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Abstract

In this paper, we give general definitions of non-commutative jets in the local and
global situation using square zero extensions and derivations. We study the functors
Exang(A, ), where A is any k-algebra, and I is any left and right A-module and use
this to construct affine non-commutative jets. We also study the Kodaira-Spencer class
KS(£) and relate it to the Atiyah class.
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1 Introduction

In this paper, we give general definitions of non-commutative jets in the local and global
situation using square zero extensions and derivations. We study the functors Exang (A, I),
where A is any k-algebra, and I is any left and right A-module and use this to construct
affine non-commutative jets. In the final section of the paper, we define and prove basic
properties of the Kodaira-Spencer class KS(£) and relate it to the Atiyah class.

2 Jets, liftings, and small extensions

We give an elementary discussion of structural properties of square zero extensions of arbi-
trary associative unital k-algebras. We introduce for any k-algebra A and any left and right
A-module I the set Exang (A, I) of isomorphism classes of square zero extensions of A by [
and show it is a left and right module over the center C(A) of A. This structure generalize
the structure as left C'(A)-module introduced in [3]. We also give an explicit construction of
Exang (A, I) in terms of cocycles. Finally, we give a direct construction of non-commutative
jets and generalized Atiyah sequences using derivations and square zero extensions.
Let in the following & be a fixed base field, and let

0—T-BP2. 430

be an exact sequence of associative unital k-algebras with i(I)2 = 0. Assume s is a map of
k-vector spaces with the following properties:

and
pos=id.

Such a section always exists since B and A are vector spaces over the field k. Note: s gives
the ideal I a left and right A-action.
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Lemma 2.1. There is an isomorphism:
B2IgA
of k-vector spaces.

Proof. Define the following maps of vector spaces: ¢ : B — I® A by ¢(x) = (x—sp(x), p(z))
and ¢ : I & A — B by ¢(u,x) = u+ s(x). It follows that ¥ o ¢ = id and ¢ o 1) = id and the
claim of the proposition follows. O

Define the following element:
C:AxA—1,
Oz x y) = s(x)s(y) - s(ay).
It follows that C' = 0 if and only if s is a ring homomorphism.

Lemma 2.2. The map C gives rise to an element C € Homy (A ® A, I).

Proof. We easily see that C(z+y,z) = C(z, 2)+C(y, z) and C(z,y+2) = C(x,y)+C(z, 2)
for all x,y,z € A. Moreover, for any a € k, it follows that

Claz,y) = C(z,ay) = aC(z,y).

Hence we get a well-defined element C' € Homy (A ®j A, I) as claimed. O
Define the following product on I @ A:

(u, ) X (v,y) = (vy + zv + C(z,y),2y). (2.1)
We let T @ A denote the abelian group I @ A with product defined by (2.1).
Proposition 2.3. The natural isomorphism:

B=Ia A
of vector spaces is a unital ring isomorphism if and only if the following holds:

zC(y,z) — C(zy,2) + C(z,yz) — C(z,y)z =0
for all x,y,z € A.

Proof. We have defined two isomorphisms of vector spaces ¢, 1:
¢(z) = (z — sp(z), p(2)),

and
Y(u,x) = u+ s(x).

We define a product on the direct sum I & A using ¢ and 1:

(u,2) X (v,9) = (Y(u, 2)p(v,y)) = ¢((u+ s(z)) (v + s(y)))
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= ¢(uv + US(?J) + s(@)v + s(z)s(y)
= (us(y) + s(z)v + s(2)s(y) — s(zy), 2y)
(uy—f—xv—i—C x,Y), xy)

Here, we define

uy = us(y),
and

zv = s(x)v.

One checks that

6(1) = (1 - sp(1),1) = (0,1) = 1
and

1(u,z) = (u,x)1 = (u,x)

for all (u,z) € I® A. It follows that the morphism ¢ is unital. Since C(x 4y, 2z) = C(x, z) +
C(y, z) and C(z,y + z) = C(z,y) + C(z, z) the following holds:

(u,x)((v,y) + <w7z)) - (u,x)(v,y) + (ua w)(QU?Z)?
and
(v y) + (w,2)) (u,x) = (v, ) (u, ) + (w, 2) (u, z).

