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Abstract In this paper, we describe the derivations of complex n-dimensional naturally graded filiform Leibniz
algebras NGF;, NGF,, and NGF3. We show that the dimension of the derivation algebras of NGF; and NGF, equals
n+ 1 and n + 2, respectively, while the dimension of the derivation algebra of NGFj3 is equal to 2n — 1. The second
part of the paper deals with the description of the derivations of complex n-dimensional filiform non Lie Leibniz
algebras, obtained from naturally graded non Lie filiform Leibniz algebras. It is well known that this class is split
into two classes denoted by FLb,, and SLb,,. Here we found that for L € FLb,,, we have n— 1 <dimDer(L) <n+1
and for algebras L from SLb,,, the inequality n — 1 < dimDer(L) < n + 2 holds true.

MSC 2010: 17A32, 17A36, 17A60, 17B40, 17B70

1 Introduction

A graded algebra is an algebra endowed with a gradation which is compatible with the algebra bracket. A choice of
Cartan decomposition endows any semisimple Lie algebra with the structure of a graded Lie algebra. Any parabolic
Lie algebra is also a graded Lie algebra. Lie algebra sl of trace-free 2 x 2 matrices is graded by the generators:

01 00 10
(o) =) =6 5)
These satisfy the relations [X,Y] = H, [H,X]|=2X, and [H,Y] = —2Y. Hence, with

g-1= Span(X)7 g0 = Span(H)7 g1 = Span(Y),

the decomposition sl, = g_1 & go & g1 presents sl as a graded Lie algebra.

It is well-known that the natural gradation of nilpotent Lie and Leibniz algebras is very helpful in investigation
of their structural properties. This technique is more effective when the length of the natural gradation is sufficiently
large. In the case when it is maximal the algebra is called filiform. For applications of this technique, for instance,
see [12] and Goze et al. [4] (for Lie algebras) and [1,2,7] (for Leibniz algebras) cases. In [12] Vergne introduced
the concept of naturally graded filiform Lie algebras as those admitting a gradation associated with the lower central
series. In that paper, she also classified them, up to isomorphism. Apart from that, several authors have studied
algebras which admit a connected gradation of maximal length (i.e., the length is exactly the dimension of the
algebra). So, Khakimdjanov started this study in [6], Reyes, in [3], continued this research by giving an induction
classification method, and finally, Millionschikov in [9] gave the full list of these algebras (over an arbitrary field of
zero characteristic).

Recall that an algebra L over a field K is called Leibniz algebra if it satisfies the following Leibniz identity:

[z, [y, 2]] = [[z,9], 2] = [[2, 2], 4],

where [-,-] denotes the multiplication in L (first the Leibniz algebras have been introduced in [8]). It is not difficult
to see that the class of Leibniz algebras is “non-antisymmetric” generalization of the class of Lie algebras. In this
paper, we are dealing with the derivations of some classes of complex Leibniz algebras.

The outline of the paper is as follows. Section 2 contains preliminary results on Leibniz algebras which we will
use in the paper. The main results of the paper are in Section 3. The first part of this section deals with the description
of derivations of naturally graded Leibniz algebras. In the second part (Section 3.2) we study derivations of filiform
Leibniz algebras arising from naturally graded non Lie filiform Leibniz algebras. It is known that the last is split
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into two disjoint subclasses [2]. In this paper, we denote these classes by FLb,, and SLb,,. We show that according
to dimensions of the derivation algebras each class is split into subclasses as follows:

FLb,, = Fr1UF, UFyi1, SLbp =S, 1US,USk1UShy2,

where F; and S; are subclasses of FLb,, and SLb,,, respectively, with the derivation algebras’ dimensions ¢ and j.
Further all algebras considered are over the field of complex numbers C and omitted products of basis vectors
are supposed to be zero.

2 Preliminaries
This section contains definitions and results which will be needed throughout the paper.

Let L be a Leibniz algebra. We put

L'=r, M'=[LF L], k>1
Definition 1 A Leibniz algebra L is said to be nilpotent if there exists s € N such that
L'S>L*> 5L =0.

