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1. Introduction

Inequalities for polynomials have a rich history and numerous applications in different

branches of mathematics, in particular in approximation theory (see, for example, the

books [3], [5] and [15], as well as the extensive references therein). The two most classical

results are the Bernstein inequality [2]

|P ′n(x)|6 n√
1−x2

‖Pn‖[−1,1], x∈ (−1, 1), (1.1)

and the Markov inequality [14]

‖P ′n‖[−1,1] 6n2‖Pn‖[−1,1] (1.2)

for estimating the derivative of polynomials Pn of degree at most n in terms of their

supremum norm ‖Pn‖[−1,1]. In (1.1) the order of the right-hand side is n, and the

estimate can be used at inner points of [−1, 1]. In (1.2) the growth of the right-hand side

is n2, which is much larger, but (1.2) can also be used close to the endpoints ±1, and

it gives a global estimate. We shall use the terminology “Bernstein-type inequality” for

estimating the derivative away from endpoints with a factor of order n, and “Markov-type

inequality” for a global estimate on the derivative with a factor of order n2.

The Bernstein and Markov inequalities have been generalized and improved in sev-

eral directions over the last century; see the extensive books [3] and [15]. See also [6] and

the references therein for various improvements. For rational functions sharp Bernstein-

type inequalities have been given for circles [4] and for compact subsets of the real line

and circles; see [4], [7], [13]. We are unaware of a corresponding Markov-type estimate.

General (but not sharp) estimates on the derivative of rational functions can also be

found in [19] and [20].

The aim of this paper is to give the sharp form of the Bernstein and Markov in-

equalities for rational functions on smooth Jordan curves and arcs. We shall be primarily

interested in the asymptotically best possible estimates and in the structure of the con-

stants on the right-hand side. As we shall see, from this point of view there is a huge
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difference between Jordan curves and Jordan arcs. All the results are formulated in

terms of the normal derivatives of certain Green’s functions with poles at the poles of

the rational functions in question. When all the poles are at infinity, we recapture the

corresponding results for polynomials that have been proven in the last decade.

We shall use basic notions of potential theory; for the necessary background we refer

to the books [1], [18], [21] and [24].

2. Results

We shall work with Jordan curves and Jordan arcs on the plane. Recall that a Jordan

curve is a homeomorphic image of a circle, while a Jordan arc is a homeomorphic image

of a segment. We say that the Jordan arc Γ is C2 smooth if it has a parametrization γ(t),

t∈[−1, 1], which is twice continuously differentiable and γ′(t) 6=0 for t∈[−1, 1]. Similarly

we speak of C2 smoothness of a Jordan curve, with the only difference that for a Jordan

curve the parameter domain is the unit circle.

If Γ is a Jordan curve, then we think it counterclockwise oriented. The complement
	C\Γ has two connected components; we denote the bounded component by G− and the

unbounded one by G+. At a point z∈Γ we denote the two normals to Γ by n±=n±(z),

with the agreement that n− points towards G−. So, as we move on Γ according to its

orientation, n− is the left and n+ is the right normal. In a similar fashion, if Γ is a Jordan

arc, then we take an orientation of Γ and let n− (resp. n+) denote the left (resp. right)

normal to Γ with respect to this orientation.

Let R be a rational function. We say that R has total degree n if the sum of the

order of its poles (including the possible pole at ∞) is n. We shall often use summations∑
a, where a runs through the poles of R, with the agreement that in such sums a pole

a appears as many times as its order.

In this paper we determine the asymptotically sharp analogues of the Bernstein and

Markov inequalities on Jordan curves and arcs Γ for rational functions. Note, however,

that even in the simplest case Γ=[−1, 1] there is no Bernstein- or Markov-type inequality

just in terms of the degree of the rational function. Indeed, if M>0, then

R2(z) =
1

1+Mz2

is at most 1 in absolute value on [−1, 1], but |R′2(1/
√
M )|= 1

2

√
M , which can be arbitrary

large if M is large. Therefore, to get Bernstein–Markov-type inequalities in the classical

sense we should limit the poles of R to lie far from Γ. In this paper we assume that the

poles of the rational functions lie in a closed set Z⊂	C\Γ which we fix in advance. If

Z={∞}, then R has to be a polynomial.
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In what follows, we denote the supremum norm on Γ by ‖f‖Γ=supz∈Γ |f(z)|, and

Green’s function of a domain G with pole at a∈G by gG(z, a).

Our first result is a Bernstein-type inequality on Jordan curves.

Theorem 2.1. Let Γ be a C2 smooth Jordan curve on the plane, and let Rn be a

rational function of total degree n such that its poles lie in the fixed closed set Z⊂	C\Γ.

If z0∈Γ, then

|R′n(z0)|6 (1+o(1))‖Rn‖Γ max

( ∑
a∈Z∩G+

∂gG+
(z0, a)

∂n+

,
∑

a∈Z∩G−

∂gG−(z0, a)

∂n−

)
, (2.1)

where the summations are for the poles of Rn, and where o(1) denotes a quantity that

tends to zero uniformly in Rn as n!∞. Furthermore, this estimate holds uniformly in

z0∈Γ.

The normal derivative ∂gG±(z0, a)/∂n± is 2π times the density of the harmonic

measure of a in the domain G±, where the density is taken with respect to the arc

measure on Γ. Thus, the right-hand side in (2.1) is easy to formulate in terms of harmonic

measures, as well.

Corollary 2.2. If Γ is as in Theorem 2.1 and Pn is a polynomial of degree at

most n, then for z0∈Γ we have

|P ′n(z0)|6 (1+o(1))n‖Pn‖Γ
∂gG+(z0,∞)

∂n+

. (2.2)

This is [16, Theorem 1.3]. The estimate (2.2) is asymptotically the best possible

(see below), and on the right ∂gG+
(z0,∞)/∂n+ is 2π times the density of the equilibrium

measure of Γ with respect to the arc measure on Γ. Therefore, the corollary shows an

explicit relation between the Bernstein factor at a given point and the harmonic density

at the same point.

If Rn has order n+o(n) and we take the sum on the right of (2.1) only on some

of its n poles, then (2.1) still holds (i.e. o(n) poles do not have to be accounted for so

long, as all the poles lie in Z), because the right-hand side is of order n, in view of

Proposition 3.10 below. Now, in this sense, Theorem 2.1 is sharp.

Theorem 2.3. Let Γ be as in Theorem 2.1 and let Z⊂	C\Γ be a closed set such

that Z∩G± 6=∅. If {a1,n, ..., an,n}, n=1, 2, ... , is an array of points from Z and z0∈Γ is

a point on Γ, then there are non-zero rational functions Rn of degree n+o(n) such that

all of their poles lie in Z, a1,n, ..., an,n are among the poles of Rn and

|R′n(z0)|> (1−o(1))‖Rn‖Γ max

( ∑
aj,n∈G+

∂gG+
(z0, aj,n)

∂n+

,
∑

aj,n∈G−

∂gG−(z0, aj,n)

∂n−

)
. (2.3)
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In this theorem, if a point a∈Z appears k times in {a1,n, ..., an,n}, then the under-

standing is that, at a, the rational function Rn has a pole of order k. Note that, as it

has just been mentioned, (2.3) can be written as a complete analogue of (2.1):

|R′n(z0)|> (1−o(1))‖Rn‖Γ max

( ∑
a∈Z∩G+

∂gG+(z0, a)

∂n+

,
∑

a∈Z∩G−

∂gG−(z0, a)

∂n−

)
,

where the summation is for the poles of Rn.

Next, we consider the Bernstein-type inequality for rational functions on a Jordan

arc.

Theorem 2.4. Let Γ be a C2 smooth Jordan arc on the plane, and let Rn be a

rational function of total degree n such that its poles lie in the fixed closed set Z⊂	C\Γ.

If z0∈Γ is different from the endpoints of Γ, then

|R′n(z0)|6 (1+o(1))‖Rn‖Γ max

(∑
a∈Z

∂g
�C\Γ(z0, a)

∂n+

,
∑
a∈Z

∂g
�C\Γ(z0, a)

∂n−

)
, (2.4)

where the summations are for the poles of Rn, and where o(1) denotes a quantity that

tends to 0 uniformly in Rn as n!∞. Furthermore, (2.4) holds uniformly in z0∈J for

any closed subarc J of Γ that does not contain either of the endpoints of Γ.

Corollary 2.5. If Γ is as in Theorem 2.4 and Pn is a polynomial of degree at

most n, then for z0∈Γ, which is different from the endpoints of Γ, we have

|P ′n(z0)|6 (1+o(1))n‖Pn‖Γ max

(
∂g

�C\Γ(z0,∞)

∂n+

,
∂g

�C\Γ(z0,∞)

∂n−

)
. (2.5)

This was proven in [11] for analytic Γ and in [23] for C2 smooth Γ. More generally,

if a1, ..., am are finitely many fixed points outside Γ and

Rn(z) =Pn0,0(z)+

m∑
i=1

Pni,i

(
1

z−ai

)
, n :=n0+...+nm, (2.6)

where Pni,i are polynomials of degree at most ni, then, as n=n0+...+nm!∞,

|R′n(z0)|6 (1+o(1))‖Rn‖Γ max

( m∑
i=0

ni
∂g

�C\Γ(z0, ai)

∂n+

,

m∑
i=0

ni
∂g

�C\Γ(z0, ai)

∂n−

)
, (2.7)

where a0=∞.

Theorem 2.4 is sharp again regarding the Bernstein factor on the right.
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Theorem 2.6. Let Γ be as in Theorem 2.4 and let Z⊂	C\Γ be a non-empty closed

set. If {a1,n, ..., an,n}n=1,2,... is an arbitrary array of points from Z and z0∈Γ is any

point on Γ different from the endpoints of Γ, then there are non-zero rational functions

Rn of degree n+o(n) such that all of their poles lie in Z, a1,n, ..., an,n are among the

poles of Rn and

|R′n(z0)|> (1−o(1))‖Rn‖Γ max

( n∑
j=1

∂g
�C\Γ(z0, aj,n)

∂n+

,

n∑
j=1

∂g
�C\Γ(z0, aj,n)

∂n−

)
. (2.8)

Now we consider the Markov-type inequality on a C2 Jordan arc Γ for rational

functions of the form (2.6). Let A and B be the two endpoints of Γ. We need the

quantity

Ωa(A) = lim
z!A
z∈Γ

√
|z−A|

∂g
�C\Γ(z, a)

∂n±(z)
. (2.9)

It will turn out that this limit exists and it is the same if we use in it the left or the right

normal derivative (i.e. it is indifferent if we use n+ or n− in the definition). We define

Ωa(B) similarly. With these, we have the following result.

Theorem 2.7. Let Γ be a C2 smooth Jordan arc on the plane, and let Rn be a

rational function of total degree n of the form (2.6) with fixed a0, a1, ..., am. Then

‖R′n‖Γ 6 (1+o(1))‖Rn‖Γ2 max

( m∑
i=0

niΩai(A),

m∑
i=0

niΩai(B)

)2
, (2.10)

where o(1) tends to 0 uniformly in Rn as n!∞.

Theorem 2.7 is again the best possible, but we shall not state that, as we will have

a more general result in Theorem 2.8.

Actually, there is a separate Markov-type inequality around both endpoints A and B.

Indeed, let U be a closed neighborhood of A that does not contain B. Then

‖R′n‖Γ∩U 6 (1+o(1))‖Rn‖Γ2

( m∑
i=0

niΩai(A)

)2
, (2.11)

and this is sharp. Now (2.10) is clearly a consequence of this and its analogue for the

endpoint B. Note that the discussion below will show that the right-hand side in (2.10)

is of size ∼n2, while on any closed Jordan subarc of Γ that does not contain A or B the

derivative R′n is O(n).