Hence, the multiplication is distributive over addition. Hence for an arbitrary section s of
p of vector spaces mapping the identity to the identity, it follows the multiplication defined
above always has a left and right unit and is distributive. We check when the multiplication
is associative:

((u, ) (v,y))(w, 2) = (uyz + vz + zyw + C(z,y)z + C(zy, 2), vyz).
Also,
(u,2)((v,9)(w,2)) = (uyz + zvz + zyw + 2C(y, 2) + C(z, yz), zyz).

It follows that the multiplication is associative if and only if the following equation holds for
the element C"

xC(y,z) — C(zy, 2) + C(z,yz) — C(z,y)z =0

for all z,y,z € A. The claim follows. O
Let
J"C(y’ Z) - C(‘Ty’ Z) + 0(1:7 yZ) - C(l‘a y)Z =0 (22)

be the cocycle condition.
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Definition 2.4. Let exang(A, ) be the set of elements C' € Homy (A ®j, A, I) satisfying the
cocycle condition (2.2).

Proposition 2.5. Equation (2.2) holds for all x,y,z € A:
Proof. We get,

2C(y, z) = s(x)s(y)s(2) — s(x)s(yz),
Clry, z) = s(xy)s(z) — s(xyz),
)

Cla,y2) = s(x)s(y2) — s(ay2),
and
C(z,y)z = s(z)s(y)s(z) — s(zy)s(2).
We get
2C(y,z) — C(zy, 2) + C(z,yz) — C(z,y)z
= s(z)s(y)s(z) — s(x)s(yz) — s(zy)s(z) + s(zyz)
s(x)s(yz) — s(zyz) — s(x)s(y)s(z) + s(zy)s(2)
=0,
and the claim follows. ]

Corollary 2.6. The morphism ¢ : B — I &¢ A is an isomorphism of unital associative
k-algebras.

Proof. This follows from Proposition 2.5 and Proposition 2.3. O
Hence, there is always a commutative diagram of exact sequences:

0 I B A 0

T

0—=T—4>7ga0AL—>A—>0

where the middle vertical morphism is an isomorphism associative unital k-algebras.
Define the following left and right A-action on the ideal I:

zu = s(zx)u, wuxr=us(x),
where s is the section of p and x € A, u € I. Recall I? = 0.

Proposition 2.7. The actions defined above give the ideal I « left and right A-module
structure. The structure is independent of choice of section s.

Proof. One checks that for any x,y € A and u,v € I, the following holds:
(x+y)u=zu+yu, z(u+v)=zu+zv, lu=1.
Also,

(zy)u — z(yu) = s(zy)u — s(z)s(y)u = (s(zy) — s(z)s(y))u =0,
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since I? = 0. It follows that (zy)u = x(yu), hence I is a left A-module. A similar argument
prove I is a right A-module. Assume ¢ is another section of p. It follows that

s(x)u — t(z)u = (s(z) — t(z))u =0,

since I? = 0. It follows that s(z)u = t(x)u. Similarly, us(z) = ut(z) hence s and ¢ induce
the same structure of A-module on I and the proposition is proved. O

We have proved the following theorem: let A be any associative unital k-algebra and let
I be a left and right A-module. Let C : A ®; A — I be a morphism satisfying the cocycle
condition (2.2).

Theorem 2.8. The exact sequence:
0—I—IaA—A—0

s a square zero extension of A with the module I. Moreover, any square zero extension of A
with I arise this way for some morphism C' € Homy(A ®y A, I) satisfying equation (2.2).

Proof. The proof follows from the discussion above. O
Let
0—I—F—A—0
withi: I — Fand p: E — A and
0—J —F—B—70

with j : J — F and g : ' — B be square zero extensions of associative k-algebras A, B
with left and right modules I, J. This means the sequences are exact and the following holds
i(I)? = j5(J)? = 0. A triple (w,u,v) of maps of k-vector spaces giving rise to a commutative
diagram of exact sequences:

0 I—~E A 0

0 J F B 0

is a morphism of extensions if v and v are maps of k-algebras and w is a map of left and
right modules. This means

w(z+y) =wx)+wly), wler)=v()w(z), wxa)=w(z)v(a)

for all z,y € I and a € A.
We say two square zero extensions:

0—I—F—A—0
and
00— —F—A—0

are equivalent if there is an isomorphism ¢ : E — F of k-algebras making all diagrams
commute.
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Definition 2.9. Let Exang(A, ) denote the set of all isomorphism classes of square zero
extensions of A by I.