Definition 2 An n-dimensional Leibniz algebra L is said to be filiform if dim L =n—i, where 2 <i < n.

Obviously, a filiform Leibniz algebra is nilpotent.
Definition 3 A linear transformation d of a Leibniz algebra L is called a derivation if

d([z,y]) = [d(z), ]+ [z,d(y)], Vz,ye L.

The set of all derivations of an algebra L is denoted by Der(L). By Lb,, we denote the set of all n-dimensional
filiform Leibniz algebras, appearing from naturally graded non Lie filiform Leibniz algebras. For Lie algebras the
study of derivations has been initiated in [5]. The derivations of naturally graded filiform Leibniz algebras were first
considered by Omirov in [10]. In the following theorem, we declare the results of the papers [2,12].

Theorem 1. Any complex n-dimensional naturally graded filiform Leibniz algebra is isomorphic to one of the
following pairwise non isomorphic algebras:

er,e1] = es,
NGF, — ler,e1] =e3
leier] =€ir1, 2<i<n-—1,

er,e1] = es,
NGE, = | level =6
eiel) =eiy1, 3<i<n—1,

ei,el| = —ler,eil =ejr1, 2<i<n-—1,
NGF3 _ [ 7 1} [ 1 z} i+1 » '
leisenti—i] = —[enti-iei] =a(=1)"e,, 2<i<n—1.
where a € {0, 1} for even n and o = 0 for odd n.
Here is a result of the papers [2,11] on decomposition of Lb,, into two disjoint classes.

Theorem 2. Any complex n-dimensional filiform Leibniz algebra L, obtained from naturally graded non Lie filiform
Leibniz algebra, admits a basis ey, e, . .., ey, such that the table of L has one of the following forms:

ler,e1] =e3,

ei,ell =ejr1, 2<i<n—1,
FLb,, — [z 1] i+1

[e1,e2] = aues +ases ++an_1€n_1 + Oep,

[ej, €] = auejintasejiz+-+angajen, 2<j<n—2;

le1,e1] =e3

[61761]: €i+1, 3§1Sn—17
SLb,, = < [e1,e2] = B3e4 + Baes + -+ Bn—ien,

[62,62] - ’7671’

[63762} ﬁ?€j+2+/64ej+3+ +6n+l—jen: 3<j<n-2.

We denote algebras from FLb,, and SLb,, by L(ay,as,...,an—1,0) and L(Bs, B4, .., Bn-1,7), respectively.
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3 Main results
3.1 Derivations of graded Leibniz algebras

In this section, we study the derivations of NGF;, ¢ = 1,2, 3. In each case, we give a basis of the derivation algebra.
Let d be represented by a matrix D = (di), k,0=1,2,3,...,n, on the basis {ej,ea,...,ey,}. We describe the matrix
D.

Theorem 3. The dimension of the derivation algebras of NGF|, NGF,, and NGF3 are equal to n+ 1, n+2, and
2n — 1, respectively.

Proof. Let us start from NGF;. We take d(e;) = Y21 - de;, where j = 1,2. Since, [e1,e1] = e3, we have

i=3 i

d(e3) = [d(er),er] + [e1,d(er)] = [Zd%ei,el +
i=1

n
1
el, g d;e;
i=1

n n—I1
=diler,er] +dife, 1]+ Zdzl'emel +di[er,e1] = (2d} +dj)es +Zd%ei+1.
=3 i=3
Therefore,
n—1
d(es) = (2dj +db)es + Y _diesi. 3.1)
i=3

From [e3, e1] = e3, we find

d(es) = [d(e2),e1] — [e2,d(e1)] = n

n

E 2
dieiael

=2

n
1
ez,Zdiei
=1

n n—1
=difer,er] + | D _dieier | +diferen] = (df +dd)es+ ) dieiir.
=3 i=3
Hence,
n—1
d(es) = (di +d3)es+ Y dieirr. 3.2)
=3

Comparing (3.1) and (3.2), we obtain
B=d+d), #=d, for3<i<n-—1.

