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Abstract

In this paper, we give general definitions of non-commutative jets in the local and
global situation using square zero extensions and derivations. We study the functors
Exank(A, I), where A is any k-algebra, and I is any left and right A-module and use
this to construct affine non-commutative jets. We also study the Kodaira-Spencer class
KS(L) and relate it to the Atiyah class.
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1 Introduction

In this paper, we give general definitions of non-commutative jets in the local and global
situation using square zero extensions and derivations. We study the functors Exank(A, I),
where A is any k-algebra, and I is any left and right A-module and use this to construct
affine non-commutative jets. In the final section of the paper, we define and prove basic
properties of the Kodaira-Spencer class KS(L) and relate it to the Atiyah class.

2 Jets, liftings, and small extensions

We give an elementary discussion of structural properties of square zero extensions of arbi-
trary associative unital k-algebras. We introduce for any k-algebra A and any left and right
A-module I the set Exank(A, I) of isomorphism classes of square zero extensions of A by I
and show it is a left and right module over the center C(A) of A. This structure generalize
the structure as left C(A)-module introduced in [3]. We also give an explicit construction of
Exank(A, I) in terms of cocycles. Finally, we give a direct construction of non-commutative
jets and generalized Atiyah sequences using derivations and square zero extensions.

Let in the following k be a fixed base field, and let

0 −→ I
i−→ B

p−−→ A −→ 0

be an exact sequence of associative unital k-algebras with i(I)2 = 0. Assume s is a map of
k-vector spaces with the following properties:

s(1) = 1,

and

p ◦ s = id.

Such a section always exists since B and A are vector spaces over the field k. Note: s gives
the ideal I a left and right A-action.
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Lemma 2.1. There is an isomorphism:

B ∼= I ⊕A

of k-vector spaces.

Proof. Define the following maps of vector spaces: φ : B → I⊕A by φ(x) = (x−sp(x), p(x))
and ψ : I ⊕A→ B by ψ(u, x) = u+ s(x). It follows that ψ ◦ φ = id and φ ◦ ψ = id and the
claim of the proposition follows.

Define the following element:

C̃ : A×A −→ I,

by

C̃(x× y) = s(x)s(y)− s(xy).

It follows that C̃ = 0 if and only if s is a ring homomorphism.

Lemma 2.2. The map C̃ gives rise to an element C ∈ Homk(A⊗k A, I).

Proof. We easily see that C̃(x+y, z) = C̃(x, z)+C̃(y, x) and C̃(x, y+z) = C̃(x, y)+C̃(x, z)
for all x, y, z ∈ A. Moreover, for any a ∈ k, it follows that

C̃(ax, y) = C̃(x, ay) = aC̃(x, y).

Hence we get a well-defined element C ∈ Homk(A⊗k A, I) as claimed.

Define the following product on I ⊕A:

(u, x)× (v, y) =
(
uy + xv + C(x, y), xy

)
. (2.1)

We let I ⊕C A denote the abelian group I ⊕A with product defined by (2.1).

Proposition 2.3. The natural isomorphism:

B ∼= I ⊕A

of vector spaces is a unital ring isomorphism if and only if the following holds:

xC(y, z)− C(xy, z) + C(x, yz)− C(x, y)z = 0

for all x, y, z ∈ A.

Proof. We have defined two isomorphisms of vector spaces φ, ψ:

φ(x) =
(
x− sp(x), p(x)

)
,

and

ψ(u, x) = u+ s(x).

We define a product on the direct sum I ⊕A using φ and ψ:

(u, x)× (v, y) = φ
(
ψ(u, x)ψ(v, y)

)
= φ

((
u+ s(x)

)(
v + s(y)

))
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= φ
(
uv + us(y) + s(x)v + s(x)s(y)

)
=
(
us(y) + s(x)v + s(x)s(y)− s(xy), xy

)
=
(
uy + xv + C(x, y), xy

)
.

Here, we define

uy = us(y),

and

xv = s(x)v.

