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1. Introduction

This paper gives improved restriction estimates for the paraboloid in high dimensions.

Recall that the extension operator for the paraboloid can be written in the form
Ef(z) ::/ i@t T w1t lwl®) £ do, (1.1)
Bn—1

where B"~1 denotes the unit ball in R"~! and z€R". Stein [S1] conjectured that the

extension operator should obey the inequality

IEf|lLe@ny S Il n-1) (1.2)

for all p>2n/(n—1). We prove new partial results towards this conjecture in dimension
n=4.

THEOREM 1.1. For n>2, the operator E obeys the estimate (1.2) if

3n+1
2 1.
p> 37_3 forn odd, (1.3)
3n+2
2 . 1.4
> 379 for n even (1.4)

The best previous estimates for the problem were proven by Tao [T2] for n=4 and
by Bourgain and the author [BG] for n>5. For n=4, the conjecture is that (1.2) holds
for p> 2%. Theorem 1.1 gives the range p>2.8, and the best previous estimate was p>3.
Asymptotically, for large n, the conjecture is that (1.2) holds for p bigger than the lower
bound

2
TZ =2+42n" ' +O(n7?).
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The lower bound for p in Theorem 1.1 is
248" +0(n7?),

and the lower bound in the best previous estimate was 24+3n~1+0(n=2).

The new ingredient of our argument has to do with algebraic structure. Roughly
speaking, the argument shows that, if | E f|| .- is large, then the region where |E f| is large
must be organized into thin neighborhoods of low-degree algebraic varieties. Exploiting
this structure leads to improved bounds on |Ef||z». We find this algebraic structure
using the tool of polynomial partitioning, which was introduced by Katz and the author
in [GK].

Polynomial partitioning was first applied to the restriction problem in [G], which
gave the best current restriction estimate in dimension 3. In this paper we combine that
approach with ideas from [BG]. Besides making incremental progress on the restriction
conjecture, the methods in this paper are related to sharp results for some other problems

in the field, which we describe in the next two subsections.

1.1. Related work

In this subsection, we describe two papers which build on this one, and adapt the methods
to other problems.

In [GHI], Hickman, Iliopoulou and the author generalize Theorem 1.1 to the setting
of Hormander-type operators with positive-definite phase. For this more general class
of operators, the estimates are sharp up to the endpoint. Hoérmander-type operators
with positive-definite phase can be thought of as small perturbations of the extension
operator E. To formulate this precisely, we first write E in a slightly different form. We

define the phase function
\Ppm‘(yv w) =Y1wit et Yn—1Wn—1 +yn|w|2- (15)

We restrict = to a ball B} of radius R. For x€ B}, we can write Ef(z) in the form

Ef(:[)) :/B ) eiR\Ppar(x/va)f<w) dw.

We think of ¥,,,. as a function from B"xB™ ! to R. We now consider other phase
functions ¥(y,w), which are small C* perturbations of W, (y,w) on B"xB"~'. For

each such phase function ¥, and each scale R, we define an operator

Tf(x) z/B%1 Y@/ B9 £ (1) dw. (1.6)
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Hoérmander introduced this type of operator in [H]. As we said above, operators of
the form (1.6) can be thought of as small perturbations of the extension operator E.
Hormander raised the question whether all such operators obey the L” bounds conjec-
tured to hold for F, and he proved that this is the case when n=2. But it turns out
to be false for all n>>3. A counterexample was found by Wisewell [Wi] (cf. also [BG]).
These counterexamples build on a well-known counterexample of Bourgain from [Bol] for
a related but slightly different problem. These counterexamples are surprising, because
they show that a C'* small perturbation of the phase function can cause a major change
in the behavior of the operator. In this context, it is reasonable to ask about the best
L? estimates that hold for all operators of the form (1.6)—the best estimates that are
robust to such small perturbations. Héormander [H] answered this question in dimension
n=2, and Lee [L] did so in dimension n=3. The paper [GHI] does so for all n. It shows
that
ITfllzeBr) SIfllLe(gn—1y for the range of p in Theorem 1.1.

The counterexamples from [Wi] and [BG] show that, up to the endpoint, this is the sharp
range of p in every dimension.

In another direction, in [OW], Ou and Wang adapt the methods here to the case of
the cone. They prove the sharp range of restriction estimates for the cone in dimension
n<5. Previously, Wolff [Wol3] proved the sharp range of restriction estimates for the

cone in dimension n<4.

1.2. k-linear estimates and k-broad estimates

Multilinear estimates have played a key role in the recent developments in restriction
theory. Our main new result, which leads to Theorem 1.1, is a weaker version of a
k-linear restriction estimate, which we call a k-broad estimate. The exponents in our
k-broad estimate are sharp for all k. We recall some background on multilinear estimates
and then formulate this new result.

We begin by recalling the wave packet decomposition. Suppose we want to study E f
on a large ball BRCR". We decompose the domain B"~! into balls @ of radius R~/2.

Then, we decompose f in the form
F=>" fou
0,v

where fp, is supported in § and has Fourier transform essentially supported in a ball
around v of radius R'/2. In the sum, 6 ranges over our set of finitely overlapping balls
covering B"~!, and v ranges over R'/2Z"~'. For each pair (6,v), the restriction of
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Efg., to B is essentially supported on a tube Tp,, with radius R'/? and length R. The
direction of this tube depends only on 6, and we denote it by G(0)€S" ™. We call Efy,
a wave packet.

We can now describe multilinear restriction estimates. Given subsets Uy, ...., Uy
of B"7!, we say that they are transverse if, for any choice of §;CUj, the directions

G(61),...,G(0x) are quantitatively transverse in the sense that
|G(01)N...ANG(0)| 2 1. (1.7)

Building on important work of Wolff [Wol3], Tao [T2] proved a sharp bilinear esti-

mate for the extension operator E.

THEOREM 1.2. (2-linear restriction, [T2]) If Uy,UsCB™" ! are transverse, and f;
is supported in Uj, then

2
11 1Es1M2
j=1

2
1/2
SREH ||fj||L/2(Bn—1) (18)
L?(Br) j=1

for p=2(n+2)/n.

By an argument of Tao, Vargas, and Vega, [TVV], this bilinear estimate implies that
IEfllrBr) SEREN fllr(Bn-1y in the same range p=>2(n+2)/n. The e-removal theorem
(IT1]) then implies [|Ef (5 S 11l o (1) for all p>2(n-+2)/n.

A few years after the bilinear results, Bennett, Carbery, and Tao [BCT] proved a

sharp n-linear estimate for F.

THEOREM 1.3. (n-linear restriction, [BCT]) If Uy, ...,U,CB"! are transverse, and
f; is supported in Uj, then

IT1EsM"
j=1

1/n
SETTIAIS ey (1.9)
L?(Br) j=1

for p=2n/(n—1).

This theorem is important and remarkable in part because it involves the sharp ex-
ponent for the restriction problem: p>2n/(n—1). The paper [BG] gives a technique to
exploit multilinear restriction estimates in order to get improved estimates on the orig-
inal restriction problem. Since then, multilinear restriction has had many applications,
including the striking recent work of Bourgain and Demeter on decoupling (see [BD] and
many followup papers).

Given this 2-linear estimate and this n-linear estimate, it is natural to try to prove
a k-linear estimate for all 2<k<n which would include these two estimates as special
cases. Here is what looks to me like the natural conjecture, which I first learned from
Jonathan Bennett.
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Conjecture 1.4. (k-linear restriction) If Uy,...,UyCB""! are transverse, and f; is

supported in Uj, then

k

1T1Es*

Jj=1

k
& 1/k
SE LI sy (1.10)
L?(Br) j=1

for p=p(k,n):=2(n+k)/(n+k—2).

Having the full range of k-linear estimates available would improve the results from
[BG]. Combining Conjecture 1.4 with the method from [BG] would give ||Ef|| > S| f]l e
for exactly the range of p in Theorem 1.1.

For 3<k<n—1, Conjecture 1.4 is open. In [Bel] and [Be2], Bejenaru proves multi-
linear estimates for certain curved hypersurfaces, but not including the paraboloid. The
surfaces he considers are foliated by (k—1)-planes and they are curved in the transverse
directions, in an appropriate sense. The main new result of this paper is a weak version of
Conjecture 1.4, which we call a k-broad restriction inequality. To motivate this inequal-
ity, let us recall the approach from [BG]| for deducing linear estimates from multilinear
ones.

We decompose B"~! into balls 7 of radius K !, where K is a large constant. This
decomposition is much coarser than the decomposition into balls @ of radius R~1/2. We
write f=>"_ fr, where f; is supported in 7. Next we subdivide B} into much smaller
balls. In [BG], we used balls of radius K, but it will be slightly more convenient here to
use balls of radius K2. For each B> C Bpg, we consider fBK2 |Ef.|P for each 7. We say
that 7 contributes significantly to By if

J

We let S(Bgz) denote the set of 7 which contribute significantly to Byz. We now

|Ef P2 K10m / EfP.

K2 B2

break the balls Bg2 into two classes. We label a ball Bg2 as k-transverse if there are k
significant 7’s which are k-transverse in the sense above. We label a ball B2 as k-non-
transverse otherwise. A k-linear restriction estimate gives a good bound for the integral
of |Ef|P over the union of all of the k-transverse balls. The paper [BG] then gives an
inductive argument to control the contribution from the k-non-transverse balls.

This inductive argument can be described most cleanly using the language of decou-
pling. Building on [BG], Bourgain proved a decoupling theorem in [Bo4] which implies

that, for each k-non-transverse ball B2, one has

IEf 2y S D, NEf sz,
TES(Bg2)
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for a certain range of p which covers the exponents we study. For a k-non-transverse
ball By, all the significant 7 have direction G(7) within K ! of some (k—1)-plane. In
particular, |S(Bg2)| <K*~2. Using this bound and Hélder’s inequality, we get

/ BfPSKe S / B, |7, (1.11)
BKQ 2) BKZ

TES(B

with a=(K ’“_2)(1’_2)/ 2 which is optimal. Summing this inequality over all the k-non-

transverse balls gives

B skt Y [ ELP.
T Br

The right-hand side may then be controlled by induction on scales.

Ak—non—transverse balls

To make this strategy work, we do not need a full k-linear bound. The decoupling
estimate that we used to control the k-non-transverse balls applies whenever all the
significant 7 for a ball B2 have directions G(7) lying within the O(K ~!)-neighborhood
of O(1) (k—1)-planes. We call such a ball k-narrow. To get the argument to work, we
only need to bound [ |Ef|P over the remaining balls—the k-broad balls.

Here is a little notation using which we can state our k-broad bound precisely.
We let G(1)=Uyc, G(#). The set G(r)CS™~! is a spherical cap with radius ~K1,
representing the possible directions of wave packets in E f.. If VCR" is a subspace, then
we write Angle(G(7),V) for the smallest angle between any non-zero vectors veV and
v'€G(7). For each ball Bx2C Bpg, we consider fBK2 |Ef|P for every 7. To define the
k-broad norm, we discount the contributions of f, with G(7) lying near a few (k—1)-
planes, and we record the largest remaining contribution. More formally, for a parameter
A, we define

pef(Bgz2) = Vmir%/A (mTaX/B |Ef7p), (1.12)
Tseees K2

where the minimum is over (k—1)-subspaces of R and the maximum is over all 7 such
that Angle(G(7),V,)>K ! for all a.
We can now define the k-broad part of ||Ef||.r(p,) by

IEfRy pay= D Her(Br2). (1.13)
’ By2CBRr

Our main new result is an estimate for this k-broad norm.

THEOREM 1.5. For any 2<k<n and any €>0 there is a large constant A such that
the following holds (for any value of K):

IEfllBLy ,(Br) Sk.e BN fllL2(Bn-1), (1.14)

for p=p(k,n)=2(n+k)/(n+k—2).
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The range of p in Theorem 1.5 is sharp for all k¥ and n. Using the method from [BG]
outlined above, Theorem 1.5 implies the restriction estimate Theorem 1.1.

We should mention that BLi, 4 is not literally a norm, but it has some similar
properties, which is why we use the norm notation. In particular, BLZ 4 obeys the
following weak version of the triangle inequality: if f=g-+h, then

HEfHBL;A(BR)§HEQHBL;A/Q(BR)+||Eh||BLP (Br)- (1.15)

k,A/2

The reason for introducing the parameter A is to use this version of the triangle inequality.
If we choose A(e) very large, then we can effectively use the triangle inequality O.(1)
times during our proof, and so BLZ 4 behaves almost like a norm. We were not able to
prove Conjecture 1.4, and the main issue is that in the true k-linear setting, we do not

have a substitute for this triangle inequality.

1.3. Examples

To help digest Theorem 1.5, we describe a couple of examples. These examples show
that the range of exponents p in Theorem 1.5 is sharp.

In one example, the wave packets E fy , concentrate in the R'/2-neighborhood of a
k-plane. We denote this neighborhood by W. Each wave packet Efy , has |E fp,(x)|~1
on the tube Ty ,, and rapidly decaying outside Ty ,. It is not hard to arrange that each
point in the slab W lies in many wave packets Tj ,,, pointing in many directions within the
k-plane. For each ball By in the slab, only a tiny fraction of the wave packets through
this ball lie near any (k—1)-plane. In this scenario, |[Eflgry ,(Ba)~IEfle(Br). We
can also arrange that |Ef(x)|2~297v |Efo.(z)|? at most of the points x, by replacing
fo,v by £fo,, with independent random sings. We can distribute the wave packets evenly,
so that |E f(z)]| is roughly constant on the slab. Moreover, by a standard orthogonality
argument ||Ef||r2(p,)~RY?||f| 12 Therefore, we get

HEf”BLi,A(BR) 1/2 ||Ef||LP(BR)

~ NR1/2 w 1/p71/2'
17l e~

Since [W|~RFRUI/2(=F) "4 short calculation shows that the ratio | E f||rs(pp)/| fllz2 is
bounded for p>p(k,n) and blows up for p<p(k,n).

But there are also more complicated sharp examples, coming from low-degree al-
gebraic varieties. This type of example was first pointed out to me by Josh Zahl. For

instance, consider the quadric hypersurface ZCR* defined by

(T3~ (3)-()
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Each point of Z lies in a 1-parameter family of lines in Z. The union of the lines through

a given point form a 2-dimensional cone. For example, the point (R,0,0,0) lies in the

r1=R and (%)2—(%>2—<%>2:O.

If we take the R'/?-neighborhoods of lines in Z, we can find many tubes in the R'/2-

cone defined by

neighborhood of Z. We can now build an example like the one above using wave packets
concentrated in the R'/2-neighborhood of Z. For each ball By in this neighborhood,
the wave packets through By fill out a 2-dimensional cone, and very few of them lie
near any 2-dimensional plane. Therefore, [|Ef|[grz , (8n)~IEfllLr(5r)- The rest of the
discussion in the planar slab example applies also here, and so we see that this example
is sharp for Theorem 1.5 in dimension 4 with k=3.

For larger n, there are more variations on this example. The dimension of the
variety Z in these examples is k. The degree of Z may be larger than 2, although in the
known examples it is always bounded by C'(n). Similar examples apply to Conjecture 1.4.

These examples help to suggest that algebraic varieties could be relevant to Theo-
rem 1.5. Polynomial partitioning is a tool that helps us to find and exploit the type of
algebraic structure in these examples. If we run through the proof of Theorem 1.5 on
this type of examples, then the argument will find the variety Z.

The new difficulty in this paper, compared with [G], is that it is harder to find a
k-dimensional variety for small k than it is to find a hypersurface. In the next section, we

will describe the polynomial partitioning process and give a sense of the issues involved.

