
TOKYO J. MATH.
VOL. 41, NO. 2, 2018
DOI: 10.3836/tjm/1502179275

Real Hypersurfaces with ∗-Ricci Solitons
of Non-flat Complex Space Forms

Xiaomin CHEN

College of Science, China University of Petroleum-Beijing

(Communicated by M. Hara)

Abstract. Kaimakamis and Panagiotidou in [11] introduced the notion of ∗-Ricci soliton and studied the real
hypersurfaces of a non-flat complex space form admitting a ∗-Ricci soliton whose potential vector field is the structure
vector field. In this article, we consider a real hypersurface of a non-flat complex space form which admits a ∗-Ricci
soliton whose potential vector field belongs to the principal curvature space and the holomorphic distribution.

1. Introduction

An n-dimensional complex space form is an n-dimensional Kähler manifold with con-
stant sectional curvature c. A complete and simple connected complex space form with c �= 0
(i.e., a complex projective space CPn or a complex hyperbolic space CHn) is called a non-flat
complex space form and denoted by M̃n(c).

Let M be a real hypersurface of M̃n(c). Then there exists an almost contact structure
(φ, η, ξ, g) on M induced from M̃n(c). The study of real hypersurfaces in a non-flat complex
space form is a very interesting and active field in recent decades and many results of the
classification of real hypersurfaces in non-flat complex space forms were achieved (see [1,
13, 17, 18, 20]). In particular, if ξ is an eigenvector of the shape operator A then M is called
a Hopf hypersurface, and we note that the following conclusion is due to Kimura and Takagi
for CPn and Berndt for CHn.

THEOREM 1 ([1, 12, 19]). Let M be a Hopf hypersurface in non-flat complex space
form M̃n(c), n ≥ 2. If M has constant principal curvatures, then the classification is as
follows:
• In case of CPn, M is locally congruent to one of the following:

1. A1: Geodesic hyperspheres.
2. A2: Tubes over a totally geodesic complex projective space CPk for 1 ≤ k ≤ n − 2.
3. B: Tubes over a complex quadric Qn−1 and RPn.
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4. C: Tubes over Segre embedding of CP 1 × CP
n−1

2 , n is odd and n ≥ 5.
5. D: Tubes over Plücker embedding of the complex Grassmannian manifold G2,5. This

occurs only for n = 9.
6. E: Tubes over the canonical embedding Hermitian symmetry space SO(10)/U(5).

This occurs only for n = 15.

• In case of CHn, M is locally congruent to one of the following:

1. A1: Geodesic hyperspheres (Type A11) and tubes over totally geodesic complex hyper-
bolic hyperplanes (Type A12).

2. A2: Tubes over totally geodesic CHk ⊂ CHn for some k ∈ {1, . . . , n − 2}.
3. B: Tubes over a totally geodesic real hyperbolic space RHn ⊂ CHn.
4. N : Horospheres.

In particular, if M has two distinct constant principal curvatures, the classification is as
follows:

THEOREM 2 ([17], Corollary 2 in [3]). Let M be a hypersurface in non-flat complex

space form M̃n(c) with two distinct constant principal curvatures and n ≥ 2. Then
• in case of CPn, M is locally congruent geodesic hyperspheres in CPn(Type A1);
• in case of CHn, M is locally congruent to one of the following:

1. A11: Geodesic hyperspheres in CHn.

2. A2: Tubes around a totally geodesic CHn−1 ⊂ CHn.

3. B: Tubes of radius r = ln(2 + √
3) around a totally geodesic real hyperbolic space

RHn ⊂ CHn.
4. N : Horospheres in CHn.

Since there are no Einstein real hypersurfaces in M̃n(c) (see [4] and [14]), Cho and
Kimura in [5] considered a real hypersurface in M̃n(c) admitting a Ricci soliton. The notion
of Ricci soliton, introduced firstly by Hamilton in [7], is the generalization of Einstein metric,
that is, a Riemannian metric g satisfying

1

2
LW g + Ric − λg = 0 ,

where λ is a constant and Ric is the Ricci tensor of M . The vector field W is called potential
vector field. Moreover, the Ricci soliton is called shrinking, steady, and expanding according
as λ is positive, zero, and negative, respectively. In [5], it is proved that there does not admit
a Ricci soliton on M when the potential vector field is the structure field ξ . At the same time,
by introducing a so-called η-Ricci soliton (η, g) on M , which satisfies

1

2
LW g + Ric − λg − μη ⊗ η = 0 ,

for constants λ,μ, they gave a classification of a real hypersurface admitting an η-Ricci soli-
ton whose potential vector is the structure field ξ . In [6], Cho and Kimura also proved that
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a compact real hypersurface of contact-type in a complex number space admitting a Ricci
soliton is a sphere and a compact Hopf hypersurface in a non-flat complex space form does
not admit a Ricci soliton.