One checks that

φ(1) =
(
1− sp(1), 1

)
= (0, 1) = 1,

and

1(u, x) = (u, x)1 = (u, x)

for all (u, x) ∈ I ⊕A. It follows that the morphism φ is unital. Since C(x+ y, z) = C(x, z) +
C(y, z) and C(x, y + z) = C(x, y) + C(x, z) the following holds:

(u, x)
(
(v, y) + (w, z)

)
= (u, x)(v, y) + (u, x)(w, z),

and (
(v, y) + (w, z)

)
(u, x) = (v, y)(u, x) + (w, z)(u, x).

Hence, the multiplication is distributive over addition. Hence for an arbitrary section s of
p of vector spaces mapping the identity to the identity, it follows the multiplication defined
above always has a left and right unit and is distributive. We check when the multiplication
is associative:(

(u, x)(v, y)
)
(w, z) =

(
uyz + xvz + xyw + C(x, y)z + C(xy, z), xyz

)
.

Also,

(u, x)
(
(v, y)(w, z)

)
=
(
uyz + xvz + xyw + xC(y, z) + C(x, yz), xyz

)
.

It follows that the multiplication is associative if and only if the following equation holds for
the element C:

xC(y, z)− C(xy, z) + C(x, yz)− C(x, y)z = 0

for all x, y, z ∈ A. The claim follows.

Let

xC(y, z)− C(xy, z) + C(x, yz)− C(x, y)z = 0 (2.2)

be the cocycle condition.
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Definition 2.4. Let exank(A, I) be the set of elements C ∈ Homk(A⊗k A, I) satisfying the
cocycle condition (2.2).

Proposition 2.5. Equation (2.2) holds for all x, y, z ∈ A:

Proof. We get,

xC(y, z) = s(x)s(y)s(z)− s(x)s(yz),
C(xy, z) = s(xy)s(z)− s(xyz),
C(x, yz) = s(x)s(yz)− s(xyz),

and

C(x, y)z = s(x)s(y)s(z)− s(xy)s(z).

We get

xC(y, z)− C(xy, z) + C(x, yz)− C(x, y)z
= s(x)s(y)s(z)− s(x)s(yz)− s(xy)s(z) + s(xyz)

+ s(x)s(yz)− s(xyz)− s(x)s(y)s(z) + s(xy)s(z)
= 0,

and the claim follows.

Corollary 2.6. The morphism φ : B → I ⊕C A is an isomorphism of unital associative
k-algebras.

Proof. This follows from Proposition 2.5 and Proposition 2.3.

Hence, there is always a commutative diagram of exact sequences:

0 // I //

=

��

B //

∼=
��

A //

=

��

0

0 // I
i // I ⊕C A

p // A // 0

where the middle vertical morphism is an isomorphism associative unital k-algebras.
Define the following left and right A-action on the ideal I:

xu = s(x)u, ux = us(x),

where s is the section of p and x ∈ A, u ∈ I. Recall I2 = 0.

Proposition 2.7. The actions defined above give the ideal I a left and right A-module
structure. The structure is independent of choice of section s.

Proof. One checks that for any x, y ∈ A and u, v ∈ I, the following holds:

(x+ y)u = xu+ yu, x(u+ v) = xu+ xv, 1u = 1.

Also,

(xy)u− x(yu) = s(xy)u− s(x)s(y)u =
(
s(xy)− s(x)s(y)

)
u = 0,
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since I2 = 0. It follows that (xy)u = x(yu), hence I is a left A-module. A similar argument
prove I is a right A-module. Assume t is another section of p. It follows that

s(x)u− t(x)u =
(
s(x)− t(x)

)
u = 0,

since I2 = 0. It follows that s(x)u = t(x)u. Similarly, us(x) = ut(x) hence s and t induce
the same structure of A-module on I and the proposition is proved.

We have proved the following theorem: let A be any associative unital k-algebra and let
I be a left and right A-module. Let C : A ⊗k A → I be a morphism satisfying the cocycle
condition (2.2).

Theorem 2.8. The exact sequence:

0 −→ I −→ I ⊕C A −→ A −→ 0

is a square zero extension of A with the module I. Moreover, any square zero extension of A
with I arise this way for some morphism C ∈ Homk(A⊗k A, I) satisfying equation (2.2).

Proof. The proof follows from the discussion above.

