way, taking

into account the possibility that Z is curved. We explain this in the next subsection.

Finally, it can happen that the transverse wave packets dominate. In this last case,

µEf (W ) dominates µEf (BR), but the wave packets transverse to W make the main

contribution to µEf (W ). In this case, we can imagine that f=
∑
fθ,v, where each tube

Tθ,v is transverse to W. Recall that the number of times a line can cross the hypersurface
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Z is 6D.1. Similarly, we will prove that the number of times a tube Tθ,v can cross the

surface W is .1.

In this case, we subdivide the ball BR into smaller balls Bj with radius %�R. A

tube Tθ,v enters ∼R/%�1 of these balls. But, because of the discussion above, a tube

Tθ,v can cross W transversely in .1 balls Bj . We define

Tj,trans : = {(θ, v) :Tθ,v crosses W transversely in Bj},

fj,trans : =
∑

(θ,v)∈Tj,trans

fθ,v.

Since a tube Tθ,v can cross W transversely in .1 balls Bj , each (θ, v) belongs to .1

sets Tj,trans. Therefore, ∑
j

‖fj,trans‖2L2 . ‖f‖2L2 . (2.9)

As we assumed that all the wave packets in f intersect W transversely, Efj,trans is

essentially equal to Ef on W∩Bj . Therefore,

µEf (W∩Bj)6µEfj,trans(Bj).

Since we are in the algebraic case, and since we assumed that all the tubes Tθ,v

intersect W transversely, we have

µEf (BR).µEf (W )∼
∑
j

µEf (W∩Bj).
∑
j

µEfj,trans(Bj). (2.10)

By induction on the radius, we may assume that

µEfj (Bj)6 (C(ε)%ε)p‖fj,trans‖pL2 .

Plugging this bound into (2.10) and then applying (2.9), we get

‖Ef‖p
BLpk,A(BR)

. (C(ε)%ε)p
∑
j

‖fj,trans‖pL2 .

As p>2, we get
∑
j ‖fj,trans‖pL26(

∑
j ‖fj,trans‖2L2)p/2.‖f‖pL2 . Therefore, we have

‖Ef‖p
BLpk,A(BR)

. (C(ε)%ε)p‖f‖pL2 .

Since R/% is large, C%ε<Rε, and so this closes the induction in the transverse

algebraic case.
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2.1. Studying wave packets tangent to a variety

In the preceding sketch, we considered the special case that the variety Z is a hyperplane.

In this special situation, the tangential algebraic case reduces to the original theorem in

dimension n−1. In the full proof, we need to consider curved varieties Z, and so we have

to do the induction on the dimension in a different way.

If Z is an m-dimensional variety in Rn, then we say that the tube Tθ,v is α-tangent

to Z in BR if the following two conditions hold:

• Distance condition:

Tθ,v ⊂NαR(Z)∩BR.

• Angle condition: If z∈Z∩NαR(Tθ,v), then

Angle(TzZ,G(θ))6α.

For each dimension m, we will choose an angle αm slightly larger than R−1/2, and

then we define

TZ := {(θ, v) :Tθ,v is αm-tangent to Z in BR}.

Our main technical result is Proposition 8.1. It says that, if Z is an m-dimensional

variety of controlled degree and if f=
∑

(θ,v)∈TZ fθ,v, then (for a range of exponents p>2)

‖Ef‖BLpk,A(BR) 6M‖f‖L2 ,

where M is a fairly complicated expression which depends on the parameters of the setup,

including the exponent p, the radius R, the dimension m, the value of A, etc.

The proof of Proposition 8.1 is by induction on the dimension m. The base of the

induction is the case m=k−1. In this case, ‖Ef‖BLpk,A(BR) is negligibly small. To see this,

consider a small ball BK2 . The function Ef is essentially supported in NR1/2(Z)∩BR, so

we may assume that BK2⊂NR1/2(Z)∩BR. Because of the angle condition, all the wave

packets Tθ,v∈TZ that pass through BK2 have direction G(θ) within a small angle of a

(k−1)-plane—the plane TzZ for a point z∈Z near BK2—and so the ball BK2 makes a

negligible contribution to ‖Ef‖BLpk,A
. This provides the base of the induction.

The proof of Proposition 8.1 follows the rough outline of our first sketch. We again

use polynomial partitioning. Under the hypotheses of the proposition, we know that Ef

is essentially supported in NR1/2(Z) for a given m-dimensional variety Z. We want to find

a polynomial P such that Z(P ) cuts NR1/2(Z) into smaller cells. To do this, we choose

new orthogonal coordinates y1, ..., yn such that the projection of Z to the (y1, ..., ym)-

plane is non-degenerate on a significant portion of Z. Then, we let P be a polynomial in

y1, ..., ym. In this case, Z(P ) intersects Z transversely (at least on a significant portion
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of Z), and this makes the polynomial partitioning work. Essentially everything works

as in the first sketch, except that, because P only depends on m variables, the number

of cells Oj is only ∼Dm. This will affect the final exponents, but the method of the

argument is the same. If µEf is concentrated on the cells O′j , then we can prove the

desired bounds by induction. Otherwise, µEf is concentrated in the R1/2-neighborhood

of a lower-dimensional variety Y =Z∩Z(P ).

Now we turn to this algebraic case. In the algebraic case, there is a lower-dimensional

variety Y, with Deg Y .DegZ, so that

µEf (NR1/2(Y )∩BR)&µEf (BR)∼µEf (NR1/2(Z)∩BR).

There are two types of wave packets that contribute to µEf on NR1/2(Y )∩BR: tangential

wave packets, which lie in NR1/2(Y ) and run tangent to Y, and transverse wave packets,

which cut across NR1/2(Y ). (Recall that all the wave packets are tangent to Z, by

hypothesis.)

In our current setup, if all the wave packets are tangent to Y, then we get the desired

estimate just by induction on the dimension m.

However, there may be a mix of transverse and tangential wave packets. If we let

ftang be the sum of the tangential wave packets and ftrans be the sum of the transverse

wave packets, then the quasi-triangle inequality for BLpk,A (1.15) gives

‖Ef‖BLpk,A(BR) . ‖Eftang‖BLpk,A/2(BR)+‖Eftrans‖BLpk,A/2(BR).

This is the step in the proof where we need to use the quasi-triangle inequality.

We can handle the tangential terms by induction on the dimension, and now we turn

to the transverse terms. As in the last sketch, we decompose BR=
⋃
j Bj , where each

ball Bj has radius %�R. We define fj,trans as above to be the sum of wave packets that

intersect NR1/2(Y ) transversely in Bj . As in the previous sketch, geometric arguments

show that a tube Tθ,v can intersect NR1/2(Y ) transversely in .1 balls Bj , and so∑
j

‖fj,trans‖2L2 . ‖f‖2L2 .

Next, we want to study ‖Efj,trans‖BLpk,A/2(Bj) by using induction on the radius. This

step is more complicated than in the previous sketch. We know that f is concentrated

on wave packets that are tangent to Z on BR, and we need to use that information. We

expand Efj,trans into wave packets on the ball Bj . Since Bj has radius %, each wave

packet is essentially supported on a tube of radius %1/2 and length % in Bj . When we

examine this wave packet decomposition, it is not exactly true that all the wave packets
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are tangent to Z in Bj—in fact, something better is true. All the wave packets of fj,trans

on Bj lie in NR1/2(Z)∩Bj , but they do not necessarily lie in N%1/2(Z)∩Bj . We cover

NR1/2(Z)∩Bj with disjoint translates of N%1/2(Z)∩Bj :

NR1/2(Z)∩Bj =
⋃
b

N%1/2(Z+b)∩Bj .

Now it turns out that each wave packet of fj,trans lies in one of these translates. We

let fj,trans,b be the sum of the wave packets that lie in N%1/2(Z+b)∩Bj . Now we have

fj,trans=
∑
b fj,trans,b and

‖Efj,trans‖pBLpk,A/2(Bj)
∼
∑
b

‖Efj,trans‖pBLpk,A/2(N
%1/2

(Z+b)∩Bj)

∼
∑
b

‖Efj,trans,b‖pBLpk,A/2(Bj)
.

The wave packets of Efj,trans,b are tangent to the m-dimensional variety Z+b on Bj .

Therefore, we can study ‖Efj,trans,b‖BLpk,A/2(Bj) by induction on the radius: we may

assume that

‖Efj,trans,b‖BLpk,A/2(Bj) 6M
(
%, 1

2A
)
‖fj,trans,b‖L2 .

(Here we write M
(
%, 1

2A
)

because M depends on the radius (which is %) and because we

have 1
2A in place of A.) Putting together what we have learned so far in the transverse

algebraic case, we have

‖Ef‖p
BLpk,A(BR)

.
∑
j

‖Efj,trans‖pBLpk,A/2(Bj)
∼
∑
j,b

‖Efj,trans,b‖pBLpk,A/2(Bj)

6M
(
%, 1

2A
)p∑

j,b

‖fj,trans,b‖pL2 .

To get our final bound, it remains to control
∑
j,b ‖fj,trans,b‖pL2 . Since each wave

packet of fj,trans lies in exactly one fj,trans,b, it is easy to check that

‖fj,trans‖2L2 ∼
∑
b

‖fj,trans,b‖2L2 .

We also already know that
∑
j ‖fj,trans‖2L2.‖f‖2L2 . And so we see that∑

j,b

‖fj,trans,b‖pL2 .
(

max
j,b
‖fj,trans,b‖p−2

L2

)
‖f‖2L2 .

The last ingredient of the proof is an estimate for maxj,b ‖fj,trans,b‖L2 , which has to

do with transverse equidistribution. Recall that, since f is concentrated on wave packets
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in TZ , Ef is equidistributed in directions transverse to Z. Recall that NR1/2(Z)∩Bj
is covered by thinner neighborhoods N%1/2(Z+b)∩Bj . The number of these thinner

neighborhoods is ∼(R1/2/%1/2)n−m. Because of transverse equidistribution, each of these

neighborhoods receives an even share of the L2 norm of Efj,trans. In other words, for

each b,

‖Efj,trans‖2L2(N
%1/2 (Z+b)∩Bj) .

(
R1/2

%1/2

)−(n−m)

‖Efj,trans‖2L2(N
R1/2 (Z)∩Bj).

Using this inequality, we prove the desired estimate for ‖fj,trans,b‖L2 :

‖fj,trans,b‖2L2 .

(
R1/2

%1/2

)−(n−m)

‖fj,trans‖2L2 .

(
R1/2

%1/2

)−(n−m)

‖f‖2L2 . (2.11)

2.2. Outline of the paper

We carry out the proof of Theorem 1.5 over §§3–8 of the paper. In §3 we review some

standard facts about wave packets. In §4 we prove some basic properties of the broad

“norms” BLpk,A. §5 contains tools from algebraic geometry (and differential geometry)

that we will use to study the geometry of the algebraic varieties that appear in the proofs.

In §6 we prove the first transverse equidistribution estimate. For any ball B(y, %)⊂
Rn, there is a wave packet decomposition for Ef on the ball B(y, %). §7 is about the

relationship between the original wave packet decomposition on the ball BR and the

wave packet decomposition adapted to a smaller ball B(y, %)⊂BR. This lets us state

and prove a second version of the transverse equidistribution estimate, corresponding to

(2.11) above. With the background and tools from these sections, we prove Theorem 1.5

in §8.

Following [BG], in §9 we explain how k-broad estimates imply regular Lp estimates

of the form ‖Ef‖Lp.‖f‖Lp . This argument finishes the proof of Theorem 1.1. §10 is

an appendix which helps to keep track of the parameters. Unfortunately, there are quite

a few parameters in the paper—various δ’s, R, K, A, etc. The appendix lists all the

parameters and how they relate to each other. In §11 we discusse further directions and

open problems.

3. Basic setup with wave packets

Let f be a function on Bn−1. We first break up f into pieces fθ,v that are localized in

both position and frequency.
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Cover Bn−1 by finitely overlapping balls θ of radius R−1/2. Let ψθ be a smooth

partition of unity adapted to this cover, and write f=
∑
θ ψθf .

Next, we break up ψθf according to the frequency. Cover Rn−1 by finitely overlap-

ping balls of radius ∼R(1+δ)/2, centered at vectors v∈R(1+δ)/2Zn−1. Let ηv be a smooth

partition of unity adapted to this cover. We can now write

f =
∑
θ,v

(ηv(ψθf )̂ )∨=
∑
θ,v

η∨v ∗(ψθf).

Note that η∨v (x) decays rapidly when |x|&R−(1+δ)/2. We write A(R)6RapDec(R)B

to mean that for any power β, there is a constant Cβ such that

A(R)6CβR
−βB for all R> 1.

If |x|> 1
1000R

−1/2, then

|η∨v (x)|6RapDec(R).

Now choose smooth functions ψ̃θ such that ψ̃θ is supported on θ, but ψ̃θ is 1 on a

small neighborhood of the support of ψθ. A bit more precisely, we would like ψ̃θ=1 on

a
(

1
1000R

−1/2
)
-neighborhood of the support of ψθ. We now define

fθ,v := ψ̃θ(η
∨
v ∗(ψθf)).

Because of the rapid decay of η∨v , one has

‖fθ,v−η∨v ∗(ψθf)‖L∞ 6RapDec(R)‖f‖L2 .

Therefore, we see that

f =
∑
θ,v

fθ,v+Err, where ‖Err‖L∞ 6RapDec(R)‖f‖L2 .

Terms of the form RapDec(R)‖f‖L2 are negligibly small in terms of all of our esti-

mates. These rapidly decaying errors will occur from time to time during our arguments.

