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Abstract In quantum dynamical systems, a history is defined by a pair (M,γ), consisting of a type I factor M ,
acting on a Hilbert space H , and an E0-group γ = (γt)t∈R, satisfying certain additional conditions. In this paper,
we distort a given history (M,γ), by a finite family G of partial isometries on H . In particular, such a distortion is
dictated by the combinatorial relation on the family G. Two main purposes of this paper are (i) to show the existence
of distortions on histories, and (ii) to consider how distortions work. We can understand Sections 3, 4 and 5 as the
proof of the existence of distortions (i), and the properties of distortions (ii) are shown in Section 6.
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1 Introduction

Directed graphs, both finite and infinite, play a role in a myriad of areas of applications: electrical networks of
resistors, the internet and random walks in probability theory, to mention only a few. Some of the results in the subject
stress combinatorial aspects of the graphs (e.g. [4,21,24,26,27,28,29,30,32,33]), while others have a more analytic
slant. Applications to quantum theory fall in the latter group, and that is where Hilbert space and noncommutative
operators play a role (e.g. [1,5,6,18,22,23,34,35] through [25,36]).

In [14,6,7], algebraic structures induced by directed graphs, called graph groupoids, have been studied. They
are indeed categorical groupoids (e.g. see [31]). Under the suitable representations of graph groupoids, one under-
stands that the elements of graph groupoids are operators on Hilbert spaces. In particular, we have the canonical
representation of graph groupoids (e.g. [6,7,8,10]). Such representations are the groupoidal version of the well-
known left regular representations of groups (e.g. [37]). It lets us construct von Neumann algebras generated by
graph groupoids. Via canonical representation, the edges and vertices of graphs assign Hilbert-space operators.

Independently, in [15,18,19], we consider the embedding representation of graph groupoids, and study the
corresponding C∗-subalgebras in fixed operator algebras B(H). In particular, the author and Jorgensen showed
that if partial isometries on a Hilbert space H are given, then they generate a corresponding graph (and hence an
embedded subgroupoid of B(H)). This provides a connection from Hilbert-space operators to graphs.

The study of graph groupoids is not only interested in operator theory and quantum physics, but also interested
in statistical algebra. For instance, graph groupoids have been used to enlarge the understandings for fractal struc-
tures. Graph groupoids with fractal property are said to be graph fractaloids (e.g. [11,13,16,17,20,9]). There are
sufficiently many graph fractaloids which are not fractal groups.

1.1 Motivation

This paper is highly motivated by the recent works of Arveson (e.g. see [2,3] and the cited papers therein) and those
of the author and Jorgensen (see [15,18]).

In [2,3], the histories are defined and investigated mathematically, and the groupoid actions induced by partial
isometries on a fixed Hilbert space H are considered in [15,18].

This paper starts with the following questions:

(1.1) Are histories distorted?
(1.2) How can we distort histories?

1.2 Technical overview

Let H be a fixed separable infinite dimensional Hilbert space and B(H) an operator algebra consisting of all
(bounded linear) operators on H . Assume that M ⊆ B(H) is a type I (sub) factor, and let γ = (γt)t∈R be an



2 Journal of Physical Mathematics

E0-group, satisfying (i) the fixed past property, (ii) irreducibility and (iii) trivial infinitely remote past property. The
pair (M,γ) is called a history (of M in B(H)) (see Section 2.4 below).

In [11,12], framings on graphs have been considered; measure-space-framings and group-framings. We are
interested in group-framings under the assumption that groups Γ are topological groups, and the graphs G are
regarded as discrete topological spaces consisting of all vertices and edges. The group-framed graph GΓ of G with
its group-frame Γ is a topological space which is neither a combinatorial graph nor a group, however it acts like a
usual graph, and generates the (categorical) groupoid GΓ . Interestingly, GΓ is characterized by the product groupoid
Γ ×G. The group-framing Gγ makes us “distort” the E0-group γ of a given history (M,γ) by the graph groupoid
G of G. In other words, G distorts the fixed history (M,γ) if G acts on H .

Like in our real life, two kinds of distortions may happen; inner distortions (the distortions happened inside the
paradigm) and the outer distortions (the distortions happened outside the paradigm).

In [18], it is shown that if we have a finite family G of partial isometries on a Hilbert space H , then the C∗-
subalgebra C∗(G) of B(H) is characterized by the groupoid C∗-algebra C∗

π(G) in B(H), where G is the graph
groupoid of a certain graph GG induced by G. In this paper, the “special” case introduced in [15] is considered. But
one may/can apply the same approach and techniques for the general case of [18].

We provide the positive answer for our first question (1.1) in Sections 3, 4 and 5. The properties of distorted
histories is shown in Section 6, as an answer for the second question (1.2).

2 Definitions and notations

We first introduce the main objects we use throughout the paper.

2.1 Partial isometries on a Hilbert space

We say that an operator a ∈ B(H) is a partial isometry if the operators a∗a ∈ B(H) is a projection. The
characterizations of partial isometries are well known: the operator a is a partial isometry if and only if a = aa∗a,
if and only if aa∗ is a projection, if and only if the adjoint a∗ of a is a partial isometry in B(H), if and only
if a∗ = a∗aa∗. Recall that an operator p in B(H) is a projection, if p is self-adjoint and idempotent. That is,
p∗ = p = p2 in B(H). The projections a∗a and aa∗, induced by a partial isometry a, are called the initial projection
and the final projection of a, respectively.

Every partial isometry a has its initial space

Ha
init =

(
a∗a

)
H,

and its final space

Ha
fin =

(
aa∗

)
H,

which are (closed) subspaces of H. Notice that every partial isometry a is a unitary from Ha
init onto Ha

fin, in the sense
that

a∗a = 1Ha
init
, aa∗ = 1Ha

fin
,

where 1K means the identity operator on an arbitrary Hilbert space K.
Suppose a1 and a2 are partial isometries on H, and assume that the initial space Ha1

init of a1 is (not only Hilbert-
space isomorphic but also) identically the same as the final space Ha2

fin of a2 in H. Or, equivalently, the projections
a∗1a1 and a2a

∗
2 are (not only unitarily equivalent but also) exactly the same projection on H. Then the product a1a2

of the operators a1 and a2 is again a partial isometry on H . Indeed, if we denote the identical projections a∗1a1 and
a2a

∗
2 by p, then

(
a1a2

)(
a1a2

)∗(
a1a2

)
= a1a2a

∗
2a

∗
1a1a2 = a1

(
a2a

∗
2

)(
a∗1a1

)
a2 = a1p

2a2 = a1pa2 = a1a2.

Therefore, the operator a1a2 is a partial isometry with its initial space Ha1a2
init = Ha2

init and its final space Ha1a2
fin =

Ha1
fin on H .

In general, even though a1 and a2 are partial isometries, the product a1a2 is not a partial isometry. Denote the
final projection a2a

∗
2 of a2 and the initial projection a∗1a1 of a1 by p2 and p1, respectively. Then we have obtained

(
a1a2

)(
a1a2

)∗(
a1a2

)
= a1a2a

∗
2a

∗
1a1a2 = a1p2p1a2 �= a1a2,

in general, because p2p1 is not a projection, in general. Recall that p2p1 is a projection if p1p2 = p2p1.
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2.2 Directed graphs and graph groupoids

Recently, countable directed graphs have been studied extensively in pure and applied mathematics. Not only are
they connected with certain noncommutative structures but also they let us visualize such structures. Moreover,
the visualization has a nice matricial expressions, (sometimes, operator-valued matricial expressions depending on)
adjacency matrices or incidence matrices of the given graph (e.g. [14,30,34]). In particular, the partial isometries in
an operator algebra can be expressed by directed graphs (see [15,18]).