Let

0 −→ I −→ E −→ A −→ 0

with i : I → E and p : E → A and

0 −→ J −→ F −→ B −→ 0

with j : J → F and q : F → B be square zero extensions of associative k-algebras A,B
with left and right modules I, J . This means the sequences are exact and the following holds
i(I)2 = j(J)2 = 0. A triple (w, u, v) of maps of k-vector spaces giving rise to a commutative
diagram of exact sequences:

0 // I
i //

w

��

E
p //

u

��

A //

v

��

0

0 // J
j // F

q // B // 0

is a morphism of extensions if u and v are maps of k-algebras and w is a map of left and
right modules. This means

w(x+ y) = w(x) + w(y), w(ax) = v(a)w(x), w(xa) = w(x)v(a)

for all x, y ∈ I and a ∈ A.
We say two square zero extensions:

0 −→ I −→ E −→ A −→ 0

and

0 −→ I −→ F −→ A −→ 0

are equivalent if there is an isomorphism φ : E → F of k-algebras making all diagrams
commute.
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Definition 2.9. Let Exank(A, I) denote the set of all isomorphism classes of square zero
extensions of A by I.

Theorem 2.10. Let C(A) be the center of A. The set exank(A, I) is a left and right module
over C(A). Moreover, there is a bijection:

Exank(A, I) ∼= exank(A, I)

of sets.

Proof. We first prove that exank(A, I) is a left and right C(A)-module. Let C,D ∈
exank(A, I). This means C,D ∈ Homk(A⊗k A, I) are elements satisfying the cocycle condi-
tion (2.2). let a, b ∈ C(A) ⊆ A be elements. Define aC, Ca as follows:

(aC)(x, y) = aC(x, y),

and

(Ca)(x, y) = C(x, y)a.

We see

x(aC)(y, x)− (aC)(xy, z) + (aC)(x, yz)− (aC)(x, y)z
= a

(
xC(y, z)− C(xy, z) + C(x, yz)− C(x, y)z

)
= a(0) = 0,

hence aC ∈ exank(A, I). Similarly, one proves Ca ∈ exank(A, I) hence we have defined a left
and right action of C(A) on the set exank(A, I). Given C,D ∈ exank(A, I) define

(C +D)(x, y) = C(x, y) +D(x, y).

One checks that C + D ∈ exank(A, I) hence exank(A, I) has an addition operation. One
checks the following hold:

a(C +D) = aC + aD, (C +D)a = Ca+Da,

(a+ b)C = aC + bC, C(a+ b) = Ca+ Cb,

a(bC) = (ab)C, C(ab) = (Ca)b, 1C = C1 = C,

hence the set exank(A, I) is a left and right C(A)-module. Define the following map: let
[B] = [I ⊕C A] ∈ Exank(A, I) be an equivalence class of a square zero extension. Define

φ : Exank(A, I) −→ exank(A, I)

by

φ[B] = φ
[
I ⊕C A

]
= C.

We prove this gives a well-defined map of sets. Assume [I⊕CA] and [I⊕DA] are two elements
in Exank(A, I). Note: we use brackets to denote isomorphism classes of extensions. The two
extensions are equivalent if and only if there is an isomorphism:

f : I ⊕C A −→ I ⊕D A
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of k-algebras such that all diagrams are commutative. This means that

f(u, x) = (u, x)

for all (u, x) ∈ I ⊕C A. We get

f
(
(u, x)(v, y)

)
= f(u, x)f(v, y).

This gives the equality:(
uy + xv + C(x, y), xy

)
=
(
uy + xv +D(x, y), xy

)
for all (u, x), (v, y) ∈ I ⊕C A. Hence, φ[I ⊕C A] = C = D = φ[I ⊕D A], and the map φ is well
defined. It is clearly an injective map. It is surjective by Theorem 2.8 and the claim of the
theorem follows.

Theorem 2.10 shows that there is a structure of left and right C(A)-module on the set
of equivalence classes of extensions Exank(A, I). The structure as left C(A)-module agrees
with the one defined in [3].

Let φ ∈ Homk(A, I). Let Cφ ∈ Homk(A⊗k A, I) be defined by

Cφ(x, y) = xφ(y)− φ(xy) + φ(x)y.

One checks that Cφ ∈ exank(A, I) for all φ ∈ Homk(A, I).

Definition 2.11. Let exaninnk (A, I) be the subset of exank(A, I) of maps Cφ for φ ∈
Homk(A, I).