The functions fθ,v are approximately orthogonal. For any set T of pairs (θ, v), we

have ∥∥∥∥ ∑
(θ,v)∈T

fθ,v

∥∥∥∥2

L2

∼
∑

(θ,v)∈T

‖fθ,v‖2L2 . (3.1)

The decomposition f=
∑
θ,v fθ,v is useful in this problem, because Efθ,v is localized

in space. For each (θ, v), there is a corresponding tube Tθ,v, where Efθ,v is essentially

supported. Let ωθ denote the center of θ. We define Tθ,v by

Tθ,v := {(x′, xn)∈BR : |x′+2xnωθ+v|6R1/2+δ}. (3.2)
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Lemma 3.1. If x∈BR\Tθ,v, then

|Efθ,v(x)|6RapDec(R)‖f‖L2 .

We sketch the proof by stationary phase. We note that (e−ivωfθ,v) has Fourier

transform essentially supported in BR1/2+δ/2 . Therefore, we have

max
θ
|e−ivωfθ,v|.R(n−1) δ2 Avgθ |e−ivωfθ,v|.

Moreover, taking derivatives, we see that

max
θ
|∂kω(e−ivωfθ,v)|. (R1/2+δ/2)kR(n−1)δ/2 Avgθ |e−ivωfθ,v|.

Let ηθ be a smooth bump which is equal to 1 on θ. Since θ has diameter R−1/2, we

can estimate the derivatives |∂kηθ|.Rk/2. Now we write Efθ,v(x) as

Efθ,v(x) =

∫
ηθe

i(x′ω+xn|ω|2+vω) ·e−ivωfθ,v. (3.3)

We let Ψ(ω):=x′ω+xn|ω|2−vω. We note that

∂ωΨ =x′+2xnω+v.

If x∈BR\Tθ,v, then |x′+2xnωθ+v|=|∂ωΨ(ωθ)|>R1/2+δ. We know that |xn|6R,

and so, for any ω∈θ, we have |2xnω−2xnωθ|.R1/2. Therefore, for any ω∈θ,

|∂ωΨ(ω)|&R1/2+δ.

By applying integration by parts to (3.3) many times, we see that

|Efθ,v(x)|6RapDec(R)‖fθ,v‖L2 ,

as desired.

The tube Tθ,v is a cylinder of length R and radius ∼R1/2+δ. It points in the direction

G(ωθ), where G(ω) is the unit vector given by

G(ω) =
(−2ω1, ...,−2ωn−1, 1)

|(−2ω1, ...,−2ωn−1, 1)|
.

For each ω∈Bn−1, we also define a frequency ξ(ω). Based on the formula for Ef ,

the frequency ξ(ω) is given by

ξ(ω) := (ω1, ..., ωn−1, |ω|2).
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We let ξ(θ) denote the image of θ under ξ:

ξ(θ) := {(ω1, ..., ωn−1, |ω|2) :ω ∈ θ}.

In a distributional sense, the Fourier transform of Efθ,v is supported in ξ(θ). Also,

if ηR denotes a smooth bump on BR (of height 1), then the Fourier transform of ηREfθ,v

is essentially supported in NR−1(ξ(θ)).

We introduce a little notation. If Tα is any set of pairs (θ, v), then we say that f is

concentrated on wave packets from Tα if

f =
∑

(θ,v)∈Tα

fθ,v+RapDec(R)‖f‖L2 .

Also, for any f , and for any set Tα, we define

fα =
∑

(θ,v)∈Tα

fθ,v.

3.1. Orthogonality

For any fixed xn, Ef restricted to Rn−1×{xn} can be described as an inverse Fourier

transform:

Ef(x1, ..., xn−1, xn) = (eixn|ω|
2

f(ω))∨(x1, ..., xn−1).

Applying Plancherel’s theorem, we get

‖Ef‖L2(Rn−1×{xn}) = ‖f‖L2 . (3.4)

We record a couple of simple corollaries of this statement.

Lemma 3.2. We have

‖Ef‖L2(BR) .R1/2‖f‖L2 .

Proof. ∫
BR

|Ef |2 6
∫ R

−R

(∫
Bn−1(R)

|Ef |2dx′
)
dxn6 2R‖f‖2L2 .

Lemma 3.3. Suppose that f is concentrated on a set of wave packets T and that,

for every (θ, v)∈T, Tθ,v∩(Rn−1×{xn})⊂Bn−1(z0, r)×{xn}. Then,

‖Ef‖L2(Bn−1(z0,r)×{xn}) = ‖f‖L2 +RapDec(R)‖f‖L2 . (3.5)
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Lemma 3.4. Suppose that f is concentrated on a set of wave packets T and that,

for every (θ, v)∈T, we have Tθ,v∩B(z, r) 6=∅ for some radius r>R1/2+δ . Then,

‖Ef‖2L2(B(z,10r))∼ r‖f‖
2
L2 . (3.6)

Proof. For each xn in the range zn−r6xn6zn+r, and for each (θ, v)∈T, the inter-

section Tθ,v∩Rn−1×{xn} is contained in B(z, 5r). By the last lemma, we see that

‖Ef‖L2(B(z,5r)∩Rn−1×{xn}) = ‖f‖L2 +RapDec(R)‖f‖L2 .

Applying Fubini’s theorem, we get the desired bound.

4. Properties of the broad “norms” BLp
k,A

We recall the definition of the k-broad “norm” BLpk,A. Although BLpk,A is not literally a

norm, it obeys a version of the triangle inequality and a version of Hölder’s inequality.

These nice algebraic features helped to motivate this particular definition.

Let Bn−1 be a disjoint union of (approximate) balls τ of radius K−1 . For each τ , we

define G(τ) to be the image of τ under the direction map G. If ωτ is the center of τ , then

G(τ) is essentially a ball of radius K−1 around G(ωτ ) in Sn−1. If V ⊂Rn is a subspace,

then we write Angle(G(τ), V ) for the smallest angle between any non-zero vectors v∈V
and v′∈G(τ).

For any ball BK2 of radius K2 in BR, we define µEf as in (1.12):

µEf (BK2) := min
V1,...,VA

(
max
τ

∫
BK2

|Efτ |p
)
.

where the minimum is over (k−1)-subspaces of Rn and the maximum is over all τ such

that Angle(G(τ), Va)>K−1 for all a.

We abbreviate this expression as

µEf (BK2) := min
V1,...,VA

(
max
τ /∈Va

∫
BK2

|Efτ |p
)
.

We remark that it is convenient to allow A=0. If A=0, then we simply have

µEf (BK2) = max
τ

∫
BK2

|Efτ |p.

If U⊂BR is a finite union of balls BK2 , then we define ‖Ef‖BLpk,A(U) by

‖Ef‖p
BLpk,A(U)

:=
∑

BK2⊂U
µEf (BK2). (4.1)

The k-broad “norm” obeys a weak version of the triangle inequality.
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Lemma 4.1. Suppose that f=g+h and suppose that A=A1+A2, where A and Aj

are non-negative integers. Then,

‖Ef‖BLpk,A(U) . ‖Eg‖BLpk,A1
(U)+‖Eh‖BLpk,A2

(U).

Proof. We expand

‖Ef‖p
BLpk,A(U)

=
∑

BK2⊂U
min

V1,...,VA

(
max
τ /∈Va

∫
BK2

|Efτ |p
)
.

Now, for each ball BK2⊂U , we have

min
V1,...,VA

(
max
τ /∈Va

∫
BK2

|Efτ |p
)
. min
V1,...,VA

(
max
τ /∈Va

(∫
BK2

|Egτ |p+

∫
BK2

|Ehτ |p
))

6 min
V1,...,VA1

(
max
τ /∈Va

16a6A1

∫
BK2

|Egτ |p
)

+ min
VA1+1,...,VA

(
max
τ /∈Va

A1+16a6A

∫
BK2

|Ehτ |p
)
.

Summing over all BK2⊂U , we get

‖Ef‖p
BLpk,A(U)

. ‖Eg‖p
BLpk,A1

(U)
+‖Eh‖p

BLpk,A2
(U)
.

The reason for which we need a large value of A in Theorem 1.5 is that we will need

to use this triangle inequality many times. If A=1, BLpk,1 does not obey a good triangle

inequality. But if we start with A being a large constant, we may use Lemma 4.1 many

times. In effect, BLpk,A behaves like a norm, as long as we only use the triangle inequality

Oε(1) times in our argument, and as long as we choose A=A(ε) large enough.

BLpk,A also obeys a version of (a corollary of) Hölder’s inequality.

Lemma 4.2. Suppose that 16p, p1, p2<∞ and 06α1, α261 obey α1+α2=1 and

1

p
=α1

1

p1
+α2

1

p2
.

Also, suppose that A=A1+A2. Then,

‖Ef‖BLpk,A(U) 6 ‖Ef‖α1

BL
p1
k,A1

(U)
‖Ef‖α2

BL
p2
k,A2

(U)
.

Proof. The left-hand side is( ∑
BK2⊂U

min
V1,...VA

max
τ /∈Va

∫
BK2

|Efτ |p
)1/p

.
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Applying the regular Hölder inequality to the inner integral, this expression is

6

( ∑
BK2⊂U

min
V1,...VA

max
τ /∈Va

(∫
BK2

|Efτ |p1

)α1p/p1
(∫

BK2

|Efτ |p2

)α2p/p2
)1/p

.

We can bring the maximum over τ inside, so the last expression is

6

( ∑
BK2⊂U

min
V1,...VA

(
max
τ /∈Va

∫
BK2

|Efτ |p1

)α1p/p1
(

max
τ /∈Va

∫
BK2

|Efτ |p2

)α2p/p2
)1/p

.

Now we cannot bring the minimum inside the inner parentheses. But we can split

V1, ..., VA into V1, ..., VA1
and VA1+1, ..., VA. If we weaken the first condition τ /∈V1 ... VA

to τ /∈V1, ..., VA1 , and if we weaken the second condition τ /∈V1, ..., VA to τ /∈VA1+1, ..., VA,

then we see that the last expression is bounded by

6

( ∑
BK2⊂U

(
min

V1,...VA1

max
τ /∈Va

16a6A1

∫
BK2

|Efτ |p1

)α1p/p1

×
(

min
VA1+1,...VA

max
τ /∈Va

A1+16a6A

∫
BK2

|Efτ |p2

)α2p/(p2))1/p
.

We now apply Hölder’s inequality to the initial sum over BK2⊂U , and we get

6

( ∑
BK2⊂U

min
V1,...VA1

max
τ /∈Va

16a6A1

∫
BK2

|Efτ |p1

)α1/p1

×
( ∑
BK2⊂U

min
VA1+1,...VA

max
τ /∈Va

A1+16a6A

∫
BK2

|Efτ |p2

)α2/p2

= ‖Ef‖α1

BL
p1
k,A1

(U)
‖Ef‖α2

BL
p2
k,A2

(U)
.

5. Tools from algebraic geometry

5.1. Transverse complete intersections

Over the course of our argument, we will work not just with algebraic hypersurfaces, but

with algebraic varieties of all dimensions. We write Z(P1, ..., Pn−m) for the set of common

zeros of the polynomials P1, ..., Pn−m. Throughout the paper, we will work with a nice

class of varieties called transverse complete intersections. The variety Z(P1, ..., Pn−m) is

a transverse complete intersection if

∇P1(x)∧...∧∇Pn−m(x) 6= 0 for all x∈Z(P1, ..., Pn−m). (5.1)
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By the implicit function theorem, a transverse complete intersection Z(P1, ..., Pn−m)

is a smooth m-dimensional manifold. Because of Sard’s theorem, there are lots of trans-

verse complete intersections. Here is a lemma making this precise.

Lemma 5.1. If P is a polynomial on Rn, then, for almost every c0∈R, Z(P+c0) is

a transverse complete intersection.

More generally, suppose that Z(P1, ..., Pn−m) is a transverse complete intersection

and that P is another polynomial. Then, for almost every c0∈R, Z(P1, ..., Pn−m, P+c0)

is a transverse complete intersection.

Proof. We begin with the first case. We know that P :Rn!R is a smooth function,

and so by Sard’s theorem, almost every y∈R is a regular value for P . But if −c0 is a

regular value for P , then ∇P (x) 6=0 whenever P (x)+c0=0.

The general case is similar. We know that Z=Z(P1, ..., Pn−m) is a smooth m-

dimensional manifold, and P :Z!R is a smooth function. By Sard’s theorem, almost

every y∈R is a regular value of the map P :Z!R. If x∈Z and P (x) is a regular value,

then dPx 6=0, where dP :TxZ!TP (x)R. In terms of ∇P (x), this means that

∇P1(x)∧...∧∇Pn−m(x)∧∇P (x) 6= 0.

So, if −c0 is a regular value for P :Z!R, then Z(P1, ..., Pn−m, P+c0) is a transverse

complete intersection.

5.2. Polynomial partitioning

Polynomial partitioning is a key tool in our arguments. Our presentation here is a

minor variation on the polynomial partitioning result from [GK]. We begin by stating a

partitioning result from [G].

Theorem 5.2. ([G, Theorem 1.4]) Suppose that W>0 is a (non-zero) L1 function

on Rn. Then, for each D, there a non-zero polynomial P of degree at most D such

that Rn\Z(P ) is a union of ∼Dn disjoint open sets Oj , and the integrals
∫
Oj
W are all

equal.