Theorem 2.10. Let C(A) be the center of A. The set exang (A, I) is a left and right module
over C(A). Moreover, there is a bijection:

Exang (A, I) = exang (A, I)
of sets.

Proof. We first prove that exani(A,I) is a left and right C(A)-module. Let C,D €
exang(A, I). This means C, D € Homy (A ®j A, I) are elements satisfying the cocycle condi-
tion (2.2). let a,b € C(A) C A be elements. Define aC, Ca as follows:

(aC)(z,y) = aC(z,y),
and

(Ca)(z,y) = C(z,y)a.
We see

a:(aC)(y,a:) - (aC)(a:y, Z) + (G’C)(x7yz) - (aC)(x,y)z
=a(zC(y,z) — C(zy, 2) + C(z,yz) — C(z,y)z) = a(0) =0,

hence aC' € exang(A, I). Similarly, one proves Ca € exang (A, I) hence we have defined a left
and right action of C'(A) on the set exang (A, I). Given C, D € exany(A, I) define

(C+ D)(z,y) = Clz,y) + D(z,y).

One checks that C'+ D € exang(A,I) hence exang(A,I) has an addition operation. One
checks the following hold:

a(C+ D) =aC +aD, (C+ D)a=Ca+ Da,
(a+0)C =aC+bC, Cla+b)=Ca+ Cb,
a(bC) = (ab)C, C(ab) = (Ca)b, 1C=C1=C,

hence the set exani(A,I) is a left and right C(A)-module. Define the following map: let
[B] = [I ®° A] € Exang(A, I) be an equivalence class of a square zero extension. Define

¢ : Exang (A, I) — exang (A, T)
by
¢[B] = ¢[I &% A] = C.

We prove this gives a well-defined map of sets. Assume [ & A] and [I @ A] are two elements
in Exang(A, I). Note: we use brackets to denote isomorphism classes of extensions. The two
extensions are equivalent if and only if there is an isomorphism:

fiIa®A—TIaPA
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of k-algebras such that all diagrams are commutative. This means that

fu,z) = (u, )
for all (u,z) € I ©¢ A. We get

f((u,2)(v,9)) = fu, ) f(v,y).
This gives the equality:
(uy + xv+ C(x,y), xy) = (uy + axv+ D(z,y), a:y)

for all (u,z), (v,y) € I Y A. Hence, ¢[I &¢ A] = C = D = ¢[I &P A], and the map ¢ is well
defined. It is clearly an injective map. It is surjective by Theorem 2.8 and the claim of the
theorem follows. O

Theorem 2.10 shows that there is a structure of left and right C'(A)-module on the set
of equivalence classes of extensions Exang(A, I'). The structure as left C(A)-module agrees
with the one defined in [3].

Let ¢ € Homy (A, I). Let C? € Homy(A ®, A, I) be defined by

C%(z,y) = 26(y) — d(zy) + d(2)y.
One checks that C? € exany (A, I) for all ¢ € Homy (A4, I).

Definition 2.11. Let exan?™™(A,I) be the subset of exany(A,I) of maps C? for ¢ €
Homy (A, I).

Lemma 2.12. The set exani"(A, I) C exang(A,I) is a left and right sub C(A)-module.
Proof. The proof is left to the reader as an exercise. O

Definition 2.13. Let Exan}""(A, ) C Exang(A, I) be the image of exani™(A, I) under the
bijection exang(A, I) = Exany (A, I).

It follows that Exani" (A, I) C Exang(A4,I) is a left and right sub C(A)-module.
Recall the definition of the Hochschild complex as follows.

Definition 2.14. Let A be an associative k-algebra, and let I be a left and right A-module.
Let CP(A,I) = Homy(A®P,I). Let dP : CP(A,I) — CP1(A, ) be defined as follows:

dp((;g)(al R ® ap—i—l) - a1¢(a2 R ® ap-i-l)

+ Z (_1)i¢(al @ Qaiti41 Q- & ap+1)
1<i<p

+(-D)Po(ar ® - @ ap)apys.

We let HHY(A,I) denote the i’th cohomology of this complex. It is the i’th Hochschild
cohomology of A with values in [.