A graph is a set of objects called vertices (or points or nodes) connected by links called edges (or lines). In
a directed graph, the two directions are counted as being distinct directed edges (or arcs). A graph is depicted in
a diagrammatic form as a set of dots (for vertices), jointed by curves (for edges). Similarly, a directed graph is
depicted in a diagrammatic form as a set of dots jointed by arrowed curves, where the arrows point the direction of
the directed edges.

More combinatorially, for us, a directed graph G means the pair (V (G), E(G)), equipped with the fixed direction
on E(G), where V (G) is the vertex set of G, and E(G) is the edge set of G. Since all edges are directed, if e ∈ E(G),
then it has its initial vertex v and its terminal vertex v′. Sometimes, we denote this edge e by e = vev′, to emphasize
the initial and the terminal vertices v and v′. Remark here that the vertices v and v′ are not necessarily distinct in
V (G). For example, if e is a loop-edge, then v = v′ in V (G).

Now, let ek = vkekv
′
k be edges in E(G), with vk, v

′
k ∈ V (G), for k = 1, 2. Assume that v′1 = v2 in V (G). Then

we have a finite path e1e2, connecting the vertex v1 to the vertex v′2, on G. Inductively, we can have finite paths
generated by edges.

Denote the set of all finite paths of G by FP(G). We call FP(G) the finite path set of G. Clearly, the edge
set E(G) is contained in FP(G). Moreover, all elements in FP(G) are the words in E(G). That is, if w is a finite
path in FP(G), then it is represented as a word in E(G): if e1, . . . , en are connected directed edges in the order
e1 → e2 → · · · → en on G, for n ∈ N, then we can express w by e1 · · · en in FP(G). If there exists a finite path
w = e1 · · · en in FP(G), where n ∈ N \ {1}, we say that the directed edges e1, . . . , en are admissible.

The length |w| of w is defined to be n, which is the cardinality of the admissible edges generating w. Also, we
say that finite paths w1 = e11 · · · e1k1

and w2 = e21 · · · e2k2
are admissible if w1w2 = e11 · · · e1k1

e21 · · · e2k2
is

again an element of FP(G), where e11, . . . , e1k1
, e21, . . . , e2k2

∈ E(G). Otherwise, we say that w1 and w2 are not
admissible.

Suppose that w is a finite path in FP(G), connecting the vertex v1 to the vertex v2. Then we write w = v1w or
w = wv2 or w = v1wv2, for emphasizing the initial vertex of w, respectively, the terminal vertex of w, respectively,
both the initial vertex and the terminal vertices of w. Suppose w = v1wv2 in FP(G) with v1, v2 ∈ V (G). Then we
also say that “v1 and w are admissible” and “w and v2 are admissible”. Notice that even though the elements w1

and w2 in V (G) ∪ FP(G) are admissible, w2 and w1 are not admissible, in general. For instance, if e1 = v1e1v2 is
an edge with v1, v2 ∈ V (G) and e2 = v2e2v3 is an edge with v3 ∈ V (G), such that v3 �= v1, then there is a finite
path e1e2 in FP(G), but there is no finite path e2e1, equivalently, the finite path e2e1 is undefined.

The free semigroupoid F
+(G) of G is defined by a set

F
+(G) = {∅} ∪ V (G) ∪ FP(G),

with its binary operation (·) on F
+(G), defined by

(
w1, w2

) �−→ w1 · w2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

w1 if w1 = w2 in V (G),

w1 if w1 ∈ FP(G), w2 ∈ V (G) and w1 = w1w2,

w2 if w1 ∈ V (G), w2 ∈ FP(G) and w2 = w1w2,

w1w2 if w1, w2 in FP(G) and w1w2 ∈ FP(G),

∅ otherwise,

where ∅ is the empty word in V (G) ∪ E(G). Sometimes, the free semigroupoid F
+(G) of a certain graph G does

not contain the empty word ∅. For instance, the free semigroupoid of the one-vertex-multi-loop-edge graph does not
have the empty word. But, in general, the empty word ∅ is contained in the free semigroupoid, whenever |V (G)| > 1.
So, if there is no confusion, then we usually assume that the empty word is contained in free semigroupoids. This
binary operation (·) on F

+(G) is called the admissibility. That is, the algebraic structure (F+(G), ·) is the free
semigroupoid of G. For convenience, we denote (F+(G), ·) simply by F

+(G).
For the given countable directed graph G, we can define a new countable directed graph G−1 which is the

opposite directed graph of G, with

V
(
G−1) = V (G), E

(
G−1) =

{
e−1 : e ∈ E(G)

}
,
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where e−1 ∈ E(G−1) is the opposite directed edge of e ∈ E(G), called the shadow of e ∈ E(G). That is, if
e = v1ev2 in E(G) with v1, v2 ∈ V (G), then e−1 = v2e

−1v1 in E(G−1) with v2, v1 ∈ V (G−1) = V (G). This new
directed graph G−1 is said to be the shadow of G. It is trivial that

(
G−1)−1

= G.

This relation shows that the admissibility on the shadow G−1 is oppositely preserved by that on G.
A new countable directed graph Ĝ is called the shadowed graph of G if it is a directed graph with

V
(
Ĝ
)
= V (G) = V

(
G−1), E

(
Ĝ
)
= E(G) ∪ E

(
G−1).

Definition 1. Let G be a countable directed graph and Ĝ the shadowed graph of G, and let F+(Ĝ) be the free
semigroupoid of Ĝ. Define the reduction (RR) on F

+(Ĝ) by

ww−1 = v, w−1w = v′, (RR)

whenever w = vwv′ in FP(Ĝ), with v, v′ ∈ V (Ĝ). The subset of F+(Ĝ), satisfying this reduction (RR), is denoted
by F

+
r (Ĝ). And this set F+

r (Ĝ) with the inherited admissibility (·) from F
+(Ĝ) is called the graph groupoid of G.

Denote (F+
r (Ĝ), ·) by G. Define the reduced finite path set FPr(Ĝ) of G by

FPr
(
Ĝ
) def
= G \ (V (

Ĝ
) ∪ {∅}).

All elements of FPr(Ĝ) are said to be reduced finite paths of Ĝ.

Remark that all elements of a graph groupoid G are reduced words in E(Ĝ).

2.3 Groupoids and groupoid actions

Every graph groupoid is indeed a (categorical) groupoid. This means that a graph groupoid has a (rough but rich)
algebraic structures.

Definition 2. One says an algebraic structure (X ,Y, s, r) is a (categorical) groupoid if it satisfies that (i) Y ⊂ X ,
(ii) there exists a partially-defined binary operation (x1, x2) �→ x1x2, for all x1, x2 ∈ X , depending on the source
map s and the range map r satisfying the followings:

(ii-1) x1x2 is well determined, whenever r(x1) = s(x2), for x1, x2 ∈ X ,
(ii-2) (x1x2)x3 = x1(x2x3), if they are well defined, for x1, x2, x3 ∈ X ,
(ii-3) if x ∈ X , then there exist y, y′ ∈ Y , such that s(x) = y and r(x) = y′, satisfying x = yxy′,
(ii-4) if x ∈ X , then there exists a unique groupoid-inverse x−1 satisfying xx−1 = s(x) and x−1x = r(x).

For example, every group Γ is a groupoid (Γ, {eΓ }, s, r), where eΓ is the group-identity and s = r. The subset
Y of a groupoid X is said to be the base of X .

Remark that we can naturally assume that there exists the empty element ∅ in a groupoid X . The empty element
∅ represents the undefinedness of the operation. By adding ∅, we can make the partially-defined binary operation
on a groupoid be well defined. Notice that if |Y| = 1 (equivalently, if X is a group), then the empty word ∅ is not
contained in the groupoid X . However, in general, whenever |Y| ≥ 2, a groupoid X always contain the empty word.
So, if there is no confusion, we automatically assume that the empty element ∅ is contained in X .