According to the table of multiplication of NGFy, one has [e3,e;] = es. Thus

n—1 n
d(eq) = [d(e3),e1] — [e3,d(e))] = | (2d} +d})es + Zd%6i+1,€1 + 63,Zdée{|
=3 i=1
n—2 n—2
= (2dj+dy)ea+ Y dieipr+difes,er] = (2d +ds)es+ Y _dieiia+dies
=3 i=3
n—2
=(3d} +db)es+ Y dieisn.
=3

Therefore,

n
d(es) = (3d} +db)es+ D d? ,ei.
=5
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For k > 5 one can find

n
d(ey) = ((k—1)di +dd)er+ Y di j,sei. (3.3)
i=k+1

Indeed, it is true for & = 4. Suppose that it is true for & and show that it is the case for k£ + 1. Considering e =
[ex,e1] we have

d(ers1) = [d(ex),er] +[ex,d(er)] = [ (k= 1)d] +dd)ex+ Y di_jreien

n
+ ek,Zd%ei:|
ikl i=1
n—1
= ((k=Ddi +d)ers1+ »_ di yreir1+dilex,ei]
i=k+1

n
= ((k=Ddi+d))exs1+ > di_pyreitdiers
i=k12

n
= (kdj +dy)er 1+ Z di_jii€i-
i=k+2

Hence, we get

n
d(egy1) = (kdj +dp)ex 1+ Z &} _pir€i
i=k+2
In fact, e, = [en—1,€1], therefore

d(en) = [d(en—1),e1] + [en—1,d(e1)].

We substitute & by n— 1 in (3.3) and obtain d(e,,—1) = ((n —2)d} +d})en—1 + d3e;,. Therefore,

d(en) =[((n—2)d} +d))en_1 +d3en,e1] +

n
enl,Zd%el} = ((n—Z)di +d%)en —&—d{ [en—1,€1].

i=1

That is,
d(en) = ((n—1)d} +d))ep.
The matrix of d on the basis {ej, ez, e€3,...,ep } has the following form:
[dl 0 0 0 0 ]
dy di+d, 0 0 0
dy dy 2dl+d) - 0 0
dy d} d} 0 0
d7l’L—2 d’}L—2 d'}L—S 0 0
d’}L*] d’ll*l d;7,72 e (n - Z)d{ + dé 0
R A R

Consider the following system of vectors:

n n
vi=En+Y (i—VBy, v=FEu+Y Fiik2,2<k<n—1, vy,=FEp, vps1=En,
i—2 =2

where FE;; is the matrix with zero entries except for the element a;; = 1. It is easy to see that the set
{v1,v2,v3,...,vn41} presents a basis of Der(NGF) ), therefore, dimDer(NGF;) =n+ 1.
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Next, we describe the derivation algebra of NGF,. Let d(e;) = > 1 @ e;, where j = 1,2. Since [e],e1] = e3,

=5 %
then
n
d(e3) =[d(er),e1] +[e1,d |:Zd ei el | + el,Zd}e{|
n—1
:d{[el,el]—kdé[eg,el Zd €;i,el —i—dl[el,el] —2dle3+2d €itl.
=3 =3

If one uses [ez,e;] = 0, then

= [d(e2),e1] + [e2, d(

Zd ei,el

n
+ ez,Zd%ei]

+dles,er] = Zd €itl-

—d2 ez,el

Zd e;, el

Therefore,

42

K2

=0, for3<i<n-—1.

Because of [e3,e1] = e4, we find that

d(eq) = [d(e3),e1] +[es,d(e1)] = |:2d}e3 —I-Zdll,lei,el

n
+ 63,261,} el-:|
i=1

=4
n—1
=2djes+» d 1el+1+dle4—3dle4+2dz Sei.
i=4 =5
Similarly,
n—1
der) = (k—1)diex+ > di_josei, 4<k<n—1

i=k+1

Then the matrix of d has the form

D= (d\)ki=123...m»
where
d' £0for1<i<n, =0 andd®=0for3<i<n—1, d>#0andd#0,
G =d=0andd}=2d}, di=d} ford<i<n-—1.