Let us also mention that in these theorems in general the o(1) term in the 1+o(1)

factors on the right cannot be omitted. Indeed, consider for example Corollary 2.2. It
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is easy to construct a C2 Jordan curve for which the normal derivative on the right of

(2.2) is small, so with P1(z)=z the inequality in (2.2) fails if we write 0 instead of o(1).

It is also interesting to consider higher-order derivatives, though we can do a com-

plete analysis only for rational functions of the form (2.6). For them, the inequalities

(2.1) and (2.4) can be simply iterated. For example, if Γ is a Jordan arc, then under the

assumptions of Theorem 2.4 we have, for any fixed k=1, 2, ... ,

|R(k)
n (z0)|6 (1+o(1))‖Rn‖Γ max

( m∑
i=0

ni
∂g

�C\Γ(z0, ai)

∂n+

,

m∑
i=0

ni
∂g

�C\Γ(z0, ai)

∂n−

)k
(2.12)

uniformly in z0∈J , where J is any closed subarc of Γ that does not contain the endpoints

of Γ. It can also be proven that this inequality is sharp for every k and every z0∈Γ in

the sense given in Theorems 2.3 and 2.6.

The situation is different for the Markov inequality (2.10), because if we iterate it,

then we do not obtain the sharp inequality for the norm of the kth derivative (just like

the iteration of the classical A. A. Markov inequality does not give the sharp V. A. Markov

inequality for higher-order derivatives of polynomials). Indeed, the sharp form is given

in the following theorem.

Theorem 2.8. Let Γ be a C2 smooth Jordan arc on the plane, and let Rn be a

rational function of total degree n of the form (2.6) with fixed a0, a1, ..., am. Then for

any fixed k=1, 2, ... we have

‖R(k)
n ‖Γ 6 (1+o(1))‖Rn‖Γ

2k

(2k−1)!!
max

( m∑
i=0

niΩai(A),

m∑
i=0

niΩai(B)

)2k
, (2.13)

where o(1) tends to 0 uniformly in Rn as n!∞. Furthermore, this is sharp, for one

cannot write a constant smaller than 1 instead of 1+o(1) on the right.

Recall that (2k−1)!!=1·3·...·(2k−3)·(2k−1).

As before, this theorem will follow if we prove, for any closed neighborhood U of the

endpoint A that does not contain the other endpoint B, the estimate

‖R(k)
n ‖Γ∩U 6 (1+o(1))‖Rn‖Γ

2k

(2k−1)!!

( m∑
i=0

niΩai(A)

)2k
. (2.14)

Corollary 2.9. If Γ is as in Theorem 2.8 and Pn is a polynomial of degree at

most n, then

‖P (k)
n ‖Γ 6 (1+o(1))‖Pn‖Γ

2k

(2k−1)!!
n2k max(Ω∞(A),Ω∞(B))2k. (2.15)
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This was proven in [23, Theorem 2].

The outline of the paper is as follows.

• After some preparations, we first verify Theorem 2.1 (Bernstein-type inequality)

for analytic curves via conformal maps onto the unit disk, and using on the unit disk

a result of Borwein and Erdélyi. This part uses in an essential way a decomposition

theorem for meromorphic functions.

• Next, Theorem 2.4 is verified for analytic arcs from the analytic case of Theo-

rem 2.1 for Jordan curves via the Joukowskii mapping.

• For C2 arcs, Theorem 2.4 follows from its version for analytic arcs by an appro-

priate approximation.

• For C2 curves, Theorem 2.1 will be deduced from Theorem 2.4 by introducing a

gap (omitting a small part) on the given Jordan curve to get a Jordan arc, and then by

closing up that gap.

• The Markov-type inequality (Theorem 2.8) is deduced from the Bernstein-type

inequality on arcs (Theorem 2.4, more precisely from its higher-derivative variant (2.12))

by a symmetrization technique during which the given endpoint, where we consider the

Markov-type inequality, is mapped into an inner point of a different Jordan arc.

• Finally, in §10 we prove the sharpness of the theorems using conformal maps and

sharp forms of Hilbert’s lemniscate theorem.

3. Preliminaries

In this section we collect some tools that are used at various places in the proofs.

3.1. A “rough” Bernstein-type inequality

We need the following “rough” Bernstein-type inequality on Jordan curves.

Proposition 3.1. Let Γ be a C2 smooth Jordan curve and Z⊂	C\Γ a closed set.

Then there exists C>0 such that, for any rational function Rn with poles in Z and of

degree n, we have

‖R′n‖Γ 6Cn‖Rn‖Γ.

Proof. Recall that G− denotes the inner, while G+ denotes the outer domain to Γ.

We shall need the following Bernstein–Walsh-type estimate:

|Rn(z)|6 ‖Rn‖Γ exp

( ∑
a∈Z∩G±

gG±(z, a)

)
, (3.1)
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where the summation is taken for poles a∈Z∩G+ if z∈G+ (and then gG+
is used) and

for poles a∈Z∩G− if z∈G−. Indeed, suppose, for example, that z∈G−. The function

log |Rn(z)|−
( ∑
a∈Z∩G−

gG−(z, a)

)
is subharmonic in G− and has boundary values 6log ‖Rn‖Γ on Γ, so (3.1) follows from

the maximum principle for subharmonic functions.

Let z0∈Γ be arbitrary. It follows from Proposition 3.10 below that there is a δ>0

such that for dist(z,Γ)<δ we have for all a∈Z the bound

gG±(z, a)6C1dist(z,Γ)6C1|z−z0|

with some constant C1.

Let

C1/n(z0) :=

{
z : |z−z0|=

1

n

}
be the circle about z0 of radius 1/n (assuming n>2/δ). For z∈C1/n(z0) the sum on the

right of (3.1) can be bounded as∑
a∈Z∩G+

gG+
(z, a)6nC1|z−z0|=C1

if z∈G+, and a similar estimate holds if z∈G−. Therefore, |Rn(z)|6eC1‖Rn‖Γ.

Now we apply Cauchy’s integral formula

|R′n(z0)|=
∣∣∣∣ 1

2πi

∫
C1/n(z0)

Rn(z)

(z−z0)2
dz

∣∣∣∣6 1

2π

2π

n

‖Rn‖ΓeC1

n−2
= ‖Rn‖ΓneC1 ,

which proves the proposition.

3.2. Conformal mappings onto the inner and outer domains

Denote by D={v :|v|<1} the unit disk and by D+={v :|v|>1}∪{∞} its exterior.

By the Kellogg–Warschawski theorem (see e.g. [17, Theorem 3.6]), if Γ is C2 smooth,

then Riemann mappings from D (resp. D+) onto G− (resp. G+), as well as their deriva-

tives, can be extended continuously to the boundary Γ. Under analyticity assumption,

the corresponding Riemann mappings have extensions to larger domains. In fact, the

following proposition holds (see e.g. [11, Proposition 7] with slightly different notation).

Proposition 3.2. Assume that Γ is analytic, and let z0∈Γ be fixed. Then there exist

two Riemann mappings Φ1:D!G− and Φ2:D+!G+ such that Φj(1)=z0 and |Φ′j(1)|=1,

j=1, 2. Furthermore, there exist 06r2<1<r16∞ such that Φ1 extends to a conformal

map of D1 :={v :|v|<r1} and Φ2 extends to a conformal map of D2 :={v :|v|>r2}∪{∞}.
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Z∩G+

G

Z∩G−

G+
1

z0 Φ1

Φ2

D1

Φ−1
1 (Z∩G−) 1

Φ−1
2 (Z∩G+)

Figure 1. The two conformal mappings Φ1 and Φ2, the domain D1 and the possible location of poles.

As the argument of Φ′j(1) gives the angle of the tangent line to Γ at z0, the arguments

of Φ′1(1) and of Φ′2(1) must be the same, which combined with |Φ′1(1)|=|Φ′2(1)|=1 yields

Φ′1(1)=Φ′2(1). Therefore,

Φ1(1) = Φ2(1) = z0, Φ′1(1) = Φ′2(1) and |Φ′1(1)|= |Φ′2(1)|= 1. (3.2)

From now on, for a given z0∈Γ we fix these two conformal maps. These mappings

and the corresponding domains are depicted on Figure 1. We may assume that D1 and

Φ−1
2 (Z)∩G+, as well as D2 and Φ−1

1 (Z)∩G−, are of positive distance from one another

(by slightly decreasing r1 and increasing r2, if necessary).

Proposition 3.3. The following equalities hold for arbitrary a∈G− and b∈G+, with

a′ :=Φ−1
1 (a) and b′ :=Φ−1

2 (b):

∂gG−(z0, a)

∂n−
=
∂gD(1, a′)

∂n−
=

1−|a′|2

|1−a′|2
,

∂gG+(z0, b)

∂n+

=
∂gD+(1, b′)

∂n+

=
|b′|2−1

|1−b′|2
, if b′ 6=∞,

and, if b′=∞, then
∂gG+

(z0, b)

∂n+

=
∂gD+

(1,∞)

∂n+

= 1.

This proposition is a slight generalization of [11, Proposition 8] with the same proof.

3.3. The Borwein–Erdélyi inequality

The following inequality will be central in establishing Theorem 2.1, it serves as a model.

For a proof we refer to [4] (see also [3, Theorem 7.1.7]).

Let T denote the unit circle.
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Proposition 3.4. (Borwein–Erdélyi) Let a1, ..., am∈C\T,

B+

m(v) :=
∑
|aj |>1

|aj |2−1

|aj−v|2
, B−

m(v) :=
∑
|aj |<1

1−|aj |2

|aj−v|2
,

and Bm(v):=max(B+

m(v), B−
m(v)). If P is a polynomial with deg(P )6m and

Rm(v) =
P (v)∏m

j=1(v−aj)

is a rational function, then

|R′m(v)|6Bm(v)‖Rm‖T, v ∈T.

Using the relations in Proposition 3.3, we can rewrite Proposition 3.4 as follows,

where there is no restriction on the degree of the numerator polynomial in the rational

function (see [11, Theorem 4]).

Proposition 3.5. Let Rm(v)=P (v)/Q(v) be an arbitrary rational function with no

poles on the unit circle, where P and Q are polynomials. Denote the poles of Rm by

a1, ..., am, where each pole is repeated as many times as its order (including the pole at

infinity if the degree of P is bigger than the degree of Q). Then, for v∈T,

|R′m(v)|6 ‖Rm‖T ·max

( ∑
|aj |>1

∂gD+
(v, aj)

∂n+

,
∑
|aj |<1

∂gD(v, aj)

∂n−

)
.

3.4. A Gonchar–Grigorjan-type estimate

It is a standard fact that a meromorphic function on a domain with finitely many poles

can be decomposed into the sum of an analytic function and a rational function (which

is the sum of the principal parts at the poles). If the rational function is required to

vanish at ∞, then this decomposition is unique.

L. D. Grigorjan with A. A. Gonchar investigated in a series of papers the supremum

norm of the sum of the principal parts of a meromorphic function on the boundary of

the given domain in terms of the supremum norm of the function itself. In particular,

Grigorjan showed in [9] that if K⊂D is a fixed compact subset of the unit disk D, then

there exists a constant C>0 such that all meromorphic functions f on D having poles

only in K have principal part R (with R(∞)=0) for which ‖R‖6C(log n)‖f‖, where n

is the sum of the order of the poles of f (here ‖f‖:=lim sup|ζ|!1− |f(ζ)|).
The following recent result (which is [10, Theorem 1]) generalizes this to more general

domains.
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Proposition 3.6. Suppose that D⊂	C is a bounded finitely connected domain such

that its boundary ∂D consists of finitely many disjoint C2 smooth Jordan curves. Let

Z⊂D be a closed set, and suppose that f :D!	C is a meromorphic function on D such

that all of its poles are in Z. Denote the total order of the poles of f by n>2. If fr is

the sum of the principal parts of f (with fr(∞)=0) and fa is its analytic part (so that

f=fr+fa), then

‖fr‖∂D, ‖fa‖∂D 6C(log n)‖f‖∂D,

where the constant C=C(D,Z)>0 depends only on D and Z.