It is easy to check that our graph groupoid G of a graph G is indeed a groupoid with its base V (Ĝ).
Let Xk = (Xk,Yk, sk, rk) be groupoids, for k = 1, 2. We say that a map f : X1 → X2 is a groupoid morphism

if (i) f(Y1) ⊆ Y2, (ii) s2(f(x)) = f(s1(x)) in X2, for all x ∈ X1 and (iii) r2(f(x)) = f(r1(x)) in X2, for all
x ∈ X1. If a groupoid morphism f is bijective, then we say that f is a groupoid-isomorphism. If there is a groupoid-
isomorphism, then the groupoids X1 and X2 are groupoid-isomorphic. Algebraically, if f is a groupoid-morphism,
then

f
(
w1w2

)
= f

(
w1

)
f
(
w2

)
in X2,

for all w1, w2 ∈ X1.
Recall that if two graphs G1 and G2 have graph-isomorphic shadowed graphs Ĝ1 and Ĝ2, then the corresponding

graph groupoids G1 and G2 are groupoid-isomorphic.
Let X = (X ,Y, s, r) be a groupoid. We say that X acts on a set X if there exists a groupoid action π of X , such

that π(x) : X → X is a well-defined function, and

π
(
x1x2

)
= π

(
x1

) ◦ π(x2
)
, on X,

for all x1, x2 ∈ X , where (◦) means the usual composition. Sometimes, we call the set X a X -set.
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2.4 E0-groups and histories

Let M be a von Neumann algebra acting on a Hilbert space H. That is, M ⊆ B(H). Define the commutant M ′ of
M by

M ′ def
=

{
x ∈ B(H) : xm = mx, ∀m ∈ M

} ⊆ B(H).

Recall that M is a factor if

M ∩M ′ = C · 1M ∗-iso
= C,

where “∗-iso
= ” means “being ∗-isomorphic.”

A von Neumann algebra M is said to be of type I if there exists the minimal subspace H0 of H , such that M is
∗-isomorphic to B(H0). If H0 is finite dimensional, with dimH0 = n, then we say M is of type In, for n ∈ N, and
if H0 is infinite dimensional, then we say M is of type I∞.

Definition 3. An E0-semigroup is a one-parameter semigroup α = (αt)t∈R
+
0

, acting on M, where R
+
0

def
= {t ∈ R :

t ≥ 0}, satisfying the followings:

(i) every αt is a ∗-endomorphism on M , for all t ∈ R
+
0 ,

(ii) αt(1M ) = 1M , for all t ∈ R,
(iii) α0 = idM , where idM means the identity map on M ,
(iv) αt1 ◦ αt2 = αt1+t2 , on M , for all t1, t2 ∈ R

+
0 .

Recall that (R+
0 ,+) is a semigroup (or a monoid). Thus, by (iii) and (iv), α = (αt)t∈R

+
0

forms a semigroup

under the composition. If the collection α = (αt)t∈R
+
0

satisfies the conditions (i), (iii) and (iv) (without (ii)), then
we call α, an E-semigroup (e.g. [2,3]). If an E-semigroup α satisfies an additional condition (ii), then this α is said
to be an E0-semigroup. Similarly, E0-groups are defined as follows.

Definition 4. An E0-group is a one-parameter group γ = (γt)t∈R, such that (i) the sub-classes

γ+ =
(
γt
)
t∈R

+
0
, γ− =

(
γ−t

)
t∈R

+
0

are E0-semigroups, (ii) γ0 = idM and (iii) the inverses γ−1
t of γt are identified with γ−t, for all t ∈ R.

Notice now that every E0-group γ = (γ, ◦) and the “flow” group R = (R,+) are group-isomorphic.
Consider certain pairs (M,γ), consisting of type I factors M , and E0-groups γ = (γt)t∈R acting on M .

Definition 5. Let M be a type I-(sub)factor in a fixed operator algebra B(H), and let U = (Ut)t∈R be a one-
parameter unitary group on H , where Ut ∈ B(H) are unitaries, for all t ∈ R. Define the actions γt, acting on M ,
by

γt(m)
def
= UtmU∗

t , ∀t ∈ R.

Then one has the corresponding E0-group γ = (γt)t∈R, acting on M . Assume that M and γ satisfy the
followings:

(2.4.1) fixed past: γt(M) ⊆ M , for all t < 0,
(2.4.2) irreducibility: (∪t∈Rγt(M))′′ = B(H),
(2.4.3) trivial infinitely remote past: ∩t∈Rγt(M) = C · 1H .

Then the pair (M,γ) is said to be a history in B(H).

Remark that if a group γ is defined as above, then it is indeed an E0-group, acting on M : let

γt(m)
def
= UtmU∗

t , ∀m ∈ M, t ∈ R.

Then γ = (γt)t∈R is a group satisfying the followings:

(i) γt(M) = UtMU∗
t ⊆ M , in B(H), for all t ∈ R,

(ii) γt(1M ) = Ut1MU∗
t = UtU

∗
t = 1B(H), for all t ∈ R,
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(iii) for any t1, t2 ∈ R, and m ∈ M , we obtain that

γt1 ◦ γt2(m) = Ut1

(
Ut2mU∗

t2

)
U∗
t1 = Ut1Ut2m

(
Ut1Ut2

)∗
= Ut1+t2mU∗

t1+t2

since U = (Ut)t∈R is a one-parameter unitary group on H

= γt1+t2(m).

(iv) for all m ∈ M ,

γt ◦ γt−1(m) = U0mU−1
0 = m = U−1

0 mU0 = γt−1 ◦ γt(m),

by (iii), since U0
def
= idM .

Therefore, the group γ is an E0-group, acting on M .
Recall that if X is an arbitrary subset in B(H), then the double commutant X ′′ of X is the von Neumann algebra

vN(X), generated by the set X, by the famous double-commutant theorem. So, in the condition (2.4.2), the left-hand
side means the von Neumann algebra vN(γ(M)), generated by γt(M)’s, for all t ∈ R.

It is useful to think of the group γ as actions of the time-flow, and the von Neumann algebra M as events or facts
or something happened in the past. Then, the condition (2.4.1) means that the past M is fixed; the condition (2.4.2)
means that the history M is understood fully or wholly inside a fixed paradigm B(H), and the condition (2.4.3)
means the history of M started from the triviality, represented by C.

3 Graph families of partial isometries

In [15], we observed the C∗-subalgebras of a fixed operator algebra B(H), generated by “certain” finite families of
partial isometries. And in [18], we extend the results of [15] to the “general” case, where we have arbitrary finite
families of partial isometries on H . In this paper, we only consider the structures introduced in [15]. We remark that
the results of this paper are extendable to the general cases of [18]. However, the settings of [15] are more natural
and reasonable for our purpose.

In the rest of this paper, we fix a Hilbert space H , and the corresponding operator algebra B(H), regarded as a
paradigm where histories are embedded.

Definition 6. Let G = {a1, . . . , aN} be a finite family of partial isometries in B(H), for N ∈ N. One says that the
family G constructs a finite directed graph G if there exists G, such that

(i) |E(G)| = |G| and |V (G)| = |Gpro|, where

Gpro
def
= {a∗a : a ∈ G} ∪ {aa∗ : a ∈ G}.

Equivalently, there exist bijections gE : E(G) → G and gV : V (G) → Gpro, such that

gE(e) = gE(vev′) = gV (v)gE(e)gV (v′),

where gV (v) and gV (v′) are the initial and the final projections of gE(e), respectively,
(ii) e1 · · · en is a nonempty finite path on a graph G if and only if the corresponding operator gE(e1) · · · gE(en) is

a well-defined “partial isometry” in B(H), for all n ∈ N,
(iii) two edges e1 and e2 are not admissible (e1e2 = ∅) if and only if gE(e1)gE(e2) = 0H .

