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Abstract

We describe realizations of a Lie colour algebra with three generators and five rela-
tions by matrices of power series in noncommuting indeterminates satisfying Heisenberg’s
canonical commutation relation of quantum mechanics. The obtained formulas are used
to construct new operator representations of this Lie colour algebra using canonical
representation of the Heisenberg commutation relation and creation and annihilation
operators of the quantum mechanical harmonic oscillator.
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1 Introduction

The main object studied in this paper is the unital associative algebra with three generators
A1, A2, and A3 satisfying defining commutation relations

A1A2 +A2A1 = A3 (1.1)
A1A3 +A3A1 = 0 (1.2)
A2A3 −A3A2 = 0 (1.3)

A2
2 = 0 (1.4)

A2
3 = 0 (1.5)

The main goal is to show how A1, A2, and A3 can be expressed, using elements A and B,
obeying Heisenberg’s canonical commutation relation

AB −BA = I (1.6)

The canonical representation of the commutation relation (1.6) is given by choosing A as the
usual differentiation operator and B as multiplication by x acting on differentiable functions
of one real variable x, on polynomials in one variable, or on some other suitable linear space
of functions invariant under these operators. In quantum mechanics, these operators, when
considered on the Hilbert space of square integrable functions, are essentially the same as
the canonical Heisenberg-Schrödinger observables of momentum and coordinate, differing
just by a complex scaling factor. The Heisenberg canonical commutation relation (1.6) is
also satisfied by the annihilation and creation operators in a quantum harmonic oscillator.
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Since the 1970s, generalized (colour) Lie algebras have been an object of constant interest
in both mathematics and physics [1, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20,
21, 25, 26, 27, 23]. Description of representations of these algebras is an important and
interesting general problem. It is well known that representations of three-dimensional Lie
algebras play an important role in the representation theory of general Lie algebras and
groups, both as test examples and building blocks. Similarly, one would expect the same to
be true for three-dimensional Lie colour algebras and superalgebras with respect to general
Lie colour algebras and superalgebras. The representations of nonisomorphic algebras have
different structure. In [26, 27], three-dimensional Lie colour algebras are classified in terms
of their structure constants, that is, in terms of commutation relations between generators.
In [11, 17, 23], quadratic central elements and involutions on these algebras are calculated.
In [16, 25], Hilbert space ∗-representations are described for the graded analogues of the Lie
algebra sl(2,C) and of the Lie algebra of the group of plane motions, two of the nontrivial
algebras from the classification. The classification of ∗-representations in [16, 25] is achieved,
using the method of dynamical systems based on generalized Mackey imprimitivity systems.

The colour Heisenberg Lie algebra is another important nontrivial algebra in the classi-
fication of three-dimensional Lie colour algebras obtained in [26, 27]. In the paper [24] we
approached representations of this algebra in a totally different way than it was done in
[16, 25]. Namely, we studied those representations which can be obtained as power series in
operator representations of Heisenberg’s canonical commutation relations by first obtaining
in general realizations of the colour Heisenberg Lie algebra generators in terms of power series
in elements of an associative algebra obeying the Heisenberg’s canonical commutation rela-
tions and then combining these realizations with canonical representations of Heisenberg’s
canonical commutation relations.

In this paper we extend these investigations of realizations via Heisenberg’s canonical
commutation relations to another colour Lie algebra with three generators and five relations.
This algebra can be considered as another colour analogue of the Heisenberg Lie algebra.
However, we show that a structure of this algebra is quite different from that for the algebra
considered in [24] as far as realization via Heisenberg’s canonical commutation relations is
concerned. In Section 2 we show that, with a natural choice for A1 as the first generator of
the Heisenberg algebra corresponding to differentiation, there are no nonzero power series in
Heisenberg generators which can be taken as A2 and A3 so that the three relations (1.1)–(1.3)
are satisfied. In Lemma 2.2, we describe all such formal power series solutions A2 and A3 for
the first two relations (1.1)–(1.2) as in [24]. In Theorem 2.4, we present all such formal power
series solutions for A2 and A3 satisfying the three relations (1.1)–(1.3) showing that A3 = 0
is the only possibility. Using this result we get in Corollary 2.7 that A2 = A3 = 0 must hold
for such realizations of the five relations (1.1)–(1.5). However, by considering 2× 2 matrices
with entries chosen as formal power series in the noncommuting indeterminates A and B
satisfying Heisenberg’s canonical commutation relations, we demonstrate how it is possi-
ble to construct nontrivial realizations of (1.1)–(1.5). We also construct concrete operator
representations by applying this construction to the canonical representation of Heisenberg
canonical commutation relations and to the simple quantum mechanical harmonic oscillator.