In this statement

‖f‖∂D := lim sup
ζ∈D
ζ!∂D

|f(ζ)|,

but we shall apply the proposition in cases when f is actually continuous on ∂D.

3.5. A Bernstein–Walsh-type approximation theorem

We shall use the following approximation theorem.

Proposition 3.7. Let τ be a Jordan curve and K be a compact subset of its interior

domain. Then there are C>0 and 0<q<1 with the following property. If f is analytic

inside τ such that |f(z)|6M for all z, then for every w0∈K and m=1, 2, ... there are

polynomials Sm of degree at most m such that Sm(w0)=f(w0), S′m(w0)=f ′(w0) and

‖f−Sm‖K 6CMqm. (3.3)

Proof. Let τ1 be a lemniscate, i.e. the level curve of a polynomial, say

τ1 = {z : |TN (z)|= 1},

such that τ1 lies inside τ and K lies inside τ1. According to Hilbert’s lemniscate theorem

(see e.g. [18, Theorem 5.5.8]), there is such a τ1. Then K is contained in the interior

domain of τθ={z :|TN (z)|=θ} for some θ<1. By Theorem 3 in [25, §3.3] (or use [18,

Theorem 6.3.1]), there are polynomials Rm of degree at most m=1, 2, ... such that

‖f−Rm‖τθ 6C1Mqm (3.4)

for some C1 and q<1 (the q depends only on θ and the degree N of TN ). Actually, in

that theorem the right-hand side does not show M explicitly, but the proof, in particular

the error formula (12) in [25, §3.3] (or the error formula (6.9) in [18, §6.3]), gives (3.4).



bernstein- and markov-type inequalities for rational functions 33

Now (3.4) pertains to hold also on the interior domain to τθ, so if δ is the distance in

between K and τθ, and w0∈K, then for all |ξ−w0|=δ we have |f(ξ)−Rm(ξ)|6C1Mqm.

Hence, by Cauchy’s integral formula for the derivative, we have

|f ′(w0)−R′m(w0)|6 C1Mqm

δ
.

Therefore, the polynomial

Sm(z) =Rm(z)+(f(w0)−Rm(w0))+(f ′(w0)−R′m(w0))(z−w0)

satisfies the requirements with C=C1(2+diam(K)/δ) in (3.3).

3.6. Bounds and smoothness for Green’s functions

In this section we collect some simple facts on Green’s functions and their normal deriva-

tives.

Let K⊂	C be a compact set with connected complement and Z⊂	C\K be a closed

set. Suppose that σ is a Jordan curve that separates K and Z, say K lies in the interior

of σ, while Z lies in its exterior. Assume also that there is a family {γτ}⊂K of Jordan

arcs such that diam(γτ )>d>0 for some d>0, where diam(γτ ) denotes the diameter of γτ .

First we prove the following result.

Proposition 3.8. There are c0, C0>0 such that for all τ , all z∈σ and all a∈Z we

have

c0 6 g
�C\γτ (z, a)6C0. (3.5)

Proof. We have the formula ([18, p. 107])

g
�C\γτ (z,∞) = log

1

cap(γτ )
+

∫
log |z−t| dµγτ (t),

where µγτ is the equilibrium measure of γτ and where cap(γτ ) denotes the logarithmic

capacity of γτ . Since (see [18, Theorem 5.3.2])

cap(γτ )> 1
4 diam(γτ )> 1

4d,

and since for z∈σ and t∈γτ we have |z−t|6diam(σ), we obtain

g
�C\γτ (z,∞)6 log

1
1
4d

+log diam(σ) =:C1.
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Let Ω be the exterior of σ (including ∞). By Harnack’s inequality ([18, Corollary

1.3.3]), for any closed set Z⊂Ω there is a constant CZ such that for all positive harmonic

functions u on Ω we have

1

CZ
u(∞)6u(a)6CZu(∞), a∈Z.

Apply this to the harmonic function g
�C\γτ (z, a)=g

�C\γτ (a, z) (recall that Green’s functions

are symmetric in their arguments), with z∈σ and a∈Z, to conclude, for z∈σ,

g
�C\γτ (z, a) = g

�C\γτ (a, z)6CZg�C\γτ (∞, z) =CZg�C\γτ (z,∞)6CZC1.

To prove a lower bound, note that

g
�C\γτ (z,∞)> g

�C\K(z,∞)> c1, z ∈σ,

because γτ⊂K and g
�C\K(z,∞) is a positive harmonic function outside K. From here we

get

g
�C\γτ (z, a)>

c1
CZ

, z ∈σ and a∈Z,

exactly as before by appealing to the symmetry of Green’s function and to Harnack’s

inequality.

Corollary 3.9. With the c0 and C0 from the preceding lemma for all τ , all a∈Z
and all z lying inside σ we have

c0
C0
g
�C\γτ (z,∞)6 g

�C\γτ (z, a)6
C0

c0
g
�C\γτ (z,∞). (3.6)

Proof. For z∈σ the inequality (3.6) was shown in the preceding proof. Since both

g
�C\γτ (z,∞) and g

�C\γτ (z, a) are harmonic in the domain that lies in between γτ and σ

and both vanish on γτ , the statement follows from the maximum principle.

Next, let Γ be a C2 Jordan curve and G± be the interior and exterior domains to Γ

(see §2). Assume, as before, that Z⊂	C\Γ is a closed set.

Proposition 3.10. There are constants C1, c1>0 such that, for z0∈Γ,

c1 6
∂gG−(z0, a)

∂n−
6C1, a∈Z∩G− (3.7)

and

c1 6
∂gG+(z0, a)

∂n+

6C1, a∈Z∩G+. (3.8)

These bounds hold uniformly in z0∈Γ. Furthermore, Green’s functions gG±(z, a), a∈Z,

are uniformly Hölder-1 equicontinuous close to the boundary Γ.
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Proof. It is enough to prove (3.7). Let b0∈G− be a fixed point and let ϕ be a

conformal map from the unit disk D onto G− such that ϕ(0)=b0. By the Kellogg–

Warschawski theorem (see [17, Theorem 3.6]), ϕ′ has a continuous extension to the

closed unit disk which does not vanish there. It is clear that gG−(z, b0)=− log |ϕ−1(z)|,
and consider some local branch of − logϕ−1(z) for z lying close to z0. By the Cauchy–

Riemann equations
∂gG−(z0, b0)

∂n−
=
∣∣(− logϕ−1(z))′|z=z0

∣∣
(note that the directional derivative of gG− in the direction perpendicular to n− has limit

zero at z0∈∂G−), so we get the formula

∂gG−(z0, b0)

∂n−
=

1

|ϕ′(ϕ−1(z0)|
, (3.9)

which shows that this normal derivative is finite, continuous in z0∈Γ and positive.

Let now σ be a Jordan curve that separates (Z∩G−)∪{b0} from Γ. Map G− con-

formally onto 	C\[−1, 1] by a conformal map Φ so that Φ(b0)=∞. Then gG−(z, a)=

g
�C\[−1,1](Φ(z),Φ(a)), and Φ(σ) is a Jordan curve that separates Φ((Z∩G−)∪{b0}) from

[−1, 1]. Now apply Proposition 3.8 to 	C\[−1, 1] and to Φ(σ) to conclude that all Green’s

functions g
�C\[−1,1](w,Φ(a)), a∈Z∪{b0}, are comparable on Φ(σ) in the sense that all

of them lie in between two positive constants c2<C2 there. In view of what we have

just said, this means that Green’s functions gG−(z, a), a∈Z∪{b0}, are comparable on

σ in the sense that all of them lie in between the same c2<C2 there. But then, as in

Corollary 3.9, they are also comparable in the domain that lies in between Γ and σ, and

hence
c2
C2

∂gG−(z0, b0)

∂n−
6
∂gG−(z0, a)

∂n−
6
C2

c2

∂gG−(z0, b0)

∂n−
, a∈Z,

which proves (3.7) in view of (3.9).

The uniform Hölder continuity is also easy to deduce from (3.9) if we compose ϕ by

fractional linear mappings of the unit disk onto itself (to move the pole ϕ(0) to other

points).

4. The Bernstein-type inequality on analytic curves

In this section we assume that Γ is analytic, and prove (2.1) using Propositions 3.5, 3.6

and 3.7.

Fix z0∈Γ and consider the conformal maps Φ1 and Φ2 from §3.2. Recall that the

inner map Φ1 has an extension to a disk D1={z :|z|<r1}, and the external map Φ2 has

an extension to the exterior D2={z :|z|>r2} of a disk with some r2<1<r1. For simpler
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notation, in what follows we shall assume that Φ1 (resp. Φ2) actually have extensions to

a neighborhood of the closures 
D1 (resp. 
D2), which can be achieved by decreasing r1

and increasing r2, if necessary.

In what follows, we set T(r)={z :|z|=r} for the circle of radius r about the origin.

As before, T=T(1) denotes the unit circle.

The constants C and c below depend only on Γ, and they are not the same at each

occurrence.

We decompose Rn as

Rn = f1+f2,

where f1 is a rational function with poles in Z∩G−, f1(∞)=0 and f2 is a rational

function with poles in Z∩G+. This decomposition is unique. If we put N1 :=deg(f1),

N2 :=deg(f2), then N1+N2=n. Denote the poles of f1 by αj , j=1, ..., N1, and the poles

of f2 by βj , j=1, ..., N2 (with counting the orders of the poles).

We use Proposition 3.6 on G− to conclude that

‖f1‖Γ, ‖f2‖Γ 6C(log n)‖Rn‖Γ. (4.1)

By the maximum modulus principle then it follows that

‖f1‖Φ1(∂D1) 6C(log n)‖Rn‖Γ (4.2)

and

‖f2‖Φ2(∂D2) 6C(log n)‖Rn‖Γ. (4.3)

Set F1 :=f1(Φ1) and F2 :=f2(Φ2). These are meromorphic functions in D1 and D2,

respectively, with poles at α′j :=Φ−1
1 (αj), j=1, ..., N1, and at β′k :=Φ−1

2 (βk), k=1, ..., N2.

Let F1=F1,r+F1,a be the decomposition of F1 with respect to the unit disk into

rational and analytic parts with F1,r(∞)=0, and in a similar fashion, let F2=F2,r+F2,a

be the decomposition of F2 with respect to the exterior of the unit disk into rational and

analytic parts with F2,r(0)=0. (Here r refers to the rational part, a refers to the analytic

part.) Hence, we have, by Proposition 3.6,

‖Fj,r‖T, ‖Fj,a‖T 6C(log n)‖Fj‖T, j= 1, 2.

Thus, F1,r is a rational function with poles at α′j∈D, so by the maximum modulus

theorem and (4.1) we have

‖F1,r‖T(r1) 6 ‖F1,r‖T 6C(log n)‖F1‖T 6C(log n)2‖Rn‖Γ, (4.4)
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where we used that ‖F1‖T=‖f1‖Γ. But (4.2) is the same as

‖F1‖T(r1) 6C(log n)‖Rn‖Γ,

so we can conclude also that

‖F1,a‖T(r1) 6C(log n)2‖Rn‖Γ. (4.5)

Thus, F1,a is an analytic function in D1 with the bound in (4.5). Apply now Propo-

sition 3.7 to this function and to the unit circle as K (and with a somewhat larger

concentric circle as τ) with degree m=[
√
n ]. According to that proposition there are

C, c>0 and polynomials S1=S1,
√
n of degree at most

√
n such that

‖F1,a−S1‖T 6Ce−c
√
n‖Rn‖Γ, S1(1) =F1,a(1) and S′1(1) =F ′1,a(1).