We want to use this result, but we need to upgrade it in a minor way. Because we

want all the varieties that appear in our argument to be transverse complete intersections,

we need to be able to perturb P a little bit. In order to understand this issue, we need

to review some of the proof of Theorem 5.2. The proof is based on the polynomial

ham-sandwich theorem, which is due to Stone and Tukey [ST]. Here is a version of the

theorem which is convenient for our purposes:
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Theorem 5.3. (Polynomial ham-sandwich theorem; cf. [G, Corollary 1.2]) Suppose

that W1, ...,WN are L1-functions on Rn. Then, there exists a non-zero polynomial P of

degree 6CnN1/n such that, for each Wj ,∫
{P>0}

Wj =

∫
{P<0}

Wj .

Using the polynomial ham-sandwich theorem iteratively, we get the following parti-

tioning result.

Corollary 5.4. If W>0 is a (non-zero) L1-function on Rn, then there is a se-

quence of polynomials Q1, Q2, ... , with DegQj.2j/n, satisfying the following equidistri-

bution property.

If S>1, and if σ1, ..., σS∈{−1, 1} are any sign conditions, then∫
Sign(Qs) =σs for 16 s6S

W = 2−S
∫
Rn
W.

We can slightly perturb each Qs by adding a small generic constant: Q̃s=Qs+cs,

where cs∈R. Using this small perturbation, we will be able to arrange that all the

varieties that appear in our arguments are transverse complete intersections. As long as

the constants cs are sufficiently small, we still have the following slightly weaker version

of the equidistribution result: if S>1, and if σ1, ..., σS∈{−1, 1} are any sign conditions,

then

2−S−1

∫
Rn
W 6

∫
Sign(Q̃s) =σs for 16 s6S

W 6 2−S+1

∫
Rn
W.

This gives the following polynomial partitioning result, which is designed to allow

small perturbations.

Theorem 5.5. Suppose that W>0 is a (non-zero) L1 function on Rn. Then, for

any degree D, the following holds.

There is a sequence of polynomials Q1, ..., QS with the following properties. We have∑
s DegQs.D and 2S∼Dn. Let

P =

S∏
s=1

Q̃s =

S∏
s=1

(Qs+cs),

where cs∈R. Let Oj be the open sets given by the sign conditions of Q̃s. There are

2S∼Dn cells Oj and Rn\Z(P )=
⋃
j Oj.

If the constants cs are sufficiently small, then, for every Oj ,∫
Oj

W ∼D−n
∫
Rn
W.
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For a generic choice of the constants cs, Lemma 5.1 guarantees that Z(Q̃s) is a

transverse complete intersection for each s. This implies that Z(P ) is a finite union of

transverse complete intersections. Similarly, if Z(P1, ..., Pn−m) is a transverse complete

intersection, then, for a generic choice of the constants cs, Z(P1, ..., Pn−m, Q̃s) will also

be a transverse complete intersection for each s.

5.3. Controlling the tangent plane of a variety

Suppose that Z is an m-dimensional transverse complete intersection. We know that

Z is a smooth m-dimensional manifold. We will consider some subsets of Z, where

the tangent plane obeys certain conditions. We will see that these subsets are in fact

subvarieties of Z, and that, in generic cases, they are transverse complete intersections.

Let Z=Z(P1, ..., Pn−m) be a transverse complete intersection. Let w∈ΛmRn. Define

Zw by

Zw := {x∈Z :∇P1(x)∧...∧∇Pn−m(x)∧w= 0}. (5.2)

We note that, since w is an m-vector, ∇P1(x)∧...∧∇Pn−m(x)∧w∈ΛnRn, which we

identify with R. Let gw :=∇P1(x)∧...∧∇Pn−m(x)∧w, which is a polynomial with degree

at most DegP1+...+DegPn−m. The set Zw is the algebraic variety Z(P1, ..., Pn−m, gw).

Lemma 5.6. For almost every w∈ΛmRn, Zw=Z(P1, ..., Pn−m, gw) is a smooth com-

plete intersection.

The proof uses some ideas from differential topology. The book [GP] is a good

reference. In particular, the proof here is closely based on the proof of the transversality

theorem in [GP, Chapter 2.3].

Proof. Define a smooth function g:Z×ΛmRn!R by

g(x,w) :=∇P1(x)∧...∧∇Pn−m(x)∧w.

The function g is smooth, and it has no critical points, because for any x∈Z,

∇P1(x)∧...∧∇Pn−m(x) 6=0, and the restriction of g to {x}×ΛmRn is a non-zero lin-

ear function with no critical points. Therefore, g−1(0) is a smooth submanifold M in

Z×ΛmRn (of codimension 1).
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Consider the smooth map π:M!ΛmRn given by π(x,w)=w. We first note that

π−1(w)=Zw×{w}. We will use π in order to study Zw. We claim that Zw is a transverse

complete intersection whenever w is a regular value of π. By Sard’s theorem, almost every

w∈ΛmRn is a regular value of π, and so this claim implies our conclusion. From now on,

suppose that w is a regular value of π.

Now Zw=Z(P1, ..., Pn−m, gw). To see that it is a complete intersection, we have to

check that, for each x∈Zw,

∇P1(x)∧...∧∇Pn−m(x)∧∇gw(x) 6= 0.

This is equivalent to saying that ∇gw(x)·v 6=0 for some vector v∈TxZ. This, in turn, is

equivalent to saying that x is a regular point for the map gw:Z!R. (We remark that

saying that x is a regular point for the map gw:Z!R is a stronger condition than just

saying that x is a regular point for the map gw:Rn!R.)

So, we have to check that, if (x,w)∈M and w is a regular value for π, then x is a

regular point for gw:Z!R. Since w is a regular value of π, we know that (x,w) is a

regular point for π. So, it suffices to check that whenever (x,w) is a regular point for π,

x is a regular point for gw:Z!R.

Recall that (x,w)∈M is a regular point for π:M!ΛmRn if and only if

dπ:T(x,w)M!ΛmRn

is surjective. To understand this condition better, we compute the tangent space T(x,w)M .

We know that T(x,w)M⊂T(x,w)(Z×ΛmRn)=TxZ×ΛmRn, and more precisely

T(x,w)M = {(v, w′)∈TxZ×ΛmRn : dg(x,w)(v, w
′) = 0}.

But dg(x,w)(v, w
′)=(dgw)x(v)+∇P1(x)∧...∧∇Pn−m(x)∧w′. Therefore,

T(x,w)M = {(v, w′)∈TxZ×ΛmRn : (dgw)x(v)+∇P1(x)∧...∧∇Pn−m(x)∧w′= 0}.

If x is not a regular point of dgw, then (dgw)x(v)=0, and so

T(x,w)M = {(v, w′)∈TxZ×ΛmRn :∇P1(x)∧...∧∇Pn−m(x)∧w′= 0}.

But, in this case, the projection dπ:T(x,w)M!ΛmRn is not surjective. (The projection

dπ is just dπ(v, w′)=w′.) So, if (x,w) is a regular point of π, then x is a regular point of

gw as desired.

If W⊂ΛmRn is a large finite set, then on each connected component of Z\
⋃
w∈W Zw,

the tangent plane TZ is constrained in a small region of the Grassmannian. More pre-

cisely, for any small parameter β>0, we can choose a finite set W⊂ΛmRn so that, for any

two points x1 and x2 in the same component of Z\
⋃
w∈W Zw, Angle(Tx1

Z, Tx2
Z)<β.

We can also choose W generically so that each Zw is a transverse complete intersection

of dimension m−1.
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5.4. Controlling transverse intersections between a tube and a variety

Suppose that T is a cylinder of radius r with central axis `. Suppose that Zm⊂Rn is a

transverse complete intersection. Define Z>α by

Z>α := {z ∈Z : Angle(TzZ, `)>α}.

Lemma 5.7. Suppose that Z=Z(P1, ..., Pn−m) is a transverse complete intersection

and that the polynomials Pj have degree at most D. Let T be a tube of radius r as above.

Then, for any α>0, Z>α∩T is contained in a union of .Dn balls of radius .rα−1.

The main tool in the proof is the following version of the Bezout theorem.

Theorem 5.8. (Cf. [CKW, Theorem 5.2] for a short proof) Let Z=Z(Q1, ..., Qn)

be a transverse complete intersection in Rn. Then, Z is finite and the cardinality of Z

is at most
∏n
j=1 DegQj.

Using this Bezout theorem, we now prove Lemma 5.7.

Proof. The proof is by induction on m. When m=0, Theorem 5.8 guarantees that

Z consists of at most Dn points, and the conclusion follows.

Now, we turn to the inductive step. Without loss of generality, we may assume that

` is the xn-axis. We let Tr denote the r-neighborhood of the xn-axis.

Next, we do some scaling to reduce to a special case. By rescaling, we may reduce

to the case r=1. Next, by scaling in the xn-coordinate only, we may reduce to the case

α=1. So, we have to show that Z>1∩T1 is contained in .Dn balls of radius .1.

Let Zw be defined as in the last subsection. We choose .1 values of w in general

position, so that on each connected component of Z\
⋃
w Zw, the tangent plane of Z

varies by an angle at most 1
100 . Since w is generic, Zw=Z(P1, ..., Pn−m, gw) is a transverse

complete intersection of dimension m−1. Also, Deg gw.D. We may apply our inductive

assumption to Zw, using radius r=20 and α= 1
2 . We see that Zw,>1/2∩T20 is covered by

.Dn balls of radius .1.

Next, we claim that Z>1/2∩Zw⊂Zw,>1/2. If x∈Z>1/2∩Zw, then

inf
v∈TxZ

Angle(v, `)> 1
2 .

But TxZw⊂TxZ. Therefore, infv∈TxZw Angle(v, `)> 1
2 , and so x∈Zw,>1/2 as claimed.

Since the total number of w is .1, we have that⋃
w

(Z>1/2∩Zw∩T20) is contained in .Dn balls Bj of radius . 1.
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If Bj=B(xj , rj), then we write 10Bj for B(xj , 10rj). The union
⋃
j 10Bj is a set

of .Dn balls of radius .1 which covers part of Z>1∩T1. We still have to cover the

remaining part

Z>1∩T1\
⋃
j

10Bj .

Consider a point z in this remaining part. We may assume that the radius of each

Bj is at least 2, and so we know that the distance from z to
⋃
j Bj is at least 10. Let A be

the connected component of Z∩B(z, 10) containing z. We claim that A is disjoint from

all Zw. Indeed, suppose that γ was a curve in A starting at z and intersecting
⋃
w Zw

for the first time at z′∈A. Along the curve γ, the tangent plane of TZ is constant up

to angle 1
100 . Since γ starts at z∈Z>1, we have γ⊂Z>1/2. Also, γ⊂B(z, 10)⊂T20. We

conclude that z′∈Z>1/2∩Zw∩T20, and so z′∈
⋃
j Bj . But B(z, 10) is disjoint from

⋃
j Bj .

This contradiction proves the claim. Since A is connected and disjoint from all Zw, the

tangent plane of Z is constant on A up to angle 1
100 .

Therefore, A is a small perturbation of an m-plane that cuts across T1 in a quan-

titatively transverse way. Let Π be a random (n−m)-plane containing the xn-axis.

With probability &1, Π∩A∩T1 is non-empty. By the Bezout theorem (Theorem 5.8),

|Π∩Z|6Dn−m for generic Π. Therefore, there can be at most .Dn−m disjoint sets A

of this type. So, we see that the remaining part of Z>1∩T1 is contained in .Dn−m

additional balls of radius .1.

6. Transverse equidistribution estimates

In this section we prove a transverse equidistribution estimate. To set up the statement,

we first define what it means for a wave packet to be tangent to a transverse complete

intersection Z.

Definition 6.1. Suppose that Z=Z(P1, ..., Pn−m) is a transverse complete intersec-

tion. We say that Tθ,v is R−1/2+δm-tangent to Z in BR if

Tθ,v ⊂NR1/2+δm (Z)∩BR (6.1)

and, for any x∈Tθ,v and z∈Z∩BR with |x−z|.R1/2+δm , we have

Angle(G(θ), TzZ).R−1/2+δm . (6.2)

We define

TZ := {(θ, v) :Tθ,v is R−1/2+δm-tangent to Z in BR}.
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We say that f is concentrated in wave packets from TZ if∑
(θ,v)/∈TZ

‖fθ,v‖L2 6RapDec(R)‖f‖L2 .

(In this definition δm>0 is a small constant. The estimates we prove in this section hold

for any δm>0. We will choose δm in §8.)

Suppose that B is a ball of radius R1/2+δm in Rn. Define

TB,Z := {(θ, v)∈TZ :Tθ,v∩B 6=∅}. (6.3)

The main result of this section is the following transverse equidistribution estimate.

Lemma 6.2. Let B be a ball of radius R1/2+δm in BR⊂Rn, and let %6R. Suppose

that g=
∑

(θ,v)∈TB,Z gθ,v. Then,

∫
B∩N

%1/2+δm (Z)

|Eg|2 .RO(δm)

(
R1/2

%1/2

)−(n−m) ∫
2B

|Eg|2+RapDec(R)‖g‖2L2 .

We build up to the proof via several smaller lemmas. We begin with a version of

the Heisenberg uncertainty principle, saying that a function which is concentrated in a

small ball in frequency space cannot concentrate too much in physical space.

Lemma 6.3. Suppose that G:Rn!C is a function, and that Ĝ is supported in a ball

B(ξ0, r) of radius r. Then, for any ball B(x0, %) of radius %6r−1,∫
B(x0,%)

|G|2 . |B%|
|Br−1 |

∫
|G|2.