As the corresponding of Ricci tensor, in [8] Hamada defined the ∗-Ricci tensor Ric∗ in
real hypersurfaces of complex space form as

Ric∗(X, Y ) = 1

2
(trace{φ ◦ R(X, φY )}), for all X,Y ∈ T M ,

and if the ∗-Ricci tensor is a constant multiple of g(X, Y ) for all X,Y orthogonal to ξ , then
M is said to be a ∗-Einstein manifold. Furthermore, Hamada gave the following result of the
∗-Einstein Hopf hypersurfaces in non-flat space forms.

THEOREM 3 ([8]). Let M be a ∗-Einstein Hopf hypersurface in non-flat complex
space form M̃n(c), n ≥ 2.
• In case of CPn, M is an open part of one of the following:

1. A1: a geodesic hypersphere;
2. A2: a tube over a totally geodesic complex projective space CPk of radius πr

4 for

1 ≤ k ≤ n − 2, where r = 2√
c
;

3. B: a tube over a complex quadric Qn−1 and RPn.

• In case of CHn, M is an open part of one of the following:

1. A11: a geodesic hypersphere;
2. A12 : a tube around a totally geodesic complex hyperbolic hyperplane;
3. B: a tube around a totally geodesic real hyperbolic space RHn;
4. N : a horosphere.

Motivated by the works in [5, 6, 8], Kaimakamis and Panagiotidou in [11] introduced a
so-called ∗-Ricci soliton, that is, a Riemannian metric g on M satisfying

1

2
LW g + Ric∗ − λg = 0 , (1)

where λ is constant and Ric∗ is the ∗-Ricci tensor of M . They considered the case where W

is the structure field ξ and obtained that a real hypersurface in complex projective space does
not admit a ∗-Ricci soliton and a real hypersurface in complex hyperbolic space admitting a
∗-Ricci soltion is locally congruent to a geodesic hypersphere.

It is well-known that the tangent bundle T M can be decomposed as T M = Rξ ⊕ D,
where D = {X ∈ T M, η(X) = 0} is called holomorphic distribution. In the last part of [11],
they proposed two open problems:

Problem 1 Are there real hypersurfaces admitting a ∗-Ricci soliton whose potential vector
field is a principal vector field of the real hypersurface?

Problem 2 Are there real hypersurfaces admitting a ∗-Ricci soliton whose potential vector
field belongs to the holomorphic distribution D?
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In the present paper, we shall consider the above two problems. For Problem 1, we con-
sider the case of 2-dimensional non-flat complex space forms. Denote by Tχ the distribution
on M formed by principal curvature spaces of χ and �(Tχ ) by the all smooth sections of Tχ .
We obtain the following conclusions:

THEOREM 4. Let M be a hypersurface of non-flat complex space form M̃2(c) with a
∗-Ricci soliton whose potential vector field W ∈ �(Tχ ), χ �= 0. If the principal curvatures
are constant along ξ and Aξ then

• in case of CP 2, M is an open part of a tube around the complex quadric, or a geodesic
hypersphere;

• in case of CH 2, M is an open part of

(1) a geodesic hypersphere, or

(2) a tube around a totally geodesic CH 1, or

(3) a tube around a totally geodesic real hyperbolic space RH 2, or
(4) a horosphere.

THEOREM 5. Let M be a hypersurface of complex projective space CP 2, admitting a
∗-Ricci soliton whose potential vector field W ∈ �(T0). Then M is an open part of a tube
around the complex quadric.

For Problem 2, we first obtain the following result:

THEOREM 6. LetM be a hypersurface of complex projective spaceCP 2 with a ∗-Ricci
soliton whose potential vector field W ∈ D. If the principal curvatures are constant along
ξ and Aξ , then M is locally congruent to a geodesic hypersphere in CP 2. Moreover, if
g(Aξ, ξ) = 0 then W is Killing.