Therefore, R̃1 :=F1,r+S1 is a rational function with poles at α′j , j=1, ..., N1, and with a

pole at ∞ with order at most
√
n which satisfies

‖F1−R̃1‖T 6Ce−c
√
n‖Rn‖Γ, R̃1(1) =F1(1) and R̃′1(1) =F ′1(1). (4.6)

In a similar vein, if we consider F2(1/v) and use (4.3), then we get a polynomial S2

of degree at most
√
n such that∥∥∥∥F2,a

(
1

v

)
−S2(v)

∥∥∥∥
T
6Ce−c

√
n‖Rn‖Γ, S2(1) =F2,a(1) and S′2(1) =−F ′2,a(1).

But then R̃2(v):=F2,r(v)+S2(1/v) is a rational function with poles at β′k, k=1, ..., N2,

and with a pole at zero of order at most
√
n that satisfies

‖F2−R̃2‖T 6Ce−c
√
n‖Rn‖Γ and R̃2(1) =F2(1), R̃′2(1) =F ′2(1). (4.7)

What we have obtained is that the rational function R̃:=R̃1+R̃2 is of distance

6Ce−c
√
n‖Rn‖Γ from F1+F2 on the unit circle and it satisfies

R̃(1) = (F1+F2)(1) = f1(z0)+f2(z0) =Rn(z0) (4.8)

and, using (3.2),

R̃′(1) = (F ′1+F ′2)(1) = f ′1(z0)Φ′1(1)+f ′2(z0)Φ′2(1) =R′n(z0)Φ′1(1). (4.9)

Consider now F1+F2 on the unit circle, i.e.

F1(eit)+F2(eit) = f1(Φ2(eit))+f2(Φ2(eit))+f1(Φ1(eit))−f1(Φ2(eit)).
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The sum of the first two terms on the right is Rn(Φ2(eit)), and this is at most ‖Rn‖Γ in

absolute value. Next, we estimate the difference of the last two terms.

The function Φ1(v)−Φ2(v) is analytic in the ring r2<|v|<r1 and it is bounded there

with a bound depending only on Γ, r1 and r2, furthermore it has a double zero at v=1

(because of (3.2)). These imply

|Φ1(eit)−Φ2(eit)|6C|eit−1|2 6Ct2, t∈ [−π, π],

with some constant C. By Proposition 3.1 we have with (4.1) also the bound

‖f ′1‖Γ 6Cn(log n)‖Rn‖Γ,

and these last two facts give us (just integrate f ′1 along the shorter arc of Γ in between

Φ1(eit) and Φ2(eit) and use that the length of this arc is at most C|Φ1(eit)−Φ2(eit)|)

|f1(Φ1(eit))−f1(Φ2(eit))|6Ct2n(log n)‖Rn‖Γ.

By [22, Theorem 4.1] there are polynomials Q of degree at most [n4/5] such that

Q(1)=1, ‖Q‖T61, and with some constants c0, C0>0,

|Q(v)|6C0e
−c0n4/5|v−1|3/2 , |v|= 1.

With this Q, consider the rational function R(v)=R̃(v)Q(v). On the unit circle this is

closer than Ce−c
√
n‖Rn‖Γ to (F1+F2)Q, and in view of what we have just proven, at

v=eit we have

|(F1(v)+F2(v))Q(v)|6 ‖Rn‖Γ+Ct2n(log n)C0e
−c0n4/5|t/2|3/2‖Rn‖Γ.

On the right

t2n(log n)e−c0n
4/5|t/2|3/2 = 4

(
n4/5

∣∣∣∣ t2
∣∣∣∣3/2)4/3e−c0n4/5|t/2|3/2 log n

n1/15
6C

log n

n1/15
,

because |x|4/3e−c0|x| is bounded on the real line.

All in all, we obtain

‖R‖T 6 (1+o(1))‖Rn‖Γ, (4.10)

and

|R′(1)|= |R̃′(1)Q(1)+R̃(1)Q′(1)|

= |R̃′(1)|+O(|R̃(1)| |Q′(1)|) = |R′n(z0)|+O(n4/5)‖Rn‖Γ,
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where we used Q(1)=1, (4.8)–(4.9), |Φ′1(1)|=1 and the classical Bernstein inequality for

Q′(1), which gives the bound n4/5 for the derivative of Q.

The poles of R are at α′j , 16j6N1, and at β′k, 16k6N2, as well as a pole at zero of

order 6n1/2 (coming from the construction of S2,n) and a pole at∞ of order 6n1/2+n4/5

(coming from the construction of S1,n and the use of Q).

Now we apply the Borwein–Erdélyi inequality (Proposition 3.5) to |R′(1)| to obtain

|R′n(z0)|6 |R′(1)|+O(n4/5)‖Rn‖Γ

6 ‖R‖T max

(∑
k

∂gD+
(1, β′k)

∂n+

+(n1/2+n4/5)
∂gD+

(1,∞)

∂n+

,

∑
j

∂gD(1, α′j)

∂n−
+n1/2 ∂gD(1, 0)

∂n−

)
+O(n4/5)‖Rn‖Γ.

If we use here how the normal derivatives transform under the mappings Φ1 and Φ2 as

in Proposition 3.3, then we get from (4.10)

|R′n(z0)|6 (1+o(1))‖Rn‖Γ

×max

( ∑
a∈Z∩G+

∂gG+
(z0, a)

∂n+

+(n1/2+n4/5)
∂gG+

(z0,Φ2(∞))

∂n+

,

∑
a∈Z∩G−

∂gG−(z0, a)

∂n−
+n1/2 ∂gG−(z0,Φ1(0))

∂n−

)
+O(n4/5)‖Rn‖Γ.

Since, by (3.7)–(3.8), the normal derivatives on the right lie in between two positive

constants that depend only on Γ and Z, (2.1) follows (note that one of the sums
∑
a∈Z∩G+

or
∑
a∈Z∩G−

contains at least 1
2n terms).

5. The Bernstein-type inequality on analytic arcs

In this section we prove Theorem 2.4 in the case when the arc Γ is analytic. We shall

reduce this case to Theorem 2.1 for analytic Jordan curves that has been proven in the

preceding section. We shall use the Joukowskii map to transform the arc setting to the

curve setting.

For clearer notation let us write Γ0 for the arc in Theorem 2.4. We may assume that

the endpoints of Γ0 are ±1. Consider the pre-image Γ of Γ0 under the Joukowskii map

z=F (u)= 1
2 (u+1/u). Then Γ is a Jordan curve, and if G± denote the inner and outer

domains to Γ, then F is a conformal map from both G− and G+ onto 	C\Γ0. Furthermore,

the analyticity of Γ0 implies that Γ is an analytic Jordan curve, see [11, Proposition 5].
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Γ0

n+

n−

z0

Z F−1
1

F−1
2

G−

n+

n−

u1

n+

n−

u2

Γ

Figure 2. The open-up.

Denote the inverse of z=F (u) restricted to G− by F−1
1 (z)=u and that restricted to

G+ by F−1
2 (z)=u. So Fj(z)=z±

√
z2−1 with an appropriate branch of

√
z2−1 on the

plane cut along Γ0.

We need the mapping properties of F regarding normal vectors, for full details, we

refer to [11]. Briefly, for any z0∈Γ0 that is not one of the endpoints of Γ0 there are

exactly two u1, u2∈Γ, u1 6=u2, such that F (u1)=F (u2)=z0. Denote the normal vectors

to Γ pointing outward by n+ and the normal vectors pointing inward by n− (it is usually

unambiguous from the context at which point u∈Γ we are referring to). By reindexing

u1 and u2 (and possibly reversing the parametrization of Γ0), we may assume that the

(direction of the) normal vector n+(u1) is mapped by F to the (direction of the) normal

vector n+(z0). This then implies that (the directions of) n+(u1), n−(u1) and n+(u2),

n−(u2) are mapped by F to (the directions of) n+, n−, n− and n+ at z0, respectively.

These mappings are depicted on Figure 2.

The corresponding normal derivatives of Green’s functions are related as follows.

Proposition 5.1. For a∈	C\Γ0 we have

∂g
�C\Γ0

(z0, a)

∂n−
=
∂gG−(u1, F

−1
1 (a))

∂n−

1

|F ′(u1)|
=
∂gG+

(u2, F
−1
2 (a))

∂n+

1

|F ′(u2)|

and similarly, for the other side,

∂g
�C\Γ0

(z0, a)

∂n+

=
∂gG−(u2, F

−1
1 (a))

∂n−

1

|F ′(u2)|
=
∂gG+(u1, F

−1
2 (a))

∂n+

1

|F ′(u1)|
.

This proposition follows immediately from [11, Proposition 6] and is a two-to-one-

mapping analogue of Proposition 3.3.

After these preliminaries, let us turn to the proof of (2.4) at a point z0∈Γ0. Consider

f1(u):=Rn(F (u)) on the analytic Jordan curve Γ at u1 (where F (u1)=z0). This is a
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rational function with poles at F−1
1 (a)∈G− and at F−1

2 (a)∈G+, where a runs through

the poles of Rn. According to (2.1) (that has been verified in §4 for analytic curves) we

have

|f ′1(u1)|6 (1+o(1))‖f1‖Γ ·max

(∑
a

∂gG−(u1, F
−1
1 (a))

∂n−
,
∑
a

∂gG+
(u1, F

−1
2 (a))

∂n+

)
,

where a runs through the poles of Rn (counting multiplicities). If we use here that

‖f1‖Γ=‖Rn‖Γ0
and f ′1(u1)=R′n(z0)F ′(u1), we get from Proposition 5.1

|R′n(z0)|6 (1+o(1))‖Rn‖Γ0
·max

(∑
a

∂g
�C\Γ0

(z0, a)

∂n−
,
∑
a

∂g
�C\Γ0

(z0, a)

∂n+

)
,

which is (2.4) when Γ is replaced by Γ0.

6. Proof of Theorem 2.4

In this section we verify (2.4) for C2 arcs. Recall that in §5 (2.4) has already been proven

for analytic arcs, and we shall reduce the C2 case to that by approximation similar to

what was used in [23].

In the proof, we shall frequently identify a Jordan arc with its parametric represen-

tation.

By assumption, Γ has a twice differentiable parametrization γ(t), t∈[−1, 1], such

that γ′(t) 6=0 and γ′′ is continuous. We may assume that z0=0 and that the real line

is tangent to Γ at 0, and also that γ(0)=0, γ′(0)>0. There is an M1 such that, for all

t∈[−1, 1],
1

M1
6 |γ′(t)|6M1 and |γ′′(t)|6M1. (6.1)

Let γ0 :=γ, and for some 0<τ0<1 and for all 0<τ6τ0 choose a polynomial gτ such

that

|γ′′(t)−gτ (t)|6 τ, t∈ [−1, 1], (6.2)

and set

γτ (t) =

∫ t

0

(∫ u

0

gτ (v) dv+γ′0(0)

)
du. (6.3)

It is clear that

|γτ (t)−γ0(t)|6 τ |t|2, |γ′τ (t)−γ′0(t)|6 τ |t| and |γ′′τ (t)−γ′′0 (t)|6 τ. (6.4)

It was proved in [23, §2] that for small τ , say for all τ6τ0 (which can be achieved

by decreasing τ0, if necessary), these γτ are analytic Jordan arcs, and

g
�C\γ0(z,∞)6M2

√
τ |z|2, z ∈ γτ , (6.5)
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with some constant M2 that is independent of τ and z. We need similar estimates for

all g
�C\γτ (z, a), a∈Z. To get them, consider the closure of the set

⋃
06τ6τ0

γτ and its

polynomial convex hull

K = Pc

( ⋃
06τ6τ0

γτ

)
,

which is the union of that closure with all the bounded components of its complement.