The family G is called a G-family of partial isometries in B(H). Conversely, the graph G is called the G-graph.

The above conditions (ii) and (iii) can be rewritten as follows: two edges e1 and e2 are admissible if and only if
the initial spaces H

gE(e1)
init and the final space H

gE(e2)
fin are (not only Hilbert-space isomorphic, but also) identically

the same in H , as subspaces of H . Equivalently, the edges e1 and e2 are not admissible if and only if HgE(e1)
init ∩

H
gE(e2)
init = {0H}. That is,

e1e2 �= ∅ ⇐⇒ H
gE(e1)
init ∩H

gE(e2)
fin ≡ H

gE(e1)
init ≡ H

gE(e2)
fin ,

in H , and

e1e2 = ∅ ⇐⇒ H
gE(e1)
init ∩H

gE(e2)
fin ≡ {

0H
}
,

where “≡” means “being identically the same in H .”
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Let G = {a1, . . . , aN} be a finite family of partial isometries on H , and assume that the initial spaces and the
final spaces of all elements are infinite dimensional. Then the family

Ĝ def
= G ∪ G∗

generates a C∗-subalgebra C∗(G) of B(H), where

G∗ def
=

{
a∗ : a ∈ G}.

That is,

C∗(G) = C

[
Ĝ
]

in B(H),

where X means the topological closure of X in B(H).
A graph G is connected if, for any pair (v1, v2) of “distinct” vertices, there always exists at least one reduced

finite path w ∈ FPr(Ĝ), such that w = v1wv2 and w−1 = v2w
−1v1. If not, the graph G is said to be disconnected.

Assume that a graph G is disconnected. Then there exists t ∈ N\ {1}, and full-subgraphs G1, . . . , Gt of G, such
that (i) Gj are connected full-subgraphs of G, (ii) V (G) = �t

j=1V (Gj) and E(G) = �t
j=1E(Gj), (iii) the family

{G1, . . . , Gt} is the “minimal” family satisfying (i) and (ii). The full-subgraphs G1, . . . , Gt are called the connected
components of G.

If G is disconnected, with its connected components G1, . . . , Gt, for t ∈ N \ {1}, then the shadowed graph Ĝ

of G is a disconnected graph with its connected components Ĝ1, . . . , Ĝt, where Ĝj are the shadowed graphs of Gj ,
for j = 1, . . . , t. Also, the graph groupoid G of G is partitioned by the graph groupoids Gj of Gj , for j = 1, . . . , t,

G
Groupoid

=
t�

j=1
Gj ,

set-theoretically, and it is groupoid-isomorphic to the direct product

G =
t⊕

j=1
Gj ,

algebraically.

Assumption. From now on, all given graphs are “connected” and “finite.”

Recall that a graph G is finite if |V (G)| < ∞, and |E(G)| < ∞.
Let G be a connected finite graph, with

∣
∣V

(
Ĝ
)∣∣ = n,

∣
∣E

(
Ĝ
)∣∣ = 2N (equivalently,

∣
∣E(G)

∣
∣ = N).

We will give an indexing on V (Ĝ) by {1, . . . , n}. That is, we will let

V
(
Ĝ
)
=

{
v1, . . . , vn

}
= V (G).

By indexing the vertices, we can index the elements of E(G) and E(Ĝ) (for the fixed indices on V (Ĝ)), as
follows:

E(G) =

{

em:ij

∣
∣
∣
∣
m = 1, . . . , kij , kij �= 0

em:ij = viem:ijvj

}

, E(Ĝ) =

⎧
⎪⎨

⎪⎩
xm:ij

∣
∣
∣∣
∣
∣
∣

xm:ij = em:ij , if xm:ij ∈ E(G)

xm:ij = e−1
m:ji, if xm:ij ∈ E

(
G−1)

m = 1, . . . , kij , kij �= 0

∣
∣
∣∣
∣
∣
∣

⎫
⎪⎬

⎪⎭
,

where kij means the cardinality of edges connecting vi to vj , in G (not in Ĝ). By the finiteness of G,

kij < ∞, whenever kij �= 0.

Clearly, “kij = 0” means that “there is no edge connecting vi to vj” in G.
For instance, if we have a graph G

G =
v1• ⇒ •v2

↘
•v3

,

then

k12 = 2, k13 = 1, k23 = k32 = k21 = k31 = 0.
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The admissibility on G is in fact independent from the choice of indexings (see [15,18]). It means that if we fix
one indexing on V (Ĝ) (and hence, that on E(Ĝ)), and if we fix other indexing on V (Ĝ), then the indexed graphs are
graph-isomorphic from each other.

Under the above settings, the graph groupoid G has its matricial graph representation (HG, π), where HG is a
Hilbert space defined by

HG
def
= ⊕n

j=1

(
Cξvj

)
,

which is Hilbert-space isomorphic to C
⊕n (n = |V (G)|), and where

π : G −→ B
(HG

)

is a groupoid action satisfying that

π
(
vj
)
= Pj , π

(
xm:ij

)
=

{
Em:ij if xm:ij = em:ij ,

E∗
m:ji if xm:ij = e−1

m:ji,

where Pj is the diagonal matrix in Mn(C), having its only nonzero (j, j)-entry 1, and Em:ij is the matrix in Mn(C),
having its only nonzero (i, j)-entry ωm, where ω is the root of unity of the polynomial zkij , whenever i �= j, or it is
the diagonal matrix in Mn(C), having its only nonzero (j, j)-entry ei θm:jj , where θm:jj ∈ R \ {0}, satisfying that
θm1:jj �= θm2:jj , whenever m1 �= m2 in {1, . . . , kjj}, whenever i = j.

That is, if vj is a vertex, then

π
(
vj
)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

jth

0 0

. . .

0

1

0

. . .

0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

jth,

and if em:ij ∈ E(G), kij �= 0, then

π
(
em:ij

)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ith

0 0

ωm

0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

jth,

and if em:jj ∈ E(G), kjj �= 0, then

π
(
em:jj

)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

jth

0

. . .

0

eiθm:jj

0

. . .

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

jth,

for all m ∈ {1, . . . , kij} and i, j ∈ {1, . . . , n = |V (Ĝ)|}.
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Under this matricial graph representation (HG, π) of G, the graph groupoid G generates the matricial graph
C∗-algebra

MG
def
= C∗

π(G) ⊆ B
(HG

)
= Mn(C).

Thus the C∗-subalgebra C∗(G) of B(H) is ∗-isomorphic to the affiliated matricial graph C∗-algebra
MG(H0) ⊂ Mn(B(H0)), as a C∗-subalgebra of B(H), where

MG

(
H0

)
=

(
C · 1H0

)⊗C MG, Mn
(
B
(
H0

))
=

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

T11 · · · T1n
...

. . .
...

Tn1 · · · Tnn

⎞

⎟
⎠

∣
∣
∣
∣
∣∣
∣
Tij ∈ B

(
H0

)

⎫
⎪⎬

⎪⎭
,

where H0 is a subspace of H, which is Hilbert-space isomorphic to the initial and the final spaces of all elements of
G.

Notice that the subspace H0 of H always exists, whenever G is a G-family and G is “connected”. Let aj ∈ G,
with its initial space H

aj

init, for j = 1, . . . , N = |E(G)|. By definition, Haj

init and the final space H
aj

fin are Hilbert-space
isomorphic, for all j = 1, . . . , N . By the connectedness of G, for any k ∈ {1, . . . , N}, the subspaces Hak

init and H
aj

init
are Hilbert-space isomorphic, too. Therefore, we can have a subspace H0 of H .