Furthermore, due to the decomposition T M = Rξ ⊕ D, we have Aξ = aξ + V, where
V ∈ D and a is a smooth function on M . The following conclusion is obtained:

THEOREM 7. Let M2n−1 be a hypersurface of complex space form M̃n(c) and n ≥ 2.
Then
• in case of CPn there are no real hypersurfaces admitting a ∗-Ricci soliton with potential
vector field W = V ;
• in case ofCHn, if M admits a ∗-Ricci soliton with potential vector field W = V , it is locally
congruent to a geodesic hypersphere.

This paper is organized as follows. In Section 2, some basic concepts and formulas are pre-
sented. To prove M is Hopf under the assumptions of theorems, in Section 3 we give some
formulas for the non-Hopf hypersurfaces with ∗-Ricci solitons, and the proofs of theorems are
given in Sections 4, 5, and 6, respectively.
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2. Preliminaries

Let (M̃n, g̃) be a complex n-dimensional Kähler manifold and M be an immersed real
hypersurface of M̃n with induced metric g . We denote by J the complex structure on M̃n.
There exists a local defined unit normal vector field N on M and we write ξ := −JN by
the structure vector field of M . An induced one-form η is defined by η(·) = g̃(J ·, N), which
is dual to ξ . For any vector field X on M the tangent part of JX is denoted by φX =
JX − η(X)N . Moreover, the following identities hold:

φ2 = −Id + η ⊗ ξ, η ◦ φ = 0, φ ◦ ξ = 0, η(ξ) = 1 , (2)

g(φX, φY ) = g(X, Y ) − η(X)η(Y ) , (3)

g(X, ξ) = η(X) , (4)

where X,Y ∈ X(M). By (2)–(4), we know that (φ, η, ξ, g) is an almost contact metric
structure on M .

Denote by ∇, A the induced Riemannian connection and the shape operator on M , re-
spectively. Then the Gauss and Weingarten formulas are given by

∇̃XY = ∇XY + g(AX, Y )N, ∇̃XN = −AX , (5)

where ∇̃ is the connection on M̃n with respect to g̃ . Also, we have

(∇Xφ)Y = η(Y )AX − g(AX, Y )ξ, ∇Xξ = φAX . (6)

M is said to be a Hopf hypersurface if the structure vector field ξ is an eigenvector of A.
From now on we always assume that the sectional curvature of M̃n is constant c �= 0,

i.e., M̃n is a non-flat complex space form, denoted by M̃n(c), then the curvature tensor R of
M is given by

R(X, Y )Z = c

4

(
g(Y,Z)X − g(X,Z)Y + g(φY,Z)φX − g(φX,Z)φY

+ 2g(X, φY )φZ
)

+ g(AY,Z)AX − g(AX,Z)AY ,

(7)

and the shape operator A satisfies

(∇XA)Y − (∇Y A)X = c

4

(
η(X)φY − η(Y )φX − 2g(φX, Y )ξ

)
, (8)

for any vector fields X,Y,Z on M .
Recall that the ∗-Ricci operator Q∗ of M is defined by

g(Q∗X,Y ) = Ric∗(X, Y ) = 1

2
trace{φ ◦ R(X, φY )}, for all X,Y ∈ T M .
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By (7), it is proved in Theorem 2 of [9] that the ∗-Ricci operator is expressed as

Q∗ = −
[cn

2
φ2 + (φA)2

]
. (9)

In particular, if Q∗ = 0 then M is said to be a ∗-Ricci flat hypersurface. Due to (2) ∗-Ricci
Soliton Equation (1) becomes

g(∇XW, Y ) + g(X,∇Y W) + ncg(X, Y ) − ncη(X)η(Y )

+ 2g(φAX,AφY) − 2λg(X, Y ) = 0 ,
(10)

for any vector fields X,Y on M .

3. Non-Hopf hypersurfaces with ∗-Ricci solitons

In this section we assume that M is a non-Hopf hypersurface in M̃2(c) with a ∗-Ricci
soliton. Since M is not Hopf, due to the decomposition T M = Rξ ⊕ D, we can write Aξ as

Aξ = αξ + βU , (11)

where α = η(Aξ), β = |φ∇ξ ξ | are the smooth functions on M and U = − 1
β
φ∇ξ ξ ∈ D is a

unit vector field with β �= 0. Write

N := {p ∈ M : β �= 0 in a neighbourhood of p} .