Now, this is a situation where the results from §3.6 can be applied. From Corollary 3.9

and from (6.5) we can conclude, for all a∈Z, that

g
�C\γ0(z, a)6M3

√
τ |z|2, z ∈ γτ , (6.6)

with some constant M3.

Let n± denote the two normals to γτ at the origin. Note that n± are common to all

the arcs γτ , 06τ6τ0.

Lemma 6.1. For small τ0, the normal derivatives

∂g
�C\γτ (0, a)

∂n±
, 06 τ 6 τ0 and a∈Z∪{∞},

are uniformly bounded from below and above by a positive number.

Proof. It was proven in [23, Appendix 1] that

∂g
�C\γτ (0,∞)

∂n±
!

∂g
�C\γ0(0,∞)

∂n±
(6.7)

as τ!0, and the value on the right is positive and finite. Now just invoke Corollary 3.9

(note that (3.6) implies similar inequalities for the normal derivatives).

Next we mention that (6.4) implies the following: no matter how η>0 is given, there

is a τη<τ0 such that for τ<τη we have

∂g
�C\γτ (0,∞)

∂n±
< (1+η)

∂g
�C\γ0(0,∞)

∂n±
. (6.8)

In fact, (6.7) was proven in [23, Appendix 1, (6.1)] under the assumption (6.4), and since

the normal derivatives on the right are not zero, (6.8) follows.

We shall also need this inequality when ∞ is replaced by an arbitrary pole a∈Z.

Let a∈Z be arbitrary, and consider the mapping ϕa(z)=1/(z−a). Under this mapping,

γτ is mapped into ϕa(γτ ) with parametrization ϕa(γτ (t)), t∈[−1, 1], and it is clear that

(6.4) implies its analogue for the image curves:

|ϕa(γτ )(t)−ϕa(γ0)(t)|6Cτ |t|2,

|(ϕa(γτ ))′(t)−(ϕa(γ0))′(t)|6Cτ |t|,

|(ϕa(γτ ))′′(t)−(ϕa(γ0))′′(t)|6Cτ,
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for some constant C that is independent of τ and a∈Z. Furthermore,

g
�C\γτ (z, a) = g

�C\ϕa(γτ )(ϕa(z),∞),

∂g
�C\γτ (0, a)

∂n±
=
∂g

�C\ϕa(γτ )(ϕa(0),∞)

∂n(ϕa(0))±
|ϕ′a(0)|.

Now if we use these in the proof of [23, Appendix 1] and use also Lemma 6.1, then we

obtain that for every η>0 there is a τη<τ0 such that for τ<τη and a∈Z we have

∂g
�C\γτ (0, a)

∂n±
< (1+η)

∂g
�C\γ0(0, a)

∂n±
. (6.9)

An inspection of the proof reveals that τη can be made independent of a∈Z, so (6.9) is

uniform in a∈Z.

After these preparations, let Rn be a rational function with poles in Z such that the

total order of its poles (including possibly the pole at ∞) is n. We use

|Rn(z)|6 exp

(∑
a

g
�C\Γ(z, a)

)
‖Rn‖Γ, (6.10)

where the summation is for all poles of Rn. This is the analogue of (3.1), and its proof

is the same that we gave for (3.1). Hence, in view of (6.6), for z∈γτ we have (recall that

γ0=Γ)

|Rn(z)|6 ‖Rn‖ΓenM3
√
τ |z|2 . (6.11)

The polynomial convex hull K introduced above has the property that there is a

disk (say in the upper half-plane) in the complement of K which contains the point zero

on its boundary. Indeed, this easily follows from the construction of the curves γτ . Now

we use [22, Theorem 4.1], according to which there are constants c1 and C1 and for each

m polynomials Qm of degree at most m such that

(i) Qm(0) = 1,

(ii) |Qm(z)|6 1, z ∈K,

(iii) |Qm(z)|6C1e
−c1m|z|2 , z ∈K.

(6.12)

For some small ε>0 consider Rn(z)Qεn(z). This is a rational function with poles

in Z and at ∞, and it will be important that the pole at infinity coming from Qεn is of

order at most εn. We estimate this product on γτ as follows. Let z∈γτ and let 0<η<1

be given. If |z|6
√

2(logC1)/c1εn, then (6.11) and (ii) yield

|Rn(z)Qεn(z)|6 eM3
√
τ 2(logC1)/c1ε‖Rn‖Γ,
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and the right-hand side is smaller than (1+η)‖Rn‖Γ if τ<(ηc1ε/4M3 logC1)2. On the

other hand, if |z|>
√

2(logC1)/c1εn, then (6.11) and (iii) give

|Rn(z)Qεn(z)|6 ‖Rn‖ΓC1e
nM3

√
τ |z|2−c1εn|z|2 . (6.13)

For
√
τ<c1ε/2M3 the exponent is at most

−nc1
2
ε|z|2 6 log

1

C1
,

so in this case we have

|Rn(z)Qεn(z)|6 ‖Rn‖Γ. (6.14)

What we have shown is that

‖RnQεn‖γτ 6 (1+η)‖Rn‖Γ (6.15)

if τ is small, say τ<τ∗η . Fix such a τ . The corresponding γτ is an analytic arc, so we can

apply (2.4) to it and to the rational function RnQεn (recall that (2.4) has already been

proven for analytic arcs in §5). It follows that

|(RnQεn)′(0)|6 (1+o(1))‖RnQεn‖γτ max

(∑
a

′ ∂g�C\γτ (0, a)

∂n+

,
∑
a

′ ∂g�C\γτ (0, a)

∂n−

)
, (6.16)

where now
∑′
a means that the summation is for the poles of RnQεn, i.e. for the poles

of Rn as well as for the at most εn poles a=∞ that possibly come from Qεn. Note that

some of the poles may be cancelled in RnQεn, but the inequality∑
a

′ ∂g�C\γτ (0, a)

∂n±
6
∑
a

∂g
�C\γτ (0, a)

∂n±
+εn

∂g
�C\γτ (0,∞)

∂n±
(6.17)

(where on the right the summation is only on the original poles of Rn) holds in that case,

as well. For the first sum on the right we use (6.9), and for the second sum Lemma 6.1

to conclude that ∑
a

′ ∂g�C\γτ (0, a)

∂n±
6 (1+η)

∑
a

∂g
�C\Γ(0, a)

∂n±
+C2εn (6.18)

for some C2 that depends only on Γ. Since the sum on the right of (6.18) is >c2n for

some fixed c2>0 again by Lemma 6.1, we obtain from (6.15) and (6.16) that

|(RnQεn)′(0)|

6 (1+o(1))(1+η)2‖Rn‖Γ
(

1+
C2ε

c2

)
max

(∑
a

∂g
�C\Γ(0, a)

∂n+

,
∑
a

∂g
�C\Γ(0, a)

∂n−

)
.
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In view of Qεn(0)=1, on the left we have

(RnQεn)′(0) =R′n(0)+Rn(0)Q′εn(0),

and for the second term we get again from (2.4) (known for the analytic arc γτ by §5)

and from ‖Qεn‖γτ61 that

|Rn(0)Q′εn(0)|6 (1+o(1))‖Rn‖Γnεmax

(
∂g

�C\γτ (0,∞)

∂n+

,
∂g

�C\γτ (0,∞)

∂n−

)
.

We can again apply (6.8) to the right-hand side. If we use again Lemma 6.1 as before,

we finally obtain

|R′n(0)|6 (1+o(1))(1+η)2(1+C3ε)‖Rn‖Γ max

(∑
a

∂g
�C\Γ(0, a)

∂n+

,
∑
a

∂g
�C\Γ(0, a)

∂n−

)
with some constant C3 independent of ε and η. Now this is true for all ε, η>0, so the

claim (2.4) follows.

We shall not prove the last statement concerning the uniformity of the estimate, for

the argument is very similar to the one given in the proof of [23, Theorem 1].

7. Proof of Theorem 2.1

In this section we prove the inequality (2.1) for C2 curves. Recall that in §4 the inequality

(2.1) has already been proven for analytic curves, which was the basis of all subsequent

results. In the present section we show how (2.1) for C2 curves can be deduced from the

inequality (2.4) for C2 arcs.

Thus, let Γ be a positively oriented C2 smooth Jordan curve and z0 be a point on Γ.

Let w0 6=z0 be another point of Γ (think of w0 as lying “far” from z0), and for m=1, 2, ...

let wm∈Γ be the point on Γ such that the arc w0wm (in the orientation of Γ) is of length

1/m. Such a wm exists and the arc w0wm does not contain z0 for all sufficiently large

m, say for m>m0. Remove now the (open) arc w0wm from Γ to get the Jordan arc

Γm=Γ\w0wm. We can apply (2.4) to this Γm, and what we are going to show is that

the so-obtained inequality proves (2.1) as m!∞.

Let a∈G−∩Z. We show that, as m!∞,

∂g
�C\Γm(z0, a)

∂n−
!

∂gG−(z0, a)

∂n−
(7.1)

and

∂g
�C\Γm(z0, a)

∂n+

! 0, (7.2)
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uniformly in a∈G−∩Z. Indeed, since Γm⊂Γm+1, Green’s functions g
�C\Γm(z, a) decrease

as m increases. Furthermore, g
�C\Γm0

(z, a) is continuous at w0, so for every ε>0 there

is an mε such that for z∈w0wmε we have g
�C\Γm0

(z, a)<ε. In view of Corollary 3.9 this

mε can be the same for all a∈Z∩G− since Green’s functions g
�C\Γm0

(z, a) with respect

to different a∈Z∩G− are comparable inside a Jordan curve σ that encloses Γm0
. This

then implies, for m>mε and z∈w0wm, that

0<g
�C\Γm(z, a)6 g

�C\Γm0
(z, a)<ε. (7.3)

Thus, for m>mε the function g
�C\Γm(z, a)−gG−(z, a) is positive and harmonic in G−,

and on the boundary of G− it is either 0 or <ε, so by the maximum principle it is <ε

everywhere in the closure 
G−. Let now a0∈G+ be fixed, i.e. a0 lies in the outer domain

to Γ, let I⊂Γ be a subarc of Γ which does not contain z0 and which contains w0wm0
in

its interior, and set ΓI=Γ\I. Then g
�C\ΓI (z, a0) has a strictly positive lower bound c0 on

w0wm0
(note that this arc lies inside the domain 	C\ΓI), and therefore, in view of (7.3),

we have

0<g
�C\Γm(z, a)−gG−(z, a)<

ε

c0
g
�C\ΓI (z, a0) (7.4)

on the boundary of G−, provided m>mε. By the maximum principle this inequality then

holds throughout G− (note that both sides are harmonic there), and hence for m>mε

we have

06
∂g

�C\Γm(z0, a)

∂n−
−
∂gG−(z0, a)

∂n−
6
ε

c0

∂g
�C\ΓI (z0, a0)

∂n−
, (7.5)

and upon letting ε!0 we obtain (7.1).

The proof of (7.2) is much the same, just work now in the exterior domain G+, and

use the reference Green’s function g
�C\ΓI (z, b0) with b0 lying in the bounded domain G−.

In this case g
�C\Γm(z, a) is harmonic in G+ for a∈G−∩Z, and (7.4) takes the form

0<g
�C\Γm(z, a)<

ε

c0
g
�C\ΓI (z, b0),

from where the conclusion (7.2) can be made as before.

For poles a lying outside Γ we have similarly

∂g
�C\Γm(z0, a)

∂n+

!