Lemma 2.12. The set exaninnk (A, I) ⊆ exank(A, I) is a left and right sub C(A)-module.

Proof. The proof is left to the reader as an exercise.

Definition 2.13. Let Exaninnk (A, I) ⊆ Exank(A, I) be the image of exaninnk (A, I) under the
bijection exank(A, I) ∼= Exank(A, I).

It follows that Exaninnk (A, I) ⊆ Exank(A, I) is a left and right sub C(A)-module.
Recall the definition of the Hochschild complex as follows.

Definition 2.14. Let A be an associative k-algebra, and let I be a left and right A-module.
Let Cp(A, I) = Homk(A⊗p, I). Let dp : Cp(A, I)→ Cp+1(A, I) be defined as follows:

dp(φ)
(
a1 ⊗ · · · ⊗ ap+1

)
= a1φ

(
a2 ⊗ · · · ⊗ ap+1

)
+
∑

1≤i≤p
(−1)iφ

(
a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ ap+1

)
+ (−1)p+1φ

(
a1 ⊗ · · · ⊗ ap

)
ap+1.

We let HHi(A, I) denote the i’th cohomology of this complex. It is the i’th Hochschild
cohomology of A with values in I.

Proposition 2.15. There is an exact sequence:

0 −→ Exaninnk (A, I) −→ Exank(A, I) −→ HH2(A, I) −→ 0

of left and right C(A)-modules.
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Proof. The proof is left to the reader as an exercise.

Example 2.16. Characteristic classes of L-connections.

Let A be a commutative k-algebra and let α : L → Derk(A) be a Lie-Rinehart algebra.
Let W be a left A-module with an L-connection ∇ : L → Endk(W ). In [6], we define a
characteristic class c1(E) ∈ H2(L|U ,OU ) when W is of finite presentation, U ⊆ Spec(A) is
the open set, where W is locally free, and H2(L|U ,OU ) is the Lie-Rinehart cohomology of
L|U with values in OU . If L is locally free, it follows that H2(L,A) ∼= Ext2U(L)(A,A), where
U(L) is the generalized universal enveloping algebra of L. There is an obvious structure of
left and right U(L)-module on Endk(A) and an isomorphism:

HH2
(
U(L),Endk(A)

) ∼= Ext2U(L)(A,A)

of abelian groups. The exact sequence 2.15 gives a sequence:

0 −→ Exaninnk
(
U(L),Endk(A)

)
−→ Exank

(
U(L),Endk(A)

)
−→ Ext2U(L)(A,A) −→ 0

with A = U(L) and I = Endk(A). If we can construct a lifting:

c̃1(W ) ∈ Exank
(
U(L),Endk(A)

)
of the class:

c1(W ) ∈ Ext2U(L)(A,A) = HH2
(
U(L),Endk(A)

)
,

we get a generalization of the characteristic class from [6] to arbitrary Lie-Rinehart algebras
L. This problem will be studied in a future paper on the subject (see [7]).

Example 2.17. Non-commutative Kodaira-Spencer maps.

Let A be an associative k-algebra, and let M be a left A-module. Let D1(A) ⊆ Endk(A)
be the module of first-order differential operators on A. It is defined as follows: an element
∂ ∈ Endk(A) is in D1(A) if and only if [∂, a] ∈ D0(A) = A ⊆ Endk(A) for all a ∈ A. Define
the following map:

f : D1(A) −→ Homk

(
A,Endk(M)

)
by

f(∂)(a,m) = [∂, a]m =
(
∂(a)− a∂(1)

)
m.

Here, ∂ ∈ D1(A), a ∈ A, and m ∈ M . Since [∂, a] ∈ A, we get a well-defined map. Let for
any a ∈ A and m ∈ M φa(m) = am. It follows φa ∈ Endk(M) is an endomorphism of M .
We get

f(∂)(ab,m) =
(
∂(ab)− ab∂(1)

)
m =

(
∂φab − φab∂

)
(1)m

=
(
∂φab − φa∂φb + φa∂φb − φab∂

)
(1)m

=
(
∂φa − φa∂

)
φb(1)m+ φa

(
∂φb − φb∂

)
(1)m

= f(∂)(a, bm) + af(∂)(b,m).
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Hence,

f(∂)(ab) = af(∂)(b) + f(∂)(a)b

for all ∂ ∈ D1(A) and a, b ∈ A. The Hochschild complex gives a map:

d1 : Homk

(
A,Endk(M)

)
−→ Homk

(
A⊗A,Endk(M)

)
,

and

ker
(
d1
)

= Derk
(
A,Endk(M)

)
.