2 Matrix power series realizations

Throughout this article C denotes the field of complex numbers and N the set of nonnegative
integers. By C[x] and C[[x]] we mean the ring of polynomials and formal power series over
C, respectively.
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Consider a set {A1, A2, A3} in some associative algebra over C with unit element I satisfy-
ing commutation relations (1.1)–(1.5). From relation (1.1) we obtainA1A2A3+A2A1A3 = A2

3,
and hence by (1.2) it follows that

A1

(
A2A3

)
−
(
A2A3

)
A1 = A2

3 (2.1)

Using only (1.2) and (1.3) we may conclude that A2
3 commutes with both A1 and A2, that

is, [A1, A
2
3] = [A2, A

2
3] = 0. If merely (1.1) and (1.2) are satisfied and if A2

3 = α2I for some
nonzero α ∈ C, then by (2.1) we have

A1

(
A2A3

)
−
(
A2A3

)
A1 = α2I (2.2)

Applying the famous Wintner-Wielandt theorem [18, 28, 29], we have that no elements in
any unital normed algebra can satisfy the Heisenberg canonical commutation relation

AB −BA = λI, λ 6= 0

So, we obtain from (2.2) the following result.

Proposition 2.1. The commutation relations

A1A2 +A2A1 = A3, A1A3 +A3A1 = 0

together with A2
3 = α2I, α 6= 0, cannot be satisfied by bounded operators on a Hilbert space

or even generally by elements in any unital normed algebra.

When computing with power series in noncommuting elements A and B of an associative
unital algebra A, we use the usual addition and multiplication rules of the Magnus algebra of
noncommutative formal power series in two indeterminates (see [2]). However, we assume that
A and B are not free, but satisfy at least the Heisenberg commutation relation as elements
in A. We denote the algebra that we are working with by H1〈〈A,B; A〉〉. In addition to the
subalgebra of A generated by A and B, consisting of noncommutative polynomials in A and
B, the algebra H1〈〈A,B; A〉〉 may contain other elements which are infinite noncommutative
power series in A and B not belonging to A. The problem of equality of two elements in
H1〈〈A,B; A〉〉 is a very complex matter in itself, deeply connected both to the properties of
noncommutative power series and Heisenberg’s relation and to the structure of the algebra
A, and properties of A and B in A. We say that an element of H1〈〈A,B; A〉〉 is in the (B,A)-
normal form (resp., (A,B)-normal form) if it is a noncommutative power series built of only
ordered monomials {BjAk | j, k ∈ N} (resp., {AjBk | j, k ∈ N}). In order to be able to
enjoy the equality properties in a similar way with formal power series as in the polynomial
case, we assume throughout this article that two formal power series in A and B, written
in the (B,A)-normal form (resp., in the (A,B)-normal form), are equal if and only if their
coefficients are the same and in particular such a series is zero if and only if all coefficients
are zero. This important equality assumption is actually an assumption on H1〈〈A,B; A〉〉, on
the algebra A as well as on A and B as elements in A. In the particular case of polynomials
in A and B, that is, for the subalgebra of A generated by A and B, the assumption yields
the same property as in H1(A,B), namely that {BjAk | j, k ∈ N} (resp., {AjBk | j, k ∈ N})
are linearly independent as subsets of A.

With the assumption above we may claim the equality of two elements of H1〈〈A,B; A〉〉
if they are equal to the same element in (B,A)-normal form (resp., in (A,B)-normal form).
However, it is important to observe that H1〈〈A,B; A〉〉 may well contain elements which
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cannot be represented on (B,A)-normal form, or (A,B)-normal form or even on either of
them. In most of the statements in this article we will adhere to the (B,A)-normal forms and
the corresponding equality assumptions. But, we will also comment and at some instances will
formulate the corresponding results when instead the (A,B)-normal forms and corresponding
equality of series is used. Which of these assumptions is used will be clear from the context.
We refer to [6, 7] for further discussion on power series extensions of the Heisenberg algebra,
Diamond lemma, and normal forms.

In the paper [24] we have proved the following useful result.