∂gG+
(z0, a)

∂n+

(7.6)

and

∂g
�C\Γm(z0, a)

∂n−
! 0, (7.7)
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uniformly in a∈G+∩Z as m!∞.

After these preparations, we turn to the proof of (2.1). Choose, for a large m, the

Jordan arc Γm, and apply (2.4) to this Jordan arc and to the rational function Rn in

Theorem 2.1. Since ‖Rn‖Γm6‖Rn‖Γ, we obtain

|R′n(z0)|6 (1+o(1))‖Rn‖Γ max

(∑
a∈Z

∂g
�C\Γm(z0, a)

∂n+

,
∑
a∈Z

∂g
�C\Γm(z0, a)

∂n−

)
, (7.8)

where the o(1) term may depend on m. In view of (7.1)–(7.2) and (7.6)–(7.7) (use also

(3.7) and (3.8))

∑
a∈Z

∂g
�C\Γm(z0, a)

∂n+

6 (1+om(1))
∑

a∈Z∩G+

∂gG+(z0, a)

∂n+

+om(1)n

and ∑
a∈Z

∂g
�C\Γm(z0, a)

∂n−
6 (1+om(1))

∑
a∈Z∩G−

∂gG−(z0, a)

∂n−
+om(1)n,

where om(1) denotes a quantity that tends to zero as m!∞. These imply that the

maximum on the right of (7.8) is at most

(1+om(1)) max

( ∑
a∈Z∩G+

∂gG+
(z0, a)

∂n+

+om(1)n,
∑

a∈Z∩G−

∂gG−(z0, a)

∂n−
+om(1)n

)
,

which is

(1+om(1)) max

( ∑
a∈Z∩G+

∂gG+(z0, a)

∂n+

,
∑

a∈Z∩G−

∂gG−(z0, a)

∂n−

)
because of (3.7)–(3.8). Therefore, we obtain (2.1) from (7.8) by letting n!∞ and at the

same time m!∞ very slowly.

A routine check shows that the proof runs uniformly in z0∈Γ lying on any proper

arc J of Γ. In fact, the proof gives that uniformity, provided the normal derivative on

the right of (7.5) lies in between two positive constants independently of z0∈J , which

can be easily proven using the method of Proposition 3.10 (which was based on the

Kellogg–Warschawski theorem and that is uniform in z0 in the given range). From here

the uniformity of (2.1) in z0∈Γ follows by considering two such arcs J that together

cover Γ.

8. Proof of (2.12)

In the proof of Theorem 2.8 we shall need (2.12) which we verify in this section. The

proof uses induction on k, the k=1 case being covered by Theorem 2.4.
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Let Rn and J be as in (2.12). First of all, we remark that, by [22, Theorem 7.1],

g
�C\Γ(z,∞) is Hölder- 1

2 continuous: for all z∈	C,

g
�C\Γ(z,∞)6M dist(z,Γ)1/2

for some constant M . This, combined with Corollary 3.9 (just apply it to γ0=Γ), shows

that all g
�C\Γ(z, a), a∈Z, are uniformly Hölder- 1

2 equicontinuous:

g
�C\Γ(z, a)6M1 dist(z,Γ)1/2, a∈Z and dist(z,Γ)6 d,

for some constants M1 and d>0. If we use also (6.10), then we obtain

|Rn(z)|6 ‖Rn‖ΓenM1 dist(z,Γ)1/2 , dist(z,Γ)6 d.

In particular, if z0∈Γ and C1/n2(z0) is the circle about z0 of radius 1/n2, then for all

z∈C1/n2(z0) we have |Rn(z)|6‖Rn‖ΓeM1 . Thus, Cauchy’s integral formula for the kth

derivative at z0 (written as a contour integral over C1/n2(z0)) gives, for large n,

|R(k)
n (z0)|6 k!n2keM1‖Rn‖Γ,

and since this is true uniformly for all z0∈Γ, the inequality

‖R(k)
n ‖Γ 6Ckn

2k‖Rn‖Γ (8.1)

follows for some Ck.

Let

V (u) = max

( m∑
i=0

ni
∂g

�C\Γ(u, ai)

∂n+

,

m∑
i=0

ni
∂g

�C\Γ(u, ai)

∂n−

)
.

We shall need the following equicontinuity property of these V (u):

V (v)6 (1+ε)V (z0) if z0 ∈ J and |v−z0|<δ, v ∈Γ, (8.2)

for some ε that tends to zero as δ!0. It is clear that this follows if we prove the continuity

for each term in V (u), that is, for example, if we show that

∂g
�C\Γ(v, a)

∂n−
6 (1+ε)

∂g
�C\Γ(z0, a)

∂n−
(8.3)

if z0∈J and |v−z0|<δ, where ε tends to zero as δ!0. If ϕ is a conformal map from the

unit disk onto 	C\Γ that maps zero into a, then, just as in (3.9), we have

∂g
�C\Γ(v, a)

∂n−
=

1

|ϕ′(ϕ−1(v)|
, (8.4)
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with the understanding that of the two pre-images ϕ−1(v) of v, in this formula we select

the one that is mapped to the left side of Γ by ϕ. A relatively simple localization (just

open up the arc Γ to a C2 Jordan curve as in §5) of the Kellogg–Warschawski theorem

([17, Theorem 3.6]) shows that ϕ′ is positive and continuous away from the pre-images

of the endpoints of Γ. This implies (8.3) in view of (8.4).

Suppose now that the claim in (2.12) is true for a k and for all subarcs J⊂Γ that

contains neither of the endpoints of Γ. For such a J , select a subarc J∗⊃J such that J∗

has no common endpoint with J , nor with Γ. For a z0∈J let Q(v)=Qn1/3,z0(v) be as in

(i)–(iii) of (6.12) with zero replaced by z0 and K replaced by Γ. So this is a polynomial

of degree at most n1/3 such that Q(z0)=1, ‖Q‖Γ61 and if v∈Γ, then

|Q(v)|6C1e
−c1n1/3|v−z0|2 . (8.5)

Because of the uniform C2 property of Γ, a relatively simple consideration shows that

here the constants C1 and c1 are independent of z0∈J .

Consider any δ>0 such that the intersection of Γ with the δ -neighborhood of J is

part of J∗, and set fk,n,z0(v)=R
(k)
n (v)Q(v). On Γ for this we have the bound

O(n2k)e−c1n
1/3δ2‖Rn‖Γ = o(1)‖Rn‖Γ

outside the δ -neighborhood of z0 (see (8.1) and (8.5)). In the δ -neighborhood of any

z0∈J we have, by ‖Q‖Γ61 and by the induction hypothesis applied to Rn and to the

arc J∗,

|fk,n,z0(v)|6 (1+o(1))‖Rn‖ΓV (v)k 6 (1+o(1))(1+ε)k‖Rn‖ΓV (z0)k,

where ε!0 as δ!0 in view of (8.2). Therefore, fk,n,z0(v) is a rational function in v of

total degree at most n+n1/3+mk (see below) for which

‖fk,n,z0‖Γ 6 (1+o(1))‖Rn‖ΓV (z0)k,

where o(1)!0 uniformly as n!∞. The poles of fk,n,z0 agree with the poles ai of Rn

with a slight modification: for ai 6=∞ the order of ai in fk,n,z0 is at most ni+k (see the

form (2.6) of Rn), while for a0=∞ the order of a0 is at most n0−k plus at most n1/3

coming from Q. Upon applying Theorem 2.4 to the rational function fk,n,z0 , we obtain

(see also (3.7) and (3.8))

|f ′k,n,z0(z0)|6 (1+o(1))‖Rn‖ΓV (z0)k

×
(
V (z0)+O(mk)+n1/3 max

(
∂g

�C\Γ(z0,∞)

∂n+

,
∂g

�C\Γ(z0,∞)

∂n−

))
.
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In view of (3.7)–(3.8), V (z0) is much larger (of size n) than the last two terms on the

right (which are together of size O(n1/3) if z0 stays away from the endpoints of Γ), hence

it follows that

|f ′k,n,z0(z0)|6 (1+o(1))‖Rn‖ΓV (z0)k+1. (8.6)

Since (recall that Q(z0)=1)

f ′k,n,z0(z0) =R(k+1)
n (z0)+R(k)

n (z0)Q′(z0),

and the second term on the right is O(n2/3)O(nk)‖Rn‖Γ by the induction assumption

and by (8.1) applied to Q with k=1 rather than to Rn, we can conclude (2.12) for k+1

from (8.6).

From how we have derived this, it follows that this estimate is uniform in z0∈J .

9. The Markov-type inequality for higher-order derivatives

In this section we prove the first part of Theorem 2.8 (the sharpness will be handled in

§10). The proof uses the symmetrization technique of [23]. It is sufficient to prove (2.14).

First of all we remark that the limits defining Ωa(A) in (2.9) exist and are equal

for the choices n±. Indeed, let ϕa(z)=1/(z−a) be the fractional linear transformation

considered before. Then

g
�C\Γ(z, a) = g

�C\ϕa(Γ)(ϕa(z),∞),

so, for a z∈Γ, we have

∂g
�C\Γ(z, a)

∂n±
=
∂g

�C\ϕa(Γ)(ϕa(z),∞)

∂n±
|ϕ′a(z)|,

and it has been verified in the proof of [23, Theorem 2] that, as w!ϕa(A), w∈ϕa(Γ),

√
|w−ϕa(A)|

∂g
�C\ϕa(Γ)(w,∞)

∂n±

have equal limits, call them Ω∞(ϕa(Γ), ϕa(A)), for both choices of + or −. Since, as

z!A, z∈Γ, we have |ϕa(z)−ϕa(A)|=(1+o(1))|z−A| |ϕ′a(A)|, it follows that, indeed, the

limits

lim
z!A
z∈Γ

√
|z−A|

∂g
�C\Γ(z, a)

∂n±
= Ω∞(ϕa(Γ), ϕa(A))

√
|ϕ′a(A)|

exist and are the same for the + or − choices.



bernstein- and markov-type inequalities for rational functions 51

Next, we prove the required inequality at the endpoint A. We may assume that

A=0. Let

Γ∗= {z : z2 ∈Γ}.

This is a Jordan arc symmetric with respect to the origin. It is not difficult to prove (see

[23, Appendix 2]) that Γ∗ has C2 smoothness.

Let Rn be a rational function of degree at most n of the form (2.6), and set R2n(z)=

Rn(z2). This is a rational function which has 2n poles ±√ai, where ai runs through the

poles of Rn (here ±√ai denote the two possible values of
√
ai with the understanding

that if a0=∞, then both values ±√a0 are ∞). If we apply (2.12) to Γ∗ and to the

rational function R2n, then we get

|R(2k)
2n (0)|6 (1+o(1))M2k‖R2n‖Γ∗ , (9.1)

where

M = max
±

m∑
i=0

ni

{
∂g

�C\Γ∗(0,
√
ai)

∂n±
+
∂g

�C\Γ∗(0,−√ai)
∂n±

}
. (9.2)

For a 6=∞ we have

g
�C\Γ(z2, a) = g

�C\Γ∗(z,
√
a)+g

�C\Γ∗(z,−
√
a),

and hence, for z 6=0,

∂g
�C\Γ∗(z,

√
a)

∂n±(z)
+
∂g

�C\Γ∗(z,−
√
a)

∂n±(z)
=
∂g

�C\Γ(z2, a)

∂n±(z2)
|2z| (9.3)

(with possibly replacing n± by n∓ on the right), which implies

∂g
�C\Γ∗(0,

√
a)

∂n±
+
∂g

�C\Γ∗(0,−
√
a)

∂n±
= 2 lim

w!0

∂g
�C\Γ(w, a)

∂n±(w)

√
|w|= 2Ωa(A). (9.4)

For a=∞ the corresponding calculation is

g
�C\Γ∗(z,∞) =

1

2
g
�C\Γ(z2,∞) and

∂g
�C\Γ∗(z,∞)

∂n±(z)
=

1

2

∂g
�C\Γ(z2,∞)

∂n±(z2)
|2z|,

and so
∂g

�C\Γ∗(0,∞)

∂n±
= lim
w!0

∂g
�C\Γ(w,∞)

∂n±(w)

√
|w|= Ω∞(A). (9.5)

Thus, the M in (9.2) is exactly

2

m∑
i=0

niΩai(A). (9.6)
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In what follows we shall also need that the quantities Ωai(A) are finite and positive,

which is immediate from (9.4) and Lemma 6.1 (this latter applied to γτ=γ0=Γ).