1.4. A direction for further improvement

The paper [G] applies polynomial partitioning to the restriction problem in three dimen-
sions. It proves an estimate which is stronger than Theorem 1.1, namely [|Ef|1»®s) S
I fllLe for p>3.25. This estimate relies on one additional ingredient: an estimate for how
many different 6 can be represented by wave packets Ty, in the R'/2-neighborhood of a
low-degree variety Z. In the 3-dimensional case, recall that there are ~R balls §C B2,
each with radius R~/2. Let ©(Z) denote the set of 6 such that at least one wave packet
Ty, is contained in the R'/?-neighborhood of Z. Lemma 3.6 of [G] proves that, if Z is
a 2-dimensional variety in R® of degree <1, then |©(Z)|<.RY?*¢. (If Z is a 2-plane,
then |©(Z)|~RY?, and so the result says that the example of a plane is nearly the worst
possible.)

When ||Ef| e is large, the polynomial partitioning method locates algebraic pieces
that contribute most of ||[E f||r». The bound for |O(Z)| gives a stronger estimate for the
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contribution of each such piece in terms of || f|| = or || f||L». Notice that, for Hormander-
type operators of positive-definite phase in three dimensions, the estimate ||7'f| 1»( B S
R|| fl Lo (2 is false for all p< 2. To prove the bound ||Ef|| s S| f||z for all p>3.25,
the argument from [G] has to distinguish F from more general Hormander-type operators
of positive-definite phase. The bound on |©(Z)| is the step that does this. In the
Hormander case, T'fg ., is concentrated on a curved tube. And in the counterexample
from [Wi] or [BG], there is a low-degree variety Z whose R'/2-neighborhood contains
one such curved tube for every 6.

I have not been able to prove a good bound for |©(Z)| in higher dimensions. Such
a bound would lead to further improvements in the restriction exponents in high dimen-

sions. We will discuss this issue more in the final section of the paper.

Acknowledgements. 1 was supported by a Simons Investigator Award during this
work. I would also like to thank Marina Iliopoulou, Jongchon Kim, and the referee for
helpful comments on a draft of the paper.

2. Sketch of the proof

In this section, we sketch the proof of the k-broad estimate, Theorem 1.5. We actually
give two sketches. The first sketch aims to show the main ideas of the argument. The
second sketch brings into play more of the technical issues, and it provides a detailed
outline of the argument in the paper.

The proof begins with a wave packet decomposition. We decompose the domain
B™ ! into balls # of radius R'/2. We then decompose the function f: B"~' —C as

f:ZfG,v,
0,v

where fy, is supported on 6 and the Fourier transform of fy, is essentially supported
on a ball of radius R'/? around v. In the sum, v ranges over R/2Z"~1. On Bg, Efg.
is essentially supported on a tube Ty, of radius RY? and length R. In addition, the

functions fy, are essentially orthogonal. In particular, we have
2 2
2~y lfoulia: (2.1)
0,v

Our goal is to prove that

2(n+k)

HEf”BLi,A(BR) <CE)R||fllpz for p=p(k,n):= SRS
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The proof will be by induction. So we assume that (2.2) holds for balls of smaller
radii, and in lower dimension.

Recall that

HEf”Z];Li)A(BR) = Z MEf(BK2)7
B2CBr
where pgr(Bg2) was defined in (1.12). We can extend pgy to be a measure on Bp,
making it a constant multiple of the Lebesgue measure on each Bgz. In particular
/”LEf(BR):HEfH%Lg’A(BR)'

We now introduce polynomial partitioning. We let D be a large constant that we
can choose later. For a polynomial P on R™, we write Z(P) for the zero set of P. By
[G, Theorem 1.4], there is a (non-zero) polynomial P of degree at most D on R™ such
that R™\ Z(P) is a disjoint union of ~D™ open cells O;, and the measures pg(O;) are
all equal.

Next, we consider how the wave packets E fy ., interact with this partition. We note
that a line can cross Z(P) at most D times, and so a line can enter at most D+1 of the
~D" cells O;. The tube Tp ,, can still enter many or all cells O;, but it can only penetrate
deeply into D+1 cells. To make this precise, we define W to be the R'/?-neighborhood
of Z(P), and we define O;- to be O;\W. If a tube Ty, enters O;, then the axis of Tp,,

must enter O, and so we get that
each tube Ty , enters at most D+1 cells O’. (2.3)

We now have
pef(Br)=Y_ nes(O))+ues(W).
J

We say that we are in the cellular case when the contribution of the cells dominates
and in the algebraic case when the contribution of W dominates. If we are in the cellular

case, then there must be ~D" cells O; such that
1B Wy oy S D" 15 (0 (2.0
Next, we study Ef on each of these cells O}. We define f; by
fj = Z f@,v- (25)
6,v
T@7Uﬂo_;7é@

Since FE fy , is essentially supported on Tj ,, we see that F f; is almost equal to E f
on 0. Therefore, ppy, (0;)~pes(0)). Now we study pupy, (O}) using induction. Since
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f; involves fewer wave packets than f, it is a simpler object, and so it makes sense to

assume by induction that our theorem holds for f;. This leads to the following bound:

1 (0}) ~ 1, (O3 IE Mgy 3y S (CERVIS (2.6)

Next, we analyze || f;j||r2. By the orthogonality of the fp,, we have

SHIE~Y S Nfoliz~d  #{0):Th.,00;
J J 6,v

Tp,wNO#D

By (2.3), each tube Tj,, enters SD cells O, and so we get

Z I£il1Z: SD Y I fo.uliz ~ DI fI7e-

0,v

Since there are ~D™ cells O} that obey (2.4), we see that most of them must also obey
I£01Z S D IANZe- (2.7)
Combining this bound with (2.4) and our inductive assumption (2.6), we get
IEIBLy (a0 SCD™ OTP2(C)R IS

In this equation, the constant C' is the implicit constant from the various <’s. It
does not depend on D. The induction closes as long as the term in brackets is <1. Since
we can choose the constant D, we can arrange that the induction closes as long as the
exponent of D is negative. Given our value of p, we can check that the exponent of D is
<0, and the induction closes.

Now we turn to the algebraic case. In this case, the measure ugy is concentrated
in W the R'/?-neighborhood of Z (P)—a degree-D algebraic variety of dimension n—1.
There are two types of wave packets that contribute to ugy on W, which we describe
roughly as follows:

e Tangential wave packets: wave packets that are essentially contained in W. For
these wave packets, the direction of the tube Ty , is (nearly) tangent to Z=Z(P).

e Transverse wave packets: wave packets that cut across W.

We first discuss the case that the tangential wave packets dominate. To simplify the
exposition, let us imagine for the moment that the variety Z is a hyperplane, so W is
a planar slab of dimensions R'/?x Rx...x R. We can also imagine that f has the form
f:ZM fo.0, where all the tubes Tj ,, are contained in W.
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We study this case using induction on the dimension. In the tangential algebraic
case, the behavior of Ef on the hyperplane Z can be controlled by applying Theorem 1.5

in dimension n—1. Here is one way to set this up. There is a standard L? estimate giving

1Efllz250) S RY?1 £l (2.8)

It is not hard to reduce Theorem 1.5 to the case that ||Ef||r2(p,) ~RY?| f| 12, and

so we can think of Theorem 1.5 in the equivalent form

IEflBLy ,(BR) S RPN E S| 12

We can apply Theorem 1.5 in dimension n—1 to study Ef on Z, and we get the estimate

||Ef||BLg§§‘m—1>(ZﬁBR) SRV ES| 2 (znBg)-
Now p(k,n—1)>p(k,n)=p. Interpolating between this estimate and the L? estimate
(2.8), we get a bound of the form

IEflBLr \(znBR) S RV Ef | 122055,

for p=p(k,n), where e is an exponent depending on k and n. The same estimate holds
not just for Z, but for any translate of Z in the slab W. These estimates control the
behavior of Ef in the directions tangent to Z.

To get a good estimate in the tangential algebraic case, we also have to control the
behavior of Ef in the direction transverse to Z. We will show that there is a direction
transverse to the hyperplane Z such that |E f(z)| is approximately constant as we move
 in this direction for distance <RY2. We call this behavior a transverse equidistribution

estimate. It implies that

IE 125y ~ I EFNZ2cw) ~ BV IUE A2 (2005

and

1/2
”Ef”I];Li’A(BR) ~ ”Ef”I];Li’A(W) ~R / ||EprBL£’A(ZOBR).

Using these estimates, we can control | Ef|[gLr | (3,) by induction on the dimension:

1/2
”Efllx};]_,z’A(BR) ~ ”EfHI};L%A(W) ~R / ”Efllil};LZA(ZmBR)

SRPPROVSRNBS | 0,
~ BRSO R B |,
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There are a lot of messy powers of R in this computation. But plugging in p=p(k,n)
and working out the exponent, one gets | Ef|grr () SR™Y* | Ef|lL2(50) SEEIf] 22,

which closes the induction in the tangential algebraic case. The exponent
p=p(k,n) =2(n+k)/(n+k—-2)

is exactly the exponent needed to make the powers of R work out in this computation.
Next, we sketch the reason for this transverse equidistribution. From the definition

1/2

of I, we see that E fg , has Fourier transform supported in a ball of radius R~"/* around

5(0) = (we,la ey wG,n—l, ‘w9|2)7

where wy denotes the center of 8. We know that all the wave packets Efy, in Ef are
supported in tubes Ty, CW. This situation restricts the directions G(6), which in turn
restricts the frequencies £(f). The connection between G() and £(6) is simplest for
a slightly different operator—the extension operator for the sphere. In that case, we
have G(0)=£(). Since the tubes Ty, all lie in W, the directions G(¢) all lie in the
R~1/2-neighborhood of the subspace V CR™ parallel to Z. Therefore, the frequencies
£(0) all lie in the R~1/2_neighborhood of V as well. So, the Fourier transform of Ef

1/2_neighborhood of V. If ¢ denotes a line perpendicular to V

is supported in the R~
(or to Z), then the restriction of Ef to ¢ has Fourier transform supported in a ball of
radius R~'/2. Therefore, |Ef| is approximately constant as we move along the line ¢ for
distances <R/2,

For the extension operator in the case of the paraboloid, the situation is similar but
a touch messier. We know that the directions G(6) all lie in the R~'/2-neighborhood
of the plane V. A short calculation shows that the frequencies £(6) all lie in the R—1/2-
neighborhood of an affine hyperplane V’. The hyperplane V' is not equal to V, but
the angle between V and V' is fairly small. If £ is perpendicular to the plane V', then
it still follows that |Ef| is approximately constant as we move along ¢ for distances
<R~'/2. The line ¢ is no longer exactly perpendicular to the original plane Z, but it is
still quantitatively transverse to Z, and this is good enough for our application.

In this sketch, we assumed that Z is a hyperplane. But in the real proof we cannot
assume this. We have to set up the induction on the dimension in a different way, taking
into account the possibility that Z is curved. We explain this in the next subsection.

Finally, it can happen that the transverse wave packets dominate. In this last case,
per(W) dominates pgy(Br), but the wave packets transverse to W make the main
contribution to pgy(W). In this case, we can imagine that f=3 fy ., where each tube
Ty, is transverse to WW. Recall that the number of times a line can cross the hypersurface
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Z is <DZS1. Similarly, we will prove that the number of times a tube Ty, can cross the
surface W is <1.

In this case, we subdivide the ball B into smaller balls B; with radius o< R. A
tube Ty, enters ~R/p>1 of these balls. But, because of the discussion above, a tube
Ty, can cross W transversely in <1 balls B;. We define

T trans : ={(0,v) : Ty, crosses W transversely in B;},

fj,trans = Z fG,v~

(6,v)ET; trans

Since a tube Ty ,, can cross W transversely in <1 balls B;, each (6, v) belongs to <1

sets T trans- Therefore,

Z ”fj’trans”%Z /S ||f||2L2 (29)
J

As we assumed that all the wave packets in f intersect W transversely, F f; trans iS
essentially equal to &f on WNB;. Therefore,

pef(WNB;) S pEf; une (Bj)-

Since we are in the algebraic case, and since we assumed that all the tubes T,

intersect W transversely, we have

pep(Br) Spep(W)~ Y per(WNB) S 1, e (B))- (2.10)
i i

By induction on the radius, we may assume that
pig; (Bi) <(C(€)e°) || £ uwans |72

Plugging this bound into (2.10) and then applying (2.9), we get

VEA s iy S (CEEN S [ fjaeansllf
J

As p>2, we get Y || forans|| 7 < (325 || £ trans||22)P/2 <[ 117 2. Therefore, we have
1Sy oy S (CEOEP L

Since R/p is large, Co°*<R°®, and so this closes the induction in the transverse

algebraic case.
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2.1. Studying wave packets tangent to a variety

In the preceding sketch, we considered the special case that the variety Z is a hyperplane.
In this special situation, the tangential algebraic case reduces to the original theorem in
dimension n—1. In the full proof, we need to consider curved varieties Z, and so we have
to do the induction on the dimension in a different way.

If Z is an m-dimensional variety in R", then we say that the tube Ty , is a-tangent
to Z in Bp if the following two conditions hold:

e Distance condition:

Ty.o C Nor(Z)NBkg.

o Angle condition: If z€ ZNNyr(Ty,v), then

Angle(T.Z,G(9)) < a.

1/2 and

For each dimension m, we will choose an angle a.,, slightly larger than R~
then we define

Tz :={(0,v): Ty, is a,,-tangent to Z in Bg}.

Our main technical result is Proposition 8.1. It says that, if Z is an m-dimensional

variety of controlled degree and if f:Z(O,U)ETz fo.v, then (for a range of exponents p>2)

|Efllney 5y < M £l

where M is a fairly complicated expression which depends on the parameters of the setup,
including the exponent p, the radius R, the dimension m, the value of A, etc.

The proof of Proposition 8.1 is by induction on the dimension m. The base of the
induction is the case m=k—1. In this case, ||Ef||BL£,A(BR) is negligibly small. To see this,
consider a small ball By2. The function Ef is essentially supported in Ng1/2(Z)NBg, so
we may assume that Bg2 CNpi/2(Z)NBr. Because of the angle condition, all the wave
packets Ty, €Ty that pass through Bg> have direction G(6) within a small angle of a
(k—1)-plane—the plane T, Z for a point z€Z near Byz2—and so the ball Bg= makes a
negligible contribution to | E f ||BLZ,A' This provides the base of the induction.

The proof of Proposition 8.1 follows the rough outline of our first sketch. We again
use polynomial partitioning. Under the hypotheses of the proposition, we know that E f
is essentially supported in Ng1/2(Z) for a given m-dimensional variety Z. We want to find
a polynomial P such that Z(P) cuts Ngi/2(Z) into smaller cells. To do this, we choose
new orthogonal coordinates yi, ..., y, such that the projection of Z to the (y1, ..., Ym)-
plane is non-degenerate on a significant portion of Z. Then, we let P be a polynomial in
Y1, -, Ym- In this case, Z(P) intersects Z transversely (at least on a significant portion
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of Z), and this makes the polynomial partitioning work. Essentially everything works
as in the first sketch, except that, because P only depends on m variables, the number
of cells O; is only ~D™. This will affect the final exponents, but the method of the
argument is the same. If ugs is concentrated on the cells O;, then we can prove the
desired bounds by induction. Otherwise, pi s is concentrated in the R'/2-neighborhood
of a lower-dimensional variety Y=2ZNZ(P).

Now we turn to this algebraic case. In the algebraic case, there is a lower-dimensional
variety Y, with DegY <Deg Z, so that

pef(Npi2(Y)NBr) Z pef(Br) ~ pef(Ngi2(Z)NBg).