Lemma 2.2. Let A1 =A and assume that A2 and A3 are elements of the algebra H1〈〈A,B;A〉〉
written in the (B,A)-normal form, that is,

A2 =
∞∑
j=0

∞∑
k=0

ajkB
jAk, A3 =

∞∑
j=0

∞∑
k=0

ãjkB
jAk, ajk, ãjk ∈ C

Then A1, A2, and A3 satisfy the commutation relations

A1A2 +A2A1 = A3, A1A3 +A3A1 = 0

if and only if

A2 = T (B,A)V (A) +BT (B,A)W (A), A3 = T (B,A)W (A)

where T (B,A) =
∑∞

k=0
(−2)k

k! BkAk and V (A),W (A) ∈ C[[A]].

Remark 2.3. It follows by this lemma that the commutation relations

A1A2 +A2A1 = A3, A1A3 +A3A1 = 0

can be satisfied by polynomial A2 and A3 (finite sums) only if A2 = A3 = 0.

Theorem 2.4. Suppose that A1, A2, and A3 are elements of the algebra H1〈〈A,B; A〉〉 such
that A1 = A and A2, A3 are formal power series in the (B,A)-normal form given as

A2 =
∞∑
j=0

∞∑
k=0

ajkB
jAk, A3 =

∞∑
j=0

∞∑
k=0

ãjkB
jAk, ajk, ãjk ∈ C

Then A1, A2, and A3 will satisfy the commutation relations

A1A2 +A2A1 = A3, A1A3 +A3A1 = 0, A2A3 −A3A2 = 0

if and only if

A2 = T (B,A)V (A), A3 = 0

where T (B,A) =
∑∞

k=0
(−2)k

k! BkAk and V (A) ∈ C[[A]].

Proof. By Lemma 2.2 we have, considering only the two anticommutation relations, a gen-
eral solution of the form

A2 = T (B,A)V (A) +BT (B,A)W (A)
A3 = T (B,A)W (A)
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Applying the rules of Lemma 4 in [24] yields

A2A3 = V (−A)W (A) +BW (−A)W (A)
A3A2 = W (−A)V (A)−BW (−A)W (A) +W ′(−A)W (A)

and hence

A2A3 −A3A2 = V (−A)W (A)−W (−A)V (A)−W ′(−A)W (A)
+ 2BW (−A)W (A) = 0

which is a functional-differential equation for V and W . Thus A2A3 − A3A2 = 0 implies
2BW (−A)W (A) = 0, which for a formal power series W (A) yields W (−A)W (A) = 0. The
set of complex formal power series C[[x]] is an integral domain and hence W (A) = 0. This
means that A2 = T (B,A)V (A) and A3 = 0.

Remark 2.5. Note that in Theorem 2.4, A1A2 + A2A1 = A3 = 0 is the only nontrivial
relation left. The other two relations are trivially satisfied when A3 = 0, independently of
A1 and A2. So, under conditions of Theorem 2.4, one can say that

A1A2 +A2A1 = A3, A1A3 +A3A1 = 0, A2A3 −A3A2 = 0

is equivalent to

A1A2 +A2A1 = 0, A3 = 0

Remark 2.6. In Lemma 2.2, the formal series A2 and A3 are expressed in the (B,A)-normal
form. This is a natural ordering when we think of A as the usual differentiation operator
∂ and B as a multiplication operator M acting on differentiable functions on the real line,
given by ∂f = f ′ and Mf(t) = tf(t). In other situations, it may be more appropriate to
consider the reversed order.

Taking A2 and A3 in Lemma 2.2 to be in the (A,B)-normal form, but keeping A1 = A,
the general solution will be changed to the following form:

A2 = V (A)U(A,B)−W (A)U(A,B)B A3 = W (A)U(A,B)

where

U(A,B) =
∞∑
k=0

2k

k!
AkBk

If we consider a solution in the (A,B)-normal form satisfying the three relations in The-
orem 2.4, a completely similar proof shows that also in this case A2 = V (A)U(A,B) and
A3 = 0.