Proposition 2.15. There is an exact sequence:
0 — Exan{"™(A,I) — Exang(A,I) — HH?(A,T) — 0

of left and right C'(A)-modules.
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Proof. The proof is left to the reader as an exercise. ]
Example 2.16. Characteristic classes of L-connections.

Let A be a commutative k-algebra and let o : L — Derg(A) be a Lie-Rinehart algebra.
Let W be a left A-module with an L-connection V : L — Endg(W). In [6], we define a
characteristic class ¢;(E) € H3(L|y, Oy) when W is of finite presentation, U C Spec(A) is
the open set, where W is locally free, and H?(L|y;, Oy ) is the Lie-Rinehart cohomology of
L|y with values in Op. If L is locally free, it follows that H?(L, A) = ExtQU(L) (A, A), where
U(L) is the generalized universal enveloping algebra of L. There is an obvious structure of
left and right U(L)-module on Endy(A) and an isomorphism:

HH? (U(L), Endy,(A)) = Ext{; (4, A)
of abelian groups. The exact sequence 2.15 gives a sequence:

0 — Exan"" (U(L), Endy(A)) — Exang (U(L), Endg(A))

with A =U(L) and I = Endj(A). If we can construct a lifting:
&1 (W) € Exany, (U(L),Endy(A))

of the class:
c1(W) € Extfy (A, A) = HH? (U(L), Endy(4)),

we get a generalization of the characteristic class from [6] to arbitrary Lie-Rinehart algebras
L. This problem will be studied in a future paper on the subject (see [7]).

Example 2.17. Non-commutative Kodaira-Spencer maps.

Let A be an associative k-algebra, and let M be a left A-module. Let D!(A) C End(A)
be the module of first-order differential operators on A. It is defined as follows: an element
0 € Endy(A) is in D(A) if and only if [0,a] € D°(A) = A C Endg(A) for all a € A. Define
the following map:

f: D'(A) — Homy, (A, Endy(M))
by

f(0)(a,m) =[0,alm = (a(a) - a@(l))m

Here, 0 € D'(A), a € A, and m € M. Since [0,a] € A, we get a well-defined map. Let for
any a € A and m € M ¢o(m) = am. It follows ¢, € Endi(M) is an endomorphism of M.
We get

f(9)(ab, m) (8 ab) — abo(1 )) (8¢ab - ¢ab8)(1)m
= (0¢ab — PaOPs + PaOdp — Papd) (1)m
= (00a — ¢a0) dp(1)m + ¢a (O — ¢p0) (1)m
= f(9)(a, bm) +af(9)(b,m).
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Hence,
f(9)(ab) = af(9)(b) + f(0)(a)b
for all 9 € D'(A) and a,b € A. The Hochschild complex gives a map:
d" : Homy, (A, Endg(M)) — Homy, (A ® A, Endy,(M)),
and
ker (d') = Dery, (A, Endy,(M)).
It follows that we get a map:
f: DY(A) — Dery, (A, Endy,(M)).
We get an induced map:
f: D' (A) — HH' (A,Endy(M)) = Extly(M, M).
Lemma 2.18. The following holds f(D°(A)) = f(A) =0
Proof. The proof is left to the reader as an exercise. O

One checks that D'(A)/D%(A) = D'(A)/A = Dery(A). It follows that we get an induced

map:
g : Dery(A) = DY(A)/D°(A) — Exth (M, M),

the non-commutative Kodaira-Spencer map.

Lemma 2.19. Assume A is commutative. The following hold:

Vo = ker(g) C Derg(A) is a Lie-Rinehart algebra,
9(6) =0 < 3J¢ € Endg(M), ¢(am) = ap(m) + 6(a)m,

3V € Homy, (Var, Endy(M)) with V(8)(am) = aV(8)(m) + §(a)m,

Vs is the maximal Lie-Rinehart algebra satisfying (2.5).

Proof. We first prove (2.3): assume g(d) = g(n) = 0. By definition, this is if and only if

there are maps ¢, € Endy (M) such that the following hold:

d°¢ = g(6),
d% = g(n).