There are two types of wave packets that contribute to pgy on Ngi/2(Y)NBg: tangential
wave packets, which lie in Np1/2(Y) and run tangent to Y, and transverse wave packets,
which cut across Npi/2(Y). (Recall that all the wave packets are tangent to Z, by
hypothesis.)

In our current setup, if all the wave packets are tangent to Y, then we get the desired
estimate just by induction on the dimension m.

However, there may be a mix of transverse and tangential wave packets. If we let
frang be the sum of the tangential wave packets and firans be the sum of the transverse
wave packets, then the quasi-triangle inequality for BL% 4 (1.15) gives

IEfllBLy ,(Br) S| EfrangllBLy , ,(Br) HIIE furansllBry , ,(r)-

k,A/2

This is the step in the proof where we need to use the quasi-triangle inequality.

We can handle the tangential terms by induction on the dimension, and now we turn
to the transverse terms. As in the last sketch, we decompose Br=|J ; B;, where each
ball B; has radius o< R. We define f; (rans as above to be the sum of wave packets that
intersect Npgi/2(Y) transversely in B;. As in the previous sketch, geometric arguments

show that a tube Ty, can intersect Ngi/2(Y') transversely in <1 balls B;, and so

Z ”fj,tramS”%2 5 ”f”%?
J

Next, we want to study HEfj,transHBLQ,Am(Bj) by using induction on the radius. This
step is more complicated than in the previous sketch. We know that f is concentrated
on wave packets that are tangent to Z on By, and we need to use that information. We
expand Ffjirans into wave packets on the ball B;. Since B; has radius p, each wave
packet is essentially supported on a tube of radius o'/? and length ¢ in B;. When we

examine this wave packet decomposition, it is not exactly true that all the wave packets
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are tangent to Z in B;—in fact, something better is true. All the wave packets of f; trans
on Bj lie in Npi/2(Z)NBj, but they do not necessarily lie in N,1/2(Z)NB;. We cover
Npi1/2(Z)NB; with disjoint translates of N,i,2(Z)NBy:

NR1/2(Z)ﬂBj :UN91/2 (Z-ﬁ-b)ﬂB
b

Now it turns out that each wave packet of fj¢rans lies in one of these translates. We

let f;trans,y be the sum of the wave packets that lie in Ngl/z(Z_H,)QBj. Now we have
fj,tranS:Zb fj,trans,b and

P p
||Efj7tran5”BLz,A/2(Bj) ~ zb: HEfjvtraHSHBLi’A/Z(Ngl/Q(Z+b)ﬂBj)

- ; HEfj,tra“S’b||11]3L§,A/2(Bj)'

The wave packets of E f} trans b are tangent to the m-dimensional variety Z+b on B;.

Therefore, we can study | Ef; transbllBLr

P s sa(B) by induction on the radius: we may

assume that

||Ef] trans, b”BL (By) gM(Qa b )Hf] trans, b”L2

k,A/2

(Here we write M (@, %A) because M depends on the radius (which is ¢) and because we
have %A in place of A.) Putting together what we have learned so far in the transverse

algebraic case, we have

||Ef||%L£,A(BR S Z ||Efj trans”BLP
J,b

Q’ QA)Z] Z Hfj trans b||L2

p
k,A/z(Bj)

To get our final bound, it remains to control Zj p || fitransp|| 2. Since each wave

packet of f; irans lies in exactly one fj trans,p, it is easy to check that

1 fjranslZe ~ Y I fjerans pll -
b
We also already know that > | fitransl| 32 S| fN152. And so we see that

D W ermonpl2 S (ma 15 aeams 722 ) 1712

7,b

The last ingredient of the proof is an estimate for max; ;|| f; trans,b|| 2, Which has to
do with transverse equidistribution. Recall that, since f is concentrated on wave packets
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in Tz, Ef is equidistributed in directions transverse to Z. Recall that Ngi/2(Z)NB;
is covered by thinner neighborhoods N,i/2(Z+b)NB;. The number of these thinner
neighborhoods is ~(R'/2/o!/2)»=™_ Because of transverse equidistribution, each of these

neighborhoods receives an even share of the L? norm of E fjtrans- In other words, for
each b,

1/2\—(n—m)
1 ennsl < (B B vl .
j,trans L2(N91/2(Z+b)ﬂBj) ~ 91/2 j,trans L2(N p1/2(Z)NBy)

Using this inequality, we prove the desired estimate for || f; trans,b

L2

R1/2\~(n=m) R1/2\~(n—m)
2 9 )
L2 ,S <91/2) ||fj,trans||L2 5 (91/2> HfHL? (211)

Hfj,trans,b

2.2. Outline of the paper

We carry out the proof of Theorem 1.5 over §§3-8 of the paper. In §3 we review some
standard facts about wave packets. In §4 we prove some basic properties of the broad
“norms” BL? A~ §b contains tools from algebraic geometry (and differential geometry)
that we will use to study the geometry of the algebraic varieties that appear in the proofs.
In §6 we prove the first transverse equidistribution estimate. For any ball B(y, 0)C
R™, there is a wave packet decomposition for Ef on the ball B(y, ). §7 is about the
relationship between the original wave packet decomposition on the ball Br and the
wave packet decomposition adapted to a smaller ball B(y, 0)CBg. This lets us state
and prove a second version of the transverse equidistribution estimate, corresponding to
(2.11) above. With the background and tools from these sections, we prove Theorem 1.5
in §8.

Following [BG], in §9 we explain how k-broad estimates imply regular L? estimates
of the form ||Ef]||zr S||f|lLe- This argument finishes the proof of Theorem 1.1. §10 is
an appendix which helps to keep track of the parameters. Unfortunately, there are quite
a few parameters in the paper—various ¢’s, R, K, A, etc. The appendix lists all the
parameters and how they relate to each other. In §11 we discusse further directions and

open problems.

3. Basic setup with wave packets

Let f be a function on B"~!. We first break up f into pieces fy, that are localized in
both position and frequency.
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Cover B™"~! by finitely overlapping balls 6 of radius R~'/2. Let 1y be a smooth
partition of unity adapted to this cover, and write f=), g f.

Next, we break up g f according to the frequency. Cover R"~! by finitely overlap-
ping balls of radius ~R(1+%)/2 centered at vectors ve R(+9/2Z7=1 Let 5, be a smooth

partition of unity adapted to this cover. We can now write

F=Y @t =Dl x(of).
6,v

6,v

Note that 1Y (x) decays rapidly when |z|>R~(1+9/2, We write A(R)<RapDec(R)B

to mean that for any power 3, there is a constant Cz such that
A(R)<CgR™PB for all R>1.

1 _
If |z|> g5 R~1/2, then

Iny ()] < RapDec(R).

Now choose smooth functions 7]19 such that 1/;9 is supported on 6, but ZZNJQ is1on a
small neighborhood of the support of ¥y. A bit more precisely, we would like 1;9:1 on

a (135 R~/?)-neighborhood of the support of 1. We now define

fo.0:=o(m) (W)

Because of the rapid decay of n,/, one has

1 fo.0 = *(Wo.f)|| L < RapDec(R)| f| 2.

Therefore, we see that

F=3" fou+Err, where |[Exrf~ < RapDec(R)]| /] 1.
6,v

Terms of the form RapDec(R)||f]|L2 are negligibly small in terms of all of our esti-
mates. These rapidly decaying errors will occur from time to time during our arguments.

The functions fy, are approximately orthogonal. For any set T of pairs (,v), we

‘ Z f@,v

(0,0)€T
The decomposition f=>", . fo is useful in this problem, because E fy ,, is localized

have
2

~ > fowlie- (3.1)

L2 (6,v)€T

in space. For each (,v), there is a corresponding tube Ty ,, where Efp, is essentially

supported. Let wg denote the center of 8. We define Ty ,, by

To:={(z',2,) € Br: |2’ +2x,wp+v| < RY/?H}, (3.2)
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LEMMA 3.1. If x€Bg\Tp,,, then
|Efo.(x)| <RapDec(R)| f| 2

We sketch the proof by stationary phase. We note that (e7*“fy,) has Fourier

transform essentially supported in Bpi/2+s/2. Therefore, we have
. 5 .
max e fo,o| S RODE Avigg e |

Moreover, taking derivatives, we see that

m;ix |8£ (6_ivwf0,v)‘ § (R1/2+6/2)kR(n—1)6/2 AVge |e—ivwf9’v

Let 79 be a smooth bump which is equal to 1 on #. Since # has diameter R~/2, we
can estimate the derivatives |0%ns| <R*/2. Now we write Efp ,(z) as
Efa,v ($) _ / neei(z’w+mw,|w|2+vw) .e—ivwaW. (33)

We let ¥(w):=2'w+x,|w|? —vw. We note that
0,V =2’ +22,,w+v.

If xe Bg\Tp,,, then |2’ +22,wp +v|=|0, ¥ (wp)| >R, We know that |z,|<R,

and so, for any wef, we have |2z,w—2x,wy| SRY2. Therefore, for any weé,
0, ¥ (w)| = RY2H9.
By applying integration by parts to (3.3) many times, we see that
|Efo,0(x)| <RapDec(R)|| fo,ll 22

as desired.
The tube Tj , is a cylinder of length R and radius ~RY2+5 Tt points in the direction
G(wp), where G(w) is the unit vector given by

(—2&)1, ceey —2wn_1, 1)
|(—2w1, ceey —2wn_1, 1)| '

Gw)=

For each we B" ™1, we also define a frequency ¢(w). Based on the formula for Ef,

the frequency £(w) is given by

E(w) = (Wi, ooy Wn1, |W]?).
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We let £(0) denote the image of 6 under &:
£(0) :={(wi, .o, wn_1, |w?) :web}.

In a distributional sense, the Fourier transform of Efy , is supported in £(6). Also,
if nr denotes a smooth bump on Bp (of height 1), then the Fourier transform of ngpE fy ,,
is essentially supported in Ng-1(£(6)).

We introduce a little notation. If T, is any set of pairs (6, v), then we say that f is

concentrated on wave packets from T, if

f= > fou+RapDec(R)||f e

(0,v)€To

Also, for any f, and for any set T,, we define

foz: Z f@,v-

(6,v)€T

3.1. Orthogonality

For any fixed x,, Ef restricted to R"~!x{z,} can be described as an inverse Fourier

transform:

Ef(z1, ., @n_1,Tn)= (eix”'l“’lzf(w))v(xl, ey Tp—1).
Applying Plancherel’s theorem, we get

IEfllL2@n—1 s gzny) = I fll L2 (3.4)

We record a couple of simple corollaries of this statement.

LEMMA 3.2. We have

IEfl L2(Br) S RY?(| £l 2

R
/ |Ef\2</ </ |Ef2d:z:’>dxn<2R|f||iz. 0
Br ~R\JBn-1(R)

LEMMA 3.3. Suppose that f is concentrated on a set of wave packets T and that,
for every (0,v)€T, Tp,N(R" 1 x{z,})CB" 1 (20,7)x{xn}. Then,

Proof.

IEfllL2(Bm1 (z0.) x {2 }) = [ 1|2 +RapDec(R)| | 2. (3-5)
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LEMMA 3.4. Suppose that f is concentrated on a set of wave packets T and that,
for every (8,v)€T, we have Ty ,NB(z,r)#D for some radius r>RY2%0  Then,

||EfH%2(B(z,lOT)) NTHfH%?- (3.6)

Proof. For each x,, in the range z, —r<x, <z,+r, and for each (0, v)€T, the inter-

section Ty ,NR" ! x {z,,} is contained in B(z,57). By the last lemma, we see that

IEflL2(B(z 5r)nrn =1 x {2 }) = || f]| L2 +RapDec(R) | f]| L2-

Applying Fubini’s theorem, we get the desired bound. O

4. Properties of the broad “norms” BL};A

We recall the definition of the k-broad “norm” BL? 4~ Although BL% 4 is not literally a
norm, it obeys a version of the triangle inequality and a version of Holder’s inequality.
These nice algebraic features helped to motivate this particular definition.

Let B"~! be a disjoint union of (approximate) balls 7 of radius K ~* . For each 7, we
define G(7) to be the image of 7 under the direction map G. If w; is the center of 7, then
G(1) is essentially a ball of radius K ! around G(w,) in S"~1. If VCR" is a subspace,
then we write Angle(G(7), V) for the smallest angle between any non-zero vectors veV
and v €G(7).

For any ball By of radius K? in Bg, we define pgs as in (1.12):

pef(Bre):= min (mTaX /B

where the minimum is over (k—1)-subspaces of R” and the maximum is over all 7 such
that Angle(G(7),V,)>K ! for all a.
We abbreviate this expression as

pwef(Bg2):= min (max/
B

Vi,...,Va\r¢V,

B1I7).

K2

B117).

K2

We remark that it is convenient to allow A=0. If A=0, then we simply have

,uEf(BKz):maX/ |Ef-|P.
T Bpo

If UCBp is a finite union of balls Bz, then we define ||Ef|grr ) by
1BS 10y = S ms(Bre) (41)
Bp2CU

The k-broad “norm” obeys a weak version of the triangle inequality.
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LeEMMA 4.1. Suppose that f=g+h and suppose that A=A+ A, where A and A;

are non-negative integers. Then,

1EfllBLy ) SIEgllBLy , ) +HIERIBLY |, @©)-

Proof. We expand

EflP_, = min max/ Ef P .
187 Iy o ZUVV( e [, 1EAP)

BK2

Now, for each ball Bi2CU, we have
min (max/ |EfT|p) < min (max(/ |EgT|p+/ |Eh7|p>)
Vi Va\réVa /B, Vi Va\réVa \JB,., B2

< min max / |Eg.|?
Vi,...Va, T¢Ve JB

1<a<A, K2
+ min < max / |Eh7p>.
VA1+1 ..... VA T¢Va BK2
Ai1+1<a<A
Summing over all B2 CU, we get
P P P
||EfH]3L§€"A(U) N ”EQHBL?M(U)+HEh||BL§7A2(U)' U

The reason for which we need a large value of A in Theorem 1.5 is that we will need
to use this triangle inequality many times. If A=1, BLi,1 does not obey a good triangle
inequality. But if we start with A being a large constant, we may use Lemma 4.1 many
times. In effect, BLﬁ, 4 behaves like a norm, as long as we only use the triangle inequality
Oc(1) times in our argument, and as long as we choose A=A(¢) large enough.

BLY , also obeys a version of (a corollary of) Holder’s inequality.