From the view of D it is easy to conclude that dimDer(NGF,) = n+ 2.
Let us now consider the derivation algebra of NGF3. We take d(ej) = >

1= ] 1
[e2,e1] = e3 one has

d(e3) = [d(e2),e1] + [e2, d(e1)] =

n

2
E diei,eq
=2

n
+ |ea, Z dll-ei:|
=1

+dilez,e1] +dy,_ile2,en1]

n

E 2
diei7el

=3

= d3[ez,e1] +

n
= d%eg + Zd?ei_H + dieg - ad:%len
=3
n—1
= (di+d3)es+ Y di_jei+(dn i —ady, i)e,
i=4

& e;, where 7 = 1,2. Then due to
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Hence,
n—1
d(es) = (di +d3)es+ Y di_yei+ (d_y —ad),_;)en.
i=4

Consider e4 = [e3, €], then

d(ea) = [d(e3),e1] + [e3, d(e1)]

n—1 n
= (d: + d%)63 + Zd?_lei + (di_] — adll_] Jen,e1| + 63’Zdl!ei:|
i=4 1=1
n—1
= (d} 4+ d3)es + Z d2_jeiv1+dles,el] +dl_sles,en 2]
=4
n—1
= (d} 4+ d3)es + Z d?_jeiv1 +dles+adl e,
i—4
n—1
= Qd}+d3)es+ Y d>pei+(di 5 +ad) 5)en.
=5
Therefore,
n-—1
d(es) = 2d} +d3)ea+ Y di sei+(df_p+ady_s)en.
=5
Similarly,

n—1
d(er) = ((k=2)di +d3)er+ Y di jseit(dh ja+a(=1)"1d) 4 s)en, 4<k<n—1
1=k+1

Then the matrix of derivations has the form

D= (dy)ki=123...n»

where
d} #0,for1<i<n, d?#0,for2<i<n,
di; = (i—2)d| +d3, for2<i<n-—1,
di''=d’_ |, for2<i<n—land4<j<n—i.
Thus, the dimension of Der(NGF3) is 2n — 1. O

3.2 Derivations of filiform Leibniz algebras
Now we study the derivations of classes from Theorem 2.

Theorem 4. The dimensions of the derivation algebras of FLb,, are equal ton—1, n or n+ 1.
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Proof. Depending on constraints for the structure constants a4, as, ..., a,—1 and 6, we have the following distribu-
tion for dimensions of the derivation algebras of elements from FLb,,:

n+l1,ifl.0=0anda; =0,4<i<n—1.
2.0#0, ag #0, as # 0, and there exists i € {6,7,...,n— 1}
such that o; # 0, oj = 0 for j # .
3.0=0, as #0, as # 0, and there exists i € {6,7,...,n—1}
such that o; # 0, oj = 0 for j # .
as =0, and there exists i € {6,7,...,n— 1}
such that o; # 0, o; = 0 for j # .
5.0=0, as =0, as =0, and there exists i € {6,7,...,n— 1}
such that o; # 0, o; = 0 for j # .
6.6 # 0, and there exists ¢ € {4,5,6,...,n— 1}
such that oa; = 0, o # 0 for j # .
and there exists i € {4,5,6,...,n— 1}
such that o; = 0, o # 0 for j # .
8.0#£0, as #0, as # 0,a6 =0, and there exists £ € {7,8,...,n— 1}
such that o; # 0, Vi > fand o; =0, if i < £.
9.0=0, as #0, as # 0,a6 =0, and there exists £ € {7,8,...,n—1}
such that a; # 0, Vi > £ and a; =0, if ¢ < £.
n,if1.0#£0,and o; #0,4<i<n—1.
2,040, and a; =0, 4 <i<n—1.
3.0=0, a4 #0, a5 #0, and a; =0, 6 <i <n—1.
4.0#0, s =0 and there exists £ € {5,6,7,8,...,n—1}
such that a; # 0, Vi > £ and o; =0, if ¢ < £.
n—1,if1.0#0, ag #0, as 20, and a; =0, 6 <i <n—1.
2040, a4 =0, a5 #0,anda; =0, 6 <i<n—1.