One checks that conditions (2.7) and (2.8) hold if and only if the following hold:

p(am) = ag(m) + 6(a)m,
and

Y(am) = ap(m) + nla)m.
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We claim d°[8, 7] = g([6,1]). We get

(6, ¥](am) = ¢p(am) — pd(am) = ¢(arp(m) + n(a)ym) — 1 (ad(m) + 6(a)m)
= agip(m) + 6(a)v(m) + n(a)p(m) + dn(a)ym — apé(m) — n(a)p(m)
— 8(a)p(m) — nd(aym = a[p,y](m) + [6,7](a)m

Hence, ¢([0,n]) = 0 and Vj; C Derg(A) is a k-Lie algebra. It is an A-module since g is
A-linear, hence it is a Lie-Rinehart algebra. Claim (2.3) is proved. Claim (2.4) and (2.5)
follows from the proof of (2.3). Claim (2.6) is obvious and the lemma is proved. O

The Lie-Rinehart algebra Vj; is the linear Lie-Rinehart algebra of M.
Let in the following F be a left and right A-module.

Definition 2.20. Let
JHE)=I®1E®E

be the first-order I-jet bundle of E.

Pick a derivation d € Dery (A, I) of left and right modules. This means that

d(xy) = zd(y) + d(x)y

for all z,y € A. Let B® =T &% A and define the following left B¢-action on JHE):
(2)(wee f)=(ue f+rweetdw)® f f)

for any elements (u,x) € B¢ and (w ®e, f) € J}(E).

Proposition 2.21. The abelian group J}(E) is a left B¢ -module if and only if C(y,r)® f =
0 for ally,x € A and f € E.

Proof. One easily checks that for any a,b € B¢ and [, € J}(E) the following hold:
(a+b)i = ai + bi,
a(i+j) = ai+aj.

Moreover,
1: =1.

It remains to check that a(bi) = (ab)i. Let a = (v,y) € B¢ and b = (u,x) € B®. Let also
i=w®e,f)e JHE). We get

a(bi) = (v,y) (v, 2)(w e, f)) = (v2 @ f+yu @ [ +yrw © e+ d(yz) ® f,yzf).
We also get

(ab)i= (vz® f+yu® f+yzw®e+d(yz) ® f + C(y,2) ® f,yzf).
It follows that

(ab)i — a(bi) =0,
if and only if

Cly,z)® f =0,

and the claim of the proposition follows. O
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Note the abelian group J}(F) is always a left A-module and there is an exact sequence
of left A-modules:

0—I®F— JNE) — E —0,
defining a characteristic class:
cr(F) € ExtY(E,E®I).
The class ¢;(FE) has the property that ¢;(E) = 0 if and only if E has an I-connection:
V:E—IQF
with
V(ze) =xV(e) +d(z) Qe.

Let J C I C B® be the smallest two-sided ideal containing I'm(C), where C' : A @, A — I
is the cocycle defining B¢. Let D¢ = B¢/.J and I¢ = I/J. We get a square zero extension:

0— I D A0

of A by the square zero ideal I€. It follows that D¢ = I® @ A as abelian group. Since
C(z,y) = 0in I, it follows that D has a well-defined associative multiplication defined by

(u, z)(v,y) = (uy + xv, 2Y).

Also D is the largest quotient of B¢ such that the ring homomorphism B¢ — D€ fits into
a commutative diagram of square zero extensions:

0 I B¢ A 0
0 I°¢ D¢ A 0.

Definition 2.22. Let
Jo(E)=1°9FEQE
be the first-order I€-jet bundle of E.

Example 2.23. First-order commutative jets.

Let £k — A be a commutative k-algebra, and let I C A ®; A be the ideal of the diagonal.
Let Jf = A® A/I? and QY = I/I?. We get an exact sequence of left A-modules:

0— QY — JI— A—0. (2.9)
It follows that J1 = Q}4 @ A with the following product:
(w,a)(n,b) = (wa + bn, ab),

hence the sequence (2.9) splits. Let J4(E) = Q4 ® E & E be the first-order Q}-jet of E. We
get an exact sequence of left A-modules:

0—QY®FE — Ji(E) — E — 0.

Since the sequence (2.9) splits, it follows that J1(E) is a lifting of E to the first-order jet
71,
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3 Atiyah classes and Kodaira-Spencer classes

In this section, we define and prove some properties of Atiyah classes and Kodaira-Spencer
classes.