LEMMA 4.2. Suppose that 1<p, p1,p2<00 and 0<ay, as<1 obey a;+as=1 and
1 1 1
— :a1—+a2—.
b n b2

Also, suppose that A=A1+ As. Then,

1Eflmug yon <IESIgp, o) VBT, o)

Proof. The left-hand side is

1/p
( E min max/ |Epr) .
Vi,..VatgV, By

By2CU
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Applying the regular Holder inequality to the inner integral, this expression is

a1p/p1 azp/p2\1/p
< 1 p1 P2 .
<(,3, v, mx( [, 1mme) () )

By2CU
We can bring the maximum over 7 inside, so the last expression is

a1p/p1 azp/p2\1/p
( Z min <max/ |EfT|p1> (max/ |Ef-r|p2> ) .
Biacu b VANTEVa S By #Ve /B

Now we cannot bring the minimum inside the inner parentheses. But we can split
Vi, Vg into Vi, ..., Va, and Va,41,..., Va. If we weaken the first condition 7¢V; ... Vy
to 7¢Vq,...,Va,, and if we weaken the second condition 7¢ V7, ..., V4 to 7¢Va, 11, ..., Va,

K2

N

K2

then we see that the last expression is bounded by

a1p/p1
< min  max Ef |
= < Z (\/17,,.VA1 T¢Va /B B >

2
BKQ cU 1<a<Ar K
azp/(p2)\1/p
x( min max / |EfT|p2> > .
Vai+1,---Va T¢V, Byo
A1 +1<a<A

We now apply Holder’s inequality to the initial sum over Bg2CU, and we get

a1 /p1
< min  max Ef P
= ( Z Vl,...VA1 TEV, /; ‘ fT' >

Bg2CU 1<a< A
sz /p2
|Ef‘r|p2)

X ( Z min max /
BKQCUVA1+17...VA TEV, B
. [e) «
- ”Efl Biz,lAl(U)HEf“BiZQAz(U). D

K2

2
Aij+1<aga K

5. Tools from algebraic geometry
5.1. Transverse complete intersections

Over the course of our argument, we will work not just with algebraic hypersurfaces, but
with algebraic varieties of all dimensions. We write Z(P, ..., P,_,,) for the set of common
zeros of the polynomials Py, ..., P,_,,. Throughout the paper, we will work with a nice
class of varieties called transverse complete intersections. The variety Z (P, ..., Py—y,) is

a transverse complete intersection if

VP (2) A AV Py () 0 for all 2 € Z(Py, ..., Pam). (5.1)
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By the implicit function theorem, a transverse complete intersection Z(Py, ..., Pp_p,)
is a smooth m-dimensional manifold. Because of Sard’s theorem, there are lots of trans-

verse complete intersections. Here is a lemma making this precise.

LEMMA 5.1. If P is a polynomial on R™, then, for almost every co€R, Z(P+cy) is
a transverse complete intersection.

More generally, suppose that Z(Pi, ..., Pn_m) is a transverse complete intersection
and that P is another polynomial. Then, for almost every co€R, Z(Py, ..., Ph—m, P+co)

s a transverse complete intersection.

Proof. We begin with the first case. We know that P:R"™ —R is a smooth function,
and so by Sard’s theorem, almost every y€R is a regular value for P. But if —c¢p is a
regular value for P, then VP(x)#0 whenever P(z)+co=0.

The general case is similar. We know that Z=Z(Py,..., P,_,) is a smooth m-
dimensional manifold, and P:Z—R is a smooth function. By Sard’s theorem, almost
every y€R is a regular value of the map P: Z—R. If z€Z and P(z) is a regular value,
then dP,#0, where dP:T,Z—Tp)R. In terms of VP(x), this means that

VP (2)A..AV Py _pn () AV P(2) #£0.

So, if —cp is a regular value for P: Z—R, then Z(P,..., Pp_m, P+co) is a transverse

complete intersection. O

5.2. Polynomial partitioning

Polynomial partitioning is a key tool in our arguments. Our presentation here is a
minor variation on the polynomial partitioning result from [GK]. We begin by stating a

partitioning result from [G].

THEOREM 5.2. (|G, Theorem 1.4]) Suppose that W >0 is a (non-zero) L' function
on R™. Then, for each D, there a non-zero polynomial P of degree at most D such
that R"\ Z(P) is a union of ~D" disjoint open sets O;, and the integrals [, W are all

J

equal.

We want to use this result, but we need to upgrade it in a minor way. Because we
want all the varieties that appear in our argument to be transverse complete intersections,
we need to be able to perturb P a little bit. In order to understand this issue, we need
to review some of the proof of Theorem 5.2. The proof is based on the polynomial
ham-sandwich theorem, which is due to Stone and Tukey [ST]. Here is a version of the

theorem which is convenient for our purposes:
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THEOREM 5.3. (Polynomial ham-sandwich theorem; cf. [G, Corollary 1.2]) Suppose
that W1, ..., Wx are L'-functions on R™. Then, there ezists a non-zero polynomial P of
degree <C,N'/™ such that, for each W,

/ Wj :/ Wj.
{P>0} {P<0}

Using the polynomial ham-sandwich theorem iteratively, we get the following parti-

tioning result.

COROLLARY 5.4. If W >0 is a (non-zero) L'-function on R™, then there is a se-
quence of polynomials Q1,Q2, ..., with Deg(Q); <21/ satisfying the following equidistri-
bution property.

If S21, and if o1,...,0s€{—1,1} are any sign conditions, then

/ w=2"%[ W
Sign(Qs) =os for 1<s< S R~

We can slightly perturb each Qs by adding a small generic constant: @S:Qs—l—cs,
where c;€R. Using this small perturbation, we will be able to arrange that all the
varieties that appear in our arguments are transverse complete intersections. As long as
the constants ¢, are sufficiently small, we still have the following slightly weaker version

of the equidistribution result: if S>1, and if 01, ...,06€{—1,1} are any sign conditions,

then
2*3*1/ Wg/ w275t [
n Sign(@s)zas for 1<s<S R

This gives the following polynomial partitioning result, which is designed to allow

small perturbations.

THEOREM 5.5. Suppose that W =0 is a (non-zero) L' function on R™. Then, for
any degree D, the following holds.

There is a sequence of polynomials Q1, ..., Qg with the following properties. We have
> .Deg Qs <D and 2°~D". Let

S S
P= H Qs = H(Qs+CS)7
s=1 s=1
where c,€R. Let O; be the open sets given by the sign conditions of @S. There are

25~ D" cells O; and R™\Z(P)=U; 0.

If the constants cs are sufficiently small, then, for every O;,

/ W~D™" w.
O; R™
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For a generic choice of the constants c;, Lemma 5.1 guarantees that Z (ég) is a
transverse complete intersection for each s. This implies that Z(P) is a finite union of
transverse complete intersections. Similarly, if Z(P;, ..., P,—,) is a transverse complete
intersection, then, for a generic choice of the constants c¢s, Z(Pi, ..., Ph—m, Qs) will also

be a transverse complete intersection for each s.

5.3. Controlling the tangent plane of a variety

Suppose that Z is an m-dimensional transverse complete intersection. We know that
Z is a smooth m-dimensional manifold. We will consider some subsets of Z, where
the tangent plane obeys certain conditions. We will see that these subsets are in fact

subvarieties of Z, and that, in generic cases, they are transverse complete intersections.

Let Z=Z (P, ..., Ph_m) be a transverse complete intersection. Let we A™R™. Define
Z. by

Zy ={x€Z: VP ()AN... NN Pp_p(x) A =0}. (5.2)

We note that, since w is an m-vector, VP (£)A... AV Py _p, () Aw€eA™R™, which we
identify with R. Let g,,:=V P ()A...AV Py_, () Aw, which is a polynomial with degree
at most Deg Py +...+Deg P,,_,,,. The set Z,, is the algebraic variety Z(Py, ..., Pn—m, Gw)-

LEMMA 5.6. For almost every weA™R"™, Z,,=Z(Py, ..., Ph—m, guw) is a smooth com-

plete intersection.

The proof uses some ideas from differential topology. The book [GP] is a good
reference. In particular, the proof here is closely based on the proof of the transversality
theorem in [GP, Chapter 2.3].

Proof. Define a smooth function g: Z x A""R"™ =R by

g(x,w):=VP (2)\.. \V Py () Aw.

The function g is smooth, and it has no critical points, because for any z€Z,
VP (z)A...AV P, _, () #0, and the restriction of g to {x} x A™R™ is a non-zero lin-
ear function with no critical points. Therefore, g=1(0) is a smooth submanifold M in
Z x A"™R"™ (of codimension 1).
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Consider the smooth map 7: M —A™R" given by 7(z, w)=w. We first note that
7N w)=2Z, x {w}. We will use 7 in order to study Z,,. We claim that Z,, is a transverse
complete intersection whenever w is a regular value of 7. By Sard’s theorem, almost every
weA™R™ is a regular value of 7, and so this claim implies our conclusion. From now on,
suppose that w is a regular value of 7.

Now Z,=Z(P1,..., Ph—m, gw)- To see that it is a complete intersection, we have to
check that, for each x€Z,,,

VP (2)A...AV Py (2) AV gy () £0.

This is equivalent to saying that Vg, (z)-v#£0 for some vector v€T,Z. This, in turn, is
equivalent to saying that x is a regular point for the map g,: Z—R. (We remark that
saying that x is a regular point for the map g,,: Z—R is a stronger condition than just
saying that x is a regular point for the map g,: R*—R.)

So, we have to check that, if (z,w)€M and w is a regular value for 7, then z is a
regular point for g,: Z—R. Since w is a regular value of m, we know that (z,w) is a
regular point for 7. So, it suffices to check that whenever (z,w) is a regular point for 7,
x is a regular point for g,,: Z—R.

Recall that (z,w)€M is a regular point for m: M —A™R"™ if and only if

dm:TigwyM — AR™
is surjective. To understand this condition better, we compute the tangent space T{ ., M.
We know that T, .\ M CT{(zw)(Z x A"R")=T,Z x A™R", and more precisely
Tiw,wyM ={(v,w") € T, Zx A" R"™ : dg(s ) (v, w") = 0}.

But dg(zw) (v, w")=(dgw)z(v) +V P (z)A...AV P, (x) Aw'. Therefore,

TiwuyM ={(v,w") € T, ZXA"R" : (dgw) 2 (v) + V Py (2)A... AV Py () A" = 0}.

If x is not a regular point of dg,,, then (dg).(v)=0, and so

TiouyM ={(v,w") € T, ZXA"R" : VP (2)A... AV Py _pp (z) Aw' =0}

But, in this case, the projection dm: T\, ., M —A™R" is not surjective. (The projection

dr is just dn(v,w’)=w’.) So, if (z,w) is a regular point of 7, then z is a regular point of

G as desired. O

If WCA™R™ is a large finite set, then on each connected component of Z\J,,c s Zuw»
the tangent plane T'Z is constrained in a small region of the Grassmannian. More pre-
cisely, for any small parameter >0, we can choose a finite set W CA™R"™ so that, for any
two points z1 and z in the same component of Z\U,cy Zw, Angle(Ty, Z,T:, Z) < f3.
We can also choose W generically so that each Z,, is a transverse complete intersection

of dimension m—1.
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5.4. Controlling transverse intersections between a tube and a variety

Suppose that T' is a cylinder of radius r with central axis £. Suppose that Z™ CR" is a

transverse complete intersection. Define Z~, by
Zso ={z€Z:Angle(T,Z, () > a}.

LEMMA 5.7. Suppose that Z=Z (P, ..., P,_n) is a transverse complete intersection
and that the polynomials P; have degree at most D. Let T be a tube of radius r as above.

Then, for any a>0, Z<,NT is contained in a union of <D™ balls of radius Sra~1.
The main tool in the proof is the following version of the Bezout theorem.

THEOREM 5.8. (Cf. [CKW, Theorem 5.2] for a short proof) Let Z=Z(Q1,...,Qn)
be a transverse complete intersection in R™. Then, Z is finite and the cardinality of Z
is at most [[;_; Deg Q;.

Using this Bezout theorem, we now prove Lemma 5.7.

Proof. The proof is by induction on m. When m=0, Theorem 5.8 guarantees that
Z consists of at most D" points, and the conclusion follows.

Now, we turn to the inductive step. Without loss of generality, we may assume that
{ is the x,-axis. We let T, denote the r-neighborhood of the x,-axis.

Next, we do some scaling to reduce to a special case. By rescaling, we may reduce
to the case r=1. Next, by scaling in the x,-coordinate only, we may reduce to the case
a=1. So, we have to show that Z~1N7T7 is contained in <D™ balls of radius <1.

Let Z,, be defined as in the last subsection. We choose <1 values of w in general

position, so that on each connected component of Z\|J,, Z,, the tangent plane of Z

L
100"

complete intersection of dimension m—1. Also, Deg g, <D. We may apply our inductive

varies by an angle at most Since w is generic, Z,=Z (P, ..., Pu—m, gw) is a transverse

assumption to Z,,, using radius r=20 and a:%. We see that Z,, ~1/2N T3 is covered by
<D™ balls of radius <1.
1\16}(t7 we claim that Z>1/QmeCZw,>1/2. If IGZ>1/2QZU,, then
i 1
uen%fz Angle(v, £) > 5.

But 17,2, CT,Z. Therefore, infy,er, 7, Angle(v,ﬁ)>%7 and so € Z,, »1/2 as claimed.

Since the total number of w is <1, we have that

U(Z>1/2ﬂZwﬁT20) is contained in < D™ balls B; of radius < 1.

w



110 L. GUTH

If Bj=B(zj,r;), then we write 10B; for B(x;,10r;). The union (J,;10B; is a set
of <D™ balls of radius <1 which covers part of Z51N7y. We still have to cover the
remaining part

Z>1NTi\| J10B;.
J

Consider a point z in this remaining part. We may assume that the radius of each
Bj is at least 2, and so we know that the distance from z to Uj Bj is at least 10. Let A be
the connected component of ZNB(z,10) containing z. We claim that A is disjoint from
all Z,,. Indeed, suppose that v was a curve in A starting at z and intersecting (J,, Zuw
for the first time at 2’€ A. Along the curve ~, the tangent plane of TZ is constant up
to angle ﬁ. Since v starts at z€Z-1, we have yC Zs1 /2. Also, yCB(2,10)CTyy. We
conclude that z'€ Z~1 /2N Z,NTho, and so 2’ €J; B;. But B(z,10) is disjoint from (J; B;.
This contradiction proves the claim. Since A is connected and disjoint from all Z,,, the
tangent plane of Z is constant on A up to angle ﬁ.

Therefore, A is a small perturbation of an m-plane that cuts across 13 in a quan-
titatively transverse way. Let II be a random (n—m)-plane containing the x,-axis.
With probability =1, IINANT; is non-empty. By the Bezout theorem (Theorem 5.8),
[IINZ|< D" ™ for generic II. Therefore, there can be at most <D™~ ™ disjoint sets A
of this type. So, we see that the remaining part of Z-1N7} is contained in <D™

additional balls of radius <1. O

6. Transverse equidistribution estimates

In this section we prove a transverse equidistribution estimate. To set up the statement,
we first define what it means for a wave packet to be tangent to a transverse complete

intersection Z.

Definition 6.1. Suppose that Z=Z(Py, ..., P,_) is a transverse complete intersec-
tion. We say that Ty, is R‘l/g""sm-tangent to Z in Bpg if

Ty C Npgijovom (Z)NBr (6.1)
and, for any x€Ty, and z€ ZNBr with |z —2| SRY2+9m | we have
Angle(G(0),T,Z) < R™Y/2H0m, (6.2)
We define

Ty :={(0,v):Tp, is R~/?>TOm_tangent to Z in Bgr}.
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We say that f is concentrated in wave packets from Ty if

> lfoullze <RapDec(R)| fl|2-
(0,0)¢Tz

(In this definition d,, >0 is a small constant. The estimates we prove in this section hold
for any 0,, >0. We will choose d,, in §8.)

Suppose that B is a ball of radius RY/2%m in R™. Define
Tg z :Z{(Q,’U)EthTgwﬁB#@}. (6.3)

The main result of this section is the following transverse equidistribution estimate.
LEMMA 6.2. Let B be a ball of radius R0~ in BRCR", and let o< R. Suppose
that gszmeTaz gow- Then,

R/2 —(n—m)
/ Bl 5RO (S2) [ g4 RapDec(R) ol
BON 1 /246 (2) 0 2B

We build up to the proof via several smaller lemmas. We begin with a version of
the Heisenberg uncertainty principle, saying that a function which is concentrated in a

small ball in frequency space cannot concentrate too much in physical space.