Corollary 2.7. Suppose that A1, A2, and A3 are elements of H1〈〈A,B; A〉〉 such that A1 = A,
and A2, A3 are formal power series in the (B,A)-normal form given as

A2 =
∞∑
j=0

∞∑
k=0

ajkB
jAk, A3 =

∞∑
j=0

∞∑
k=0

ãjkB
jAk, ajk, ãjk ∈ C

Then A1, A2, and A3 satisfy

A1A2 +A2A1 = A3, A1A3 +A3A1 = 0, A2A3 −A3A2 = 0, A2
2 = A2

3 = 0

if and only if A2 = A3 = 0.
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Proof. By Theorem 2.4, we know that A2 = T (B,A)V (A) and A3 = 0. Since

A2
2 = T (B,A)V (A)T (B,A)V (A) = T (B,A)2V (−A)V (A) = V (−A)V (A)

the relation A2
2 = 0 holds only if V (−A)V (A) = 0, which, for a power series V (A), yields

V (A) = 0 and A2 = 0.

Now let A1, A2, and A3 be 2× 2 matrices on the form

A1 =
(
A11 A12

A21 A22

)
, A2 =

(
0 L
0 0

)
, A3 =

(
0 M
0 0

)
where A11, A12, A21, A22, L, and M are elements of some associative algebra or ring A.
Then

A1A2 +A2A1 =
(

0 A11L
0 A21L

)
+
(
LA21 LA22

0 0

)
=
(
LA21 A11L+ LA22

0 A21L

)
A1A3 +A3A1 =

(
MA21 A11M +MA22

0 A21M

)
Therefore, A1A2 +A2A1 = A3 is equivalent to the conditions

LA21 = A21L = 0, A11L+ LA22 = M (2.3)

and similarly we have A1A3 +A3A1 = 0 if and only if

MA21 = A21M = 0, A11M +MA22 = 0 (2.4)

Remark 2.8. Observe that for any elements L and M in A the relations

A2A3 −A3A2 = 0, A2
2 = 0, A2

3 = 0

are always satisfied, since moreover we have A2A3 = A3A2 = 0. Thus, under the conditions
(2.3) and (2.4), elements A1, A2, and A3 satisfy commutation relations (1.1)–(1.5). This gives
a method of construction for realizations of (1.1)–(1.5).

Let us assume that either L or M are left or right invertible. Then A21 = 0, and hence
A1 is upper triangular, that is,

A1 =
(
A11 A12

0 A22

)
So, we have the following useful statement.

Lemma 2.9. Let L and M be elements of an associative algebra or ring A, such that at
least one of them is left or right invertible in A. Then the elements

A1 =
(
A11 A12

A21 A22

)
, A2 =

(
0 L
0 0

)
, A3 =

(
0 M
0 0

)
(2.5)

of the algebra (ring) M2(A) of 2× 2 matrices over A satisfy the commutation relations

A1A2 +A2A1 = A3, A1A3 +A3A1 = 0 (2.6)
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if and only if

A21 = 0, i.e., A1 =
(
A11 A12

0 A22

)
(2.7)

together with

A11L+ LA22 = M, A11M +MA22 = 0 (2.8)

Given A1 and A2 of the form in (2.7) and (2.5), respectively, there exists an M so that A3

of the form in (2.5) satisfies (2.6) if and only if

A2
11L+ 2A11LA22 + LA2

22 = 0 (2.9)

Proof. The first part was proved before the statement. The last relation follows by elimi-
nating M using (2.8). On the other hand, if (2.9) holds, then M = A11L + LA22 satisfies
(2.8).

Lemma 2.10. Let the matrices

A1 =
(
B1 A12

0 B1

)
, A2 =

(
0 B2

0 0

)
, A3 =

(
0 B3

0 0

)
be elements of M2(A), the algebra (ring) of 2×2 matrices over an associative algebra (ring)
A, and assume B1, B2, B3, A12 ∈ A. Then

A1A2 +A2A1 = A3, A1A3 +A3A1 = 0

are satisfied if and only if B1, B2, and B3 satisfy

B1B2 +B2B1 = B3, B1B3 +B3B1 = 0

Moreover, A2
2 =A2

3 = 0 and A2A3 =A3A2 =A2A3− vA3A2 = 0, independently on B2, B3 ∈A.

Proof. The proof follows from the following easily checked equalities:

A1A2 +A2A1 =
(

0 B1B2 +B2B1

0 0

)
, A1A3 +A3A1 =

(
0 B1B3 +B3B1

0 0

)
By Lemma 2.2 we know that if AB − BA = I for A and B in some unital associative

algebra A, then

B1 = A, B2 = T (B,A)V (A) +BT (B,A)W (A), B3 = T (B,A)W (A) (2.10)

satisfy commutation relations

B1B2 +B2B1 = B3, B1B3 +B3B1 = 0 (2.11)

and also if B1 = A and B2 and B3 are (B,A)-normally ordered power series in A and B,
then B1, B2, and B3 satisfy (2.11) if and only if B2 and B3 are of the form (2.10). A similar
result is obtained if we choose to write B2 and B3 in the (A,B)-normal form.