Proof. Let η be a smooth bump function with |η|∼1 on B(x0, %) and rapidly decaying

outside of it. Then, |η̂(ξ):∼|B%| on B%−1 and rapidly decaying outside of it. Therefore,∫
B%

|G|2 .
∫
|ηG|2 =

∫
|η̂∗Ĝ|2.

For ξ.%−1, we bound

|η̂∗Ĝ(ξ)|6 ‖η̂‖L∞ ‖Ĝ‖L1 ∼ |B%|
∫
Br

|Ĝ|.

For |ξ| far from B%−1 , the rapid decay of η takes over and gives a stronger bound.

All together, we have∫
|η̂∗Ĝ|2 . |B−1

% |
(
|B%|

∫
Br

|Ĝ|
)2

6 |B%| |Br|
∫
|Ĝ|2 =

|B%|
|Br−1 |

∫
|G|2.
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Next, we need a more local version of this lemma.

Lemma 6.4. Suppose that G:Rn!C is a function, and that Ĝ is supported in a ball

B(ξ0, r) of radius r. Then, for any ball B(x0, %) with %6r−1, we have the inequality∫
B(x0,%)

|G|2 . |B%|
|Br−1 |

∫
WB(x0,r−1)|G|2,

where WB(x0,r−1) is a weight function which is equal to 1 on B(x0, r
−1) and rapidly

decaying outside of it.

Proof. Let ψ be a function with the support of ψ̂⊂Br and with |ψ|∼1 on B(x0, r
−1)

and rapidly decaying outside B(x0, r
−1). Our weight function will be W=|ψ|2.

Let H=ψ ·G. Note that Ĥ is supported in B(ξ0, 2r). Applying Lemma 6.3 to H, we

see that ∫
B(x0,%)

|G|2 .
∫
B(x0,%)

|H|2 . |B%|
|Br−1 |

∫
|H|2 =

|B%|
|Br−1 |

∫
W |G|2.

Suppose that B is a ball of radius R1/2+δm in Rn, and V is a subspace of Rn. Define

TB,V := {(θ, v) :Tθ,v∩B 6=∅ and Angle(G(θ), V ).R−1/2+δm}. (6.4)

Let 2B denote the ball with the same center as B and twice the radius.

If g=
∑

(θ,v)∈TB,V gθ,v, then we will show that Eg is equidistributed in B along

directions transverse to V. More precisely, we have the following lemma.

Lemma 6.5. If V ⊂Rn is a subspace, then there is a subspace V ′⊂Rn with the

following properties:

(1) DimV +DimV ′=n.

(2) V ′ is transverse to V in the sense that, for any unit vectors v∈V and v′∈V ′,

Angle(v, v′)& 1.

(3) Suppose that

g=
∑

(θ,v)∈TB,V

gθ,v.

If Π is a plane parallel to V ′ and x0∈Π∩B, then, for any %6R,

∫
Π∩B(x0,%1/2+δm )

|Eg|2 .RO(δm)

(
R1/2

%1/2

)−DimV ′ ∫
Π∩2B

|Eg|2+RapDec(R)‖g‖2L2 . (6.5)
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Proof. To prove the lemma, we locate the appropriate space V ′, and then we appeal

to Lemma 6.4. Finding the subspace V ′ and proving transversality involves relating the

direction G(θ) and the frequency ξ(θ).

Recall that G(ω)=G0(ω)/|G0(ω)|, where

G0(ω) = (−2ω1, ...,−2ωn−1, 1).

Let Rn−1⊂Rn be the (x1, ..., xn−1)-plane. Examining the formula for G0 and G, we

see that, for every ω∈Bn−1, Angle(G(ω),Rn−1)>cangle>0.

We define

Angle(V,Rn−1) := max
v∈V

Angle(v,Rn−1).

If Angle(V,Rn−1) is smaller than 1
2cangle, then G(ω) is never close to V for any

ω∈Bn−1. In this case, TB,V is empty and there is nothing to prove. Therefore, we may

assume from now on that

Angle(V,Rn−1)& 1. (6.6)

We let Ω(V ) be the set of ω∈Rn−1 such that G(ω)∈V. We note that G(ω)∈V
if and only if G0(ω)∈V, and so Ω(V )={ω∈Rn−1 :G0(ω)∈V }. As G0 is an affine map,

Ω(V ) is an affine subspace of Rn−1. Since V is transverse to Rn−1, and since G0(ω)=

(−2ω1, ...,−2ωn−1, 1), we see that Dim Ω(V )=dimV −1. Moreover, as V is quantitatively

transverse to Rn−1, we also see that for ω∈Bn−1,

Dist(ω,Ω(V )).Angle(G(ω), V ).

Next we define Ξ(V ) to be Ω(V )×R⊂Rn, an affine subspace of Rn. Since ξ(ω)=

(ω1, ..., ωn−1, |ω|2), we see that

Dist(ξ(ω),Ξ(V )) = Dist(ω,Ω(V )).

The spaces Ω(V )⊂Rn−1 and Ξ(V )⊂Rn are affine subspaces. We let V ′=Ξ(V )⊥, the

subspace perpendicular to Ξ(V ). The dimension of Ξ(V )=Dim Ω(V )+1=DimV, and so

DimV +DimV ′=n as desired.

We let πV ′ be the orthogonal projection from Rn to V ′=Ξ(V )⊥. Combining our

estimates above, we see that

πV ′({ω ∈Bn−1 : Angle(G(ω), V )6α})⊂ a ball of radius .α. (6.7)

Next we turn to the third claim in the lemma. Let Π be an (n−m)-plane parallel

to V ′ passing through B. We know that (Egθ,v )̂ is supported in ξ(θ). The restriction
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to Π of Egθ,v has Fourier transform supported in πV ′(ξ(θ)). Now, for all (θ, v)∈TB,V ,

Angle(G(θ), V ).R−1/2+δm . By equation (6.7), all the πV ′(ξ(θ)) lie in a single ball of

radius .R−1/2+δm . Therefore, if we view Eg as a function G:Π!C, its Fourier transform

is supported in a ball of radius .R−1/2+δm . We apply Lemma 6.4, giving∫
Π∩B(x0,%1/2+δm )

|Eg|2 .
(
R1/2−δm

%1/2+δm

)−DimV ′ ∫
Π

WB(x0,R1/2−δm )|Eg|2 (6.8)

.RO(δm)

(
R1/2

%1/2

)−DimV ′ ∫
Π

WB |Eg|2. (6.9)

Finally, Eg=
∑

(θ,v)∈TB,V Egθ,v. Each Egθ,v is essentially supported on Tθ,v. Since

Tθ,v is transverse to Π and intersects B, we see that if x∈Π\2B, then

|Eg(x)|6RapDec(R)‖g‖L2 .

So, ∫
Π

WB |Eg|2 6
∫

Π∩2B

|Eg|2+RapDec(R)‖g‖2L2 .

Finally, we want to see that V and V ′ are quantitatively transverse. We define

Angle(V, V ′) := min
v∈V
w∈V ′

Angle(v, w).

Sublemma 6.6. We have

Angle(V,Rn−1) = Angle(V, V ′).

In particular, in the non-vacuous case that Angle(V,Rn−1)&1, we see that V and

V ′ are quantitatively transverse.

Proof. The intersection V ∩G0(Rn−1) is an affine space parallel to Ω(V ). Let v∈V
be a unit vector perpendicular to Ω(V ). Let v1, ..., vm−1 be an orthonormal basis of

Ω(V ). Then v1, ..., vm−1, v is an orthonormal basis of V.

Let en be the nth coordinate unit vector. We see that v1, ..., vm−1, en is an orthonor-

mal basis for Ξ(V ). We also see that V ′=Ξ(V )⊥⊂Rn−1 and V ′=Ω(V )⊥⊂Rn−1.

Since v1, ..., vm−1⊂Ω(V )⊂Rn−1,

Angle(V,Rn−1) = Angle(v,Rn−1).

As v is perpendicular to Ω(V ), we see that the projection of v to Rn−1 actually lies

in Ξ(V )⊥=V ′, and so

Angle(v,Rn−1) = Angle(v, V ′).

But since v1, ..., vm−1 are in Ξ(V ), we see that v is the vector in V which makes the

smallest angle with Ξ(V )⊥=V ′, and so

Angle(v, V ′) = Angle(V, V ′).
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This completes the proof of Lemma 6.5.

Now we are ready to prove Lemma 6.2.

Proof. Since (θ, v)∈TZ , and Tθ,v∩B is non-empty, we know that, for any z∈Z∩2B,

Angle(TzZ,G(θ)).R−1/2+δm .

Let V be a subspace of lowest possible dimension so that, for all (θ, v)∈TB,Z ,

Angle(V,G(θ)).R−1/2+δm .

Let V ′ be the subspace given by Lemma 6.5. We know that DimV +DimV ′=n, and

we know that V ′ is quantitatively transverse to V. By (6.8), we also know that, for any

plane Π parallel to V ′,

∫
Π∩B(x0,%1/2+δm )

|Eg|2 .RO(δm)

(
R1/2

%1/2

)−DimV ′ ∫
Π∩2B

|Eg|2+RapDec(R)‖g‖2L2 . (6.10)

We claim that for each z∈Z∩B, TzZ is quantitatively transverse to V ′. If this is

not the case, it means that there exists a point z∈Z and a subspace W⊂TzZ with

DimW >DimZ−DimV,

such that, for each non-zero w∈W,

Angle(w, V ′)6 o(1).

Since V and V ′ are transverse, this angle condition guarantees that

Angle(w, V )& 1.

Because of this angle condition, we can construct a linear map L:Rn!V such that

L restricted to V is the identity, L restricted to W is zero, and |L|.1. Recall that for

each (θ, v)∈TB,Z , Angle(G(θ), V ).R−1/2+δm , and so

|L(G(θ))−G(θ)|.R−1/2+δm .

On the other hand, we know that G(θ)⊂NR−1/2+δm (TzZ)∩B(1), and so L(G(θ)) lies

in

L(NR−1/2+δm (TzZ)∩B(1))⊂NCR−1/2+δm (L(TzZ)).
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This shows that, for all (θ, v)∈TB,Z ,

Angle(G(θ), L(TzZ)).R−1/2+δm .

But, since L vanishes on W, L(TzZ) is a subspace of dimension at most

DimZ−DimW <DimV.

This contradicts our hypothesis that V has minimal dimension. This finishes the proof

of our claim that for each z∈Z∩2B, TzZ is quantitatively transverse to V ′.

Suppose that Π is a plane parallel to V ′ and intersecting B. Given the transversality

we just proved, it follows that

Π∩N%1/2+δm (Z)∩B⊂NC%1/2+δm (Π∩Z)∩Π∩2B.

Note that Π∩Z is itself a transverse complete intersection of dimension

DimV ′+DimZ−n.

Now, the set NC%1/2+δm (Π∩Z)∩Π∩2B can be covered by

RO(δm)

(
R1/2

%1/2

)DimV ′+DimZ−n

balls in Π of radius %1/2+δm (cf. [Won]). Applying (6.10) on each of these balls and

summing, we get the bound∫
Π∩N

%1/2+δm (Z)∩B
|Eg|2 .RO(δm)

(
R1/2

%1/2

)−(n−m) ∫
Π∩2B

|Eg|2+RapDec(R)‖g‖2L2 .

Finally, integrating over planes Π parallel to V ′ (using Fubini’s theorem), we get the

desired bound:∫
B∩N

%1/2+δm (Z)

|Eg|2 .RO(δm)

(
R1/2

%1/2

)−(n−m) ∫
2B

|Eg|2+RapDec(R)‖g‖2L2 .

7. Adjusting a wave packet decomposition to a smaller ball

Suppose that B(y, %)⊂BR for some radius % in the range R1/2<%<R, and we want to

decompose f into wave packets associated with the ball B(y, %). How does the new wave

packet decomposition relate to the old wave packet decomposition?
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If the center y is not at the origin, then we introduce new coordinates

x̃=x−y.

We define

ψy(ω) := y1ω1+...+yn−1ωn−1+yn|ω|2.

Then, we write

Ef(x) =

∫
ei(x1ω1+...+xn−1ωn−1+xn|ω|2)f(ω) =

∫
ei(x̃1ω1+...+x̃n−1ωn−1+x̃n|ω|2)eiψy(ω)f(ω).

For any function f , we use the notation

f̃(ω) = eiψy(ω)f(ω).

In this notation, we now have

Ef(x) =Ef̃(x̃).

Next, we decompose f̃ into wave packets adapted to the ball B%. We follow the

construction of wave packets in §3, except with the radius R replaced by %. We cover

Bn−1 with caps θ̃ of radius %−1/2. We cover Rn−1 by finitely overlapping balls of radius

∼%(1+δ)/2, centered at vectors ṽ∈%(1+δ)/2Zn−1. And we decompose f̃ as

f̃ =
∑
θ̃,ṽ

f̃θ̃,ṽ+RapDec(R)‖f‖L2 ,

where f̃θ̃,ṽ is supported in θ̃ and its Fourier transform is essentially supported in

B(ṽ, %(1+δ)/2).

For each (θ̃, ṽ), Ef̃θ̃,ṽ is essentially supported on a tube Tθ̃,ṽ of radius %1/2+δ and length %.

In the x̃ coordinates, this tube is contained in B%, while in the original x coordinates,

this tube is contained in B(y, %).

How does the original wave packet decomposition f=
∑
θ,v fθ,v relate to the new

one? The first question we study is, if we expand fθ,v in wave packets at scale B%,

(fθ,v)
∼=
∑
θ̃,ṽ(fθ,v)

∼
θ̃,ṽ

, then which (θ̃, ṽ) can have a significant contribution? We answer

this question in Lemma 7.1. Before stating the lemma, we need a couple definitions.