LEMMA 6.3. Suppose that G:R™—C is a function, and that G is supported in a ball
B(&,r) of radius . Then, for any ball B(xg, o) of radius o<r—1,

B
[ sl fiae
B(zo,0) |BT*1|

Proof. Let 1 be a smooth bump function with |n|~1 on B(zg, ¢) and rapidly decaying
outside of it. Then, [)(§):~|B,| on B,-1 and rapidly decaying outside of it. Therefore,

[ 162 s [mer= [1ascr
BQ
For £<o™!, we bound
17 G(E)] < 17| [|G][ 2 ~|Bg|/B Gl

For [¢| far from B,-1, the rapid decay of 1 takes over and gives a stronger bound.
All together, we have

2
. _ 5 ~ B
Jicesis (s [ 161) <izdiz [iep= g flee. o
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Next, we need a more local version of this lemma.

LEMMA 6.4. Suppose that G:R™—=C is a function, and that G is supported in a ball
B(&,7) of radius r. Then, for any ball B(zo, 0) with o<r~!, we have the inequality

Byl
2<‘7@ ) )
~/B(aco,g)|G ~ |Br*1| /WB(wo,T 1)|G‘ )

where Wp(y, r-1) 18 a weight function which is equal to 1 on B(zo,7™ 1) and rapidly
decaying outside of it.
Proof. Let 1 be a function with the support of ©)C B, and with [p|~1 on B(zg,r" 1)

and rapidly decaying outside B(zg,r~!). Our weight function will be W =|1)|2.
Let H=1-G. Note that His supported in B(&p, 2r). Applying Lemma 6.3 to H, we

see that
[ rersf 2 < 1Bl / 2 = Bel [ wie. 0
B(z0,0) B(x0,0) | By—1] |B,-1

Suppose that B is a ball of radius R'/2+% in R”, and V is a subspace of R”. Define
Tpy:={(0,v):Tp,NB+#2 and Angle(G(9),V) < R™/*Tom}, (6.4)

Let 2B denote the ball with the same center as B and twice the radius.
If 922(9 0)ET v 90,05 then we will show that Fg is equidistributed in B along

directions transverse to V. More precisely, we have the following lemma.

LEMMA 6.5. If VCR"™ is a subspace, then there is a subspace V'CR™ with the
following properties:
(1) DimV+4+DimV'=n.

(2) V' is transverse to V in the sense that, for any unit vectors veV and v'€V’,
Angle(v,v") > 1.

(3) Suppose that

g= Z 96,v-

(0,v)€TB,v

If 11 is a plane parallel to V' and xo€IINB, then, for any o< R,

2 O(s R1/2 bV 2 2
Bl oo (S2) [ (g s RapDec(m) gl (65)
n2

(R o
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Proof. To prove the lemma, we locate the appropriate space V', and then we appeal
to Lemma 6.4. Finding the subspace V' and proving transversality involves relating the
direction G(#) and the frequency £(6).

Recall that G(w)=Go(w)/|Go(w)|, where

Go(w) = (—2w1, .., —2wp—1, 1).

Let R*~!CR" be the (21, ..., 2,,_1)-plane. Examining the formula for Gy and G, we
see that, for every we€B" ™1, Angle(G(w),R" 1) >c >0.
We define

angle

Angle(V,R™ ') := max Angle(v, R"™1).

veV
If Angle(V,R"!) is smaller than icangle, then G(w) is never close to V for any
w€eB"~L. In this case, Tp y is empty and there is nothing to prove. Therefore, we may

assume from now on that
Angle(V,R" 1) > 1. (6.6)

We let Q(V) be the set of weR"™! such that G(w)eV. We note that G(w)eV
if and only if Go(w)€V, and so Q(V)={weR"1:Gy(w)eV}. As Gy is an affine map,
Q(V) is an affine subspace of R"~!. Since V is transverse to R"~1, and since Gp(w)=
(—2wy, ..., —2wy_1, 1), we see that Dim Q(V)=dim V —1. Moreover, as V is quantitatively

transverse to R"~1, we also see that for we B!,
Dist(w, Q(V)) < Angle(G(w), V).

Next we define Z(V') to be Q(V)xRCR", an affine subspace of R™. Since {(w)=

(W1 -y Wn_1, |w|?), we see that
Dist(¢(w), Z(V)) =Dist(w, Q(V)).

The spaces Q(V)CR" ! and Z(V) CR" are affine subspaces. We let V/=Z(V)*, the
subspace perpendicular to Z(V). The dimension of Z(V)=Dim Q(V)+1=Dim V, and so
Dim V+Dim V’=n as desired.

We let 7y be the orthogonal projection from R™ to V/=Z(V)+. Combining our

estimates above, we see that
7y ({w € B" ' Angle(G(w), V) < a}) Ca ball of radius < . (6.7)

Next we turn to the third claim in the lemma. Let II be an (n—m)-plane parallel
to V' passing through B. We know that (Egg )" is supported in £(#). The restriction
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to II of Egg ., has Fourier transform supported in 7y (£(0)). Now, for all (6,v)€Tp v,
Angle(G(6), V)SR™Y/249m . By equation (6.7), all the my(£(6)) lie in a single ball of
radius SR™1Y/2+9m | Therefore, if we view Eg as a function G:II—C, its Fourier transform

is supported in a ball of radius <R™Y/2%9=  We apply Lemma 6.4, giving

) R1/276m —Dim V’ )
Eg|* < <> / Wa(z.. R1/2-5m) | G 6.8
/H o 1B 5 (G | Watay orso Bo (68)

o B2\ Y 2
SR 7z Wg|Eg|". (6.9)
0 I

Finally, EQ:Z(GME%‘V Ego. Each Egg, is essentially supported on Tp,. Since
Ty, is transverse to II and intersects B, we see that if x€II\2B, then
|Eg(z)| <RapDec(R)||g] L2
So,
[ walegl < [ |EgP+RapDec(R)g]-
1] 1n2B

Finally, we want to see that V and V' are quantitatively transverse. We define

Angle(V,V'):= min Angle(v, w).
ve
weV’

SUBLEMMA 6.6. We have
Angle(V,R" 1) = Angle(V, V).

In particular, in the non-vacuous case that Angle(V,R"~1)>1, we see that V and

V' are quantitatively transverse.

Proof. The intersection VNGo(R" 1) is an affine space parallel to Q(V). Let veV
be a unit vector perpendicular to Q(V). Let vy,...,v,,—1 be an orthonormal basis of
Q(V). Then vy, ..., vy,—1,v is an orthonormal basis of V.

Let e,, be the nth coordinate unit vector. We see that vy, ..., v _1, €, is an orthonor-
mal basis for Z(V). We also see that V'==(V)LCcR"~! and V'=Q(V)LcR"~ 1.

Since vy, ..., Uy 1 CQ(V)CR™ L

Angle(V,R" 1) = Angle(v, R"1).

As v is perpendicular to (V), we see that the projection of v to R*~! actually lies
in Z(V)1t=V"’, and so
Angle(v, R"™1) = Angle(v, V).
But since v, ..., ;-1 are in Z(V'), we see that v is the vector in V' which makes the

smallest angle with Z(V)+=V", and so

Angle(v, V') = Angle(V, V). O
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This completes the proof of Lemma 6.5. O
Now we are ready to prove Lemma 6.2.

Proof. Since (0,v)€Tz, and Ty ,NB is non-empty, we know that, for any ze ZN2B,
Angle(T, Z, G(0)) < R™Y/2H0m,
Let V' be a subspace of lowest possible dimension so that, for all (6,v)€Tg z,
Angle(V, G(0)) < R™Y/2H0m,

Let V' be the subspace given by Lemma 6.5. We know that Dim V' +Dim V’'=n, and
we know that V’ is quantitatively transverse to V. By (6.8), we also know that, for any

plane II parallel to V”,

R1/2 —Dim V'’
/ pol s m0 (T0) [ g RapDec(R) gl (610
INB(zg,0!/2+5m) 0 n2B

We claim that for each z€ ZNB, T,Z is quantitatively transverse to V’. If this is

not the case, it means that there exists a point z€Z and a subspace W CT,Z with
Dim W >Dim Z—-DimV,
such that, for each non-zero weW,
Angle(w, V') <o(1).
Since V and V' are transverse, this angle condition guarantees that
Angle(w, V) 2 1.

Because of this angle condition, we can construct a linear map L: R™—V such that
L restricted to V is the identity, L restricted to W is zero, and |L|<1. Recall that for
each (0,v)€Tp z, Angle(G(6),V)<SR™/2+%  and so

IL(G(6))~G(9)] S R™H/2H0m,
On the other hand, we know that G(0) C Np-1/21s.. (T, Z)NB(1), and so L(G(6)) lies

in
L(N371/2+5m (TZZ)QB(l)) C NCR*1/2+5W (L(TZZ))
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This shows that, for all (0,v)€Tg z,
Angle(G(0), L(T.Z)) < R™Y/?H0m,
But, since L vanishes on W, L(T.Z) is a subspace of dimension at most
Dim Z—-Dim W < Dim V.

This contradicts our hypothesis that V' has minimal dimension. This finishes the proof
of our claim that for each 2€ ZN2B, T, Z is quantitatively transverse to V.
Suppose that IT is a plane parallel to V/ and intersecting B. Given the transversality

we just proved, it follows that
HﬂNQ1/2+5m (Z)OB C Ncgl/2+5m (HﬂZ)ﬁHﬂ2B
Note that IINZ is itself a transverse complete intersection of dimension
Dim V' +Dim Z —n.

Now, the set N ,1/2+5,, (IINZ)NIIN2B can be covered by

RO R1/2 Dim V'+Dim Z—n
ol/2

balls in TI of radius o'/?*%= (cf. [Won]). Applying (6.10) on each of these balls and
summing, we get the bound
R/2 —(n—m)
/ pal oo (B2 [ (g RapDec(m) ol
NN 1 /245, (Z)NB 0 1N2B
Finally, integrating over planes II parallel to V' (using Fubini’s theorem), we get the
desired bound:

R1/2\~(n—m)
/ pol oo (52) 7 [ g4 rapDee(Rlgle O
BON 1 /245, (2) [ 2B

7. Adjusting a wave packet decomposition to a smaller ball

Suppose that B(y, 0) C Bg for some radius g in the range R'/?<p<R, and we want to
decompose f into wave packets associated with the ball B(y, 9). How does the new wave
packet decomposition relate to the old wave packet decomposition?
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If the center y is not at the origin, then we introduce new coordinates
T=x—y.

We define
Yy (W) = =y1w1+ ...+ Yn—1wWn—1 +yn\w|2~

Then, we write
Ef(l') _ / 6i(a:1w1+...+:vn71wn71+:rnlez)f(w) _ / ei(ilwl+"'+i"’1w"’1+‘%"|w|2)eiwy(w)f(w).

For any function f, we use the notation

flwy=e"f(w).

In this notation, we now have

Ef(x) =Ef(2).

Next, we decompose f into wave packets adapted to the ball B,. We follow the
construction of wave packets in §3, except with the radius R replaced by p. We cover

1/2

B! with caps 6 of radius p~/2. We cover R"~! by finitely overlapping balls of radius

~ o192 centered at vectors o€ o1 +9/2Z7=1 And we decompose f as

f=>_ fs.5+RapDec(R)| f] 2,

0,

<

where fé  is supported in 6 and its Fourier transform is essentially supported in
B(, Q(1+5)/2).

For each (9~, D), Efé’ﬁ is essentially supported on a tube 155 of radius p'/219 and length o.
In the T coordinates, this tube is contained in B,, while in the original = coordinates,
this tube is contained in B(y, o).

How does the original wave packet decomposition f :Ze,u fo,u relate to the new
one? The first question we study is, if we expand fp, in wave packets at scale B,,
(fgﬂ,)wzzéj(fgﬂ,)aﬁ, then which (6, 7) can have a significant contribution? We answer
this question in Lemma 7.1. Before stating the lemma, we need a couple definitions.

For a given y and w we define

{}(wv y) = 6w¢y(w);
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and we compute

’E(Wa y) = 8&%(&1) = 8w(ylwl +~-~+yn—1wn—1 +yn|w|2)
= (yl +2w1Yn;y - yn—1+2wn—1yn) = y/+2ynw~

(Here we use the notation y'=(y1, ..., yn—1).) If we denotes the center of a cap 0, we also
write ©(6,y) for v(we,y).
Define

To.. :={(0,7): Dist(0,0) S o~ "/? and |v+0(6, y)—d| < RY?*H0/2}, (7.1)

LEMMA 7.1. The function (fo.)~ is concentrated in wave packets from ﬁ‘g}v. In

other words,

(for)"= D (fo0)},+RapDec(R)[|f] 2.

(0,5)€To .

Proof. Since fy , is supported in 6, the support of (fg )"~ is clearly contained in
U{é :Dist(6,0) < 0 V/?}.

The main point is to check that the Fourier transform of (fy,)™ is essentially sup-
ported in a ball around v+o(6, ) of radius <RY?+9/2, Let 19 be a bump function which
is 1 on # and decays to 0 outside of 20. Then,

(eiwy(w)fa,v)/\: (7796“% (w) . f@,v)A: (n@eiwy(w) )A* (fé,v)/\'

Now, (fg.,)" is rapidly decaying outside of B(v, R/?T9/2). On the other hand, a

stationary phase argument shows that (nge*¥(“)Y™ is rapidly decaying outside of
B((0,y), BV/2).

(To see this, it helps to note that on the support of ng, 0., lies in a ball around (6, y)
of radius <R'2.) O

Next, we explore the geometric features of a tube Tj ; with (9~, ﬂ)eﬁ“gw.

LEMMA 7.2. If (é,ﬁ)eﬁ‘gw, then the tube Ty ; obeys the following geometric esti-
mates:
HausDist (T} ;, Tp.,NB(y, 0)) < R'/*° (7.2)

and

Angle(G(0), G(0)) < o™ V/2. (7.3)

~



RESTRICTION ESTIMATES USING POLYNOMIAL PARTITIONING II 119

Proof. We recall the definition of Ty, from (3.2):
To.o:={(',x,) € Br: |2’ +2x,wp+v| < RY*H},
In the coordinates &, since z=2+y and y'+2y,we=5(6,y),
To.oNB(y, 0) = {(Z',&n) € By : |7 +2&nwe+0(0,y)+v| < R+ (7.4)
On the other hand,

Ty 5 =4{(3,2) € By : |&' +2%,w5+0| < 0"/*79}. (7.5)

,U

By the definiton of Tg,v, Dist(6,0) <o~ '/? and so |wg—wj|So~ /2. Since |,|<o,
|27, wp — 2Fnwy| S0'/2. By the definition of Ty, [v+0(6,y)—5|SRY?+9/2. Comparing
(7.4) and (7.5), we see that HausDist(Tp,,NB(y, 0), Tj ;) SRY/?™0, as desired.

Since Dist (6, ) <o~/ it follows that Angle(G(8), G(A)) <o~ Y/2. O

Many different (0, v) lead to essentially the same set 'F]fgﬁv. If Dist(01,62) <o~ /2, and
v +5(01,y) —va—0(0,y)| <RY2T9/2 then Ty, ,, and T, ,, are essentially the same. We
can organize the possible pairs (0, v) into equivalence classes in the following way. If 6 is

one of our caps of radius o~ /2, and we RY/219/277=1  then we define
Tj.,:={(0,v): Dist(0, 0) <o~ Y/? and |v+5(0,y)—w| S RY*H9/2), (7.6)

If (61,v1) and (62,v2) lie in the same set Tj ,, then 'ﬁ‘ghvl and Tgw,z are essentially the

same. They are both contained in (and essentially equal to)
ﬁ‘é,w :={(01,9) : Dist(A1,0) < o~ V? and |w—1o| < RY?9/2}, (7.7)

Now Lemma 7.1 gives the following corollary.