4.0#£0, ag =

=

7.6=0

dimDer(L) =

We will treat only one case, where 0 # 0,a; # 0, for 4 < i < n — 1. The other cases are similar. Put d(ej) =

Do de;, where j = 1,2. Then owing to [e],e;] = e3, one has

d(e3) = [d(e1),e1] + [e1,d(e1)] = {Zdi’eim +
-1

n
1
E d; e, el

n
1
el,Zdiei
=1

=di[er,e1] +difer,er] + +dller,e1] +difer, el

=3
n—1 n—I1
= (2d} +dd)es + Zdl eir1 +d Z(aiei +0ey,)
1=3 =3
n—1
= (2d} +dy)es+ Y (di_y +dso)es + (dy,_y +dy0)en.
i=4

Due to [ez,e1] = e3, we have

d(e3) = [d(e2),e1] +[e2,d(e1)] = |:Zd126i761 +
i=1

n
1
e, E d;e;
i=1
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n n—1
zd%[ez,el]—i— Zd?ei,el +dﬂez,eﬂ+d%[ez,eg] d283+2d ez+1+dle3 +d22azel
=3 =3 i=4
n n n—1
= (di+d3)es+ Y _di_jei+dy Yy aie; = (di +B)es+ Y (di_y +drai)ei + (dy_; +dhan)en
i—4 i—4 i—a

Comparing the last two expressions for d(e3), we obtain
B=dl+d), d?=d!, for3<i<n—landd’> ,=d. | +di(0—an).

From [e3, e1] = e4, one has

n—1 n
d(es) = [d(e3),e1] + [es,d(er)] = |(df +dD)es+ Y (di +dyas)ei + (i +dban)en,er | + 63,Zd;ei:|
i=4 i=1
n—1
= (di +d3)ea+ Y _(di | +dyai)ei1 +di[es,e1] +db[es, ]
i=4
n—1 n—1
= (d} +d3)ey +Z(d$—l +dbvi)eisn +d}e4+d£2aiei+1
i—4 i—4

n
= (2d} +d3)es+ Y (di 5 +2dy0i 1)e;
=5

Let us consider [e4, 1] = es. Then,

d(es) = [d(es),e1] + [ea,d(e))] = | (2d} +d3) e4+z 2 4 2dbay 1)es e

=5

64,Zd e,:|

n
(2d} +d3)ea+ Y (di o+2d50i 1)ei,er| +dies, er] +d5es, €3]
i=s
n—1 n—2
= (2d! 4+ d3)es +Z o4 2d3a1)eiyr +dles +d22alez+2
=5 i=4
n—1 n—1
= (3dj +d3)es+ Y (di o +2dya; 1)eiy1+ds Y aireity
i=5 1=5
n—1
= (3dj +d3)es+ Y _(di_»+3dyai1)eis
i=5

n
= (3d} +d3)es+ Y _(di_3+3d>ai2)e;
=6

Similarly,

n
d(e) = ((k=2)di +d3)ex+ Y (di_pio+ (k—2)ddai y3)ei. (3.4)
i=k+1

From e,, = [e,—1,€1] we get
d(en) = [d(en—1),e1] + [en—1,d(er)].
The substitution k by n — 1 in (3.4) gives d(e,,—1) = ((n —3)d} +d3)en—1 + (d3 + (n — 3)d}as)e,, and then

d(e,) = [((n— 3)d} —}—d%)en,l + (d% +(n— 3)d£a4)en7el] +d{ [en—1,€1] = ((n— 3)d} —}—d%) en —&—d{en.
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As aresult one has
d(en) = ((n—2)d} +d3) ey,. (3.5)
On the other hand,
[en—2,€2] = cen.

Notice that ay # 0, therefore

d@ngrm%qu.