It follows that we get a map:

f : D1(A) −→ Derk
(
A,Endk(M)

)
.

We get an induced map:

f : D1(A) −→ HH1
(
A,Endk(M)

)
= Ext1A(M,M).

Lemma 2.18. The following holds f(D0(A)) = f(A) = 0

Proof. The proof is left to the reader as an exercise.

One checks that D1(A)/D0(A) = D1(A)/A ∼= Derk(A). It follows that we get an induced
map:

g : Derk(A) = D1(A)/D0(A) −→ Ext1A(M,M),

the non-commutative Kodaira-Spencer map.

Lemma 2.19. Assume A is commutative. The following hold:

VM = ker(g) ⊆ Derk(A) is a Lie-Rinehart algebra, (2.3)

g(δ) = 0 ⇐⇒ ∃φ ∈ Endk(M), φ(am) = aφ(m) + δ(a)m, (2.4)

∃∇ ∈ Homk

(
VM ,Endk(M)

)
with ∇(δ)(am) = a∇(δ)(m) + δ(a)m, (2.5)

VM is the maximal Lie-Rinehart algebra satisfying (2.5). (2.6)

Proof. We first prove (2.3): assume g(δ) = g(η) = 0. By definition, this is if and only if
there are maps φ, ψ ∈ Endk(M) such that the following hold:

d0φ = g(δ), (2.7)

d0ψ = g(η). (2.8)

One checks that conditions (2.7) and (2.8) hold if and only if the following hold:

φ(am) = aφ(m) + δ(a)m,

and

ψ(am) = aψ(m) + η(a)m.
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We claim d0[δ, η] = g([δ, η]). We get

[φ, ψ](am) = φψ(am)− ψφ(am) = φ
(
aψ(m) + η(a)m

)
− ψ

(
aφ(m) + δ(a)m

)
= aφψ(m) + δ(a)ψ(m) + η(a)φ(m) + δη(a)m− aψφ(m)− η(a)φ(m)
− δ(a)ψ(m)− ηδ(a)m = a[φ, ψ](m) + [δ, η](a)m.

Hence, g([δ, η]) = 0 and VM ⊆ Derk(A) is a k-Lie algebra. It is an A-module since g is
A-linear, hence it is a Lie-Rinehart algebra. Claim (2.3) is proved. Claim (2.4) and (2.5)
follows from the proof of (2.3). Claim (2.6) is obvious and the lemma is proved.

The Lie-Rinehart algebra VM is the linear Lie-Rinehart algebra of M .
Let in the following E be a left and right A-module.

Definition 2.20. Let

J 1
I (E) = I ⊗A E ⊕ E

be the first-order I-jet bundle of E.

Pick a derivation d ∈ Derk(A, I) of left and right modules. This means that

d(xy) = xd(y) + d(x)y

for all x, y ∈ A. Let BC = I ⊕C A and define the following left BC-action on J 1
I (E):

(u, x)(w ⊗ e, f) =
(
u⊗ f + xw ⊗ e+ d(x)⊗ f, xf

)
for any elements (u, x) ∈ BC and (w ⊗ e, f) ∈ J 1

I (E).

Proposition 2.21. The abelian group J 1
I (E) is a left BC-module if and only if C(y, x)⊗f =

0 for all y, x ∈ A and f ∈ E.

Proof. One easily checks that for any a, b ∈ BC and l, j ∈ J 1
I (E) the following hold:

(a+ b)i = ai+ bi,

a(i+ j) = ai+ aj.

Moreover,

1i = i.

It remains to check that a(bi) = (ab)i. Let a = (v, y) ∈ BC and b = (u, x) ∈ BC . Let also
i = (w ⊗ e, f) ∈ J 1

I (E). We get

a(bi) = (v, y)
(
(u, x)(w ⊗ e, f)

)
=
(
vx⊗ f + yu⊗ f + yxw ⊗ e+ d(yx)⊗ f, yxf

)
.