LEMMA 7.3. If g is concentrated in wave packets in Ty , then g is concentrated in

wave packets in 'f‘é w- In other words, if

9= >  gon+RapDec(R)gl|z2,
(0,0)€T4 ,,
then

9= 95,5+ RapDec(R)||g] L2
(6,9)€T; ,,
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We also note that the sets T, are essentially disjoint, and their union contains all
the possible pairs (6, v). Similarly, the sets ']Hfé » are essentially disjoint, and their union

contains all possible pairs (é, 0). With this in mind, we define

gé,w = Z 96,v- (78)

(Q,U)ETG"’“,

@Dow:= Y. Do (7.9)

(0,9)€T; ,,

For any g, we get a decomposition g=3 5 ., 95, obeying with

lgllFz ~ > 11901172 (7.10)
(6,w)

Similarly, for any g, we get a decomposition §=> ;. 95, With

131172 ~ > 115,172 (7.11)
(6,w)

By Lemma 7.2, for all the pairs (6, v) €Ty, the sets Ty »NB(y, o) are essentially the
same. We denote this intersection by T9~7wCB(y, 0). Tt is a tube of radius R'/? and
length p. The set Té,w can be described geometrically as the set of pairs (6, v) such that
Ty»NB(y, o) is essentially 15 15 and such that the direction of T}, obeys the inequality
Angle(G(0), G(0)) Se™*.

We will need to study the following situation. We have a function g which is concen-
trated on wave packets in Tz, and we want to study Fg on a smaller ball B(y, o) C Bg.
If we decompose g into wave packets associated with the ball B(y, ¢), what can we say
about the new wave packet decomposition?

First of all, we point out the wave decompositon of g at scale p is not necessarily
concentrated on wave packets that are tangent to Z on B(y, ). By Lemma 7.1, we do
know that g is concentrated on wave packets in U(e’v)eTz Tﬂfg’v. If (6,v)€Ty, then we
know that Ty, is tangent to Z on Bpr, which implies that

Ty,vNB(y; 0) C Npr/2tsm (Z2)NB(y; 0),
and that, for any x€Tp,,, and z€ ZNB(y, o) with |z —z| SR/2+0m,
Angle(G(0),T.Z) < R™Y/2H0m,
If now (é,f))eﬁ‘g)v, then (7.2) and (7.3) imply that

15 5 C Ngij2vsnm (Z)NB(y, 0),
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and that, for any €Ty ; and z€ ZNB(y, o) with |z — 2| SRY/2H0m,
Angle(G(9),T.2) < R™/240m 4 5= 1/2 L o= 1/240m

The angle condition is more than strong enough for Tj ; to be tangent to Z in
B(y, 0), but it is not true that T; ;C N 1/2+45., (Z)NB(y, 0). If Tj ; intersects

No/2t6m (Z)NB(y, 0),
then the angle condition guarantees that T4 1s contained in
N291/2+6m (Z)NB(y, o).
A Dbit more generally, if b is a vector with |b| <RY?t0m and if Téj intersects
N /245m (Z+b)NB(y, 0),

then T} ; is contained in
N291/2+5m (Z+b)mB(ya Q)a

and T} ; is tangent to Z+b in B;.
For any b€ Bri/2+s., , we define

Typs:={(6,0) :Tj; ; is tangent to Z+b in B;} and g, := Z 95 5-

So, we see that, if g is concentrated on wave packets in Tz, then g is concentrated
on wave packets in U‘blgRl/Hém ’f‘Zer. For any (0, 5)€U(9,v)e1rz 1~I‘97v, we saw above that
either (6,0)€T 214, or else T ; is disjoint from Nyi/21s,, (Z2)NB(y, ). Therefore, for
r=y+T€B(y,0),

|Egp(Z)] ~ XN /2450 (z4b)(2)Eg(z). (7.12)

To get finer information, it is helpful to decompose g as above as 9229”, w 96w
and to think about the wave packet decomposition of each piece (957 )~ on B(y, o). For
brevity, we let h=gg . We choose a ball B(zg, RY/?%9m) with z0€Ty, CB(y, o). For any
(0,v)€T5., TowNB(y, ) CTj

of length RY/2+0m

By Lemma 3.4, we have

and so T, intersects B(xo, R'Y/2+9m) in a tube segment

”hH%? ~ Ril/?iém ||Eh||2L2(B(zO,R1/2+6m))~ (7-13)
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Now we know that Eh(&)=FEh(i+y). Also, for z=y+Z€B(y, 0), we know by (7.12)
that
|Eh ()| ~ XN 1245, (2+8) (1) ER ().

Using Lemma 3.4 again, we have

||Bb||%2 ~ Ril/Qiém ||EhH%2(B($O,R1/2+5m)ﬂN@1/2+6m (Z+b))' (714)

These observations lead to a couple estimates about how ||h| 2 relates to ||R| 2.

LEMMA 7.4. Suppose that h is concentrated on wave packets in Ty, for some (é, w),

and x¢ is in the tube T . If we choose a set of vectors b€ Bri/2+s,, so that the sets
B(xy, RY/2+0m ) ﬂNgl/2+am (Z+Db)

are disjoint, then

> lIhwlze S lklze.
b

Finally, we come to transverse equidistribution estimates. Combining the transverse
equidistribution estimate in Lemma 6.2 with the considerations in this section, we get

the following estimates.

LEMMA 7.5. Suppose that h is concentrated on wave packets in Tz and also on wave

packets in Ty, for some (é,w). Then, for any b€ Brij21em, we have

B R1/2\~(n=m)
17172 < RO ( =75 1A][Z2-
ot/

Proof. We combine (7.14), Lemma 6.2, and (7.13) to get

7 12 —1/2—6m 2
[hollz2 ~ R / HEh”L2(B(IO7R1/2+6WI)mNgl/2+5m(Z+b))

1/2=6m pO(S RY/2\~mm) 2
SRVEOmR ("")(91/2> BRI L2 (B, m1/2+5m))
R/2 —(n—m)
~ ROWGm) <Q1/2) ||hH2L2~ 0

We can now combine the different (6, w) in order to get estimates for g.

LEMMA 7.6. If g is concentrated in wave packets in Ty, then, for any b,

) R1/2\~(n—m)
||gb|%2<Ro<am)(W) lgll3
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Proof. We first expand g=) 5, 95 .- The wave packets contributing significantly
to each g5 ,, are a subset of those contributing to g, and so each g5, is concentrated on

wave packets in T . For each 6 and w, Lemma 7.5 tells us that

e < goGa (BT
11096, )5 122 < 72 196,41l 72-
ot/

We know that the g5, are orthogonal, and so
lglzz~ > 195,072
6w
The operation fr> fb is a linear map, and so
gb = Z(gé,w):
6,w
We claim that this is also an orthogonal decomposition. By Lemma 7.3, (g5 )" is

concentrated on wave packets in 1~T9~ »- But then (gz )7 is also concentrated on wave
packets in 'ﬁ‘éw. The different sets T;

4. are disjoint, and so the functions (g; )y are

orthogonal, as claimed. Therefore

1301122 ~ > 195,05 [17-
b

Combining these estimates gives the desired conclusion. O

8. Proof of Theorem 1.5.
We now formulate the inductive estimate that proves Theorem 1.5.
PROPOSITION 8.1. For €>0, there are small constants
0<iIKih1K... K0 K Ke,

and a large constant A such that the following holds.
Let m be a dimension in the range 1<m<n and let R>1. Let Z=Z(Py,...,Ph_p)
be a transverse complete intersection, with Deg Pyj<Dyz. Suppose that f is concentrated

on wave packets from Ty. Then, for any 1<A<LA,

IEfllry ,(8r) < C(K,e,m, Dz) R R0 A-los &) pet1/2| ¢, (8.1)
for all
m-+k
2<p<p(k,m):=2——~ 8.2
p<p(k,m) A (8:2)
where
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When m=n, Proposition 8.1 gives Theorem 1.5. When m=n, we can take Z=R"
(and Dz=1). If we now choose A=A and p=p(k,n), then we compute feJr%:O, and
we get the inequality in Theorem 1.5.

We prove Proposition 8.1 by induction. We will do induction on the dimension m,
the radius R, and on A. We start by checking the base of the induction. When R is
small, we choose the constant C(K,e,m,Dy) sufficiently large and the result follows.
So, from now on, we may assume that R is very large compared to K, ¢, m and D .
To check the case A=1, we choose A large enough so that R‘S(log’a_logl):an, and the
inequality follows because ||Ef||BL£,1(BR) <|Br| If|lz2. The base of the induction on m

is m=k—1. In this case, since A>1, we have

”EfHBLﬁ’A(BR) <RapDec(R)||f||z2- (8.4)

This follows from the definition of BLi_’ 4- Recall that

HEfHZE);Li’A(BR) = Z MEf(BK2)7
BKQCBR

with

pef(Bre):= min (mgx /B IEfT”),
where the minimum is over (k—1)-subspaces of R™ and the maximum is over all 7 such
that Angle(G(7),V,)>K ! for all a.

Fix a ball B=Bg2>CNpi/216m (Z)NBg, and let V be the tangent space to Z at some
point z in the R'/?t9m_neighborhood of the ball Bg2. Notice that the dimension of V/
is m=k—1. If Ty, intersects Bg> and if (§,v)€Ty, then Angle(G(9),V)<SR™1/2+0m,
So, if 7 contains a 6 with (0,v)€Tz for some v, then Angle(G(7),V)<K~!. On the
other hand, if 7 does not contain such a 6, then ||| L2 <RapDec(R)|| f|| L2, because f is

K2

concentrated on wave packets tangent to Z. Therefore,

(s,

On the other hand, if Bg= CBpg is not contained in Ng1/24s,, (Z), then on Bg2 we have
|E f|<RapDec(R)|| f||r2. This proves (8.4), establishing the base case m=k—1.

For p=2, Proposition 8.1 follows quickly from the basic L? estimate in Lemma, 3.2:

|Efﬂ) < RapDec(R)|| |7

K2

1B 13z oy < S0 NEF R SRS -3 = RIS
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Next, we begin the inductive step. We assume that Proposition 8.1 holds if we

decrease the dimension m, the radius R, or the value of A. We define p to be

_{ﬁ(k,m), it m>k,
b= p(m,m)+0, if m=k.

We will check the main estimate (8.1) for this value of p. Once we check (8.1) for
this value of p, we can get the whole range in (8.2) by interpolation between 2 and our
value of p, using the Holder inequality for BL in Lemma 4.2.

There are two cases, depending on whether or not the mass of p is concentrated
into a small neighborhood of a lower-dimensional variety. We let D(e, D7) be a function
that we will define later. We say that we are in the algebraic case if there is a transverse
complete intersection Y'C Z™ of dimension [<m, defined using polynomials of degree
<D(e, Dgz), so that

pef(Ngi2ten (Y)NBR) 2 pef(Br)-

Otherwise, we say that we are in the non-algebraic case, or the cellular case.

8.1. The non-algebraic case

We begin with the non-algebraic case. In this case, we will use polynomial parti-
tioning. To set up the polynomial partitioning, we first locate a significant piece of
Npi/246m (Z)NBpr where the tangent space of Z is not changing too fast. We say that
a ball B(zg, R/?T9m)C Npi/2+4s,, (Z)NBp is regular if, on each connected component of
ZNB(xo, 10R1/2+5m), the tangent space T'Z is constant up to angle T%O' Let we A™R™.
Recall that Z,,CZ is defined in (5.2). For generic w, Z,,CY is a transverse complete in-
tersection of dimension m—1, defined using polynomials of degree <Dz. We can choose
a set of <1 values of w so that on each connected component of Z\J,, Z.,, the tangent

plane T'Z is constant up to angle Since we are in the non-algebraic case,

1
m.
1
pes (| Niogy/2+sn (Zw)NBr ) < oo (Br)-
Each ball B(zo, R1/2+5m)cNR1/2+5m (Z)NBr which does not intersect

U N10R1/2+5m (Zw)

is a regular ball. So, the regular balls contain most of the mass of u.

For each regular ball

B=DBpi/246,m C Nle/er«sm (Z)NBg,
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we pick a point z€ZNBpi/2+s, and we define Vp to be the m-plane 7,Z. For an m-
plane V, we define By to be the set of regular balls so that Angle(Vp, V)< ﬁ. By the
pigeonhole principle, we may choose a plane V such that

ﬂEf( U B)z/‘Ef(BR)'

BeBy

We define Ny CNpij216m (Z)NBg to be the union of the balls Be®By. We let p; be the
restriction of gy to N1, and we note that pi (N1)~ugs(Br).

We are now ready to do polynomial partitioning. We let Py: V—R denote a poly-
nomial defined on V. We let m:R"—V be the orthogonal projection. We now apply
polynomial partitioning (Theorem 5.5) to the push-forward measure m.uq on V, using
the degree D=D(e, Dz). Theorem 5.5 gives us a non-zero polynomial Py of degree at
most D such that V\Z(Py)=, Ov,j, the number of cells Oy,; is ~D™, and for each
cell, m 1 (Ov,j) is ~D ™™, 11 (V). Moreover, PV:Hj Qv,j, where each Qv ; has a little
freedom in the constant term, which we can use for transversality purposes.

We extend V to a polynomial P on R™ by setting P(z):=Py (7(z)). We note that
Z(P)=m"YZ(Py)). We define O;:=7"'Oy,;, and we note that R™\ Z(P)=U; O; and
that p1(O;)=mp1(Ov,j)~D ™" pu1(Ny). Similarly, we define Q;(x)=Qv,;(m(x)), so that
P=]] j Q;. Each @ is a polynomial of degree at most D on R", and we have a little
freedom in the constant term of each @);. By Lemma 5.1, we can guarantee that, for
each j, Y;=Z(P, ..., P, Q;) is a transverse complete intersection.

We define W:=Ng1/245 Z(P) and O;:=0;\W. As each tube Tp ,, has radius RY/2+9,
each tube T}, enters at most D of the cells O;. On the other hand, we claim that

WﬁNl C UN20R1/2+6m (}fj)
J

Here is the proof of the claim. Suppose that e WNN;. Since x€ Ny, x is in a regular
ball B=DB(zo, R*/?+%)€By. There is a point zp€ZNB with Angle(T%., Z, V)< 1&5. Let
Zp be the component of ZN10B containing this point zp. On Zp, the tangent plane
TZ makes a small angle with V. Let us use coordinates (v, w), where v€V and weV+.
Since the tangent plane of TZp makes a small angle with V. we have that Zp is the
graph of a function, w=h(v), where h has small Lipschitz constant <f5. Since z€W,
there must be a point (vg,wo)€ Z(P)NB(z, RY/?*1%). Since P(v, w)=Py (v), we see that
Py (v9)=0. Now the point (v, h(vg)) lies both in Z(P) and in Zp, and so it lies in Y;
for some j. Since (vg, h(vg))€ZpCB(xg, 10R/?T9m) and z€ B(xo, RY/?1t9), it follows
that x€ Nyggi/2+sm (Y;), as desired.
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Since we are in the non-algebraic case, p1(Nyggi/2+sm (Y;)) is negligible for each j,

and so p1 (W)=p1(WNN;) is negligible. Therefore, we have
p1(0%) ~ D™y (Ny) ~ m||Ef||BLp pny for the vast majority of j. (8.5)

Now, for each index j, we define a function f; which only includes the wave packets

that enter O}. More precisely, fj:Z(a,v)eTj fo,u, where
={(0,v):Tp,,NO; # }. (8.6)

Each function f; is also concentrated on wave packets in Tz. Moreover, there are
~D™ cells O; for which

1B ey ) S D™101(0}) S D™ g, (0) S D™ B Sy 1

On the other hand, we have good control on the L? norms of fj. Because each tube

Ty, enters <D cells O}, each pair (6,v) belongs to T; for <D values of j, and so

ZHfJIILwZ >

Jj (0,v)€T;

725D Z 10,0122 ~ DIIfIIZ-

In summary, there are ~D™ choices of j such that

1B ey (o S IE Sl (i (8.7)

I£0Z> S D IF 117 (8.8)

(For later reference, we also record here: for each j and each 6,

IfiollZa S D ol (8.9)

0'NOA£D
This inequality does not appear in the proof of Theorem 1.5, but it could be useful in
some later refinements.)