This implies that

wmziwmmmm+m4mmn

We substitute k£ by n — 2 in (3.4) to obtain

d(en—2) = ((n— 4)d1+d2)€n 2+ Z i— n+4+(n 4)d20‘z n+5)€i-

1=n—1

Then
1
d(en):a—4 <[((n 4)d1+d2)en )+ Z i n+4+(n 4)d2al n+5)€iy €2 Jr[en_z,d(ez)])
1=n—1
1
= ([((n—4)d +d3)en 2+ Z 2 st (n—ddda; pis)ei ea| +d3fen- 2,62]>
x4 i=n—1
1
— 074 (((n—4)d} +d%)a4en —i—d%en,l +d%a4en)
1
074 (((n_4)d% +d%)0‘4en ++d%6n—l +d%0¢46n>
_d o2
= —en_1+ ((n 4)d; +2d3) ep,
oy
Thus,
di Lo
d(en) = a1 + ((n—4)d} +2d3) en. (3.6)
Comparing (3.5) and (3.6), we obtain
2 =0, d5=2d. (3.7)

The matrix of d has the form D = (dég)k:,lzl,Z,S,...}n’ where
di=dl, d3=2d}, &3 =0,d2=d},3<i<n—2,d5_ | =d | +d0+an).
Hence, in this case the dimension of Der(L) for L € FLb,, is n. O

Now we describe the derivation algebra of elements from SLb,,.

Theorem 5. The dimensions of the derivation algebras for elements of SLb,, vary between n — 1 and n+ 2.
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Proof. Similarly to the case of FLb,, for the class SLb,,, we have the distribution for dimension of derivation algebra
as follows:

n+2,ifl.y=0andB; =0,3<i<n—1.
2.y =0and there exists ¢ € {3,4,5,...,n — 1} such that 3; # 0, 8; =0 for j # i.
n+1,ifl.y#0and 8, =0,3<i<n-—1.
2.y=0andB; £0,3<i<n—1.
3. v # 0 and there exists ¢ € {3,4,5,...,n— 1} such that 8; # 0, Vi > ¢
and 8; =0, if i < ¢, where n =2¢— 1.
4.y#0and B; £0,3<i<n—1.
5.~ # 0 and there exists ¢ € {3,4,5,...,n— 1} such that 8; # 0, 8; =0 for j # i.
6. v # 0 and there exists ¢ € {3,4,5,...,n— 1} such that 8; =0, 8; # 0 for j # i.
7.~ =0 and there exists ¢ € {3,4,5,...,n— 1} such that 3; =0, 8; # 0 for j # i.
n, if 1. v # 0 and there exists £ € {3,4,5,...,n— 1} such that 3; #0, Vi > ¢
and 8; =0, if ¢ < ¢, where n #£ 20— 1.
2.4 %40, Bn1 #0,and B =0, 3 <i<n—2.
3.4 20, Bu1 =0, Bps#£0,and B; =0, 3<i<n—3.
4.4 =0, Bn1 =0, Bn2#0,and B; =0, 3 <i<n—3.
5.4 20, Bu1 £0, Bpa#0,and B; =0, 3<i<n—3.
n—1,if 1.7y =0, Bp_1 £0, fn>#0, and §; =0, 3 <i <n— 3.
2.4=0, 8540, and B; =0, 4<i<n—1.

dimDer(L) =

Lety=0, B,-1 #0, 8,2 #0,and 8; =0, for i = 3,4,5,...,n — 3. Put d(e;) = > 1" jdzel, where j = 1,2.
Since [e1,e1] = e3, we have

n
+ el,Zd%e{|
i=1

+djer,er] +diler, ]

d(e3) = [d(er),er] + [er,d(er)] = {Zd%ei,el

i=1

n
1
E d;ei,eq

=di[er,e1] +difer,er] +

=3
n—1
=dles+ Y dlei+dies+d)Bnen_1+dbfn_ien
=3
n—1
= (2d{ )63 + Z di €i+1+ d%ﬁ'rLfZenfl + déﬁnfl €n
=3
n—2
= (2di)€3 + Zdzl'flei + (dn 2 +d2Bn 2)6n 1+ (d —1 erzﬂn l)en
i=4

Thus,
d(e3) = (2d}) 63+Zdz vei+(dh 5+ diBn2)en—1+ (d} +diBn—1)en.
From [ez,e1] = 0 we get

0= [d(e2),e1] +[e2,d(e1)] =

n n
Zd%—ei,e] + 62,Zd%€11:|
i=2 =
n—1
+difes, er] +di[er, e2] = {Zd ez,eli| :Zdzz-,lei.
i=4