LEMMA 1. On N , we have AφU = 0.

PROOF. In view of ∗-Ricci Soliton Equation (1), we know Ric∗(X, Y ) = Ric∗(Y,X)

for every vector fields X,Y ∈ T M . That means that for every vector field X,

φAφAX = AφAφX . (12)

On the other hand, we have

φ2AφAX = −AφAX + η(AφAX)ξ

= −AφAX + g(αξ + βU, φAX)ξ

= −AφAX − βg(φU,AX)ξ

and

φAφAφX = AφAφ2X

= −AφAX + η(X)AφAξ

= −AφAX + βη(X)AφU .

Since β �= 0 on N , we get from (12) that −g(φU,AX)ξ = η(X)AφU . Taking X = ξ in this
formula, we obtain the desired result. �
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Since {ξ,U, φU} is a locally orthonormal frame onN , there are smooth functions γ,μ, δ

such that

AU = βξ + γU + δφU, AφU = δU + μφU . (13)

By Lemma 1, we have δ = μ = 0. Moreover, in [16] the following lemma was proved:

LEMMA 2. With respect to the orthonormal basis {ξ,U, φU}, we have
∇Uξ = γφU, ∇φU ξ = 0, ∇ξ ξ = βφU ,

∇UU = k1φU, ∇φU U = k2φU, ∇ξU = k3φU ,

∇UφU = −k1U − γ ξ, ∇φU φU = −k2U, ∇ξφU = −k3U − βξ ,

where k1, k2, k3 are smooth functions on M .

Applying Lemma 2, we have the following.

PROPOSITION 1. The following formulas onN are valid:

k3β + αβ − φU(α) = 0, k2 = 0 , (14)

k3γ + β2 − φU(β) = − c

4
, (15)

ξ(β) = U(α), ξ(γ ) = U(β) , (16)

β2 + k3γ − αγ − βk1 = c

4
, (17)

k1β + αγ − φU(β) = − c

2
. (18)

PROOF. By taking X = ξ and Y = φU in Relation (8), we obtain

(∇ξA)φU − (∇φUA)ξ = − c

4
U .

In view of (13) and Lemma 2, the above formula leads to k2 = 0 since β �= 0. Also (14)
and Formula (15) are attained. By a straightforward computation, Relation (8) for X = ξ and
Y = U implies (16) and (17). Moreover Relation (8) for X = U and Y = φU gives (18). �

Let us assume that W is an eigenvector of A, namely, there is a smooth function χ such
that AW = χW holds. On N , in the basis of {ξ,U, φU} the potential vector W may be
expressed as

W = f1ξ + f2U + f3φU ,

where f1, f2, f3 are the smooth functions on N .
In view of Lemma 2, by a direct computation, we have

∇ξW = (ξ(f1) − f3β)ξ + (ξ(f2) − f3k3)U + (f1β + f2k3 + ξ(f3))φU , (19)

∇UW = (U(f1) − f3γ )ξ + (U(f2) − f3k1)U + (f1γ + f2k1 + U(f3))φU , (20)
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∇φU W = φU(f1)ξ + φU(f2)U + φU(f3)φU . (21)

Inserting X = Y = ξ into Formula (10), by (19) we find

ξ(f1) − f3β = λ . (22)

Furthermore, inserting X = Y = U and X = Y = φU into Formula (10) respectively, we get
from (20) and (21) that

U(f2) − f3k3 + c − λ = 0 , (23)

φU(f3) + c − λ = 0 . (24)

Also, when X and Y are taken as the different vectors of ξ,U , and φU in Formula (10), a
similar computation leads to

⎧⎨
⎩

ξ(f2) − f3k3 + U(f1) − f3γ = 0 ,

f1β + f2k3 + ξ(f3) + φU(f1) = 0 ,

f1γ + f2k1 + U(f3) + φU(f2) = 0 .

(25)

Actually, Lemma 1 shows that at every point of N there exists a principal curvature 0
and φU is the corresponding principal vector. It turns out that there are at least two distinct
principal curvatures in non-flat complex space forms (see [15, Theorem 1.5]).