For a given y and ω we define

v̄(ω, y) := ∂ωψy(ω),
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and we compute

v̄(ω, y) = ∂ωψy(ω) = ∂ω(y1ω1+...+yn−1ωn−1+yn|ω|2)

= (y1+2ω1yn, ..., yn−1+2ωn−1yn) = y′+2ynω.

(Here we use the notation y′=(y1, ..., yn−1).) If ωθ denotes the center of a cap θ, we also

write v̄(θ, y) for v̄(ωθ, y).

Define

T̃θ,v := {(θ̃, ṽ) : Dist(θ, θ̃). %−1/2 and |v+v̄(θ, y)−ṽ|.R1/2+δ/2}. (7.1)

Lemma 7.1. The function (fθ,v)
∼ is concentrated in wave packets from T̃θ,v. In

other words,

(fθ,v)
∼=

∑
(θ̃,ṽ)∈T̃θ,v

(fθ,v)
∼
θ̃,ṽ

+RapDec(R)‖f‖L2 .

Proof. Since fθ,v is supported in θ, the support of (fθ,v)
∼ is clearly contained in⋃

{θ̃ : Dist(θ̃, θ). %−1/2}.

The main point is to check that the Fourier transform of (fθ,v)
∼ is essentially sup-

ported in a ball around v+v̄(θ, y) of radius .R1/2+δ/2. Let ηθ be a bump function which

is 1 on θ and decays to 0 outside of 2θ. Then,

(eiψy(ω)fθ,v )̂ = (ηθe
iψy(ω) ·fθ,v )̂ = (ηθe

iψy(ω))̂ ∗(fθ,v )̂ .

Now, (fθ,v )̂ is rapidly decaying outside of B(v,R1/2+δ/2). On the other hand, a

stationary phase argument shows that (ηθe
iψy(ω))̂ is rapidly decaying outside of

B(v̄(θ, y), R1/2).

(To see this, it helps to note that on the support of ηθ, ∂ωψy lies in a ball around v̄(θ, y)

of radius .R1/2.)

Next, we explore the geometric features of a tube Tθ̃,ṽ with (θ̃, ṽ)∈T̃θ,v.

Lemma 7.2. If (θ̃, ṽ)∈T̃θ,v, then the tube Tθ̃,ṽ obeys the following geometric esti-

mates:

HausDist(Tθ̃,ṽ, Tθ,v∩B(y, %)).R1/2+δ (7.2)

and

Angle(G(θ), G(θ̃)). %−1/2. (7.3)
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Proof. We recall the definition of Tθ,v from (3.2):

Tθ,v := {(x′, xn)∈BR : |x′+2xnωθ+v|6R1/2+δ}.

In the coordinates x̃, since x=x̃+y and y′+2ynωθ=v̄(θ, y),

Tθ,v∩B(y, %) = {(x̃′, x̃n)∈B% : |x̃′+2x̃nωθ+v̄(θ, y)+v|6R1/2+δ}. (7.4)

On the other hand,

Tθ̃,ṽ := {(x̃′, x̃n)∈B% : |x̃′+2x̃nωθ̃+ṽ|6 %1/2+δ}. (7.5)

By the definiton of T̃θ,v, Dist(θ̃, θ)6%−1/2 and so |ωθ−ωθ̃|.%−1/2. Since |x̃n|6%,

|2x̃nωθ−2x̃nωθ̃|.%1/2. By the definition of T̃θ,v, |v+v̄(θ, y)−ṽ|.R1/2+δ/2. Comparing

(7.4) and (7.5), we see that HausDist(Tθ,v∩B(y, %), Tθ̃,ṽ).R
1/2+δ, as desired.

Since Dist(θ̃, θ)6%−1/2, it follows that Angle(G(θ), G(θ̃)).%−1/2.

Many different (θ, v) lead to essentially the same set T̃θ,v. If Dist(θ1, θ2)6%−1/2, and

|v1+v̄(θ1, y)−v2−v̄(θ2, y)|6R1/2+δ/2, then T̃θ1,v1
and T̃θ2,v2

are essentially the same. We

can organize the possible pairs (θ, v) into equivalence classes in the following way. If θ̃ is

one of our caps of radius %−1/2, and w∈R1/2+δ/2Zn−1, then we define

Tθ̃,w := {(θ, v) : Dist(θ, θ̃). %−1/2 and |v+v̄(θ, y)−w|.R1/2+δ/2}. (7.6)

If (θ1, v1) and (θ2, v2) lie in the same set Tθ̃,w, then T̃θ1,v1
and T̃θ2,v2

are essentially the

same. They are both contained in (and essentially equal to)

T̃θ̃,w := {(θ̃1, ṽ) : Dist(θ̃1, θ̃). %−1/2 and |w−ṽ|.R1/2+δ/2}. (7.7)

Now Lemma 7.1 gives the following corollary.

Lemma 7.3. If g is concentrated in wave packets in Tθ̃,w, then g̃ is concentrated in

wave packets in T̃θ̃,w. In other words, if

g=
∑

(θ,v)∈Tθ̃,w

gθ,v+RapDec(R)‖g‖L2 ,

then

g̃=
∑

(θ̃,ṽ)∈T̃θ̃,w

g̃θ̃,ṽ+RapDec(R)‖g‖L2 .
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We also note that the sets Tθ̃,w are essentially disjoint, and their union contains all

the possible pairs (θ, v). Similarly, the sets T̃θ̃,w are essentially disjoint, and their union

contains all possible pairs (θ̃, ṽ). With this in mind, we define

gθ̃,w :=
∑

(θ,v)∈Tθ̃,w

gθ,v. (7.8)

(g̃)θ̃,w :=
∑

(θ̃,ṽ)∈T̃θ̃,w

(g̃)θ̃,ṽ. (7.9)

For any g, we get a decomposition g=
∑
θ̃,w gθ̃,w obeying with

‖g‖2L2 ∼
∑
(θ̃,w)

‖gθ̃,w‖
2
L2 , (7.10)

Similarly, for any g̃, we get a decomposition g̃=
∑
θ̃,w g̃θ̃,w with

‖g̃‖2L2 ∼
∑
(θ̃,w)

‖g̃θ̃,w‖
2
L2 . (7.11)

By Lemma 7.2, for all the pairs (θ, v)∈Tθ̃,w, the sets Tθ,v∩B(y, %) are essentially the

same. We denote this intersection by Tθ̃,w⊂B(y, %). It is a tube of radius R1/2+δ and

length %. The set Tθ̃,w can be described geometrically as the set of pairs (θ, v) such that

Tθ,v∩B(y, %) is essentially Tθ̃,w, and such that the direction of Tθ,v obeys the inequality

Angle(G(θ), G(θ̃)).%−1/2.

We will need to study the following situation. We have a function g which is concen-

trated on wave packets in TZ , and we want to study Eg on a smaller ball B(y, %)⊂BR.

If we decompose g into wave packets associated with the ball B(y, %), what can we say

about the new wave packet decomposition?

First of all, we point out the wave decompositon of g̃ at scale % is not necessarily

concentrated on wave packets that are tangent to Z on B(y, %). By Lemma 7.1, we do

know that g̃ is concentrated on wave packets in
⋃

(θ,v)∈TZ T̃θ,v. If (θ, v)∈TZ , then we

know that Tθ,v is tangent to Z on BR, which implies that

Tθ,v∩B(y, %)⊂NR1/2+δm (Z)∩B(y, %),

and that, for any x∈Tθ,v and z∈Z∩B(y, %) with |x−z|.R1/2+δm ,

Angle(G(θ), TzZ).R−1/2+δm .

If now (θ̃, ṽ)∈T̃θ,v, then (7.2) and (7.3) imply that

Tθ̃,ṽ ⊂NR1/2+δm (Z)∩B(y, %),
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and that, for any x∈Tθ̃,ṽ and z∈Z∩B(y, %) with |x−z|.R1/2+δm ,

Angle(G(θ), TzZ).R−1/2+δm+%−1/2 6 %−1/2+δm .

The angle condition is more than strong enough for Tθ̃,ṽ to be tangent to Z in

B(y, %), but it is not true that Tθ̃,ṽ⊂N%1/2+δm (Z)∩B(y, %). If Tθ̃,ṽ intersects

N%1/2+δm (Z)∩B(y, %),

then the angle condition guarantees that Tθ̃,ṽ is contained in

N2%1/2+δm (Z)∩B(y, %).

A bit more generally, if b is a vector with |b|6R1/2+δm , and if Tθ̃,ṽ intersects

N%1/2+δm (Z+b)∩B(y, %),

then Tθ̃,ṽ is contained in

N2%1/2+δm (Z+b)∩B(y, %),

and Tθ̃,ṽ is tangent to Z+b in Bj .

For any b∈BR1/2+δm , we define

T̃Z+b := {(θ̃, ṽ) :Tθ̃,ṽ is tangent to Z+b in Bj} and g̃b :=
∑

(θ̃,ṽ)∈T̃Z+b

g̃θ̃,ṽ.

So, we see that, if g is concentrated on wave packets in TZ , then g̃ is concentrated

on wave packets in
⋃
|b|.R1/2+δm T̃Z+b. For any (θ̃, ṽ)∈

⋃
(θ,v)∈TZ T̃θ,v, we saw above that

either (θ̃, ṽ)∈T̃Z+b, or else Tθ̃,ṽ is disjoint from N%1/2+δm (Z)∩B(y, %). Therefore, for

x=y+x̃∈B(y, %),

|Eg̃b(x̃)| ∼χN
%1/2+δm (Z+b)(x)Eg(x). (7.12)

To get finer information, it is helpful to decompose g as above as g=
∑
θ̃,w gθ̃,w,

and to think about the wave packet decomposition of each piece (gθ̃,w)∼ on B(y, %). For

brevity, we let h=gθ̃,w. We choose a ball B(x0, R
1/2+δm) with x0∈Tθ̃,w⊂B(y, %). For any

(θ, v)∈Tθ̃,w, Tθ,v∩B(y, %)⊂Tθ̃,w, and so Tθ,v intersects B(x0, R
1/2+δm) in a tube segment

of length R1/2+δm .

By Lemma 3.4, we have

‖h‖2L2 ∼R−1/2−δm‖Eh‖2L2(B(x0,R1/2+δm )). (7.13)
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Now we know that Eh̃(x̃)=Eh(x̃+y). Also, for x=y+x̃∈B(y, %), we know by (7.12)

that

|Eh̃b(x̃)| ∼χN
%1/2+δm (Z+b)(x)Eh(x).

Using Lemma 3.4 again, we have

‖h̃b‖2L2 ∼R−1/2−δm‖Eh‖2L2(B(x0,R1/2+δm )∩N
%1/2+δm (Z+b)). (7.14)

These observations lead to a couple estimates about how ‖h̃b‖L2 relates to ‖h‖L2 .

Lemma 7.4. Suppose that h is concentrated on wave packets in Tθ̃,w for some (θ̃, w),

and x0 is in the tube Tθ̃,w. If we choose a set of vectors b∈BR1/2+δm so that the sets

B(x0, R
1/2+δm)∩N%1/2+δm (Z+b)

are disjoint, then ∑
b

‖h̃b‖2L2 . ‖h‖2L2 .

Finally, we come to transverse equidistribution estimates. Combining the transverse

equidistribution estimate in Lemma 6.2 with the considerations in this section, we get

the following estimates.

Lemma 7.5. Suppose that h is concentrated on wave packets in TZ and also on wave

packets in Tθ̃,w for some (θ̃, w). Then, for any b∈BR1/2+δm , we have

‖h̃b‖2L2 6RO(δm)

(
R1/2

%1/2

)−(n−m)

‖h‖2L2 .

Proof. We combine (7.14), Lemma 6.2, and (7.13) to get

‖h̃b‖2L2 ∼R−1/2−δm‖Eh‖2L2(B(x0,R1/2+δm )∩N
%1/2+δm (Z+b))

.R−1/2−δmRO(δm)

(
R1/2

%1/2

)−(n−m)

‖Eh‖2L2(B(x0,R1/2+δm ))

∼RO(δm)

(
R1/2

%1/2

)−(n−m)

‖h‖2L2 .

We can now combine the different (θ̃, w) in order to get estimates for g.

Lemma 7.6. If g is concentrated in wave packets in TZ , then, for any b,

‖g̃b‖2L2 6RO(δm)

(
R1/2

%1/2

)−(n−m)

‖g‖2L2 .
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Proof. We first expand g=
∑
θ̃,w gθ̃,w. The wave packets contributing significantly

to each gθ̃,w are a subset of those contributing to g, and so each gθ̃,w is concentrated on

wave packets in TZ . For each θ̃ and w, Lemma 7.5 tells us that

‖(gθ̃,w)∼b ‖2L2 6RO(δm)

(
R1/2

%1/2

)−(n−m)

‖gθ̃,w‖
2
L2 .

We know that the gθ̃,w are orthogonal, and so

‖g‖2L2 ∼
∑
θ̃,w

‖gθ̃,w‖
2
L2 .

The operation f 7!f̃b is a linear map, and so

g̃b =
∑
θ̃,w

(gθ̃,w)∼b .

We claim that this is also an orthogonal decomposition. By Lemma 7.3, (gθ̃,w)∼ is

concentrated on wave packets in T̃θ̃,w. But then (gθ̃,w)∼b is also concentrated on wave

packets in T̃θ̃,w. The different sets T̃θ̃,w are disjoint, and so the functions (gθ̃,w)∼b are

orthogonal, as claimed. Therefore

‖g̃b‖2L2 ∼
∑
θ̃,w

‖(gθ̃,w)∼b ‖2L2 .