We also get

(ab)i =
(
vx⊗ f + yu⊗ f + yxw ⊗ e+ d(yx)⊗ f + C(y, x)⊗ f, yxf

)
.

It follows that

(ab)i− a(bi) = 0,

if and only if

C(y, x)⊗ f = 0,

and the claim of the proposition follows.
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Note the abelian group J 1
I (E) is always a left A-module and there is an exact sequence

of left A-modules:

0 −→ I ⊗ E −→ J 1
I (E) −→ E −→ 0,

defining a characteristic class:

cI(E) ∈ Ext1A(E,E ⊗ I).

The class cI(E) has the property that cI(E) = 0 if and only if E has an I-connection:

∇ : E −→ I ⊗ E

with

∇(xe) = x∇(e) + d(x)⊗ e.

Let J ⊆ I ⊆ BC be the smallest two-sided ideal containing Im(C), where C : A ⊗k A → I
is the cocycle defining BC . Let DC = BC/J and IC = I/J . We get a square zero extension:

0 −→ IC −→ DC −→ A −→ 0

of A by the square zero ideal IC . It follows that DC = IC ⊕ A as abelian group. Since
C(x, y) = 0 in IC , it follows that DC has a well-defined associative multiplication defined by

(u, x)(v, y) = (uy + xv, xy).

Also DC is the largest quotient of BC such that the ring homomorphism BC → DC fits into
a commutative diagram of square zero extensions:

0 // I //

��

BC //

��

A //

=

��

0

0 // IC // DC // A // 0.

Definition 2.22. Let

J 1
IC (E) = IC ⊗ E ⊕ E

be the first-order IC-jet bundle of E.

Example 2.23. First-order commutative jets.

Let k → A be a commutative k-algebra, and let I ⊆ A⊗k A be the ideal of the diagonal.
Let J 1

A = A⊗A/I2 and Ω1
A = I/I2. We get an exact sequence of left A-modules:

0 −→ Ω1
A −→ J 1

A −→ A −→ 0. (2.9)

It follows that J 1
A
∼= Ω1

A ⊕A with the following product:

(ω, a)(η, b) = (ωa+ bη, ab),

hence the sequence (2.9) splits. Let J 1
A(E) = Ω1

A⊗E⊕E be the first-order Ω1
A-jet of E. We

get an exact sequence of left A-modules:

0 −→ Ω1
A ⊗ E −→ J 1

A(E) −→ E −→ 0.

Since the sequence (2.9) splits, it follows that J 1
A(E) is a lifting of E to the first-order jet

J 1
A.
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3 Atiyah classes and Kodaira-Spencer classes

In this section, we define and prove some properties of Atiyah classes and Kodaira-Spencer
classes.

Let X be any scheme defined over an arbitrary basefield F and let Pic(X) be the Picard
group of X. Let O∗ ⊆ OX be the following subsheaf of abelian groups: for any open set
U ⊆ X, the group O(U)∗ is the multiplicative group of units in OX(U). Define for any open
set U ⊆ X the following morphism:

dlog : O(U)∗ −→ Ω1
X(U),

defined by

dlog(x) = d(x)/x,

where d is the universal derivation and x ∈ O(U)∗.

Lemma 3.1. The following holds:

dlog(xy) = dlog(x) + dlog(y)

for x, y ∈ O(U)∗

Proof. The proof is left to the reader as an exercise.

Hence, dlog : O∗ → Ω1
X defines a map of sheaves of abelian groups. The map dlog induces

a map on cohomology

dlog : Pic(X) = H1
(
X,O∗

)
−→ H1

(
X,Ω1

X

)
,

and by definition

dlog(L) = c1(L) ∈ H1
(
X,Ω1

X

)
.

Let I ⊆ Ω1
X be any sub OX -module, and let F = Ω1

X/I be the quotient sheaf. We get a
derivation:

d : OX −→ F

by composing with the universal derivation. We get a canonical map:

H1
(
X,Ω1

X

)
−→ H1(X,F),

and we let

c1(L) ∈ H1(X,F)

be the image of c1(L) under this map.