Let X be any scheme defined over an arbitrary basefield F' and let Pic(X) be the Picard
group of X. Let O* C Ox be the following subsheaf of abelian groups: for any open set
U C X, the group O(U)* is the multiplicative group of units in Ox (U). Define for any open
set U C X the following morphism:

dlog : O(U)* — Qx (U),
defined by
dlog(z) = d(z)/x,
where d is the universal derivation and x € O(U)*.
Lemma 3.1. The following holds:
dlog(zy) = dlog(z) + dlog(y)
forz,y € OU)*
Proof. The proof is left to the reader as an exercise. O

Hence, dlog : O* — QL defines a map of sheaves of abelian groups. The map dlog induces
a map on cohomology

dlog : Pic(X) = H' (X,0*) — H' (X, Q}),
and by definition
dlog(L£) = c1(£) € H (X, Q).

Let 7 C Qﬁ( be any sub Ox-module, and let F = Qk/I be the quotient sheaf. We get a
derivation:

d:O0x — F

by composing with the universal derivation. We get a canonical map:
H (X, 0%) — HY(X, 7),

and we let
¢ (L) e HY(X, F)

be the image of ¢1(£) under this map.

Definition 3.2. The class ¢;(£) € H'(X, QL) is the first Chern class of the line bundle
L € Pic(X). The class ¢,(£) € H (X, F) is the generalized first Chern class of L.
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Let € be any Ox-module and consider the following sequence of sheaves of abelian groups:
0—FRE— JHE) — € — 0,
where
THE)=FREDE

as sheaf of abelian groups. Let s be a local section of Ox, and let (x®e, f) be a local section
of J}(E) over some open set U. Make the following definition:

s(x®@e, f)=(st@e+ds® f,sf).
It follows that the sequence
O—>.7:®5—>j}(5)—>5—>0
is a short exact sequence of sheaves of abelian groups. It is called the Atiyah-Karoubi sequence.

Definition 3.3. An F-connection V is a map:
ViE—F®E

of sheaves of abelian groups with
V(se) = sV(e) +d(s) ®e.

Proposition 3.4. The Atiyah-Karoubi sequence is an exact sequence of left Ox-modules. It
is left split by an F-connection.

Proof. We first show that it is an exact sequence of left Ox-modules. The Ox-module
structure is twisted by the derivation d, hence we must verify that this gives a well-defined
left Ox-structure on J4(€). Let w = (z @ ¢, f) be a local section of J#(£), and let s, ¢ be
local sections of Ox. We get the following calculation:

(sthw = (st)(z @e, f) = ((st)x @ e +d(st) @ f, (st)f)
=(str@e+sdt® f+ (ds)t® f,stf) = (s(tr@e+dt @ f) +ds @ tf,s(tf))
=s(tz@e+dt® f,tf) =s(t(z e, f)) = s(tw).

It follows that J4(&) is a left Ox-module and the sequence is left exact. Assume that
s:E—Jr(&)=FREBE

is a left splitting. It follows that s(e) = (V(e), e) for e a local section of £. It follows that V
is a generalized connection and the theorem is proved. O

Note: If T = 0, we get that JH(&) = T (€) is the first-order jet bundle of £ and the exact
sequence above specializes to the well-known Atiyah sequence:

0— QY0 — Tx(E) — & — 0.
The Atiyah sequence is left split by a connection:
V:E— QL&

The Ox-module j}(ﬁ) is the generalized first-order jet bundle of £.
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Definition 3.5. The characteristic class:
AT(E) € Exty, (E,F ®E)
is called the Atiyah class of £.

The class AT(E) is defined for an arbitrary Ox-module £ and an arbitrary sub module
ZCOk.
Assume that £ = £ € Pic(X) is a line bundle on X. We get isomorphisms:

Exto, (£, L ® F) = Exty, (Ox,L*® LR F)
~ Exty, (Ox,F) — H'(X,F).
We get a morphism:
¢ Bxty, (L, Lo F) — HY(X,F).
Proposition 3.6. The following holds:
¢(AT(L)) = (L).
Hence, the Atiyah class calculates the generalized first Chern class of a line bundle.