Note also that we can apply Lemma 2.2 and its version in the (A,B)-normal form on
a new set of generators Ã = B and B̃ = −A satisfying ÃB̃ − B̃Ã = I. Observing that
T (−A,B) = U(A,B) and U(B,−A) = T (B,A), the resulting general solutions are

B1 = B, B2 = U(A,B)V (B)−AU(A,B)W (B), B3 = U(A,B)W (B)

B1 = B, B2 = V (B)T (B,A) +W (B)T (B,A)A, B3 = W (B)T (B,A)

Combining this with Lemma 2.10, we can construct a realization of (1.1)–(1.5) using A and
B satisfying the Heisenberg commutation relation AB −BA = I.
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Theorem 2.11. Assume A and B are two elements of an associative unital algebra or a
ring (with identity) A, satisfying the Heisenberg commutation relation AB − BA = I. Let
T (B,A) =

∑∞
k=0

(−2)k

k! BkAk and define the following 2× 2 matrices:

A1 =
(
A A12

0 A

)
A2 =

(
0 T (B,A)V (A) +BT (B,A)W (A)
0 0

)
A3 =

(
0 T (B,A)W (A)
0 0

)
where A12 ∈ H1〈〈A,B; A〉〉 and V (A),W (A) ∈ C[[A]]. Then A1, A2, and A3 satisfy the
commutation relations

A1A2 +A2A1 = A3, A1A3 +A3A1 = 0, A2A3 −A3A2 = 0, A2
2 = A2

3 = 0

Moreover, A2A3 = A3A2 = 0.

When the (A,B)-normal forms and the corresponding equality assumption inH1〈〈A,B;A〉〉
is used, the following analogue of Theorem 2.11 holds.

Theorem 2.12. Assume A and B are two elements of an associative unital algebra or a
ring (with identity) A, satisfying the Heisenberg commutation relation AB − BA = I. Let
U(A,B) =

∑∞
k=0

2k

k!A
kBk, and define the following 2× 2 matrices:

A1 =
(
A A12

0 A

)
A2 =

(
0 V (A)U(A,B)−W (A)U(A,B)B
0 0

)
A3 =

(
0 W (A)U(A,B)
0 0

)
where A12 ∈ H1〈〈A,B; A〉〉 and V (A),W (A) ∈ C[[A]]. Then A1, A2, and A3 satisfy the
commutation relations

A1A2 +A2A1 = A3, A1A3 +A3A1 = 0, A2A3 −A3A2 = 0, A2
2 = A2

3 = 0

Moreover, A2A3 = A3A2 = 0.

Example 2.13. Introduce the operators

A = M : f(x) 7−→ xf(x), B = −∂ : f(x) 7−→ −f ′(x)

acting on C[x]. These operators satisfy AB−BA = I. Note also that U(A,B) = U(M,−∂) =
T (M,∂). Let A12 : C[x] → C[x] be any operator. Then A1, A2, and A3 defined in Theo-
rem 2.12 are realized on C[x] by the operators

C1 =
(
M C12

0 M

)
C2 =

(
0 V (M)T (M,∂) +W (M)T (M,∂)∂
0 0

)
C3 =

(
0 W (M)T (M,∂)
0 0

)
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acting on C[x] ⊕ C[x] =
{(

f(x)

g(x)

)}
. By the same theorem they satisfy the five relations for

any power series V (M) and W (M) in M . Note that here T (M,∂) : f(x) 7→ f(−x) is the
parity operator (see [24]). For example, if V (t) = 1 and W (t) = t2, then

A1 :
(
f(x)
g(x)

)
7−→

(
xf(x) +A12g(x)

xg(x)

)
A2 :

(
f(x)
g(x)

)
7−→

(
g(−x) + x2g′(−x)

0

)
A3 :

(
f(x)
g(x)

)
7−→

(
x2g(−x)

0

)
Example 2.14. Referring to [22] and [24, Example 5], we consider a sequence of functions
{φν}∞ν=0 defined by

√
ν + 1φν+1(x) = a∗φν(x), ν ≥ 0; φ0(x) =

1√√
πx0

exp

(
− 1

2

(
x

x0

)2
)

where a∗ is the linear operator

a∗ = − x0√
2
∂ +

1√
2x0

M

defined for any positive real constant x0. It follows that

φn(x) =
1√
n!