Let λi be the principal curvatures for i = 1, 2, 3, where λ3 = 0. We may assume that
e1 = cos θξ + sin θU, e2 = sin θξ − cos θU are the unit principal vectors corresponding to
λ1 and λ2, respectively, where θ is the angle between principal vector e1 and ξ . It is clear that
{e1, e2, e3 = φU} is also an orthonormal frame. Namely,

A(e1, e2, e3) = (e1, e2, e3)

⎛
⎝ λ1

λ2

0

⎞
⎠ .

Denote by

B =
⎛
⎝ cos θ sin θ 0

sin θ − cos θ 0
0 0 1

⎞
⎠

the transformation matrix of two frames, i.e.,

(e1, e2, e3) = (ξ, U, φU)B .

Moreover, since

A(ξ,U, φU) = (ξ, U, φU)

⎛
⎝ α β 0

β γ 0
0 0 0

⎞
⎠ ,
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we get
⎛
⎝ α β 0

β γ 0
0 0 0

⎞
⎠ = B

⎛
⎝ λ1

λ2

0

⎞
⎠ BT .

A straightforward calculation leads to

α = λ1 cos2 θ + λ2 sin2 θ, β = 1

2
(λ1 − λ2) sin 2θ, γ = λ1 sin2 θ + λ2 cos2 θ . (26)

If M has only two distinct principal curvatures at any point p ∈ N , then either λ1 =
λ2 �= 0, or one of λ1 and λ2 vanishes. However, the second of (26) will come to β = 0 if
λ1 = λ2, thus it is impossible. Without loss generality, we set λ1 = 0 and λ2 �= 0. In terms of
[10, Theorem 4], α, β and γ satisfy

ξ(α) = ξ(β) = ξ(γ ) = 0 ,

U(α) =β(α + γ ) .

Using (16), we thus derive α + γ = 0 because β �= 0. This shows λ2 = 0 from the first and
third of (26). It is a contradiction. Therefore on N there are three distinct principal curvatures,
i.e., λ1, λ2 are not zero and λ1 �= λ2.

Using (16) again, we derive from (26) that

U(λ1) cos2 θ + U(λ2) sin2 θ − (λ1 − λ2) sin 2θU(θ)

= 1

2
ξ(λ1 − λ2) sin 2θ + (λ1 − λ2) cos 2θξ(θ) ,

ξ(λ1) sin2 θ + ξ(λ2) cos2 θ + (λ1 − λ2) sin 2θξ(θ)

= 1

2
U(λ1 − λ2) sin 2θ + (λ1 − λ2) cos 2θU(θ) .

From which we arrive at

ξ(θ) = U(λ1 − λ2) + U(λ1 + λ2) cos 2θ − ξ(λ1 + λ2) sin 2θ

2(λ1 − λ2)
,

U(θ) = −ξ(λ1 − λ2) + ξ(λ1 + λ2) cos 2θ + U(λ1 + λ2) sin 2θ

2(λ1 − λ2)
.

Thus we obtain

PROPOSITION 2. If on N the principal curvatures are constant along ξ and Aξ , then
the following equations hold:

ξ(θ) = U(θ) = 0 , (27)

ξ(β) = U(α) = ξ(γ ) = U(β) = 0 . (28)
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4. Proofs of Theorems 4 and 5

In order to prove our theorems, we first prove the following two conclusions.

PROPOSITION 3. Let M be a real hypersurface in M̃2(c) with a ∗-Ricci soliton whose
potential vector field W ∈ �(Tχ ), χ �= 0. If the principal curvatures are constant along ξ

and Aξ then M is Hopf.

PROOF. Suppose that M is not Hopf, then N is not empty. Write W = a1e1 + a2e2 +
a3e3, where a1, a2, a3 are the smooth functions on N . Since χ �= 0, a3 = 0 and χ = λ1 or
λ2. Since a1, a2 are not all zero, without loss of generality, we may assume a1 �= 0, then

AW = χW ⇒ χ = λ1 and a2 = 0 since λ1 �= λ2 .

Thus the potential vector field can be written as

W = a1 cos θξ + a1 sin θU .

Replacing f1 in Formula (22) and f2 in (23) by a1 cos θ and a1 sin θ , respectively, we have

ξ(a1 cos θ) = λ, U(a1 sin θ) = 0 (29)

because c = λ followed from (24). Similarly, in view of the first equation of (25), we obtain

ξ(a1 sin θ) + U(a1 cos θ) = 0 . (30)

With the help of (29) and (30), we further obtain

a1(sin θξ(θ) − cos θU(θ)) = −λ sin2 θ .