Combining these estimates gives the desired conclusion.

8. Proof of Theorem 1.5.

We now formulate the inductive estimate that proves Theorem 1.5.

Proposition 8.1. For ε>0, there are small constants

0<δ� δn−1� ...� δ1� δ0� ε,

and a large constant Ā such that the following holds.

Let m be a dimension in the range 16m6n and let R>1. Let Z=Z(P1, ..., Pn−m)

be a transverse complete intersection, with DegPj6DZ . Suppose that f is concentrated

on wave packets from TZ . Then, for any 16A6Ā,

‖Ef‖BLpk,A(BR) 6C(K, ε,m,DZ)RmεRδ(log Ā−logA)R−e+1/2‖f‖L2 (8.1)

for all

26 p6 p̄(k,m) := 2
m+k

m+k−2
, (8.2)

where

e= e(k, n, p) =
1

2

(
1

2
− 1

p

)
(n+k). (8.3)



124 l. guth

When m=n, Proposition 8.1 gives Theorem 1.5. When m=n, we can take Z=Rn

(and DZ=1). If we now choose A=Ā and p=p̄(k, n), then we compute −e+ 1
2 =0, and

we get the inequality in Theorem 1.5.

We prove Proposition 8.1 by induction. We will do induction on the dimension m,

the radius R, and on A. We start by checking the base of the induction. When R is

small, we choose the constant C(K, ε,m,DZ) sufficiently large and the result follows.

So, from now on, we may assume that R is very large compared to K, ε, m and DZ .

To check the case A=1, we choose Ā large enough so that Rδ(log Ā−log 1)=R10n, and the

inequality follows because ‖Ef‖BLpk,1(BR)6|BR| ‖f‖L2 . The base of the induction on m

is m=k−1. In this case, since A>1, we have

‖Ef‖BLpk,A(BR) 6RapDec(R)‖f‖L2 . (8.4)

This follows from the definition of BLpk,A. Recall that

‖Ef‖p
BLpk,A(BR)

:=
∑

BK2⊂BR

µEf (BK2),

with

µEf (BK2) := min
V1,...,VA

(
max
τ

∫
BK2

|Efτ |p
)
,

where the minimum is over (k−1)-subspaces of Rn and the maximum is over all τ such

that Angle(G(τ), Va)>K−1 for all a.

Fix a ball B=BK2⊂NR1/2+δm (Z)∩BR, and let V be the tangent space to Z at some

point z in the R1/2+δm-neighborhood of the ball BK2 . Notice that the dimension of V

is m=k−1. If Tθ,v intersects BK2 and if (θ, v)∈TZ , then Angle(G(θ), V ).R−1/2+δm .

So, if τ contains a θ with (θ, v)∈TZ for some v, then Angle(G(τ), V )6K−1. On the

other hand, if τ does not contain such a θ, then ‖fτ‖L26RapDec(R)‖f‖L2 , because f is

concentrated on wave packets tangent to Z. Therefore,(
max
τ

∫
BK2

|Efτ |p
)
6RapDec(R)‖f‖pL2 .

On the other hand, if BK2⊂BR is not contained in NR1/2+δm (Z), then on BK2 we have

|Ef |6RapDec(R)‖f‖L2 . This proves (8.4), establishing the base case m=k−1.

For p=2, Proposition 8.1 follows quickly from the basic L2 estimate in Lemma 3.2:

‖Ef‖2BL2
k,A(BR) 6

∑
τ

‖Efτ‖2L2(BR) .R
∑
τ

‖fτ‖2L2 =R‖f‖2L2 .
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Next, we begin the inductive step. We assume that Proposition 8.1 holds if we

decrease the dimension m, the radius R, or the value of A. We define p to be

p=

{
p̄(k,m), if m>k,

p̄(m,m)+δ, if m= k.

We will check the main estimate (8.1) for this value of p. Once we check (8.1) for

this value of p, we can get the whole range in (8.2) by interpolation between 2 and our

value of p, using the Hölder inequality for BL in Lemma 4.2.

There are two cases, depending on whether or not the mass of µ is concentrated

into a small neighborhood of a lower-dimensional variety. We let D(ε,DZ) be a function

that we will define later. We say that we are in the algebraic case if there is a transverse

complete intersection Y l⊂Zm of dimension l<m, defined using polynomials of degree

6D(ε,DZ), so that

µEf (NR1/2+δm (Y )∩BR)&µEf (BR).

Otherwise, we say that we are in the non-algebraic case, or the cellular case.

8.1. The non-algebraic case

We begin with the non-algebraic case. In this case, we will use polynomial parti-

tioning. To set up the polynomial partitioning, we first locate a significant piece of

NR1/2+δm (Z)∩BR where the tangent space of Z is not changing too fast. We say that

a ball B(x0, R
1/2+δm)⊂NR1/2+δm (Z)∩BR is regular if, on each connected component of

Z∩B(x0, 10R1/2+δm), the tangent space TZ is constant up to angle 1
100 . Let w∈ΛmRn.

Recall that Zw⊂Z is defined in (5.2). For generic w, Zw⊂Y is a transverse complete in-

tersection of dimension m−1, defined using polynomials of degree .DZ . We can choose

a set of .1 values of w so that on each connected component of Z\
⋃
w Zw, the tangent

plane TZ is constant up to angle 1
100 . Since we are in the non-algebraic case,

µEf

(⋃
w

N10R1/2+δm (Zw)∩BR
)
6

1

100
µEf (BR).

Each ball B(x0, R
1/2+δm)⊂NR1/2+δm (Z)∩BR which does not intersect⋃

w

N10R1/2+δm (Zw)

is a regular ball. So, the regular balls contain most of the mass of µ.

For each regular ball

B=BR1/2+δm ⊂ ÑR1/2+δm (Z)∩BR,
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we pick a point z∈Z∩BR1/2+δm and we define VB to be the m-plane TzZ. For an m-

plane V, we define BV to be the set of regular balls so that Angle(VB , V )6 1
100 . By the

pigeonhole principle, we may choose a plane V such that

µEf

( ⋃
B∈BV

B

)
&µEf (BR).

We define N1⊂NR1/2+δm (Z)∩BR to be the union of the balls B∈BV. We let µ1 be the

restriction of µEf to N1, and we note that µ1(N1)∼µEf (BR).

We are now ready to do polynomial partitioning. We let PV :V!R denote a poly-

nomial defined on V . We let π:Rn!V be the orthogonal projection. We now apply

polynomial partitioning (Theorem 5.5) to the push-forward measure π∗µ1 on V, using

the degree D=D(ε,DZ). Theorem 5.5 gives us a non-zero polynomial PV of degree at

most D such that V \Z(PV )=
⋃
j OV,j , the number of cells OV,j is ∼Dm, and for each

cell, π∗µ1(OV,j) is ∼D−mπ∗µ1(V ). Moreover, PV =
∏
j QV,j , where each QV,j has a little

freedom in the constant term, which we can use for transversality purposes.

We extend V to a polynomial P on Rn by setting P (x):=PV (π(x)). We note that

Z(P )=π−1(Z(PV )). We define Oj :=π
−1OV,j , and we note that Rn\Z(P )=

⋃
j Oj and

that µ1(Oj)=π∗µ1(OV,j)∼D−mµ1(N1). Similarly, we define Qj(x)=QV,j(π(x)), so that

P=
∏
j Qj . Each Qj is a polynomial of degree at most D on Rn, and we have a little

freedom in the constant term of each Qj . By Lemma 5.1, we can guarantee that, for

each j, Yj=Z(P1, ..., Pn−m, Qj) is a transverse complete intersection.

We define W :=NR1/2+δZ(P ) and O′j :=Oj\W. As each tube Tθ,v has radius R1/2+δ,

each tube Tθ,v enters at most D of the cells O′j . On the other hand, we claim that

W∩N1⊂
⋃
j

N20R1/2+δm (Yj).

Here is the proof of the claim. Suppose that x∈W∩N1. Since x∈N1, x is in a regular

ball B=B(x0, R
1/2+δm)∈BV. There is a point zB∈Z∩B with Angle(TzBZ, V )6 1

100 . Let

ZB be the component of Z∩10B containing this point zB . On ZB , the tangent plane

TZ makes a small angle with V. Let us use coordinates (v, w), where v∈V and w∈V ⊥.

Since the tangent plane of TZB makes a small angle with V, we have that ZB is the

graph of a function, w=h(v), where h has small Lipschitz constant 6 1
100 . Since x∈W,

there must be a point (v0, w0)∈Z(P )∩B(x,R1/2+δ). Since P (v, w)=PV (v), we see that

PV (v0)=0. Now the point (v0, h(v0)) lies both in Z(P ) and in ZB , and so it lies in Yj

for some j. Since (v0, h(v0))∈ZB⊂B(x0, 10R1/2+δm) and x∈B(x0, R
1/2+δm), it follows

that x∈N20R1/2+δm (Yj), as desired.
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Since we are in the non-algebraic case, µ1(N20R1/2+δm (Yj)) is negligible for each j,

and so µ1(W )=µ1(W∩N1) is negligible. Therefore, we have

µ1(O′j)∼D−mµ1(N1)∼D−m‖Ef‖p
BLpk,A(BR)

for the vast majority of j. (8.5)

Now, for each index j, we define a function fj which only includes the wave packets

that enter O′j . More precisely, fj=
∑

(θ,v)∈Tj fθ,v, where

Tj := {(θ, v) :Tθ,v∩O′j 6=∅}. (8.6)

Each function fj is also concentrated on wave packets in TZ . Moreover, there are

∼Dm cells O′j for which

‖Ef‖p
BLpk,A(BR)

.Dmµ1(O′j).DmµEfj (O
′
j).Dm‖Efj‖pBLpk,A(BR)

.

On the other hand, we have good control on the L2 norms of fj . Because each tube

Tθ,v enters .D cells O′j , each pair (θ, v) belongs to Tj for .D values of j, and so∑
j

‖fj‖2L2 ∼
∑
j

∑
(θ,v)∈Tj

‖fθ,v‖2L2 .D
∑
(θ,v)

‖fθ,v‖2L2 ∼D‖f‖2L2 .

In summary, there are ∼Dm choices of j such that

‖Ef‖p
BLpk,A(BR)

.Dm‖Efj‖pBLpk,A(BR)
. (8.7)

‖fj‖2L2 .D1−m‖f‖2L2 . (8.8)

(For later reference, we also record here: for each j and each θ,

‖fj,θ‖2L2 .
∑

θ′∩θ 6=∅
‖fθ′‖2L2 . (8.9)

This inequality does not appear in the proof of Theorem 1.5, but it could be useful in

some later refinements.)

Using these estimates, we can now prove (8.1) by induction on the radius. To make

the computation clearer, we abbreviate

E= 
C(K, ε,m,DZ)RmεRδ(log Ā−logA)R−e+
1
2 ,

so (8.1) reduces to

‖Ef‖BLpk,A(BR) 6E‖f‖L2 .
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Since we assume that (8.1) holds on balls of radius R/2, it follows that it also holds

on balls of radius R up to a constant factor loss. So we can assume that

‖Efj‖BLpk,A(BR) 6CE‖fj‖L2 . (8.10)

Now using (8.7) and (8.8), we get

‖Ef‖p
BLpk,A(BR)

.Dm‖Efj‖pBLpk,A(BR)
.DmEp‖fj‖pL2 .Dm−(m−1)p/2Ep‖f‖pL2 .

By our choice of p, p>2m/(m−1), and so the exponent of D is negative. If m>k,

the exponent is negative with pretty large absolute value; if m=k, then the exponent is

−δ. If we choose D=D(ε,DZ) sufficiently large, the power of D dominates the implicit

constant, and we get ‖Ef‖BLpk,A(BR)6E‖f‖L2 , which closes the induction in the non-

algebraic case.

8.2. The algebraic case

Next, we turn to the algebraic case. By definition, we know that there is a transverse

complete intersection Y l of dimension l<m, defined using polynomials of degree 6D=

D(ε,DZ), such that

µEf (NR1/2+δm (Y ))&µEf (BR). (8.11)

In the algebraic case, we subdivide BR into smaller balls Bj of radius %, chosen so

that

%1/2+δl =R1/2+δm . (8.12)

For each j, we define fj=
∑

(θ,v)∈Tj fθ,v, where

Tj := {(θ, v) :Tθ,v∩NR1/2+δm (Y )∩Bj 6=∅}.

On NR1/2+δm (Y )∩Bj , we have Efj=Ef+RapDec(R)‖f‖L2 . Therefore,

‖Ef‖p
BLpk,A(BR)

.
∑
j

‖Efj‖pBLpk,A(Bj)
+RapDec(R)‖f‖pL2 .

We further subdivide Tj into tubes that are tangential to Y and tubes that are

transverse to Y. As in definition 6.1, we say that Tθ,v is tangent to Y in Bj if

Tθ,v∩2Bj ⊂NR1/2+δm (Y )∩2Bj =N%1/2+δl (Y )∩2Bj (8.13)

and, for any x∈Tθ,v and y∈Y ∩2Bj with |x−y|.R1/2+δm=%1/2+δl ,

Angle(G(θ), TYy). %−1/2+δl . (8.14)
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We define the tangential wave packets by

Tj,tang = {(θ, v)∈Tj :Tθ,v is tangent to Y in Bj}.

And we define the transverse wave packets by

Tj,trans :=Tj\Tj,trans.