Now we use Faà di Bruno’s formula [8] (cf. [12, Theorem 1.3.2])

(S(F (z)))(2k) =
∑
νj

(2k)!∏2k
j=1 νj !(j!)

νj
S(ν1+...+ν2k)(F (z))

2k∏
j=1

(F (j)(z))νj , (9.7)

where the summation is for all non-negative integers ν1, ..., ν2k for which

ν1+2ν2+3ν3+...+2kν2k = 2k,

and where 00 is defined to be 1 if it occurs on the right. Apply this with S=Rn and

F (z)=z2 at z=0:

R(2k)
2n (0) = (Rn(F (z)))(2k)|z=0 =

∑
νj

(2k)!∏2k
j=1 νj !(j!)

νj
R(ν1+...+ν2k)
n (0)

2k∏
j=1

(F (j)(0))νj

=
(2k)!

k!2k
R(k)
n (0)2k

(use that F (j)(0)=0 unless j=2, and then F (2)(0)=2). Hence, in view of (9.1), we obtain

|R(k)
n (0)|6 (1+o(1))

2k

(2k−1)!!

( m∑
i=0

niΩai(A)

)2k
‖Rn‖Γ, (9.8)

where we also used that ‖R2n‖Γ∗ =‖Rn‖Γ. This proves the correct bound for the kth

derivative at the endpoint A.

So far, we have verified (9.8), which is the claim (2.14), but only at the endpoint

A=0 of the arc Γ. We can reduce the Markov-type inequality (2.14) to this special case.

To achieve that, let us denote Ωa(A) for the arc Γ by Ωa(Γ, A). If z∈Γ is close to A,

then consider the subarc Γz which is the arc of Γ from z to B (recall that B is the other

endpoint of Γ different from A), so the endpoints of Γz are B and z. It is easy to see that

the preceding proof of (9.8) was uniform in the sense that it holds uniformly for all Γz,

z∈Γ, |z−A|6 1
2 |B−A| (see the proofs of Theorem 3 and Appendix 1 in [23]), therefore

we obtain (replace in (9.8) A by z)

|R(k)
n (z)|6 (1+o(1))

2k

(2k−1)!!

( m∑
i=0

niΩai(Γz, z)

)2k
‖Rn‖Γz , (9.9)

where now the quantity Ωa(Γz, z) must be taken with respect to Γz, rather than with

respect to Γ. Since on the right

‖Rn‖Γz 6 ‖Rn‖Γ,
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all what remains to prove is that

lim
z!A
z∈Γ

Ωai(Γz, z) = Ωai(Γ, A) (9.10)

for each ai, i=0, 1, ...,m, as z!A. Indeed, from (9.9) and from the fact that, as it has

been mentioned before, the Ωai(A) quantities are finite and positive, then we obtain that,

for any ε>0,

|R(k)
n (z)|6 (1+ε)

2k

(2k−1)!!

( m∑
i=0

niΩai(Γz, z)

)2k
‖Rn‖Γ, (9.11)

if z∈Γ lies sufficiently close to A, say |z−A|6δ, and n is sufficiently large. On the other

hand, (2.12) shows that R
(k)
n (z)=O(nk) on subsets of Γ lying away from the endpoints

A and B, in particular this is true for z∈U , |z−A|>δ. Now this and (9.11) prove the

theorem. So it is enough to prove (9.10).

Formula (9.10) has been verified for ai=∞ in the proof of [23, Theorem 3]. To get

it for other ai, just apply the mapping ϕai(z)=1/(z−ai) as before to reduce it to the

ai=∞ special case. The reader can easily fill in the details.

10. Proof of the sharpness

In this section we prove Theorems 2.3 and 2.6, and the second part of Theorem 2.8.

We shall first give the proof for Theorem 2.3. The proof of Theorem 2.6 can be

reduced to Theorem 2.3 by attaching a suitable lemniscate as in the proof of Theorem 2.8,

so we skip it (actually, a complete proof will be given as part of the proof in §10.2

for rational functions of the form (2.6) with fixed poles). However, the sharpness in

Theorem 2.8 requires a different approach which will be given in §10.2.

10.1. Proof of Theorem 2.3

The idea is as follows. On the unit circle, we use some special rational functions (products

of Blaschke factors) for which the Borwein–Erdélyi inequality (Proposition 3.4) is sharp.

Then we transfer that back to Γ and approximate the transformed function with rational

functions. In other words, we reverse the reasoning in §4 and do the “reconstruction

step” in the “opposite direction”.

Recall that D={v :|v|<1} and D+={v :|v|>1}∪{∞}, and denote by

B(a, v) =
1−āv
v−a
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the (reciprocal) Blaschke factor with pole at a.

First, we state the cases when we have equality in Proposition 3.4.

Proposition 10.1. Let h be a (reciprocal) Blaschke product with all poles either

inside or outside the unit circle, that is, h(v)=
∏n
j=1B(αj , v) where all αj∈D, or h(v)=∏n

j=1B(βj , v) where all βj∈D+. Then

|h′(1)|= ‖h‖T max

(∑
αj

∂gD(1, αj)

∂n−
,
∑
βj

∂gD+
(1, βj)

∂n+

)
.

This proposition is contained in the Borwein–Erdélyi theorem as stated in [3, pp. 324–

326].

First, we consider the case when

Γ is analytic and ∞∈Z, (10.1)

where, as always, G− is the interior domain determined by Γ.

Fix z0∈Γ, and let, as in §3.2, Φ1 be the conformal map from the unit disk onto the

interior domain G− such that Φ1(1)=z0 and |Φ′1(1)|=1. As it has been discussed there,

this Φ1 can be extended to a disk {v :|v|<r1} for some r1>1.

Let α1, ..., αn be n (not necessarily different) points from Φ−1
1 (Z∩G−), and let

hn(v) :=

n∏
j=1

B(αj , v),

for which ‖hn‖T=1. Now we “transfer” hn to G− by considering hn(Φ−1
1 (z)). If f1,n(z)

is the sum of the principal parts of hn(Φ−1
1 (z)) (with f1,n(∞)=0), then

ϕe(z) :=hn(Φ−1
1 (z))−f1,n(z)

is analytic in G+

1 :={Φ1(v):|v|<r1}. Since hn is at most 1 in absolute value outside the

unit disk, it follows from Proposition 3.6 as in §4 that the absolute value of ϕε is 6C log n

on G+

1 . By Proposition 3.7 (applied to K={Φ1(v):|v|6√r1} and to τ=∂G+

1 ), there are

polynomials f2,
√
n of degree at most

√
n such that f2,

√
n(z0)=ϕe(z0), f ′

2,
√
n
(z0)=ϕ′e(z0)

and

‖ϕe−f2,
√
n‖K 6C(log n)q

√
n (10.2)

for some C and q<1. Therefore, if we set

fn(z) := f1,n(z)+f2,
√
n,
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then this is a rational function with poles in Z∩G− of total degree n and with one pole

at ∞ of order 6
√
n=o(n). For it,

|f ′n(z0)|= |(hn(Φ−1
1 ))′(z0)|= |h′n(1)|,

since |Φ′1(1)|=1. Furthermore, ‖hn‖T=1 (recall that T is the unit circle), so we obtain,

from (10.2),

‖fn‖Γ = ‖f1,n+f2,
√
n‖Γ = ‖f1,n+ϕe+f2,

√
n−ϕe‖Γ

= ‖hn(Φ−1
1 )+f2,

√
n−ϕe‖Γ = 1+O((log n)q

√
n ) = 1+o(1).

We use Proposition 10.1 for hn, hence

|f ′n(z0)|= |h′n(1)|= ‖hn‖T
∑
αj

∂gD(1, αj)

∂n−
> (1−o(1))‖fn‖Γ

∑
αj

∂gD(1, αj)

∂n−
.

Here, by Proposition 3.3,∑
αj

∂gD(1, αj)

∂n−
=
∑
αj

∂gG−(z0,Φ1(αj))

∂n−
= max

(∑
αj

∂gG−(z0,Φ1(αj))

∂n−
,
√
n
∂gG+

(z0,∞)

∂n+

)
,

where, in the last step, we used that the first term in the max is >cn for some c>0 (see

(3.7)), so the last equality holds for large n.

Summarizing, we have proven that if Γ is an analytic Jordan curve and Z⊂	C\Γ is

a closed set such that Z∩G− 6=∅, then there exist rational functions Rn,− with poles at

any prescribed locations a1,n, ..., an,n∈Z∩G− and with a pole at ∞ of order o(n) such

that

|R′n,−(z0)|> (1−o(1))‖Rn,−‖Γ
∑
aj,n

∂gG−(z0, aj,n)

∂n−
, (10.3)

where o(1) depends on Γ and Z only.

If Γ is still analytic but∞ /∈Z, then select a ζ+∈Z∩G+ (this latter set is not empty),

and do the above reasoning by replacing the polynomial f2,
√
n by an appropriate poly-

nomial of 1/(z−ζ+) of degree at most
√
n (which can be easily obtained by applying the

mapping z!1/(z−ζ+)). We omit the details.

Similarly, if Γ is still an analytic Jordan curve, then the same assertion holds for

some rational functions Rn,+ with prescribed poles at aj,n∈Z∩G+ and with a pole of

order 6
√
n at some given point ζ− inside Γ:

|R′n,+(z0)|> (1−o(1))‖Rn,+‖Γ
∑
aj,n

∂gG+
(z0, aj,n)

∂n+

. (10.4)
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This follows by applying a suitable inversion: fix ζ−∈G− and apply the mapping w=

1/(z−ζ−). We omit the details.

Now, for analytic Γ, Theorem 2.3 can be easily proven. For simplicity, assume that

the aj,n are different and finite (the following argument needs only a simple modification

if this is not the case). Suppose, for example, that for a given n=1, 2, ... ,

∑
aj,n∈Z∩G−

∂gG−(z0, aj,n)

∂n−
>

∑
aj,n∈Z∩G+

∂gG+
(z0, aj,n)

∂n+

. (10.5)

Consider the poles aj,n that are in G−, and denote by R−(z) a rational function whose

existence is established above for these poles (if the number of the aj,n that are in G− is

N , then in the previous notation this R− is RN,−, so the number of poles of R− in G− is

N , and R− also has a pole of order at most
√
N at ∞). Next, for any given ε>0, write

fn,+(z) := εn
∑

aj,n∈Z∩G+

1

z−aj,n
,

where εn>0 is so small that ‖fn,+‖Γ6ε‖R−‖Γ and |f ′n,+(z0)|6ε|R′−(z0)|. It is easy to see

that then Rn(z):=R−(z)+fn,+(z) has poles at the prescribed points a1,n, ..., an,n plus

one additional pole of order 6
√
n at ∞. Furthermore, it satisfies

|R′n(z0)|> (1−ε)2(1−o(1))‖Rn‖Γ
∑

aj,n∈G−

∂gG−(z0, aj,n)

∂n−
,

and, by the assumption (10.5), the sum on the right is the same as the maximum in

(2.3).