And the graph groupoid G has its affiliated matricial graph representation (HG, πG), where

HG
def
= H0 ⊗HG

Hilbert
= H⊗n

0

Subspace
⊆ H, πG = 1H0

⊗ π,

where (HG, π) is the matricial graph representation of G. Under this representation, we construct the groupoid
C∗-subalgebra C∗

πG(G), generated by G, in B(HG) ⊆ B(H). Notice that C∗
πG(G) is ∗-isomorphic to the affiliated

matricial graph C∗-algebra MG(H0) (see [15,18]).
Notice also that MG(H0) and MG are ∗-isomorphic, however, we want to emphasize the affiliation H0 in

B(H). So, we distinguish the notations MG(H0) and MG. That is, we understand MG(H0) as a C∗-subalgebra of
B(H), relatively, we understand MG as a C∗-subalgebra of Mn(C) = B(HG).

Theorem 7 (see [15,18]). Let G be a G-family of finite partial isometries on H, and let G be the graph groupoid of
G. Then the C∗-subalgebra C∗(G), generated by G, is ∗-isomorphic to the groupoid C∗-algebra C∗

πG(G) in B(HG),
as C∗-subalgebras of B(H). Moreover, the groupoid C∗-algebra C∗

πG(G) is ∗-isomorphic to the affiliated matricial
graph C∗-algebra MG(H0). That is,

C∗(G) ∗-iso
= C∗

πG(G)
∗-iso
= MG

(
H0

)
,

in B(HG) ⊆ B(H), where (HG, πG) is the H0-affiliated matricial graph representation of G.

4 Group-framed groupoids

In this section, we consider a new algebraic structure, called group-framed groupoids, containing both group prop-
erty and groupoid property.

4.1 Group-framing on graphs and corresponding groupoids

Throughout this section, let Γ be a topological group, and let G be a countable directed graph with its graph groupoid
G. Recall that Γ is a topological group if the binary operation on Γ is continuous under a topology for the set Γ .

Understand G as a topological space V (G)∪E(G), equipped with the discrete topology. Construct the Cartesian
product topological space

Γ ×G =
{
(g, w) : g ∈ G, w ∈ G

}
,

equipped with the product topology of Γ and G. Here, the notation “w ∈ G” means that

w ∈ V (G) ∪ E(G).

Definition 8. The topological space Γ × G is called the group-framed graph of G with its group-frame Γ . By GΓ

one denotes this group-framed graph. And the construction of GΓ is called the group-framing of G with Γ .



10 Journal of Physical Mathematics

Notice that GΓ is simply a topological space, which is neither a (pure algebraic) group nor a (pure combinatorial)
graph. And remark that this topological space is “oriented,” by the direction on G. Roughly speaking, the group-
framing is understood as the process attaching a line Γ on (every vertex and every edge of) a given graph G.

As in graph theory, we define the partition {V (GΓ ), E(GΓ )} of GΓ as follows:

V
(
GΓ

)
=

{
(g, v) : g ∈ Γ, v ∈ V (G)

}
, E

(
GΓ

)
=

{
(g, e) : g ∈ Γ, e ∈ E(G)

}
.

The sets V (GΓ ) and E(GΓ ) are called the framed-vertex set and the framed-edge set, respectively. Indeed, the
oriented topological space GΓ is partitioned by

GΓ = V
(
GΓ

) � E
(
GΓ

)
.

Define now the shadow G−1
Γ of GΓ by a new oriented topological space,

G−1
Γ

def
= Γ−1 ×G−1,

where G−1 is the shadow of G, and Γ−1 = {g−1 : g ∈ Γ} (Γ and Γ−1 are identically the same). That is,

(g, w) ∈ GΓ ⇐⇒ (
g−1, w−1) ∈ G−1

Γ ,

for all (g, w) ∈ GΓ . We call (g−1, w−1) ∈ G−1
Γ the shadow of (g, w) ∈ GΓ , and, by (g, w)−1, we denote

(g−1, w−1). We call this new group-framed graph G−1
Γ the framed-shadow of GΓ . By the very definition, the

topological space G−1
Γ is oppositely oriented for GΓ .

Similarly, we can define the framed shadowed graph ĜΓ of GΓ by a new group-framed graph,

ĜΓ
def
= Γ × Ĝ,

where Ĝ is the shadowed graph of G.
Let ĜΓ be the framed shadowed graph of the group-framed graph GΓ . Then we can define the “admissibility”

on ĜΓ :
(
g1, e1

)(
g2, w2

) def
=

(
g1g2, e1e2

)
,

for all (gk, ek) ∈ ĜΓ , where g1g2 is the product in Γ , and e1e2 is the admissible product on Ĝ. This binary operation,
acting on ĜΓ , is said to be the framed-admissibility.

Definition 9. Let G be a directed graph with its graph groupoid G, and let Γ be a group. Let GΓ be the Γ -framed
graph. Then the groupoid GΓ generated by ĜΓ is called the framed(-graph) groupoid.

The empty element ∅Γ of GΓ is defined to be the elements having their forms

(g, ∅), ∀g ∈ Γ,

where ∅ is the empty word of the graph groupoid G.
This new algebraic structure GΓ is indeed a well-defined groupoid in the sense of Section 2.3, which is neither

a group nor a graph groupoid.

4.2 Product groupoids

In this section, we observe the general case. Let Xk = (Xk,Yk, sk, rk) be groupoids, in the sense of Section 2.3, for
k = 1, 2. Define a new groupoid X from X1 and X2. Define the set X by

X def
=

{(
x1, x2

)
: x1 ∈ X1, x2 ∈ X2

}
,

denoted also by X1 ×X2. Define the binary operation on X by
(
x1, x2

)(
x′1, x′2

) def
=

(
x1x2, y1y2

)
,

for all (x1, x2), (x′1, x′2) ∈ X , where the first entry x1x2 is the product in X1, and the second entry x′1x′2 is the
product in X2. And define the source map s and the range map r on X by

s
((
x1, x2

)) def
=

(
s1
(
x1

)
, s2

(
x2

))
, r

((
x1, x2

)) def
=

(
r1
(
x1

)
, r2

(
x2

))
,

for all (x1, x2) ∈ X . Then it is easy to check that

s(X ) ∪ r(X ) = Y1 × Y2.

Denote the set Y1 × Y2 by Y .
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Definition 10. The quadruple X = (X ,Y, s, r) obtained in the above paragraph is called the product groupoid of
X1 and X2.

By our definition of framed groupoids, we can realize that our group-framed groupoids are product groupoids.

Proposition 11. Let Γ be a group and G a directed graph, and let GΓ be the group-framed graph of G with the
group-frame Γ . Then the framed groupoid GΓ of GΓ is groupoid-isomorphic to the product groupoid Γ ×G, where
G is the graph groupoid of G.

Remark 12. In Section 4.1, the symbol “×” in Γ ×G means the topological Cartesian product. In the above propo-
sition, the symbol “×” in Γ × G means the (topological) algebraic groupoid product in the sense of Definition 10.

Proof. By definition of GΓ , there exists a morphism

Φ : GΓ −→ Γ ×G

such that

Φ
(
[g, w]

) def
= (g, w),

for all [g, w] ∈ GΓ . (Here, we denote the element (g, w) of GΓ by [g, w] to distinguish the element (g, w) of Γ ×G.)
It is a well-defined bijection, and it satisfies that

Φ
([
g1, w1

][
g2, w2

])
= Φ

([
g1g2, w1w2

])
=

(
g1g2, w1w2

)
=

(
g1, w1

)(
g2, w2

)
= Φ

((
g1, w1

))
Φ
((
g2, w2

))
,

for all [g1, w1], [g2, w2] ∈ GΓ . Therefore, the bijection Φ is a groupoid-homomorphism, and hence it is a groupoid-
isomorphism. In particular, the above formula implies that

Φ
(
s
(
[g, w]

))
= Φ

([
eΓ , v

])
=

(
eΓ , v

)
= s

(
Φ
(
[g, w]

))
, Φ

(
r
(
[g, w]

))
= Φ

([
eΓ , v

′]) =
(
eΓ , v

′) = r
(
Φ
(
[g, w]

))
,

for all [g, w] ∈ GΓ .