We define fj,tang=
∑

(θ,v)∈Tj,tang
fθ,v and fj,trans=

∑
(θ,v)∈Tj,transfθ,v

, so

fj = fj,tang+fj,trans.

Therefore, we have∑
j

‖Efj‖pBLpk,A(Bj)
.
∑
j

‖Efj,tang‖pBLpk,A/2(Bj)
+
∑
j

‖Efj,trans‖pBLpk,A/2(Bj)
. (8.15)

We will control the contribution of the tangential wave packets by induction on the

dimension m, and we will control the contribution of the transverse wave packets by

induction on the radius R.

8.3. The tangential subcase

Suppose first that the tangential wave packets dominate the right-hand side of (8.15). In

order to apply induction to Efj,tang on Bj , we redo the wave packet decomposition at a

scale appropriate to Bj , as in §7. For brevity, during this discussion, we let g=fj,tang.

g̃=
∑
θ̃,ṽ

g̃θ̃,ṽ+RapDec(R)‖f‖L2 .

Before applying induction, we need to check that this wave packet decomposition is

concentrated on pairs (θ̃, ṽ) that are tangent to Y on Bj , in the sense of Definition 6.1;

in other words, on pairs (θ̃, ṽ) such that

Tθ̃,ṽ ⊂N%1/2+δl (Y )∩Bj , (8.16)

and, for any x∈Tθ̃,ṽ and y∈Y ∩Bj with |x−y|.%1/2+δl ,

Angle(G(θ̃), TyY ). %−1/2+δl . (8.17)

We know that g=fj,tang is concentrated on wave packets (θ, v)∈Tj,tang, which obey

(8.13) and (8.14). These tell us that Tθ,v∩Bj lies in the desired neighborhood of Y ∩Bj
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and makes a good angle with TyY. For any (θ, v), (fθ,v)
∼ is concentrated on wave packets

(θ̃, ṽ)∈T̃θ,v, by Lemma 7.1. For (θ̃, ṽ)∈T̃θ,v, (7.2) and (7.3) tell us that Tθ̃,ṽ lies in a small

neighborhood of Tθ,v∩Bj and makes a small angle with Tθ,v. So, if (θ, v)∈Tj,tang and

(θ̃, ṽ)∈T̃θ,v, then Tθ̃,ṽ obeys (8.16) and (8.17). We have now checked the hypotheses of

Proposition 8.1 for g̃ with the variety Y on the ball Bj , and so we may apply induction

on the dimension.

By induction on the dimension, we get the following inequality:

‖Efj,tang‖BLpk,A/2(Bj) = ‖Eg̃‖BLpk,A/2(B%)

6C(K, ε, l,D(ε,DZ))%lε%δ(log Ā−log(A/2))%−e+1/2‖fj,tang‖L2

for

26 p6 p̄(k, l) := 2
l+k

l+k−2
,

where

e= e(k, n, p) =
1

2

(
1

2
− 1

p

)
(n+k).

Since l<m, we have p̄(k,m)<p̄(k, l), and so our value of p is in the range 26p6p̄(k, l)

and the bound above applies. The number of balls Bj is .RO(δl). Summing brutally

over the balls, we see that

‖Ef‖BLpk,A(BR) .RO(δl)C(K, ε, l,D(ε,DZ))%lε%δ(log Ā−log(A/2))%−e+1/2‖f‖L2 .

We note that the exponent −e+ 1
2 may well be negative. Nevertheless,

%−e+1/2 6RO(δl)R−e+1/2.

Also,

%δ(log Ā−logA/2) 6Rδ(log Ā−logA/2) =RδRδ(log Ā−logA).

Therefore, the last expression is

6RO(δl)C(K, ε, l,D(ε,DZ))RlεRδ(log Ā−log(A/2))R−e+1/2‖f‖L2 .

Since δl is much smaller than ε, RO(δl)Rlε6Rmε, and the induction closes. (We have

to choose C(K, ε,m,DZ) larger than C(K, ε, l,D(ε,DZ)).) This finishes the discussion

of the tangential algebraic case.
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8.4. The transverse subcase

Suppose now that the transverse wave packets dominate (8.15). First, we note that∑
j

‖fj,trans‖2L2 =
∑
θ,v

#{j : (θ, v)∈Tj,trans}‖fθ,v‖2L2 .

Next, we claim that, for each (θ, v), #{j :(θ, v)∈Tj,trans}.ε,DZ 1. In the discussion,

we just abbreviate this as .1. This follows from Lemma 5.7, which controls the transverse

intersections between a tube and an algebraic variety. Let T be the cylinder with the

same center as Tθ̃,ṽ and with radius r=R1/2+δm=%1/2+δl , and let α=%−1/2+δl . Let `

denote the central axis of T and recall that Y>α is the set {y∈Y :Angle(TyY, `)>α}.
If (θ, v)∈Tj,trans, then T∩Y>α∩2Bj must be non-empty. However, Lemma 5.7 tells us

that T∩Y>α is contained in 6CDn
Y balls of radius .rα−1∼%. Here, Y is defined by

polynomials of degree DY 6D(ε,DZ).1. Therefore, (θ, v)∈Tj,trans for .1 values of j.

Plugging this into the last equation, we get∑
j

‖fj,trans‖2L2 . ‖f‖2L2 . (8.18)

Next, we would like to study Efj,trans on each ball Bj , by doing induction on the

radius. In order to do so, we redo the wave packet decomposition at a scale appropriate

to Bj , as in §7. For brevity, during this discussion, we let g=fj,trans. We see that

g̃=
∑
θ̃,ṽ

g̃θ̃,ṽ+RapDec(R)‖f‖L2 .

We recall a couple definitions from §7. For any b∈BR1/2+δm , we define

T̃Z+b : = {(θ̃, ṽ) :Tθ̃,ṽ is tangent to Z+b in Bj},

g̃b : =
∑

(θ̃,ṽ)∈T̃Z+b

g̃θ̃,ṽ.

For each b, g̃b is concentrated in wave packets tangent to Z+b in the ball Bj , and so we

will be able to apply induction on the radius to study Eg̃b. By (7.12), if yj is the center

of Bj and x=yj+x̃∈Bj , then

|Eg̃b(x̃)| ∼χN
%1/2+δm (Z+b)(x)|Eg(x)|. (8.19)

We define fj,trans,b so that (fj,trans,b)
∼=g̃b (in other words, fj,trans,b=e

−iψy(ω)g̃b).

In this language, the last equation becomes

|Efj,trans,b(x)| ∼χN
%1/2+δm (Z+b)(x)|Efj,trans(x)|. (8.20)
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Next, we choose a set of vectors b∈BR1/2+δm . The number of vectors b that we

choose is related to the geometry of Z. We cover NR1/2+δm (Z)∩Bj with disjoint balls of

radius R1/2+δm . We dyadically pigeonhole the volume of B∩N%1/2+δm (Z): for each s, we

consider

Bs := {B(x0, R
1/2+δm)⊂NR1/2+δm (Z)∩Bj : |B(x0, R

1/2+δm)∩N%1/2+δm (Z)| ∼ 2s}.

We select a value of s such that

‖Efj,trans‖BLpk,A/2(
⋃
B∈Bs B) &

1

logR
‖Efj,trans‖BLpk,A/2(Bj).

Next, we prune Tj,trans a little: we include (θ, v) only if Tθ,v intersects one of the

balls of Bs. To avoid making the notation even heavier, we do not make a separate

notation for the pruned set. This pruning can only decrease ‖fj,trans‖L2 , and it changes

‖Efj,trans‖pBLpk,A/2(Bj)
by at most a factor of logR.

Now, we are ready to choose our set of translations {b}. We choose a random set

of |BR1/2+δm |/2s vectors b∈BR1/2+δm . For a typical ball B(x0, R
1/2+δm)∈Bs, the union⋃

bN%1/2+δm (Z+b) covers a definite fraction of the ball (in a random way). Therefore,

with high probability, we get

‖Efj,trans‖pBLpk,A/2(Bj)
.
∑
b

‖Efj,trans,b‖pBLpk,A/2(N
%1/2+δm (Z+b)∩Bj). (8.21)

On the other hand, a typical point of B(x0, R
1/2+δm) lies in .1 of the sets

N%1/2+δm (Z+b).

Using this geometric fact, we will show that∑
b

‖g̃b‖2L2 . ‖g‖2L2 . (8.22)

To see (8.22), we decompose g=
∑
θ̃,w gθ̃,w as in §7. If gθ̃,w is not negligible, then

Tθ̃,w must intersect one of the balls B(x0, R
1/2+δm)∈Bs. Since the sets

N%1/2+δm (Z+b)∩B(x0, R
1/2+δm)

are essentially disjoint, Lemma 7.4 tells us that∑
b

‖(gθ̃,w)∼b ‖2L2 . ‖gθ̃,w‖
2
L2 .
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But, as we saw in the proof of Lemma 7.6,

g̃b =
∑
θ̃,w

(gθ̃,w)∼b

is an orthogonal decomposition, and g=
∑
θ̃,w gθ̃,w is an orthogonal decomposition, and

so ∑
b

‖g̃b‖2L2 ∼
∑
b,θ̃,w

‖(gθ̃,w)∼b ‖2L2 .
∑
θ̃,w

‖gθ̃,w‖
2
L2 ∼‖g‖2L2 .

We now have all the estimates that we need in the transverse case, and we collect

them here.

‖Ef‖p
BLpk,A(BR)

. logR
∑
j,b

‖Efj,trans,b‖pBLpk,A/2(Bj)
, (8.23)

∑
j,b

‖fj,trans,b‖2L2 . ‖f‖2L2 . (8.24)

By Lemma 7.6,

max
b
‖fj,trans,b‖2L2 6RO(δm)

(
R1/2

%1/2

)−(n−m)

‖fj,trans‖2L2 . (8.25)

(For later reference, we also record here: for each j, b and θ̃,

‖fj,trans,b‖2L2(θ̃)
.RO(δm)

(
R1/2

%1/2

)−(n−m)

‖f‖2
L2(2θ̃)

. (8.26)

This follows from Lemma 7.6. This inequality does not appear in the proof of Theo-

rem 1.5, but it could be useful in some later refinements.)

By induction on the radius, we know that

‖Efj,trans,b‖BLpk,A/2(Bj) 6C(K, ε,m,DZ)%mε%δ(log Ā−log(A/2))%−e+1/2‖fj,trans,b‖L2

6C(K, ε,m,DZ)Rδ%mεRδ(log Ā−logA)%−e+1/2‖fj,trans,b‖L2 .

Using these estimates, we can now prove (8.1) by induction on the radius.

‖Ef‖p
BLpk,A(BR)

. (logR)
∑
j,b

‖Efj,trans,b‖pBLpk,A/2(Bj)

6RO(δ)(C(K, ε,m,DZ)%mεRδ(log Ā−log(A/2))%−e+1/2)p
∑
j,b

‖fj,trans,b‖pL2 .
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Using (8.25) and (8.24),∑
j,b

‖fj,trans,b‖pL2 .RO(δm)

(
R1/2

%1/2

)−(n−m)(p/2−1)

‖f‖pL2 .

Now, plugging in, we get

‖Ef‖p
BLpk,A(BR)

.RO(δm)(C(K, ε,m,DZ)%mεRδ(log Ā−logA)%−e+1/2)p
(
R1/2

%1/2

)−(n−m)(p/2−1)

‖f‖pL2 .

At the exponent p=p̄(k,m),

(%−e+1/2)p
(
R1/2

%1/2

)−(n−m)(p/2−1)

= (R−e+1/2)p.

(If m=k, so that p=p̄(k,m)+δ, then this is true up to a factor RO(δ).) So, plugging in

our values of p and e, and multiplying out, we get

‖Ef‖p
BLpk,A(BR)

6CRO(δm)

(
R

%

)−mε
(C(K, ε,m,DZ)RmεRδ(log Ā−logA)R−e+1/2)p‖f‖pL2 .

The constant C on the right-hand side depends on ε, DZ and the dimension n. We

have to check that CRO(δm)(R/%)−mε61. Note that R/%=Rθ(δl). We choose the δ’s such

that δm�εδm−1, and so (R/%)−mε dominates the other terms. Therefore, the induction

closes in the transverse algebraic case also.

This finishes the proof of Theorem 1.5.

9. Going from k-broad estimates to regular estimates

The paper [BG] introduces a technique to go from multilinear estimates to regular Lp

estimates. In this section, we follow this technique to go from k-broad estimates to

regular Lp estimates.

Proposition 9.1. Suppose that, for all K and ε, the operator E obeys the k-broad

inequality :

‖Ef‖BLpk,A(BR) .K,εR
ε‖f‖Lq . (9.1)

(Here the quantities k, A, p and q are fixed, and the inequality holds for all R.)

If p6q6∞ and p is in the range

2
2n−k+2

2n−k
6 p6 2

k−1

k−2
, (9.2)

then E obeys

‖Ef‖Lp(BR) .εR
ε‖f‖Lq . (9.3)
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Remarks. The lower bound on p is important. The upper bound is less important,

and it could probably be improved.

Theorem 1.5 together with Proposition 9.1 implies Theorem 1.1. If n is even, we use

k= 1
2n+1. By Theorem 1.5, we have ‖Ef‖BLpk,A(BR).R

ε‖f‖L2.Rε‖f‖Lp for p slightly

bigger than

p̄(k, n) = 2
n+k

n+k−2
.

With our choice of k, we also have

p̄(k, n) = 2
2n−k+2

2n−k
.

Applying Proposition 9.1, we get ‖Ef‖Lp(BR).Rε‖f‖Lp for p slightly bigger than p̄(k, n).