Definition 3.2. The class c1(L) ∈ H1(X,Ω1
X) is the first Chern class of the line bundle

L ∈ Pic(X). The class c1(L) ∈ H1(X,F) is the generalized first Chern class of L.
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Let E be any OX -module and consider the following sequence of sheaves of abelian groups:

0 −→ F ⊗ E −→ J 1
F (E) −→ E −→ 0,

where

J 1
F (E) = F ⊗ E ⊕ E

as sheaf of abelian groups. Let s be a local section of OX , and let (x⊗e, f) be a local section
of J 1

F (E) over some open set U . Make the following definition:

s(x⊗ e, f) = (sx⊗ e+ ds⊗ f, sf).

It follows that the sequence

0 −→ F ⊗ E −→ J 1
F (E) −→ E −→ 0

is a short exact sequence of sheaves of abelian groups. It is called the Atiyah-Karoubi sequence.

Definition 3.3. An F-connection ∇ is a map:

∇ : E −→ F ⊗ E

of sheaves of abelian groups with

∇(se) = s∇(e) + d(s)⊗ e.

Proposition 3.4. The Atiyah-Karoubi sequence is an exact sequence of left OX-modules. It
is left split by an F-connection.

Proof. We first show that it is an exact sequence of left OX -modules. The OX -module
structure is twisted by the derivation d, hence we must verify that this gives a well-defined
left OX -structure on J 1

F (E). Let ω = (x ⊗ e, f) be a local section of J 1
F (E), and let s, t be

local sections of OX . We get the following calculation:

(st)ω = (st)(x⊗ e, f) =
(
(st)x⊗ e+ d(st)⊗ f, (st)f

)
=
(
stx⊗ e+ sdt⊗ f + (ds)t⊗ f, stf

)
=
(
s(tx⊗ e+ dt⊗ f) + ds⊗ tf, s(tf)

)
= s(tx⊗ e+ dt⊗ f, tf) = s

(
t(x⊗ e, f)

)
= s(tω).

It follows that J 1
F (E) is a left OX -module and the sequence is left exact. Assume that

s : E −→ JF (E) = F ⊗ E ⊕ E

is a left splitting. It follows that s(e) = (∇(e), e) for e a local section of E . It follows that ∇
is a generalized connection and the theorem is proved.

Note: If I = 0, we get that J 1
F (E) = J 1

X(E) is the first-order jet bundle of E and the exact
sequence above specializes to the well-known Atiyah sequence:

0 −→ Ω1
X ⊗ E −→ J 1

X(E) −→ E −→ 0.

The Atiyah sequence is left split by a connection:

∇ : E −→ Ω1
X ⊗ E .

The OX -module J 1
F (E) is the generalized first-order jet bundle of E .
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Definition 3.5. The characteristic class:

AT(E) ∈ Ext1OX
(E ,F ⊗ E)

is called the Atiyah class of E .

The class AT(E) is defined for an arbitrary OX -module E and an arbitrary sub module
I ⊆ Ω1

X .
Assume that E = L ∈ Pic(X) is a line bundle on X. We get isomorphisms:

ExtOX
(L,L ⊗ F) ∼= Ext1OX

(
OX ,L∗ ⊗ L⊗ F

)
∼= Ext1OX

(
OX ,F

)
−→ H1(X,F).

We get a morphism:

φ : Ext1OX
(L,L ⊗ F) −→ H1(X,F).

Proposition 3.6. The following holds:

φ
(

AT(L)
)

= c1(L).

Hence, the Atiyah class calculates the generalized first Chern class of a line bundle.

Proof. Let I = 0. It is well known that AT(L) calculates the first Chern class c1(L). From
this, the claim of the proposition follows.

Let TX be the tangent sheaf of X. It has the property that for any open affine set
U = Spec(A) ⊆ X the local sections TX(U) equal the module DerF (A) of derivations of
A. Let VE ⊆ TX be the subsheaf of local sections ∂ of TX with the following property: the
section ∂ ∈ TX(U) lifts to a local section ∇(∂) of EndF (E|U ) with the following property:

∇(∂) : E|U −→ E|U

which satisfies

∇(∂)(se) = s∇(∂)(e) + ∂(s)e.

It follows that VE ⊆ TX is a subsheaf of Lie algebras – the Kodaira-Spencer sheaf of E .
Define for any local sections a, b of OX , ∂ of VE and e of E the following:

L(a, ∂)(e) = a∇(∂)(e)−∇(a∂)(e).