By (27), λ sin2 θ = 0. If sin θ �= 0 then λ = 0. This leads to a contradiction because
λ = c �= 0. If sin θ = 0 then W = a1 cos θξ , i.e., ξ is a principal vector, which is also a
contradiction. Therefore we complete the proof. �

PROPOSITION 4. A real hypersurface in CP 2, admitting a ∗-Ricci soliton whose po-
tential vector field W ∈ �(T0), is Hopf.

PROOF. Suppose that M is not Hopf, then N is not empty. We may write W = b1e1 +
b2e2+b3e3 in the basis {e1, e2, e3}, where b1, b2, b3 are smooth functions onN . By Lemma 1,
AφU = 0, so AW = 0 implies b1 = b2 = 0, i.e., W = b3φU with b3 �= 0. Hence (25)
becomes

k3 = −γ, ξ(b3) = 0, U(b3) = 0 . (31)

And (23) becomes

−b3γ = c − λ . (32)

Since b1 = 0, Formula (22) becomes

−b3β = λ . (33)
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So by taking the differentiation of (32) along φU , we derive from (24) that

b3φU(β) = (c − λ)β . (34)

On the other hand, it follows from (32) and (33) that

γ

β
= c

λ
− 1 . (35)

If c = λ, then Equation (35) shows γ = 0. Further, in view of (24) we find φU(b3) =
λ − c = 0, which means that b3 is constant since ξ(b3) = U(b3) = 0. Now we derive from
(33) that β is constant. Hence together (17) with (18), we obtain β2 = − c

4 . It is impossible.
Next we assume c �= λ. Thus Equation (35) follows γ �= 0 and Formula (15) follows

from (31)

φU(β) = β2 − γ 2 + c

4
.

Substituting this into (34), we get from (32) that

(
β2 − γ 2 + c

4

) 1

γ
= −β ⇒ 1 −

(γ

β

)2 + c

4β2 = −γ

β
,

which reduces from Equation (35) that β is constant. Finally we derive a contradiction from
(34). Hence we complete the proof of proposition. �

PROOF OF THEOREM 4. Under the hypothesis of Theorem 4, by Proposition 3, M is

a Hopf hypersurface of M̃2(c), i.e., Aξ = αξ . Due to [15, Theorem 2.1], α is constant. We
consider a point p ∈ M and a unit vector field e ∈ Dp such that Ae = κe and Aφe = νφe,
where κ, ν are smooth functions on M . Then {ξ, e, φe} is a local orthonormal basis of M . By
Corollary 2.3 in [15],

κν = κ + ν

2
α + c

4
. (36)

Moreover, by a straightforward computation, we have the following lemma.

LEMMA 3. With respect to {ξ, e, φe} the Levi-Civita connection is given by
∇eξ = κφe, ∇φeξ = −νe, ∇ξ ξ = 0 ,

∇ee = a1φe, ∇φee = νξ + a2φe, ∇ξ e = a3φe ,

∇eφe = −a1e − κξ, ∇φeφe = −a2e, ∇ξφe = −a3e ,

where a1 = g(∇ee, φe), a2 = g(∇φee, φe), a3 = g(∇ξ e, φe) are smooth functions on M .

Under the orthonormal basis {ξ, e, φe} we may assume that there are smooth functions
g1, g2, g3 such that the potential vector filed W can be written as

W = g1ξ + g2e + g3φe .
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Since AW = χW with χ �= 0, we get αg1 = χg1, κg2 = χg2 and νg3 = χg3.

Next we consider the following cases:

• Case I: g1, g2, g3 are not equal to zero.
Then κ = ν = α, which leads to c = 0 from Equation (36). This is a contradiction.

• Case II: Only one of g1, g2, g3 is equal to zero.

If g1 = 0, then κ = ν. Equation (36) yields (κ − α
2 )2 = α2+c

4 , which shows κ = ν = const.

and α �= κ ; If g2 = 0, then α = ν, Equation (36) implies κ = c+2α2

2α
with κ �= α; If g3 = 0,

then κ = α, which implies ν = c+2α2

2α
, ν �= α by Equation (36).

• Case III: Two of g1, g2, g3 are equal to zero.
When g1 = g2 = 0. Formula (10) for X = ξ and Y = e implies

g(∇ξW, e) + g(ξ,∇eW) = 0 .