Using these estimates, we can now prove (8.1) by induction on the radius. To make

the computation clearer, we abbreviate

1

— O(K, e, m, Dy)R™ ROos A-log A) p—e+3

o (8.1) reduces to
IEfllBLy 4 (Br) < EllfIlL2-
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Since we assume that (8.1) holds on balls of radius R/2, it follows that it also holds

on balls of radius R up to a constant factor loss. So we can assume that

IEfillBLy  (Br) S CEIlfllL2 (8.10)
Now using (8.7) and (8.8), we get
BBy \(5a) S D™ INESi by (5 SDTEP £l S D™ DP2EP|| £

By our choice of p, p>2m/(m—1), and so the exponent of D is negative. If m>k,
the exponent is negative with pretty large absolute value; if m=k, then the exponent is
—d. If we choose D=D(e, D) sufficiently large, the power of D dominates the implicit
constant, and we get ||Ef||BL£YA(BR)gEHfHLz, which closes the induction in the non-

algebraic case.

8.2. The algebraic case

Next, we turn to the algebraic case. By definition, we know that there is a transverse
complete intersection Y of dimension I<m, defined using polynomials of degree <D=
D(e, Dz), such that

11 (Npga/asn (V) 2 i (Br). (8.11)

In the algebraic case, we subdivide B into smaller balls B; of radius p, chosen so
that
o' /F o = R/ H0m, (8.12)

For each j, we define fj:Z(e,v)eTj fo,0, where
Tj = {(9, U) :Tgﬂ,ﬂNRl/sz (Y)ﬂBJ 7£ @}.
On Ngij2+s, (Y)NB;, we have E f;=F f+RapDec(R)|| f||z2. Therefore,

1By oy S D IESi by s,y + RapDec(R) 7.
J

We further subdivide T; into tubes that are tangential to Y and tubes that are
transverse to Y. As in definition 6.1, we say that Ty , is tangent to Y in B; if

Tg,v QZBJ' C NRI/2+5m (Y)ﬁQBj = N91/2+5z (Y) QQBJ* (813)
and, for any x€Ty,,, and y€Y N2B; with |z —y| SRY/2Hom = ol/2+0,

Angle(G(6),TY,) <o~ V2, (8.14)
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We define the tangential wave packets by
T tang ={(0,v) € T; : Ty, is tangent to Y in B;}.
And we define the transverse wave packets by
Tj,trans = Tj \Tj,trans~

We define fjang=>(6,0)eT; ang f0:0 A0 fiorans =22 0,0)€T, vane fo.0* 5O

J,tang J

fj = fj,tang+fj,trans~

Therefore, we have
Z ||Ef] ”%Li,A(BJ’) 5 Z ||Efj,tangH]EJ;L£‘A/2(Bj) +Z ||Efj,trans||IE)3L£1A/2(B_7'). (8]‘5)
J J J

We will control the contribution of the tangential wave packets by induction on the
dimension m, and we will control the contribution of the transverse wave packets by

induction on the radius R.

8.3. The tangential subcase

Suppose first that the tangential wave packets dominate the right-hand side of (8.15). In
order to apply induction to £ f; tang on Bj, we redo the wave packet decomposition at a

scale appropriate to Bj, as in §7. For brevity, during this discussion, we let g= f; tang-

§=>_ §55+RapDec(R)| f] :-
6,5

Before applying induction, we need to check that this wave packet decomposition is
concentrated on pairs (é, 0) that are tangent to Y on Bj, in the sense of Definition 6.1;

in other words, on pairs (57 0) such that
Té’ﬁ C Ng1/2+5l (Y)ﬂBj (8.16)
and, for any 2€7j ; and y€YNB; with |z —y| Spt/2H0,
Angle(G(9),T,)Y) < o~ V/2+0, (8.17)

We know that g=f; tang is concentrated on wave packets (6, v) €T, tang, which obey
(8.13) and (8.14). These tell us that Ty ,NB; lies in the desired neighborhood of Y N B,
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and makes a good angle with T,,Y. For any (6,v), (fg.,)™ is concentrated on wave packets
(6,5)€Tg,v, by Lemma 7.1. For (9, 5)€Ty,,, (7.2) and (7.3) tell us that Tj ; lies in a small
neighborhood of Ty ,NB; and makes a small angle with Ty ,. So, if (6,v) €T, tang and
(é,f})e’i‘@v, then Tj ; obeys (8.16) and (8.17). We have now checked the hypotheses of
Proposition 8.1 for g with the variety ¥ on the ball B;, and so we may apply induction
on the dimension.

By induction on the dimension, we get the following inequality:

1EfjsangllBLy , ) = 1EdlleLy , ,(8,)

<C(K,e,1,D(e, Dy))g' o108 A=108(A/2) p=et1/2) | f1 2

for
I+k

2 <p<plk,l) =2
pspkl)i=2m0s

where

e=e(k,n, p)= % <;;> (n+k).

Since [ <m, we have p(k, m)<p(k,l), and so our value of p is in the range 2<p<p(k, 1)

and the bound above applies. The number of balls B; is <R Summing brutally

over the balls, we see that
IEfllBLy ,(Br) SROCIC(K e,1,D(e, Dy)) o= o8 AT18(A/2) pme 172 |
We note that the exponent —e—i—% may well be negative. Nevertheless,

0 +1/2 < ROG) p=e+1/2.

Also,
QJ(log A—log A/2) < Rﬁ(log A—log A/2) — R5R5(log A—log A).

Therefore, the last expression is
< RO(&;,)O(K, e,l, D(E, DZ))Rlst(logAflog(A/Q))Rfe+1/2Hf”LQ.
Since &; is much smaller than e, R(®) R < R™¢_ and the induction closes. (We have

to choose C(K,e,m,Dyz) larger than C(K,e,l,D(e,D)).) This finishes the discussion
of the tangential algebraic case.
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8.4. The transverse subcase

Suppose now that the transverse wave packets dominate (8.15). First, we note that

D M fsransllzz =D #45: (0,0) € Ty trans Hl fo,0 172
j 0,0

Next, we claim that, for each (6,v), #{j:(0,v) €T} trans } Se,p, 1. In the discussion,
we just abbreviate this as <1. This follows from Lemma 5.7, which controls the transverse
intersections between a tube and an algebraic variety. Let T be the cylinder with the
same center as Tj ; and with radius r=RY/2t0m = pl/240 and let a=p /2% Let ¢
denote the central axis of T" and recall that Y, is the set {yeY:Angle(T,Y,¢)>a}.
If (0,v) €T trans, then TNY5,N2B8; must be non-empty. However, Lemma 5.7 tells us
that TNY~, is contained in <CD} balls of radius <ra~'~p. Here, Y is defined by
polynomials of degree Dy <D(e, Dz)<1. Therefore, (6,v) €T trans for <1 values of j.
Plugging this into the last equation, we get

D W fjuansllZe SIFIZ-. (8.18)
i

Next, we would like to study E f;trans on each ball B;, by doing induction on the
radius. In order to do so, we redo the wave packet decomposition at a scale appropriate

to Bj, as in §7. For brevity, during this discussion, we let g=f; trans. We see that

P||1

95,5 +RapDec(R)| f| 2.

(0,5)€T 21
For each b, g, is concentrated in wave packets tangent to Z+0 in the ball B;, and so we

will be able to apply induction on the radius to study Eg,. By (7.12), if y; is the center
of B; and x=y;+%€Bj, then

1B (@) ~ XN 1215, (2+0) (@) Eg()]. (8.19)

We define f;irans,p 80 that (fjtranss)™ =0 (in other words, ijtrans,b:e*wy(“’)gb).

In this language, the last equation becomes

| E fransb (£)] ~ XN o5, (240) () E S trans (2)] (8.20)
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Next, we choose a set of vectors b€ Bri/2+s,,. The number of vectors b that we
choose is related to the geometry of Z. We cover Ngi/2+s,, (Z)NB; with disjoint balls of
radius RY/2+%= . We dyadically pigeonhole the volume of BNN,1/2+s,, (Z): for each s, we

consider
B, :={B(xo, RY/*"") C Np1/o15, (Z)NB; 1 | B(wo, RM* " )OAN prj24s, (Z)] ~2°}.

We select a value of s such that

1
1E S trans|[BLE , ,(Upen, BY R @HEfj,trans”BLZAM(BJ.).

Next, we prune T; rans & little: we include (8, v) only if Ty, intersects one of the
balls of %;. To avoid making the notation even heavier, we do not make a separate
notation for the pruned set. This pruning can only decrease || fj trans| L2, and it changes
||Efj,tranSHpBL£7A/2(Bj) by at most a factor of log R.

Now, we are ready to choose our set of translations {b}. We choose a random set
of |Bri/24s., | /2% vectors b€ Bpij2+s,, . For a typical ball B(xg, R/?9m)c B, the union
Uy Nyr/2+5, (Z+b) covers a definite fraction of the ball (in a random way). Therefore,
with high probability, we get

p p
||Efj,transHBLQ"A/Q(BJ) 5 ; ”Efj?transvb||BL27A/2(N01/2+5"1 (Z+b)NB;) (821)

On the other hand, a typical point of B(zg, R"/?*%") lies in <1 of the sets
Ngl/2+57n (Z+Db).

Using this geometric fact, we will show that

> 3sllZe SllgllZe- (8.22)
b

To see (8.22), we decompose g=) 5. 9., & in §7. If g; = is not negligible, then
Tj ,, must intersect one of the balls B(xg, RY/?T97)eB,. Since the sets

N91/2+5m (Zer)ﬂB(:Eo, R1/2+6"‘)
are essentially disjoint, Lemma 7.4 tells us that

> (95,05 172 S 195,117
b
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But, as we saw in the proof of Lemma 7.6,

= (95.)7

6,w

is an orthogonal decomposition, and g=> "5, 95, is an orthogonal decomposition, and

SO
Z 130172 ~ D (95,05 I1Z <Z 195,172 ~ 1911 Z2-
b,6,w
We now have all the estimates that we need in the transverse case, and we collect
them here.
1B ey | (52 <1ogRZb:\|Efj wans.b By | o,y (8.23)
J,
SFIl7e- (8.24)
3,b
By Lemma 7.6,
2 (6 RY/2\ ) 2
max || fj,rans |72 < R (Om) <Q1/2) || £ trans|| 72 (8.25)

(For later reference, we also record here: for each j, b and 6,

R1/2\~(n—m)
||fj trans b“Lz(g) ~ RO(6 ) (91/2> Hf||2L2(2§) (826)

This follows from Lemma 7.6. This inequality does not appear in the proof of Theo-
rem 1.5, but it could be useful in some later refinements.)

By induction on the radius, we know that

||Ef],trdns b”BLk A/Q(B ) S C(K g, m DZ) msgé(logA—log(A/Q))Q—e+1/2||ijtrans)b||L2

< C(K, e,m, DZ)RSQmsRé(log AilogA)Q78+1/2||fj,trans,b”L2-

Using these estimates, we can now prove (8.1) by induction on the radius.

”EfHBLp (BR %,4,2(Bj)

]717

< RO(‘”(C(K, e, m, DZ)QmeRé(log A—log(A/2))Q—e+1/2)p Z || £, erans,b][%2-
3,0
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Using (8.25) and (8.24),

(R1/2 >(nm)(10/21)

01/2 Hf||1£2

Hf',trans,bH 2513 (Om)
J L
7,b

Now, plugging in, we get

p
1B ey o

1F1Z--

R1/2\~(n—m)(p/2-1)
0!/? )

< RO((S"”)(C(K, e, m, DZ)QmsRé(log A—log A) Q—e+1/2)p (

At the exponent p=p(k, m),
1/2\— (n—m)(p/2—-1)
(Qe+1/2)p(R1//2 ) :(R76+1/2)p.
0

(If m=k, so that p=p(k, m)+4, then this is true up to a factor R°().) So, plugging in

our values of p and e, and multiplying out, we get

o
The constant C on the right-hand side depends on €, Dz and the dimension n. We
have to check that CROm)(R/p)~™*<1. Note that R/o=R?). We choose the §’s such
that §,, <&dm—1, and so (R/p)~™¢ dominates the other terms. Therefore, the induction

R - M O, _70 —€
||Ef||§,L£7A(BR)SORO(‘Smf)() (C(K,e,m, Dz)Rme R0 A-log A) pmetl/2yp| )b

closes in the transverse algebraic case also.
This finishes the proof of Theorem 1.5.

9. Going from k-broad estimates to regular estimates

The paper [BG] introduces a technique to go from multilinear estimates to regular LP
estimates. In this section, we follow this technique to go from k-broad estimates to

regular LP estimates.

PRrROPOSITION 9.1. Suppose that, for all K and €, the operator E obeys the k-broad
inequality:
IEflBLy ,(Br) S B[ fllLa- (9.1)
(Here the quantities k, A, p and q are fized, and the inequality holds for all R.)
If p<g<oo and p is in the range
ek <Yy
then E obeys
IEfllLe(Br) Se Bl La- (9.3)
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Remarks. The lower bound on p is important. The upper bound is less important,
and it could probably be improved.

Theorem 1.5 together with Proposition 9.1 implies Theorem 1.1. If n is even, we use
k=3n+1. By Theorem 1.5, we have IEfllere ,mr) SEENS L2 SEE|flLe for p slightly
bigger than

n+k
p =2—.
With our choice of k, we also have
2n—k+2
p(k,n)=2———
p(k,m) 2n—k

Applying Proposition 9.1, we get || Ef||1r(5,) SR fl| e for p slightly bigger than p(k, n).
Interpolating with the trivial L> bound gives this estimate for all p>p(k,n). Finally,
applying e-removal ([T1]) gives Theorem 1.1. If n is odd, we use k=%(n+1). The
argument is the same (but in this case, p(k,n)>2(2n—k+2)/(2n—k)).

Proof. By hypothesis, we have an inequality of the form

> min max/ |Ef. [P < C(K,e)RP||f|Ib,. (9.4)
B2

Vi,...,.Va 1€V,
Br2CBr ! #Va

We recall that here V7, ..., V4 are (k—1)-planes, and we write 7¢V,, as an abbreviation
for Angle(G(7),V,)>K 1.

For each Bg=, we fix a choice of Vi, ..., V4 achieving the minimum above. Then, we

/ ) Ef7|p+g /|

The first term is the “broad” part, and it can be controlled by the k-broad estimate.

can write
P
|EfPP S KW féavX/B (9.5)

> Ef

TEV,

K2 K2
We handle the second term, the “narrow” part, by a decoupling-type argument. We work
with Bz so that we can cleanly apply the decoupling theorem from [Bo4]. (The paper

[BG] contains a different but closely related argument.)