Zd €i, €1

=3

:d%[ez,el
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Therefore, we obtain
=0, 3<i<n-—1.
Consider [e3,e1] = es. Then

d(eq) = [d(e3),e1] + [e3,d(e1)]

n—2 n
= |@dD)es+ Y _di_yei+d5(dl_ i+ Bn2)en1+ (d} +dbBn 1)en,er| + |e3, Zd%ez]
i=4 i=1
n—2 n
= (2d})es+ D _di_jeir1+(dh_y +diBn2)en+ [e3, Zd%el}
i=4 =1
n—2
= (2d\)ea+ Y _di_jeis1+(d)y_+d3Bn2)en+dies
i=4
n—2
= (3d)ea+ Y _di_jeis1+(d)_; +dyBn 2)en.
i=4
Thus,
n—2
d(esq) = (3di)64 + Zd’%*lei+l + (d}l,l +d%ﬂn72)en.
i=4
Take [64,61] = e5. Then
n—2 n
d(es) = [d(es),e1] + [ea,d(e))] = | (3l )eq +Zd§,lei+1 +d3(dl |+ Bn2)en,er | + e4,Zdiei:|
i=4 i=1
n—2 n
= (3di)65 + Zd%,1€i+2 +dll-€5 = (4di)65 + Zd%,3ei.
i=4 i=6
Hence,
n
d(es) = (4d})es + Y _dj_sei.
i=6
Similarly,
n
d(er) = (k—1)diex+ »_ di_j ei. (3.8)
i=k+1

It is clear that this relation is true for k > 5. Consider e,, = [e,,—1,e1], then d(e,,) = d([en—1,€1]). So,
d(en) = [d(en—1),e1] +[en—1,d(er)].

We substitute k£ by n — 1 in (3.8), and obtain

d(en) =[(n—2)die, | +dien,er] +

n
enl,Zd%ei} = ((n—Z)d%)en—i-d{en =((n— l)d{)en.
i=1

Thus,
d(en) = ((n—1)d})en. (3.9)
On the other hand,

[61762] = ﬂn—2€n—1 +6n—15n-
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Then
1
d(en) = ——— (d([e1, e2]) — Bn—2d(en-1)).
anl
And then
1 n n
d(e,) = T <|:Zdz!ei,62 + 617Zd%6i:| —ﬁnzd(6n1)>
L AN i—2
1
=5 (diler,e2] + dylea, e2] + di[es, 2] + d3[en, 2] — Bn2d(en—1))
e
1
= ﬁ : (d% (/Bn72en71 +6n716n) + d%ﬁn72en +d%(ﬂn72en71 +ﬂn716n) - Bn72d(e7171))
e
1
= ,6 : ((di + d%)(ﬁn—Zen—l +ﬂn—len) + d%ﬁn—ﬂfn - ﬁn—z((n - 2)di€n—l eré@n))
.
1 1, 2 1, 2 1 1
= ﬁ 1 (((3 - n)dl +d2),3n—26n—1 + ((dl erz)ﬁn—l +d3ﬂn—2@n - /6n—2d3)en) .
.
Thus,
_ 1 -~ 1, 2 1, 2
d(en) = 5 ((3=n)d} +d3)Bn-2en—1) + ((d] +d3))en. (3.10)
o
Comparing (3.9) and (3.10), we obtain
(3—n)d] +d5 =0 thatis d3 = (n—3)d} and (d} +d3) = (n— 1)d] which implies d3 = (n—2)d}.  (3.11)
From (3.11) we get
dl =0, d=0.

The matrix of d has the form D = (dfg)k,l =1,2,3,...,n, where
B=dl=0, d=0 d1=0, d?=0, 3<i<n-—1.

The dimension of the derivation algebra of L € SLb,, is n— 1.

The other cases are treated similarly.

And at last, if L € SLb,, with v =0 and «; = 0, for i =4,5,...,n — 1, then the dimension of the derivation
algebra of L is n+ 2, which is immediate from the case of NGF,. O
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