Lemma 3.7. It follows that L(a, ∂) ∈ EndOU
(E|U ) .

Proof. The following holds:

L(a, ∂)(be) = a∇(∂)(be)−∇(a∂)(be)
= a

(
b∇(∂)(e) + ∂(b)e

)
− b∇(a∂)(e)− a∂(b)e

= ab∇(∂)(e) + a∂(b)e− b∇(a∂)(e)− a∂(b)e
= b
(
a∇(∂)(e)−∇(a∂)(e)

)
= b
(
a∇(∂)−∇(a∂)

)
(e)

= bL(a, ∂)(e),

and the lemma is proved.
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Lemma 3.8. The following formula holds:

L(ab, ∂) = aL(b, ∂) + L(a, b∂)

for all local sections a, b, and ∂.

Proof. We get

L(ab, ∂) = ab∇(∂)−∇(ab∂)
= ab∇(∂)− a∇(b∂) + a∇(b∂)−∇(ab∂)
= a

(
b∇(∂)−∇(b∂)

)
+ (a∇−∇a)(b∂)

= aL(b, ∂) + L(a, b∂),

and the lemma is proved.

Let LR(VE) = EndOX
(E)⊕VE be the linear Lie-Rinehart algebra of E . Let LR(VE) have

the following left OX -module structure:

a(φ, ∂) =
(
aφ+ L(a, ∂), a∂

)
.

Here, a, φ, and ∂ are local sections of OX , EndOX
(E), and VE . We twist the trivial OX

structure on EndOX
(E) ⊕ VE with the element L. We get a sequence of sheaves of abelian

groups:

0 −→ EndOX
(E) i−→ LR

(
VE
) p−−→ VE −→ 0,

where i and p are the canonical maps. An OX -linear map:

∇ : VE −→ EndF (E),

satisfying

∇(∂)(ae) = a∇(∂)(e) + ∂(a)e

is a VE -connection on E .

Proposition 3.9. The sequence defined above is an exact sequence of left OX-modules. It
is left split by a VE -connection ∇.

Proof. We need to check that LR(VE) has a well-defined left OX -module structure. By
definition,

a(φ, ∂) =
(
aφ+ L(a, ∂), a∂

)
.

We get

(ab)x = (ab)(φ, ∂) =
(
(ab)φ+ L(ab, ∂), (ab)∂

)
=
(
abφ+ aL(b, ∂) + L(a, b∂), ab∂

)
= a

(
bφ+ L(b, ∂), b∂

)
= a

(
b(φ, ∂)

)
= a(bx),

and it follows that the sequence is a left exact sequence of OX -modules. If

s : VE −→ EndOX
(E)⊕ VE = LR

(
VE
)

is a section, it follows that s(e) = (∇(e), e). One checks that ∇ is a VE -connection, and the
theorem is proved.
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Definition 3.10. We get a characteristic class:

KS(E) ∈ Ext1OX

(
VE ,EndOX

(E)
)
,

the Kodaira-Spencer class of E .

Assume that VE is locally free and E = L ∈ Pic(X) is a line bundle on X. Assume also
that V∗E = F = Ω1

X/I for some submodule I. We get the following calculation:

Ext1OX

(
VE ,EndOX

(L)
) ∼= Ext1OX

(
OX ,EndOX

(L)⊗ V∗E
)

∼= Ext1OX

(
OX ,EndOX

(L)⊗F
)
−→ H1(X,F).

We get a map:

ψ : Ext1OX

(
VE ,EndOX

(L)
)
−→ H1(X,F)

of sheaves.

Proposition 3.11. The following holds: there is an equality:

ψ
(

KS(L)
)

= c1(L)

in H1(X,F). Hence the Kodaira-Spencer class calculates the class c1(L).

Proof. The proof is left to the reader as an exercise.

We get the following diagram expressing the relationship between the characteristic classes
defined above:

Ext1OX

(
VL,EndOX

(L)
)
ψ

))RRRRRRRRRRRRRR

H1(X,F) Pic(X)
c1(−)oo

Ext1OX
(L,F ⊗ L)

φ
55llllllllllllll

.

The following equation holds in H1(X,F):

φ
(

AT(L)
)

= ψ
(

KS(L)
)

= c1(L).
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