THEOREM 9.2. ([Bod]) Let g:R™—C be such that g is supported in the K 2-
neighborhood of the truncated paraboloid. Divide this neighborhood into slabs T with m—1
long directions of length K= and one short direction of length K=2. Write g=Y__g-,
where g =x-g. Then, on any ball of radius K2, for 2<p<2m/(m—1),

1/2
s (S ) 0.6

where Wg, , 1s a weight measure, approzimately the volume measure on By and rapidly

decaying.
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Applying this decoupling estimate with m=k—1, we get the following lemma.
LEMMA 9.3. We have

([ [ser (fwnierr]")"

TEV,
Proof. On Bz, we use coordinates (u, v), where v is parallel to V,, and w is perpen-

p\1/p
Jram(s

TEV,

K2

dicular to V,. We write B,, g2 for a ball of radius K 2 in the v coordinates and B, k> for
a ball of radius K2 in the v coordinates. If we restrict Ff, to the (k—1)-plane {u} x RF~1
(parallel to V,), then its Fourier transform is supported in the K ~2-neighborhood of a
cap 7' in the K ~2-neighborhood of a paraboloid. By Theorem 9.2, we get

1/2
9
ST O S LTATRIT

LP({u}xB, g2) TEV,

Ef.
TEV,

Using Fubini’s and Minkowski’s theorems, we then get

1/2
S B K (L 1B o) =

TEV, TEV,

LP(B%KQ XBU,K2)

The number of 7€V, is <K*¥~2. Applying Hélder’s inequality, we see that

| |z Er

<s KO g (k=2)(p/2-1) Z /WBK2 |Ef_’_‘p. (9.7)
TEV,
At this point, we have gotten as much as we can from the knowledge that 7€V,

TEV,

‘P
K2

and we relax this estimate to
p
[ | B ssrort2em 0 [ e (9.8)
B

TEV, =
Next, we sum this inequality over all a=1,..., A and over all Bg2CBgr. We let
W:ZBchBR Wg,.,. We see that

>y

B,2CBgra=1"Bxk2

K2

> Bl

TEV,

P
§K5K<k*2><i’/2*1>Z/W|EfT|P. (9.9)
We note that W <1 on Bor and W<RapDec(R) outside Bag. Therefore, we get

> [ |z

By2CBRra=1 K2'reV,

p
SKOKE2@R=DN" [ |Ef, [P+ RapDec(R)| f[},.

Bar

T

(9.10)
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Combining this estimate for the narrow part with our estimate for the broad part,

we have

/ EfP < C(K, &) RP||f [}, + CKOK =202 / EfP. (9.11)
Br —JB

2R

With this inequality in hand, we will prove (9.3) by induction on the radius, where
we use the induction assumption in order to handle the contribution of the f; terms.

The inequality we wish to prove is
[ 1B <C@RAIAIE. (912)
Br

By induction on the radius, we may assume that (9.12) holds for radii less than %R.
We use this induction and parabolic rescaling to handle the contribution of each f.
On the ball 7 we introduce new coordinates. Let w, be the center of 7, and recall

that the radius of 7 is K. Then, we introduce a new coordinate we€ B"~! by
v=K(w-w;). (9.13)
We rewrite the phase in these coordinates:
T1W1F o F Ty 1Wn 1 FTn|wn|? =Fen(z) 5101 + ...+ Ty 1001+ 0|02,
where Fen(z) denotes a function of x only,
T = K_l(xj—l—QwT,jxn) for1<j<n—1 and &,=K 2z,.

Here, w;; denotes the jth coordinate of w,. Note that the linear transformation
x> sends Bp into Bogpg-1 and has Jacobian ~K (1),
We define

j;(@)::j}(w)::j}(f(ﬁlﬁ—%wTL

so that
|Efr(x)|= K~ " V|Ef()].

By induction on the radius, we may assume that (9.12) holds for f. on a ball of
radius CRK 1

/B Ef.[P <T()RFK | |2,

CRK—1
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By change of variables, we have

/ B fr P S KD R / Ef, [P
Bor

Bopk—1

_ RY\*® T N
e ) KO,

= 5(5)RP6K(n+1)*(n71)P*P€K(nfl)p/q ||f7- ||€q ]

Plugging this bound into (9.11), we get

/| By

<C(K,e)RP||f|P, +C@(g)RpeK(k—@(p/2—1)+(n+1)—(n—l)p—p8+6K(n—1)p/q Z [FA

(9.14)

There are K™~ different 7C B"~!. Since p<q, we may apply Holder’s inequality to
see that

p/q
Z - lhe < <Z ||f7’||%q> K=D(0-p/q) _ ||f||€qK(’n*1)(lfp/q)'

Plugging this into the last inequality, we see that the dependence on ¢ drops out, and we
are left with

[ iese
Br (9.15)
< C(K7 E)Rpst”piq —i—Cé(E)RpEK(k_Q)(p/Z_1)+(n+1)_(n_l)p+(n_1)_p5+6Hf”i,,.

We can close the induction as long as the exponent of K is negative. (First we choose
K large enough so that the second term is bounded by 1C/(¢)RF<| f||7,. Then, we choose
C(e) sufficiently large so that the first term is also bounded by $C(e)RP?||f||7,.) Given

e>0, we can choose §<e. So the induction closes as long as
(k—2)(3p—1)+(n+1)—(n—1)p+(n—1) <O0.

This is equivalent with the lower bound for p in our hypothesis (9.2):

2n—k—+2

<p. O
2n—k p
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Appendix A. Keeping track of parameters

We have several small parameters. In this appendix, we try to provide a reference to help
the reader keep track of the parameters. We list all the parameters, how they compare
to each other, and where they appear in the argument.

We begin with the small parameters. For each £>0, there is a sequence of small
parameters

0Ly 1 Ky 20K ... Kh KK e.

In this sequence, each parameter is far smaller than the next. For instance, we will
use that §,,<ed,,_1.

The parameter J appears in the wave packet decomposition. The tubes T}, in the
wave packet decomposition have thickness R'/2%9. The parameter §,, appears in the
m-dimensional case of the main inductive estimate (Proposition 8.1): in this estimate,
we suppose that f :Z(m fo,v is concentrated on wave packets that are R~1/24%m_tangent
to Z on the ball Bg.

Another geometric parameter that appears is the radius p. In the transverse alge-
braic case, we decompose Br into smaller balls B;. If we are working on tubes that
cluster in the neighborhood of an m-dimensional variety Z, and are transverse to an

[-dimensional variety Y, then the radius of each B, is ¢ given by
0l/2 0 — R1/2+6m

The quotient R/p has size R?0) | which dominates RO(m),

Then, there are positive parameters K and A. We have
1< AKK.

We need A=A(e) sufficiently large to run the proof of Theorem 1.5, and the broad
inequality is most useful when K is much larger than A.

Given ¢, we then fix the small parameters § and the larger parameters A and K.
Then, we consider R—o0. In the statement of Theorem 1.5, the constant depends on ¢
and on K. By choosing this constant large enough, the theorem holds trivially unless R

is very large compared to all these fixed parameters.

Appendix B. Further directions
B.1. Honest k-linear estimates

Our main result (Theorem 1.5) is a weak version of the k-linear restriction estimate from

Conjecture 1.4. For some purposes, we have seen that Theorem 1.5 is a good substitute
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for a k-linear restriction estimate, but there are surely other situations where an honest
k-linear estimate is better. When I tried to prove Conjecture 1.4 using this method, I
ran into the following problem. There are k different functions E f; to consider. It may
happen that for some of these £ functions, the wave packets of E'f; are tangent to a
variety Z, and for others of these k functions, the wave packets of Ef; are transverse to
the variety Z. I did not find a good way to deal with this scenario. The k-broad norm,
BL% 4, is designed to get around this situation.

B.2. Kakeya-type estimates for low degree varieties

We now return to the extension operator for the paraboloid. Theorem 1.5 gives essentially

sharp broad LP estimates of the form

IEflBLy \(Br) S BNl L2 (B.1)

We have seen that this estimate holds if and only if p>p(k,n). What if we consider other

norms on the right-hand side? For some ¢ larger than 2, can we prove an estimate

IEfllere ,5r) S B S La, (B.2)

for some p<p(k,n)?

In the introduction, we mentioned some sharp examples for Theorem 1.5. The first
question to ask ourselves is whether an inequality of the form (B.2) may hold for these
examples. In the examples we considered, the wave packets E fy, concentrate in the
R/2-neighborhood of a low degree variety Z. Let us consider the set of caps 6 that can

appear in such an example. Define ©(Z) as
O(Z):={0:Ty,, C Npi/2+s(Z) for some v}.

In such an example, the function f must be supported in Uee@( 2) 6. If the volume of
this union is much less than 1, then, for ¢>2, ||f||z« will be much bigger than || f||zz,
and so our special class of examples will obey an inequality of the form (B.2).

In fact, if we had good estimates for |©(Z)|, then I believe we could input them
into the proof of Theorem 1.5 to get some further estimates of the form (B.2), roughly
following the argument in [G].

If Z is an m-dimensional plane, then it is easy to check that |©(Z)|~(R/?)™1,
and so |Q(Z)|~(R'/?)™=1(RY?)=(»=1)_ Tt seems reasonable to conjecture that a similar

bound holds for any m-dimensional variety Z of small degree.
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Conjecture B.1. If Z is an m-dimensional variety in R™ of degree at most D, then
©(2)| < C(n, D,e)(RVZ)m =12, (B.3)

Conjecture B.1 is a very special case of the Kakeya conjecture. One variant of the

Kakeya conjecture goes as follows.

Conjecture B.2. (Kakeya conjecture) Suppose that X CB™(1). Suppose that T; CX

are tubes of length 1 and radius §, pointing in §-separated directions. Then

_e Vol(X)
number of tubes < C(g)d Vol(tube)”

(I have not seen this exact version of the Kakeya conjecture in print before, but it
is straightforward to check that the maximal function version of the Kakeya conjecture
implies Conjecture B.2, which implies the Minkowski dimension version of the Kakeya
conjecture.) Now Conjecture B.1 is just the special case of Conjecture B.2 where the set
X is the d-neighborhood of a low-degree algebraic variety.

Conjecture B.1 also came up in ongoing joint work with Josh Zahl on the Kakeya
problem in R%. T think it is a basic issue that comes up in trying to apply polynomial

methods to the restriction problem or to the Kakeya problem.

References
[Bel] BEJENARU, I., The optimal trilinear restriction estimate for a class of hypersurfaces
with curvature. Adv. Math., 307 (2017), 1151-1183.
[Be2] — Optimal multilinear restriction estimates for a class of surfaces with curvature.

Preprint, 2016. arXiv:1606.02634 [math.CA].
[BCT] BENNETT, J., CARBERY, A. & Ta0, T., On the multilinear restriction and Kakeya
conjectures. Acta Math., 196 (2006), 261-302.

[Bol] BOURGAIN, J., Besicovitch type maximal operators and applications to Fourier analy-
sis. Geom. Funct. Anal., 1 (1991), 147-187.

[Bod] — Moment inequalities for trigonometric polynomials with spectrum in curved hyper-
surfaces. Israel J. Math., 193 (2013), 441-458.

[BD] BOURGAIN, J. & DEMETER, C., The proof of the [? decoupling conjecture. Ann. of

Math., 182 (2015), 351-389.

[BG] BourGaln, J. & GuTH, L., Bounds on oscillatory integral operators based on multi-
linear estimates. Geom. Funct. Anal., 21 (2011), 1239-1295.

[CKW] CHEN, X., KAYAL, N. & WIGDERSON, A., Partial derivatives in arithmetic complexity
and beyond. Found. Trends Theor. Comput. Sci., 6 (2010), 1-138.


http://arxiv.org/abs/1606.02634

142

[GP]
[G]
[GHI]
[GK]
(H]
[L]
[OW]

[S1]

[ST]
[T1]
[T2]
[TVV]

(Wi
[Wol3]

[Won)]

L. GUTH

GUILLEMIN, V. & POLLACK, A., Differential Topology. AMS Chelsea Publishing, Prov-
idence, RI, 2010.

GUTH, L., A restriction estimate using polynomial partitioning. J. Amer. Math. Soc.,
29 (2016), 371-413.

GUTH, L., HICKMAN, J. & ILioPOULOU, M., Sharp estimates for oscillatory integral op-
erators via polynomial partitioning. Preprint, 2017. arXiv:1710.10349 [math.CA].

GuTH, L. & KaTz, N. H., On the Erdés distinct distances problem in the plane. Ann.
of Math., 181 (2015), 155-190.

HORMANDER, L., Oscillatory integrals and multipliers on FLP. Ark. Mat., 11 (1973),
1-11.

LEE, S., Linear and bilinear estimates for oscillatory integral operators related to re-
striction to hypersurfaces. J. Funct. Anal., 241 (2006), 56-98.

Ou, Y. & WANG, H., A cone restriction estimate using polynomial partitioning.
Preprint, 2017. arXiv:1704.05485 [math.CA].

STEIN, E. M., Some problems in harmonic analysis, in Harmonic Analysis in Euclidean
Spaces (Williamstown, MA, 1978), Part 1, Proc. Sympos. Pure Math., pp. XXXV,
3-20. Amer. Math. Soc., Providence, RI, 1979.

STONE, A.H. & TUKEY, J. W., Generalized “sandwich” theorems. Duke Math. J., 9
(1942), 356-3509.

Tao, T., The Bochner—Riesz conjecture implies the restriction conjecture. Duke Math.
J., 96 (1999), 363-375.

— A sharp bilinear restrictions estimate for paraboloids. Geom. Funct. Anal., 13
(2003), 1359-1384.

Tao, T., VARGAS, A. & VEGA, L., A bilinear approach to the restriction and Kakeya
conjectures. J. Amer. Math. Soc., 11 (1998), 967-1000.

WISEWELL, L., Kakeya sets of curves. Geom. Funct. Anal., 15 (2005), 1319-1362.

WoLFF, T., A sharp bilinear cone restriction estimate. Ann. of Math., 153 (2001),
661-698.

WONGKEW, R., Volumes of tubular neighbourhoods of real algebraic varieties. Pacific
J. Math., 159 (1993), 177-184.

LARRY GUTH

Massachusetts Institute of Technology
Department of Mathematics

77 Massachusetts Avenue

Cambridge, MA 02139-4307

U.S.A.

lguth@math.mit-edu

Received November 6, 2017
Received in revised form April 11, 2018


http://arxiv.org/abs/1710.10349
http://arxiv.org/abs/1704.05485
mailto:Larry Guth <lguth@math.mit-edu>

	1 Introduction
	1.1 Related work
	1.2 k-linear estimates and k-broad estimates
	1.3 Examples
	1.4 A direction for further improvement
	Acknowledgements.

	2 Sketch of the proof
	2.1 Studying wave packets tangent to a variety
	2.2 Outline of the paper

	3 Basic setup with wave packets
	3.1 Orthogonality

	4 Properties of the broad ``norms'' BL_{k,A}^p
	5 Tools from algebraic geometry
	5.1 Transverse complete intersections
	5.2 Polynomial partitioning
	5.3 Controlling the tangent plane of a variety
	5.4 Controlling transverse intersections between a tube and a variety

	6 Transverse equidistribution estimates
	7 Adjusting a wave packet decomposition to a smaller ball
	8 Proof of Theorem 1.5. 
	8.1 The non-algebraic case
	8.2 The algebraic case
	8.3 The tangential subcase
	8.4 The transverse subcase

	9 Going from k-broad estimates to regular estimates
	Appendix A. Keeping track of parameters
	Appendix B. Further directions
	B.1 Honest k-linear estimates
	B.2 Kakeya-type estimates for low degree varieties

	References