(a∗)nφ0(x) =
1√

n!
√
πx0

(a∗)n exp

(
− 1

2

(
x

x0

)2
)

=
1√

2nn!
√
πx0

exp

(
− 1

2

(
x

x0

)2
)
Hn

(
x

x0

)

for n = 0, 1, 2, . . ., where Hn are the Hermite polynomials. Defining the linear operator a as

a =
x0√

2
∂ +

1√
2x0

M

it can be shown that aφ0 = 0 and aφν =
√
νφν−1 for ν ≥ 1. Moreover,

(
a∗
)k
akφν =


ν!

(ν − k)!
φν if k ≤ ν

0 if k > ν

for any k ∈ N. The sequence of functions {φν}∞ν=0 describes the energy eigenstates of the
simple quantum mechanical harmonic oscillator. Consider now the two differential operators
a∗ (“creation” operator) and a (“annihilation” operator) defined on the linear space Ω =
linspanC({φν}∞ν=0) consisting of all complex linear combinations of functions from the set of
eigenfunctions {φν}∞ν=0. Since now aa∗ − a∗a = 1, we can define A and B in Theorem 2.11
as A = a and B = a∗ acting on Ω. Suppose A12 : Ω→ Ω is any operator. Then A1, A2, and
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A3 introduced in Theorem 2.11 are realized as the operators

A1 =
(
a A12

0 a

)
A2 =

(
0 T (a∗, a)V (a) + a∗T (a∗, a)W (a)
0 0

)
A3 =

(
0 T (a∗, a)W (a)
0 0

)
acting on Ω⊕ Ω =

{(
f
g

)
| f, g ∈ Ω

}
.

Recall that aφ0 = 0 and aφν =
√
νφν−1 for ν ≥ 1. Hence

A1

(
φ0

0

)
=
(

0
0

)
, A1

(
φν
0

)
=
√
ν

(
φν−1

0

)
, ν ≥ 1

A2

(
φν
0

)
=
(

0
0

)
, A3

(
φν
0

)
=
(

0
0

)
, ν ≥ 0

Moreover, for ν ≥ 1,

A1

(
0
φν

)
=
√
ν

(
0

φν−1

)
+
(
A12 0
0 0

)(
φν
0

)
Now let V (a) =

∑∞
k=0 vka

k and W (a) =
∑∞

k=0wka
k, where vk, wk ∈ C. Since

akφν =

√
ν!

(ν − k)!
φν−k, 0 ≤ k ≤ ν

it readily follows that

T (a∗, a)V (a)φν =
ν∑
i=0

(−1)ivν−i

√
ν!
i!
φi

keeping in mind that T (a∗, a)φν = (−1)νφν for all ν ≥ 0.
Similarly, using the fact that a∗φi =

√
i+ 1φi+1, one obtains

a∗T (a∗, a)W (a)φν =
ν∑
i=0

(−1)iwν−i
√
i+ 1

√
ν!
i!
φi+1

This means that

A2

(
0
φν

)
=

ν+1∑
i=0

(−1)i
(
vν−i − iwν−i+1

)√ν!
i!

(
φi
0

)

A3

(
0
φν

)
=

ν∑
i=0

(−1)iwν−i

√
ν!
i!

(
φi
0

)
In the first expression, we have to assume that v−1 = 0. Introduce a basis {Φν}∞ν=0 of Ω⊕Ω
given by

Φ2ν =
(
φν
0

)
, Φ2ν+1 =

(
0
φν

)
, ν ≥ 0
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For ν ≥ 0, it follows that

A1Φ0 = A2Φ2ν = A3Φ2ν = 0

And, for ν ≥ 1,

A1Φ2ν =
√
νΦ2ν−2, A1Φ2ν+1 =

√
νΦ2ν−1 +

(
A12 0
0 0

)
Φ2ν

Moreover, for all ν ≥ 0,

A2Φ2ν+1 =
ν+1∑
i=0

(−1)i
(
vν−i − iwν−i+1

)√ν!
i!

Φ2i, A3Φ2ν+1 =
ν∑
i=0

(−1)iwν−i

√
ν!
i!

Φ2i
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