Interpolating with the trivial L∞ bound gives this estimate for all p>p̄(k, n). Finally,

applying ε-removal ([T1]) gives Theorem 1.1. If n is odd, we use k= 1
2 (n+1). The

argument is the same (but in this case, p̄(k, n)>2(2n−k+2)/(2n−k)).

Proof. By hypothesis, we have an inequality of the form∑
BK2⊂BR

min
V1,...,VA

max
τ /∈Va

∫
BK2

|Efτ |p6C(K, ε)Rpε‖f‖pLq . (9.4)

We recall that here V1, ..., VA are (k−1)-planes, and we write τ /∈Va as an abbreviation

for Angle(G(τ), Va)>K−1.

For each BK2 , we fix a choice of V1, ..., VA achieving the minimum above. Then, we

can write ∫
BK2

|Ef |p.KO(1) max
τ /∈Va

∫
BK2

|Efτ |p+

A∑
a=1

∫
BK2

∣∣∣∣∑
τ∈Va

Efτ

∣∣∣∣p. (9.5)

The first term is the “broad” part, and it can be controlled by the k-broad estimate.

We handle the second term, the “narrow” part, by a decoupling-type argument. We work

with BK2 so that we can cleanly apply the decoupling theorem from [Bo4]. (The paper

[BG] contains a different but closely related argument.)

Theorem 9.2. ([Bo4]) Let g:Rm!C be such that ĝ is supported in the K−2-

neighborhood of the truncated paraboloid. Divide this neighborhood into slabs τ with m−1

long directions of length K−1 and one short direction of length K−2. Write g=
∑
τ gτ ,

where ĝτ=χτ ĝ. Then, on any ball of radius K2, for 26p62m/(m−1),

‖g‖Lp(BK2 ) .δK
δ

(∑
τ

‖gτ‖2Lp(WB
K2

)

)1/2
, (9.6)

where WBK2 is a weight measure, approximately the volume measure on BK2 and rapidly

decaying.
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Applying this decoupling estimate with m=k−1, we get the following lemma.

Lemma 9.3. We have(∫
BK2

∣∣∣∣∑
τ∈Va

Efτ

∣∣∣∣p)1/p.δKδ

( ∑
τ∈Va

(∫
WBK2 |Efτ |p

)2/p)1/2
.

Proof. On BK2 , we use coordinates (u, v), where v is parallel to Va and u is perpen-

dicular to Va. We write Bu,K2 for a ball of radius K2 in the u coordinates and Bv,K2 for

a ball of radius K2 in the v coordinates. If we restrict Efτ to the (k−1)-plane {u}×Rk−1

(parallel to Va), then its Fourier transform is supported in the K−2-neighborhood of a

cap τ ′ in the K−2-neighborhood of a paraboloid. By Theorem 9.2, we get∥∥∥∥∑
τ∈Va

Efτ

∥∥∥∥
Lp({u}×Bv,K2 )

.δK
δ

( ∑
τ∈Va

‖Efτ‖2Lp({u}×WB
v,K2

)

)1/2
.

Using Fubini’s and Minkowski’s theorems, we then get∥∥∥∥∑
τ∈Va

Efτ

∥∥∥∥
Lp(Bu,K2×Bv,K2 )

.δK
δ

( ∑
τ∈Va

‖Efτ‖2Lp(WB
K2

)

)1/2
.

The number of τ∈Va is .Kk−2. Applying Hölder’s inequality, we see that∫
BK2

∣∣∣∣∑
τ∈Va

Efτ

∣∣∣∣p.δKδK(k−2)(p/2−1)
∑
τ∈Va

∫
WBK2 |Efτ |p. (9.7)

At this point, we have gotten as much as we can from the knowledge that τ∈Va,

and we relax this estimate to∫
BK2

∣∣∣∣∑
τ∈Va

Efτ

∣∣∣∣p.δKδK(k−2)(p/2−1)
∑
τ

∫
WBK2 |Efτ |p. (9.8)

Next, we sum this inequality over all a=1, ..., A and over all BK2⊂BR. We let

W=
∑
BK2⊂BRWBK2 . We see that

∑
BK2⊂BR

A∑
a=1

∫
BK2

∣∣∣∣∑
τ∈Va

Efτ

∣∣∣∣p.KδK(k−2)(p/2−1)
∑
τ

∫
W |Efτ |p. (9.9)

We note that W.1 on B2R and W6RapDec(R) outside B2R. Therefore, we get

∑
BK2⊂BR

A∑
a=1

∫
BK2

∣∣∣∣∑
τ∈Va

Efτ

∣∣∣∣p.KδK(k−2)(p/2−1)
∑
τ

∫
B2R

|Efτ |p+RapDec(R)‖f‖pLq .

(9.10)
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Combining this estimate for the narrow part with our estimate for the broad part,

we have∫
BR

|Ef |p6C(K, ε)Rpε‖f‖pLq+CKδK(k−2)(p/2−1)
∑
τ

∫
B2R

|Efτ |p. (9.11)

With this inequality in hand, we will prove (9.3) by induction on the radius, where

we use the induction assumption in order to handle the contribution of the fτ terms.

The inequality we wish to prove is∫
BR

|Ef |p6 
C(ε)Rpε‖f‖pLq . (9.12)

By induction on the radius, we may assume that (9.12) holds for radii less than 1
2R.

We use this induction and parabolic rescaling to handle the contribution of each fτ .

On the ball τ we introduce new coordinates. Let ωτ be the center of τ , and recall

that the radius of τ is K−1. Then, we introduce a new coordinate ω̃∈Bn−1 by

ω̃=K(ω−ωτ ). (9.13)

We rewrite the phase in these coordinates:

x1ω1+...+xn−1ωn−1+xn|ωn|2 = Fcn(x)+x̃1ω̃1+...+x̃n−1ω̃n−1+x̃n|ω̃|2,

where Fcn(x) denotes a function of x only,

x̃j =K−1(xj+2ωτ,jxn) for 16 j6n−1 and x̃n =K−2xn.

Here, ωτ,j denotes the jth coordinate of ωτ . Note that the linear transformation

x 7!x̃ sends BR into BCRK−1 and has Jacobian ∼K−(n+1).

We define

f̃τ (ω̃) = fτ (ω) = fτ (K−1ω̃+ωτ ),

so that

|Efτ (x)|=K−(n−1)|Ef̃τ (x̃)|.

By induction on the radius, we may assume that (9.12) holds for f̃τ on a ball of

radius CRK−1: ∫
BCRK−1

|Ef̃τ |p. 
C(ε)RpεK−pε‖f̃τ‖pLq .
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By change of variables, we have∫
B2R

|Efτ |p.K(n+1)K−(n−1)p

∫
BCRK−1

|Ef̃τ |p

. 
C(ε)

(
R

K

)pε
K(n+1)−(n−1)p‖f̃τ‖pLq

= 
C(ε)RpεK(n+1)−(n−1)p−pεK(n−1)p/q‖fτ‖pLq .

Plugging this bound into (9.11), we get∫
BR

|Ef |p

6C(K, ε)Rpε‖f‖pLq+C
C(ε)RpεK(k−2)(p/2−1)+(n+1)−(n−1)p−pε+δK(n−1)p/q
∑
τ

‖fτ‖pLq .

(9.14)

There are Kn−1 different τ⊂Bn−1. Since p6q, we may apply Hölder’s inequality to

see that

∑
τ

‖fτ‖pLq 6
(∑

τ

‖fτ‖qLq
)p/q

K(n−1)(1−p/q) = ‖f‖pLqK
(n−1)(1−p/q).

Plugging this into the last inequality, we see that the dependence on q drops out, and we

are left with∫
BR

|Ef |p

6C(K, ε)Rpε‖f‖pLq+C
C(ε)RpεK(k−2)(p/2−1)+(n+1)−(n−1)p+(n−1)−pε+δ‖f‖pLq .
(9.15)

We can close the induction as long as the exponent of K is negative. (First we choose

K large enough so that the second term is bounded by 1
2

C(ε)Rpε‖f‖pLp . Then, we choose


C(ε) sufficiently large so that the first term is also bounded by 1
2

C(ε)Rpε‖f‖pLp .) Given

ε>0, we can choose δ<ε. So the induction closes as long as

(k−2)
(

1
2p−1

)
+(n+1)−(n−1)p+(n−1)6 0.

This is equivalent with the lower bound for p in our hypothesis (9.2):

2
2n−k+2

2n−k
6 p.
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Appendix A. Keeping track of parameters

We have several small parameters. In this appendix, we try to provide a reference to help

the reader keep track of the parameters. We list all the parameters, how they compare

to each other, and where they appear in the argument.

We begin with the small parameters. For each ε>0, there is a sequence of small

parameters

δ� δn−1� δn−2� ...� δ1� δ0� ε.

In this sequence, each parameter is far smaller than the next. For instance, we will

use that δm<εδm−1.

The parameter δ appears in the wave packet decomposition. The tubes Tθ,v in the

wave packet decomposition have thickness R1/2+δ. The parameter δm appears in the

m-dimensional case of the main inductive estimate (Proposition 8.1): in this estimate,

we suppose that f=
∑
θ,v fθ,v is concentrated on wave packets that are R−1/2+δm-tangent

to Z on the ball BR.

Another geometric parameter that appears is the radius %. In the transverse alge-

braic case, we decompose BR into smaller balls Bj . If we are working on tubes that

cluster in the neighborhood of an m-dimensional variety Z, and are transverse to an

l-dimensional variety Y, then the radius of each Bj is % given by

%1/2+δl =R1/2+δm .

The quotient R/% has size Rθ(δl), which dominates RO(δm).

Then, there are positive parameters K and A. We have

1�A�K.

We need A=A(ε) sufficiently large to run the proof of Theorem 1.5, and the broad

inequality is most useful when K is much larger than A.

Given ε, we then fix the small parameters δ and the larger parameters A and K.

Then, we consider R!∞. In the statement of Theorem 1.5, the constant depends on ε

and on K. By choosing this constant large enough, the theorem holds trivially unless R

is very large compared to all these fixed parameters.

Appendix B. Further directions

B.1. Honest k-linear estimates

Our main result (Theorem 1.5) is a weak version of the k-linear restriction estimate from

Conjecture 1.4. For some purposes, we have seen that Theorem 1.5 is a good substitute



140 l. guth

for a k-linear restriction estimate, but there are surely other situations where an honest

k-linear estimate is better. When I tried to prove Conjecture 1.4 using this method, I

ran into the following problem. There are k different functions Efj to consider. It may

happen that for some of these k functions, the wave packets of Efj are tangent to a

variety Z, and for others of these k functions, the wave packets of Efj are transverse to

the variety Z. I did not find a good way to deal with this scenario. The k-broad norm,

BLpk,A, is designed to get around this situation.

B.2. Kakeya-type estimates for low degree varieties

We now return to the extension operator for the paraboloid. Theorem 1.5 gives essentially

sharp broad Lp estimates of the form

‖Ef‖BLpk,A(BR) .Rε‖f‖L2 . (B.1)

We have seen that this estimate holds if and only if p>p̄(k, n). What if we consider other

norms on the right-hand side? For some q larger than 2, can we prove an estimate

‖Ef‖BLpk,A(BR) .Rε‖f‖Lq , (B.2)

for some p<p̄(k, n)?

In the introduction, we mentioned some sharp examples for Theorem 1.5. The first

question to ask ourselves is whether an inequality of the form (B.2) may hold for these

examples. In the examples we considered, the wave packets Efθ,v concentrate in the

R1/2-neighborhood of a low degree variety Z. Let us consider the set of caps θ that can

appear in such an example. Define Θ(Z) as

Θ(Z) := {θ :Tθ,v ⊂NR1/2+δ(Z) for some v}.

In such an example, the function f must be supported in
⋃
θ∈Θ(Z) θ. If the volume of

this union is much less than 1, then, for q>2, ‖f‖Lq will be much bigger than ‖f‖L2 ,

and so our special class of examples will obey an inequality of the form (B.2).

In fact, if we had good estimates for |Θ(Z)|, then I believe we could input them

into the proof of Theorem 1.5 to get some further estimates of the form (B.2), roughly

following the argument in [G].

If Z is an m-dimensional plane, then it is easy to check that |Θ(Z)|∼(R1/2)m−1,

and so |Ω(Z)|∼(R1/2)m−1(R1/2)−(n−1). It seems reasonable to conjecture that a similar

bound holds for any m-dimensional variety Z of small degree.
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Conjecture B.1. If Z is an m-dimensional variety in Rn of degree at most D, then

|Θ(Z)|6C(n,D, ε)(R1/2)m−1+ε. (B.3)

Conjecture B.1 is a very special case of the Kakeya conjecture. One variant of the

Kakeya conjecture goes as follows.

Conjecture B.2. (Kakeya conjecture) Suppose that X⊂Bn(1). Suppose that Tj⊂X
are tubes of length 1 and radius δ, pointing in δ -separated directions. Then

number of tubes6C(ε)δ−ε
Vol(X)

Vol(tube)
.

(I have not seen this exact version of the Kakeya conjecture in print before, but it

is straightforward to check that the maximal function version of the Kakeya conjecture

implies Conjecture B.2, which implies the Minkowski dimension version of the Kakeya

conjecture.) Now Conjecture B.1 is just the special case of Conjecture B.2 where the set

X is the δ -neighborhood of a low-degree algebraic variety.

Conjecture B.1 also came up in ongoing joint work with Josh Zahl on the Kakeya

problem in R4. I think it is a basic issue that comes up in trying to apply polynomial

methods to the restriction problem or to the Kakeya problem.
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