Now, consider the isomorphism theorem.

Theorem 13. Let Γk be groups and Gk directed graphs with their graph groupoids Gk, and let Gk
Γk

be the framed

graphs of Gk with group-frames Γk, for k = 1, 2. Then the framed groupoids Gk
Γk

of Gk
Γk

are groupoid-isomorphic

if and only if (i) Γ1 and Γ2 are group-isomorphic, and (ii) the shadowed graphs Ĝ1 and Ĝ2 are graph-isomorphic.

Proof. (⇐) Assume that Γk are group-isomorphic, and the shadowed graphs Ĝk are graph-isomorphic, for k = 1, 2.
It is well known that if Ĝk are graph-isomorphic, then the graph groupoids Gk are groupoid-isomorphic, for k = 1, 2.
Thus the product groupoids

Γk ×Gk

are groupoid-isomorphic, for k = 1, 2. Since the framed groupoids G
k
Γk

are groupoid-isomorphic to the product
groupoids Γk ×Gk, the framed groupoids Gk

Γk
are groupoid-isomorphic, for k = 1, 2.

(⇒) Assume that either (i) ′Γk are not group-isomorphic or (ii) the shadowed graphs Ĝk are not graph-
isomorphic. Then, clearly, the product groupoids Γk × Gk are not groupoid-isomorphic, and hence the framed
groupoids Gk

Γk
are not groupoid-isomorphic, for k = 1, 2.

Assumption. In the rest of this paper, we use the group-framed groupoids GΓ and the product groupoids Γ × G,
alternatively.

5 E0-groupoids

Let M be a type I factor contained in B(H), and let γ = (γt)t∈R be an E0-group (in the sense of Section 2.4),
acting on M . That is, γ on M satisfies that

(1) γ0 = idM , where idM is the identity map on M ,
(2) γt are ∗-endomorphisms on M , for all t ∈ R,
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(3) γt(1M ) = 1M , for all t ∈ R,
(4) γt1 ◦ γt2 = γt1+t2 , for all t1, t2 ∈ R.

We use this E0-group as a group-frame on a certain (finite, connected) directed graph G.
Let G be the corresponding graph of a G-family of partial isometries in B(H) with its graph groupoid G as

in Section 3. Then, like in Section 4, we have the corresponding group-framed graph Gγ , and its framed groupoid

Gγ
Groupoid

= γ ×G. We call Gγ the E0-groupoid.
However, in Section 5.1, we introduce E0-groupoids in a different way (in a dynamical-system point of

view), which is more useful (algebraically, and operator-theoretically). The key idea of the construction of our
E0-groupoids (in the sense of Section 5.1) is that γ and R are group-isomorphic. That is, there exists a group-
isomorphism,

γt ∈ γ �−→ t ∈ R.

In Section 5.2, we establish C∗-dynamical systems induced by the E0-groupoids.

5.1 E0-groupoids

Let G = {a1, . . . , aN} be a finite family of partial isometries on H , and assume that G construct a connected finite
directed graph G, equivalently, the family G is a G-family in B(H). Then, the groupoid GG , generated by G, is
groupoid-isomorphic to the graph groupoid G of G.

Define now the topological space GR by the group-framed groupoid of the framed graph GR of the G-graph G,
with the group-frame R = (R,+). Then, by Section 4.2, this R-framed groupoid GR is groupoid-isomorphic to the
product groupoid R×G, under the binary operation defined by

(
t1, w1

) · (t2, w2

) def
=

(
t1 + t2, w1w2

)
,

for (tk, wk) ∈ R×G, for k = 1, 2. Notice that since G is generated by G, we can understand w ∈ G as an operator
on H , too.

Definition 14. Let GR be the group-framed groupoid induced by the R-framed graph GR, where G is the G-graph,
where G is the finite family of partial isometries in B(H). One calls GR the flowed groupoid of G with the flow R.
The binary operation (·) on GR is called the flowed admissibility.

Now, fix the groupoid action πG of G, acting on HG = H0 ⊗HG, in the sense of Section 3. Recall that H0 is
the subspace of H , which is Hilbert-space isomorphic to the initial and final spaces of all elements of G, and HG is
a subspace of H, which is Hilbert-space isomorphic to C

⊕|V (G)|, and hence the tensor product Hilbert space HG is
a subspace of H .

Depending on πG and the given E0-group γ, we define an action γG of GR, acting on M , by

γG : (t, w) ∈ GR �−→ γG
(
(t, w)

) def
= γt,w,

where

γt,w(m)
def
= πG

wγt(m)πG ∗
w , ∀m ∈ M.

Recall that πG ∗
w = πG

w−1 , for all w ∈ G. So, without loss of generality, we can regard the action γG of GR as
a family (γt,w)

t∈R

w∈G
of actions. Notice that each element γt,w of γG is a ∗-endomorphism on M , in B(H), for all

(t, w) ∈ GR.
The following proposition shows, for any (t, w) ∈ GR,

γt,w(m) = γt(m)πG
ww−1 , ∀m ∈ M.

This means that the action γG of GR sends an element m ∈ M to the element γt(m) located at the corner of
B(H) determined by a projection πG

ww−1 .

Proposition 15. Let γG = (γt,w)
t∈R

w∈G
be an action of GR, acting on M, given as above. Then, for any (t, w) ∈ GR,

one has

γt,w(m) = γt(m)πG
ww−1 , ∀m ∈ M,

where γ = (γt)t∈R is the fixed E0-group, acting on M .
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Proof. Let (t, w) ∈ GR. Then, for any m ∈ M ,

γt,w(m) = πG
wγt(m)πG

w−1 = γt(m)πG
wπG

w−1

since πG
w (or πG

w−1 ) is a matrix, having only nonzero (i, j)-entry (resp. (j, i)-entry), having its form α ·1H0
, for some

α ∈ C, whenever w = viwvj , in the affiliated matricial graph C∗-algebra MG(H0), which is ∗-isomorphic to the
matricial graph C∗-algebra MG

= γt(m)πG
ww−1 .

The above action γG satisfies the followings:
(5.1.1) γt,w(1M ) = πG

ww−1 , a projection on HG, for all (t, w) ∈ GR. In particular, γt,∅ = 0H , for all t ∈ R.
Indeed, we can compute

γt,w
(
1M

)
= γt

(
1M

)
πG
ww−1 = 1M · πG

ww−1 = πG
ww−1 ,

by the previous proposition. Also, if w = ∅ in G, then

γt,∅(m) = γt(m)πG
∅ = 0H , ∀m ∈ M,

since πG
∅ = 0H .

(5.1.2) γ0,w(m) = mπG
ww−1 , for all m ∈ M , by the previous proposition;

γ0,w(m) = γ0(m)πG
ww−1 = mπG

ww−1 ,

since γ0 = idM .
(5.1.3) γt,w(m∗) = (γt,w−1(m))∗, for all m ∈ M , (t, w) ∈ GR.
Fix (t, w) ∈ GR. Then, for any m ∈ M ,

γt,w
(
m∗) = πG

wγt
(
m∗)πG

w−1 = πG
wγt(m)∗πG

w−1 =
(
πG
w−1γt(m)πG

w

)∗
=

(
γt,w−1(m)

)∗
.

The formula (5.1.3) guarantees that
(
γt,w(m)

)∗
= γt,w−1

(
m∗), for m ∈ M.

(5.1.4) For (t1, w1), (t2, w2) ∈ GR,

γt1,w1 ◦ γt2, w2 = γt1+t2,w1w2 , on M.