Proof. Let Z = 0. It is well known that AT (L) calculates the first Chern class ¢;(£). From
this, the claim of the proposition follows. O

Let T'x be the tangent sheaf of X. It has the property that for any open affine set
U = Spec(A) C X the local sections Tx(U) equal the module Derp(A) of derivations of
A. Let Vg C Tx be the subsheaf of local sections 0 of Tx with the following property: the
section 0 € Tx (U) lifts to a local section V(9) of Endp(€|y) with the following property:

V() :Eluv — &lu
which satisfies
V(0)(se) = sV (0)(e) + I(s)e.

It follows that V¢ C T'x is a subsheaf of Lie algebras — the Kodaira-Spencer sheaf of £.
Define for any local sections a, b of Ox, 0 of V¢ and e of £ the following;:

L(a,0)(e) = aV(0)(e) — V(ad)(e).
Lemma 3.7. It follows that L(a,0) € Endp, (£|v) -

Proof. The following holds:

L(a,0)(be) = aV(0)(be) — V(a0)(be)

= a(bV(9)(e) + d(b)e) — bV (ad)(e) — ad(b)e

= abV(0)(e) + aa( )e —bV(ad)(e) — ( )e

= b(aV(9)(e) — V(ad)(e)) = b(aV(3) - V(ad)) (¢)
= bL(a7 ) )7

and the lemma is proved. ]
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Lemma 3.8. The following formula holds:
L(ab,d) = aL(b,0) + L(a,bd)
for all local sections a, b, and 0.

Proof. We get

L(ab, ) = abV(0) — V(ab0)
= abV (9) — aV(b0) + aV (b0) — V(abd)
=a(bV(9) — V(b9)) + (aV — Va) (b))

= aL(b,0) + L(a, b0d),
and the lemma is proved. O

Let LR(Vg) = Endo (£) @ Vg be the linear Lie-Rinehart algebra of £. Let LR(V¢) have
the following left Ox-module structure:

a(¢,0) = (a¢ + L(a,d), ad).

Here, a, ¢, and O are local sections of Ox, Endp, (£), and Vg. We twist the trivial Ox
structure on Endp, (£) @ Vg with the element L. We get a sequence of sheaves of abelian
groups:

0 — Endoy (£) == LR (Vg) 2 Vg — 0,

where ¢ and p are the canonical maps. An Ox-linear map:
V : V¢ — Endp(€),

satisfying
V(0)(ae) = aV(0)(e) + d(a)e

is a Vg-connection on &.

Proposition 3.9. The sequence defined above is an exact sequence of left Ox-modules. It
1s left split by a Vg-connection V.

Proof. We need to check that LR(V¢) has a well-defined left Ox-module structure. By
definition,

a(¢,0) = (aqb + L(a,0), a@).
We get
(ab)z = (ab)(,0) = ((ab)¢ + L(ab,d), (ab)0)
= (ab¢ + aL(b,d) + L(a, bd), abd)
= a(bg + L(b,0),b0) = a(b(¢,9)) = a(bz),
and it follows that the sequence is a left exact sequence of O x-modules. If
$: Vg — Endox (5) @ Ve =LR (Vg)

is a section, it follows that s(e) = (V(e),e). One checks that V is a Vg-connection, and the
theorem is proved. O
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Definition 3.10. We get a characteristic class:
KS(E') S EX‘L}gX (Vg, EndoX (5)),
the Kodaira-Spencer class of £.

Assume that V¢ is locally free and £ = £ € Pic(X) is a line bundle on X. Assume also
that Vi = F = QL /T for some submodule Z. We get the following calculation:

Exty, (Ve,Endoy (£)) = Exty, (Ox,Endo, (£) ® Vi)
=~ Exty, (Ox,Endo (L) ® F) — H'(X, F).

We get a map:

¥ Exty, (Ve,Endoy (£)) — HY(X, F)
of sheaves.
Proposition 3.11. The following holds: there is an equality:

H(KS(£)) =2 (L)
in H' (X, F). Hence the Kodaira-Spencer class calculates the class ¢1(L).
Proof. The proof is left to the reader as an exercise. ]

We get the following diagram expressing the relationship between the characteristic classes
defined above:

EX‘U}gX (Vg, Endox (ﬁ))

X
c(-)

HY(X,F)<— Pic(X) .

/
EXt%QX (L,F®L)

The following equation holds in H!(X, F):

o(AT(L)) = (KS(L)) =a(L).
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