If (10.5) does not hold (i.e. the reverse inequality is true), then use the analogous

R+ (=Rn−N,+) and add to it a small multiple of the sum of 1/(z−aj,n) with aj,n∈Z∩G−.

Since in these estimates ε>0 is arbitrary, Theorem 2.3 follows for analytic Γ.

If Γ is not analytic, but only C2 smooth, then we can do the following. Suppose,

for example, that for an n (10.5) is true. For ε>0 choose an analytic Jordan curve, say

a lemniscate L, close to Γ such that L∩Γ={z0}, L\{z0} lies in the interior of Γ, Z lies

in the interior of L and

(1−ε)
∂gG−(z0, β)

∂n−
6
∂g

�C\L(z0, β)

∂n−
(10.6)

for all β∈G−∩Z. (Here we used the shorthand notation g
�C\L(z, a) for both gInt(L)(z, a)

when a is inside L and for gExt(L)(z, a) when a is outside L, where Int(L) and Ext(L)

denote the interior and exterior domains to L.) The existence of L follows from the sharp

form of Hilbert’s lemniscate theorem in [16, Theorem 1.2] when β=∞. For other β, use
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fractional linear transformations to move the pole β to ∞, see the formula (10.9) below,

as well as the reasoning there.

Now construct Rn for this L as before, and multiply it by a polynomial Q=Qn7/8

of degree at most n7/8 such that Q(1)=1, ‖Q‖Γ61 and, for some constants c0, C0>0,

|Q(z)|6C0e
−c0n7/8|z−z0|3/2 , z ∈Γ.

Such a Q exists by [22, Theorem 4.1], and we have to consider RnQ rather than Rn,

because the norm of Rn on Γ can be much larger than its norm on L, and Q brings that

norm down, namely ‖RnQ‖Γ6(1+o(1))‖Rn‖L. Indeed, this is an easy consequence of

(6.10) and Proposition 3.10 (both applied to L rather than Γ) and the properties of Q.

Finally, since Rn proves Theorem 2.3 on L, relatively simple argument shows that RnQ

verifies it on Γ. The reader can easily fill in the details.

10.2. Sharpness of the Markov inequality

First we consider a C2 Jordan curve γ and a point z0∈γ on it. Let ε>0. By the sharp

form of the Hilbert lemniscate theorem [16, Theorem 1.2] there is a Jordan curve σ such

that

• σ contains γ in its interior except for the point z0, where the two curves touch

each other,

• σ is a lemniscate, i.e. σ={z :|TN (z)|=1} for some polynomial TN of degree N ,

and

• we have
∂g

�C\σ(z0,∞)

∂n+

> (1−ε)
∂g

�C\γ(z0,∞)

∂n+

, (10.7)

where Green’s functions g
�C\γ(z0,∞) and g

�C\σ(z0,∞) are taken with respect to the outer

domains of γ and σ.

We may assume that TN (z0)=1 and T ′N (z0)>0. Indeed σ, being a lemniscate, is of

the form σ={z :|T ∗N (z)|=1} for some polynomial T ∗N of some degree N . Now TN (z)=

eiξT ∗N (e−iθz) satisfies TN (eiθz0)=1 and T ′N (eiθz0)>0 for some ξ and θ, so all we need to

do is to replace γ, σ and z0 by their rotated copies eiθγ, eiθσ and eiθz0, respectively.

Green’s function of the outer domain of σ is (log |TN (z)|)/N , and its normal deriv-

ative is
∂g

�C\σ(z0,∞)

∂n+

=
1

N
|T ′N (z0)|= 1

N
T ′N (z0).

Consider now, for all large n, the polynomials Sn(z)=TN (z)bn/Nc, where b·c denotes

integral part. This is a polynomial of degree at most n, its supremum norm on σ is 1
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and

S′n(z0) =
⌊ n
N

⌋
TN (z0)bn/Nc−1T ′N (z0) =n

∂g
�C\σ(z0,∞)

∂n+

+O(1).

In a similar fashion,

S′′n(z0) =
⌊ n
N

⌋(⌊ n
N

⌋
−1
)
TN (z0)bn/Nc−2(T ′N (z0))2+

⌊ n
N

⌋
TN (z0)bn/Nc−1T ′′N (z0)

=n2

(
∂g

�C\σ(z0,∞)

∂n+

)2
+O(n).

Proceeding similarly, it follows that, for any j=1, 2, ... ,

S(j)
n (z0) =nj

(
∂g

�C\σ(z0,∞)

∂n+

)j
+O(nj−1).

Thus, in view of (10.7), we may write

S(j)
n (z0)> (1−ε)jnj

(
∂g

�C\γ(z0,∞)

∂n+

)j
+O(nj−1), (10.8)

where, and in what follows, we use the following convention: if A is a complex number

and B is a positive number, then we write A>B+O(ns) if A=C+O(ns), where C is a

real number with C>B. Note also that ‖Sn‖γ6‖Sn‖σ=1, by the maximum principle.

Next, we need an analogue of this for rational functions with pole at a point a that

lies outside γ. Consider the fractional linear transformation ϕa(z)=ξ/(z−a), where ξ is

selected so that |ξ|=1 and ϕ′a(z0)>0 (for a=∞ set ϕ∞(z)=z). The image of γ under this

transformation is ϕa(γ), and g
�C\γ(z, a)=g

�C\ϕa(γ)(ϕa(z),∞). This latter relation implies

that
∂g

�C\γ(z0, a)

∂n+(z0)
=
∂g

�C\ϕa(γ)(ϕa(z0),∞)

∂n+(ϕa(z0))
ϕ′a(z0). (10.9)

Now let Sn be the polynomial constructed before, but this time for the curve ϕa(γ) and

for the point ϕa(z0), and set Sn,a(z)=Sn(ϕa(z)). This is a rational function with a pole

of order at most n at a. Its norm on γ is at most 1 and, in view of (10.8) (applied to

ϕa(γ)),

S′n,a(z0) =S′n(ϕa(z0))ϕ′a(z0)> (1−ε)n
∂g

�C\ϕa(γ)(ϕa(z0),∞)

∂n+(ϕa(z0))
ϕ′a(z0)+O(1),

which can be written in the form

S′n,a(z0)> (1−ε)n
∂g

�C\γ(z0, a)

∂n+

+O(1),
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in view of (10.9). For the second derivative we have

S′′n,a(z0) =S′′n(ϕa(z0))(ϕ′a(z0))2+S′n(ϕa(z0))ϕ′′a(z0),

and hence

S′′n,a(z0)> (1−ε)2n2

(
∂g

�C\γ(z0, a)

∂n+

)2
+O(n),

in view of (10.8) (applied to ϕa(γ) and to the point ϕa(z0)) and (10.9). Proceeding

similarly we obtain, for all j=1, 2, ... ,

S(j)
n,a(z0)> (1−ε)jnj

(
∂g

�C\γ(z0, a)

∂n+

)j
+O(nj−1). (10.10)

Now let there be given a fixed number of different poles a0, ..., am in the exterior of γ

and associated orders n0, ..., nm, where a0=∞ (if we do not want the point∞ among the

poles, just set n0=0). For the total degree n=n0+...+nm consider the rational function

Un(z) =

m∏
i=0

Sni,ai(z),

where we set Sn0,a0 =Sn0 , with the polynomial Sn0 constructed in the first part of the

proof. This is a rational function with poles at the ai’s, where the order of each ai is at

most ni. Since

U (k)
n (z0) =

∑
j0+...+jm=k

k!

j0! ... jm!
S(j0)
n0,a0(z0) ... S(jm)

nm,am(z0),

we obtain from (10.10) that

U (k)
n (z0)>

∑
j0+...jm=k

k!

j0! ... jm!

m∏
i=0

(
(1−ε)jinjii

(
∂g

�C\γ(z0, ai)

∂n+

)ji
+O(nji−1

i )

)

=
∑

j0+...jm=k

k!

j0! ... jm!

m∏
i=0

(
(1−ε)jinjii

(
∂g

�C\γ(z0, ai)

∂n+

)ji)
+O(nk−1),

so, by the multinomial theorem (see e.g. [12, Theorem 1.3.1]),

U (k)
n (z0)> (1−ε)k

( m∑
i=0

ni
∂g

�C\γ(z0, ai)

∂n+

)k
+O(nk−1).

Hence,

|U (k)
n (z0)|> (1−ε)k(1−o(1))

( m∑
i=0

ni
∂g

�C\γ(z0, ai)

∂n+

)k
, (10.11)
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in view of (3.8).

After these preparations, we can prove the last statement in Theorem 2.8. Let Γ

be a C2 smooth Jordan arc and a0, ..., am be finitely many fixed poles outside Γ with

associated orders n0, ..., nm. We agree that a0=∞, and if we do not want the point ∞
among the poles, just set n0=0. We may assume that the endpoint A of Γ is at the

origin, and consider, as before, the curve Γ∗={z :z2∈Γ}. We also consider the poles

±√ai, i=0, ...,m, with associated orders ni, with the agreement that if n0 6=0, i.e. the

point ∞ is among our poles, then ±
√
∞=∞.

It is easy to see that there is a C2 Jordan curve γ such that

• γ contains Γ∗ in its interior except for the point zero, where γ and Γ∗ touch each

other,

• all ±√ai are outside γ,

• we have

∂g
�C\γ(0,±√ai)

∂n+

> (1−ε)
∂g

�C\Γ∗(0,±√ai)
∂n+

for all i. (10.12)

Indeed, all we need to do is to select γ sufficiently close to Γ∗ and to have, at zero,

curvature close to the curvature of Γ∗; see e.g. [16]. Now apply (10.11) to this γ, to z0

and to the poles ±√ai with the associated orders ni, but for the 2k-th derivative. We

get a rational function U2n, n=n0+...+nm, with poles at ±√ai of order at most ni, such

that ‖U2n‖γ61 and

|(U2n(z))(2k)(0)|> (1−ε)2k(1−o(1))

( m∑
i=0

ni

(
∂g

�C\γ(0,
√
ai)

∂n+

+
∂g

�C\γ(0,−√ai)
∂n+

))2k
,

which yields, in view of (10.12),

|(U2n(z))(2k)(0)|> (1−ε)4k(1−o(1))

( m∑
i=0

ni

(
∂g

�C\Γ∗(0,
√
ai)

∂n+

+
∂g

�C\Γ∗(0,−√ai)
∂n+

))2k
.

(10.13)

Note also that, by the maximum principle, we have ‖U2n‖Γ∗6‖U2n‖γ61, because all the

poles of U2n lie outside γ.

Then, by the symmetry of Γ∗ and of the system {±√ai} onto the origin, Un(−z)
also has this property, and furthermore (U2n(−z))(2k)(0)=(U2n(z))(2k)(0), so if we set

R2n(z)= 1
2 (U2n(z)+U2n(−z)), then R2n is an even rational function for which (10.13)

is true if we replace in it U2n(z) by R2n(z). But then there is a rational function Rn

such that R2n(z)=Rn(z2), and for this Rn we have that ‖Rn‖Γ=‖R2n‖Γ∗61, and (see

(10.13))

(Rn(z2))(2k)(0)> (1−ε)4k(1−o(1))22k

( m∑
i=0

niΩai(A)

)2k
,
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where we used the equality of the two quantities in (9.2) and (9.6). Note also that this

Rn has poles at a0, ..., am of orders at most n0, ..., nm. Now, the argument used in the

proof of Theorem 2.8 via the Faà di Bruno’s formula shows that the preceding inequality

is the same as

|R(k)
n (0)|> (1−ε)4k(1−o(1))

2k

(2k−1)!!

( m∑
i=0

niΩai(A)

)2k
.

A similar construction can be done for the other endpoint B of Γ, and by taking

the larger of the two expressions in these lower estimates, we finally conclude the last

statement in Theorem 2.8 regarding the sharpness of (2.13).
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