Indeed, we obtain

γt1,w1

(
γt2,w2(m)

)
= γt1,w1

(
πG
w2

γt(m)πG
w−1

2

)
= πG

w1

(
γt1

(
πG
w2

γt2(m)πG
w−1

2

))
πG
w−1

1

= πG
w1

(
γt1

(
γt2(m)πG

w2w
−1
2

))
πG
w−1

1

by the previous proposition

= πG
w1

(
γt1

(
γt2(m)

)
πG
w2w

−1
2

)
πG
w−1

1

since πG
w2w

−1
2

is a projection, having its form of a matrix with only one nonzero diagonal entry 1H0

= πG
w1

(
γt1+t2(m)πG

w2w
−1
2

)
πG
w−1

1

since

γt1 ◦ γt2 = γt1+t2 = πG
w1

(
πG
w2

(
γt1+t2(m)

)
πG
w−1

2

)
πG
w−1

1
= πG

w1w2

(
γt1+t2(m)

)
πG
w−1

2 w−1
1

= πG
w1w2

(
γt1+t2(m)

)
πG
(w1w2)−1 = γt1+t2, w1w2(m),

for all m ∈ M . By the previous observations (5.1.1) through (5.1.4), we can conclude that the collection γG =

(γt,w)
t∈R

w∈G
is indeed an action of the flowed groupoid GR, acting on M , in B(H).
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Lemma 16. The collection γG = (γt,w)
t∈R

w∈G
is a groupoid action of the flowed groupoid GR of G, acting on M, in

B(H).

Moreover, by the previous lemma (in particular, by (5.1.4)), we obtain the following theorem, characterizing the
algebraic structure of γG.

Theorem 17. Let GR be the flowed groupoid, and let γG = (γt,w)
t∈R

w∈G
be the groupoid action of GR, acting on M ,

in B(H). Then the action γG is a groupoid (under the usual composition), which is groupoid-isomorphic to GR.

Proof. Define the morphism

Φ :
(
γG, ◦) −→ GR

by

γt,w ∈ γG
Φ�−→ (t, w) ∈ GR.

Then, it is a bijection. And it satisfies that

Φ
(
γt1,w1 ◦ γt2,w2

)
= Φ

(
γt1+t2, w1w2

)
=

(
t1 + t2, w1w2

)
=

(
t1, w1

)(
t2, w2

)
= Φ

(
γt1,w1

)
Φ
(
γt2,w2

)
,

for all γtk,wk ∈ γG, for k = 1, 2. Therefore, the bijective morphism Φ is a groupoid-isomorphism, and hence (γG, ◦)
is actually groupoid-isomorphic to the flowed groupoid GR.

By the previous theorem, we can alternatively use γG and GR.

Definition 18. Let γG = (γt,w)
t∈R

w∈G
be given as above. Then one calls γG the E0-groupoid induced by G and γ,

where G is the given G-family of finite partial isometries on H, and γ is the fixed E0-group.

Let γG1
= (γt,w)

t∈R

w∈G1
and αG2

= (αs,y)
s∈R

y∈G2
be E0-groupoids, acting on the type I factor M , in B(H), where

α and γ are E0-groups. We say that they are equivalent, if there exists a ∗-automorphism ϕ : M → M , and a
groupoid-isomorphism Φ : G1 → G2, such that the following diagram commutes:

M

ϕ

��

γt,w �� M

ϕ

��
M αt,Φ(w)

�� M,

for all t ∈ R. The following theorem provides the characterization of equivalence of E0-groupoids.

Theorem 19. Let Gk be Gk-families of partial isometries, constructing finite connected directed graphs Gk, for
k = 1, 2. Assume that γ = (γt)t∈R and α = (αt)t∈R are E0-groups, and suppose γG1

= (γt,w)
t∈R

w∈G1
and αG2

=

(αt,w)
t∈R

w∈G2
are the E0-groupoid induced by Gk and γk, for k = 1, 2, where Gk are the groupoid generated by

Gk, which are the graph groupoids of Gk, for k = 1, 2. Then the conditions (i) and (ii) hold if and only if the
E0-groupoids γG1

and αG2
are equivalent, where

(i) the E0-groups γ and α are equivalent,
(ii) the shadowed graphs Ĝk of Gk are graph-isomorphic, for k = 1, 2.

Proof. (⇒) Suppose α and γ are equivalent. Then there exists a ∗-automorphism ϕ : M → M , such that the
following diagram commutes:

M

ϕ

��

γt �� M

ϕ

��
M αt

�� M,

for all t ∈ R. Also, assume that two shadowed graphs Ĝ1 and Ĝ2 are graph-isomorphic. Then, by Section 2.3, the
graph groupoids G1 and G2 are groupoid-isomorphic. This shows that the flowed graph groupoids G1:R and G2:R are
groupoid-isomorphic, too. So, by definition, the E0-groupoids γG1

and αG2
are equivalent, via the ∗-automorphism

ϕ.
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(⇐) Assume now that the E0-groupoids γG1
and αG2

are equivalent. This shows that there exists a ∗-
automorphism ϕ : M → M , such that the following diagram commutes:

M

ϕ

��

γt,w �� M

ϕ

��
M αt,Φ(w)

�� M,

where Φ : G1 → G2 is a groupoid-isomorphism. Then, by the existence of the groupoid-isomorphism Φ, the shad-
owed graphs Ĝ1 and Ĝ2 are graph-isomorphic: define a graph-isomorphism g : Ĝ1 → Ĝ2, by g = Φ|

V (̂G1)∪E(̂G1)
.

Also, by the previous commuting diagram, we have

ϕ
(
γt,w(m)

)
= ϕ

(
γt(m)πG1

ww−1

)
= ϕ

(
γt(m)

)
πG1

ww−1

since πG1

ww−1 is a projection, having its form of a matrix, having only nonzero (i, j)-entry s · 1H0
, for s ∈ C.

= αt

(
ϕ(m)

)
πG2

Φ(w)Φ(w)−1 = αt,Φ(w)

(
ϕ(m)

)
.

Since G1 and G2 are groupoid-isomorphic from each other, via Φ, the projections πG1

w1w
−1
1

and πG2

Φ(w)Φ(w)−1 are

identical in the matricial graph C∗-algebras MG1
and MG2

. Therefore, the above formula shows that

ϕ
(
γt(m)

)
= αt

(
ϕ(m)

)
, ∀m ∈ M.

Thus the E0-groups γ and α are equivalent.

The above theorem shows that the equivalence on γG is determined by both the graph-isomorphisms on Ĝ and
the equivalence on γ.

5.2 C∗-dynamical systems

Now, let M be a type I factor in B(H), and let γG = (γt,w)
t∈R

w∈G
be the E0-groupoid, which is groupoid-isomorphic

to the flowed groupoid GR of GR, where G is the G-graph of a finite graph-family G of partial isometries on H . Then
we naturally define the groupoid C∗-dynamical system

(
M,GR, γG

)
.

Also, such a dynamical system generates a C∗-algebra

M ×γG GR,

which is the groupoid crossed product C∗-algebra. That is, M ×γG GR is the C∗-algebra generated by M and GR

satisfying γG-action.
If GR acts on M inside B(H), we may say that the C∗-dynamical system (M,GR, γG) is inner (in B(H)). And

if GR acts on M in B(K), for some Hilbert space K ⊃ H, then we may say that (M,GR, γG) is outer (in B(H)). In
fact, there is no big difference between “innerness” and “outerness,” under the C∗-setting. But we want to emphasize
the originally given structure (or paradigm) B(H), where a fixed history (M,γ) is embedded.

6 Distorted histories

Let B(H) be given as before, and let (M,γ) be a history in B(H), where M is a type I (sub)factor in B(H), and
γ = (γt)t∈R is an E0-group, determined by a one-parameter unitary group U = (Ut)t∈R, satisfying the followings:

(i) fixed past: γt(M) ⊆ M , for all t < 0,
(ii) irreducibility: (∪t∈Rγt(M))′′ = B(H),

(iii) trivial infinitely remote past: ∩t∈Rγt(M) = C · 1H .

We may/can understand that the history (M,γ) is a group C∗-dynamical system (M,R, γ), induced by the group
R acting on the “results or events” M , via the group-action γ, which means “what happened, is happening, and will
happen.”
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6.1 Inner distorted histories

Let (M,γ) be a given history in B(H). In this section, we are interested in the distortions occurred by finite families
G of partial isometries “in” B(H).

Let G = {a1, . . . , aN} be a finite family of partial isometries on H , and assume that G constructs a connected
finite directed graph G. Then the family G generates a corresponding subgroupoid of B(H), which is groupoid-
isomorphic to the graph groupoid G of G. Then, for this graph groupoid G, we obtain the flowed groupoid GR,
which is groupoid-isomorphic to the product groupoid R × G. And, as an action of GR, acting on M , we can
construct the E0-groupoid γG = (γt,w)

t∈R

w∈G
, induced by G and γ. This E0-groupoid γG can explain how to distort

a fixed history (M,γ) by G.

Definition 20. Let G ⊂ B(H) be a G-family of partial isometries. The pair (M,γG) is called the inner distorted
history of (M,γ) distorted by G.

Similar to histories, we can understand the inner distorted history (M,γG) as a C∗-dynamical system
(M,GR, γG). We can get the following fundamental properties of an inner distorted history (M,γG) of the fixed
history (M,γ).

Theorem 21. Let (M,γG) be an inner distorted history of a history (M,γ), distorted by a finite family G of partial
isometries on H Then.

(1) γt,w(M) = MπG
ww−1 = πG

ww−1MπG
ww−1 , for all t < 0, and w ∈ G,

(2) (∪t∈R, w∈Gγt,w(M))′′ = B(HG), where HG is given in Section 3,
(3) ∩t∈R, w∈Gγt,w(M) = {0H}.

Proof. (1) Recall that γt,w(m) = γt(m)πG
ww−1 , for all m ∈ M, for (t, w) ∈ GR. And, by definition, γt(M) ⊆ M ,

for all t < 0. More precisely, since γt are ∗-automorphisms, for all t ∈ R, we have γt(M) = M , for all t < 0.
Therefore,

γt,w(M) = γt(M)πG
ww−1

∗-iso
= MπG

ww−1 ,

for all w ∈ G, whenever t < 0. So, the image γt,w(M) of γt,w is the compressed W ∗-subalgebra of B(H), which
is ∗-isomorphic to M, cornered by the projection πG

ww−1 , for t < 0, and w ∈ G. That is,

γt,w(M)
∗-iso
= MπG

ww−1 = πG
ww−1MπG

ww−1 .

(2) By (1), we can have that

(
∪

(t,w)∈GR

γt,w(M)

)′′
=

(
∪

(t,w)∈GR

γt(M)πG
ww−1

)′′
=

(
∪

(t,w)∈GR

πG
wγt(M)πG

w−1

)′′
⊆ B

(
HG

)
,

since γt,w(M) is the compressed W ∗-subalgebra in B(HG) ⊆ B(H). Moreover,

(
∪

(t,w)∈GR

γt,w(M)

)′′
=

(
∪

w∈G

(
πG
w

(
∪

t∈R

γt(M)

)
πG
w−1

))′′
=

(
∪

w∈G

πG
wB(H)πG

w−1

)′′
=

(
∪

w∈G

B(H)πG
ww−1

)′′

by the irreducibility of the history (M,γ) = B(HG).
(3) It is clear, by the trivial infinitely remote past property of (M,γ), that

∩
(t,w)∈GR

(γt,w(M)) = ∩
(t,w)∈GR

(
γt(M)πG

ww−1

)
= ∩

w∈G

((
∩

t∈R

γt(M)

)
πG
ww−1

)
= ∩

w∈G

(
C · πG

ww−1

)
=

{
0H

}
,

since (C · πG
v1
) ∩ (C · πG

v2
) = {0H} whenever v1 �= v2 in V (Ĝ).

The first property (1) of the above theorem means that the past M is understood only partially by G. The second
property (2) means that the history (M,γ) is compressed, and the compressed part of the history lies in the restricted
paradigm B(HG), where G works. The third property (3) means that the distortion of (M,γ) has no common
infinitely remote past.

Let (M,γ) be a fixed history in B(H), and let Gk be finite families of partial isometries on H, constructing
the corresponding connected finite directed graphs Gk, for k = 1, 2. We show that if G1 and G2 have the graph-
isomorphic shadowed graphs Ĝ1 and Ĝ2, then the families G1 and G2 give the same distortion on (M,γ).
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Theorem 22. Let Gk be Gk-families of partial isometries on H , where Gk are connected finite directed graphs, for
k = 1, 2, and let (M,γ) be a given history in B(H). The graphs Gk have graph-isomorphic shadowed graphs Ĝk if
and only if the inner distorted histories (M,γGk

) of (M,γ) (in B(H)) are equivalent, for k = 1, 2.

The proof of the above theorem is the direct consequence of the equivalence of E0-groupoids obtained in
Section 5.

So, we have the equivalence of inner distortions.

Definition 23. One says that two inner distorted histories (M,γG1
) and (M,γG2

) of a fixed history (M,γ) are
equivalent if the E0-groupoids γG1

and γG2
are equivalent in the sense of Section 5.

6.2 Outer distorted histories

As before, we let (M,γ) be a history in B(H). Suppose G is a finite family of partial isometries on a Hilbert space
K, constructing a connected finite directed graph G. (Remark that the Hilbert spaces H and K are not necessarily
distinct. However, for convenience, we may assume that they are distinct.) Then the groupoid generated by G is a
subgroupoid in B(K), and it is groupoid-isomorphic to the graph groupoid G of the G-graph G.

Construct a bigger Hilbert space K, containing both H and K as its Hilbert subspaces. For instance, we may
determine K by the Cartesian-product Hilbert space H × K or the tensor product Hilbert space H ⊗ K, or the
direct-product Hilbert space H ⊕K, and so on.

For our purpose, we choose K as H ⊗K,

K def
= H ⊗K.

The operator algebra B(K) is ∗-isomorphic to B(H)⊗CB(K). Then the G-groupoid G is embedded in B(K) ⊂
B(K).

Now, let γG = (γt,w)
t∈R

w∈G
be the E0-groupoid induced by G and γ. For any (t, w) ∈ GR, γG satisfies that

γt,w(m) = γt(m)πG
ww−1 , ∀m ∈ M

( ⊂ B(K)
)

with

πG
ww−1 ∈ B

(
KG

) ⊆ B(K)
( ⊂ B(K)

)
,

where

KG = K0 ⊗
(

⊕
v∈V (G)

(
C · ξv

)
)

Hilbert
= K

⊕|V (G)|
0 ↪→ K.

Here, K0 is the subspace of K, which is Hilbert-space isomorphic to the initial and the final spaces of all
elements of G in B(K) ⊂ B(K). So, under this setting, the pair (M,γG) is an inner distorted history of (M,γ) in
the new (extended) paradigm B(K). However, it is not an inner distorted history of (M,γ) in the originally given
paradigm B(H).

Definition 24. Let (M,γG) be given as above in B(K). Then it is called an outer distorted history of (M,γ) by G.

We may understand an outer distorted history (M,γG) as the history distorted by the activities γG of G
(⊂ B(K)), outside the paradigm B(H).

An outer distorted history (M,γG) of the given history (M,γ) can be understood as a C∗-dynamical system
(M,GR, γG), induced by the R-framed groupoid GR.

Basically, outer distorted histories have the same properties with inner distorted histories like in Section 5.1. The
only difference between inner distorted histories and outer distorted histories is where they are working. That is, an
inner distortion happens in B(H), and an outer distortion happens in B(K), containing B(H).
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