In view of Lemma 3, a simple calculation leads to κ = −a3. On the other hand, Relation (8)
for X = e and Y = ξ yields (∇eA)ξ − (∇ξA)e = − c

4φe. By Lemma 3, we find

ακ − κν − κa3 + a3ν = − c

4
. (37)

A similar computation using Relation (8) for X = φe, Y = ξ yields

−αν + κν − κa3 + a3ν = c

4
. (38)

Moreover, inserting κ = −a3 into the above equation gives

κ2 − αν = c

4
. (39)

The combination of (37) and (38) leads to (κ − ν)(2κ + α) = 0 because a3 = −κ. If
ν = κ then α �= κ , otherwise, Formula (39) will lead to c = 0. If ν �= κ then κ = −α

2 and

ν = α2−c
4α

.
When g1 = g3 = 0, we put X = ξ, Y = φe in Formula (10). By Lemma 3, a3 = −ν, so

we get (κ − ν)(2ν + α) = 0 from (37) and (38). If κ = ν then α �= ν as before. If κ �= ν then

ν = −α
2 and κ = α2−c

4α
.

When g2 = g3 = 0, Relation (8) for X = e, Y = φe leads to c = 0 by Lemma 3, which
is a contradiction.

In a word we have proved that there are two or three distinct constant principal curvatures

on M . For the case of CP 2, by Theorem 2 and [20, Theorem 4.1], M is an open part of a
hypersphere, or a tube around the complex quadric.

For the case of CH 2, if M has three distinct principal curvatures, by the proof of [2, The-
orem 1.1], we know that the ruled real hypersurfaces cannot be Hopf, which is a contradiction
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with Proposition 3. Thus in this case M has only two distinct constant principle curvatures.
In view of Theorem 2, the real hypersurface M is one of Type A11, A2, B and N .

This finishes the proof of Theorem 4. �

PROOF OF THEOREM 5. Under the assumption of Theorem 5, by Proposition 4 we

know that M is a Hopf hypersurface of CP 2. Hence Equation (36) and Lemma 3 are valid.
We adopt the same notations as the proof of Theorem 4.

Since AW = 0, we have αg1 = κg2 = νg3 = 0. If α = 0 then it follows from Equation
(36) that κν = c

4 , which means that κ, ν are non-zero. So we get g2 = g3 = 0. From the Case
III in the proof of Theorem 4, we know it is impossible.

In the following we assume α �= 0, then g1 = 0. If g2 is also equal to zero, then g3 must
be non-zero, and further we obtain ν = 0 and κ = −α

2 �= 0 from the Case III in the proof of

Theorem 4. If g2 is non-zero then κ = 0. Equation (36) implies αν = − c
2 , that shows ν is a

non-zero constant. Further we know α �= ν since c > 0.
Summarizing the above discussion, we have proved that there are three distinct constant

principal curvatures in M . Therefore we complete the proof of Theorem 5 by [20, Theo-
rem 4.1]. �

5. Proof of Theorem 6

In this section we suppose that M is a real hypersurface of CP 2 with a ∗-Ricci soliton
whose potential vector field W belongs to the holomorphic distribution D. First we prove the
following result:

PROPOSITION 5. Let M be a real hypersurface in CP 2 with a ∗-Ricci soliton whose
potential vector field W ∈ D. If the principal curvatures are constant along ξ and Aξ then
M is Hopf.

PROOF. If M is not Hopf then N is not empty. Let W = c1e1 + c2e2 + c3e3 ∈ D,
where ci are smooth functions on N , then

c1 cos θ + c2 sin θ = 0 . (40)

Formula (22) becomes

−c3β = λ . (41)

And by Proposition 2, (23)–(25) accordingly become

U(c1) sin θ − U(c2) cos θ − c3k3 + c − λ = 0 , (42)

φU(c3) + c − λ = 0 , (43)
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and ⎧⎨
⎩

ξ(c1) sin θ − ξ(c2) cos θ − c3k3 − c3γ = 0 ,

(c1 sin θ − c2 cos θ)k3 + ξ(c3) = 0 ,

(c1 sin θ − c2 cos θ)k1 + U(c3) + φU(c1 sin θ − c2 cos θ) = 0 .

(44)

If c3 = 0, then (41) and (43) show c = λ = 0. It is impossible. Thus c3 �= 0, which further
implies λ �= 0 from (41). By (43) and Formula (15), differentiating (41) along φU gives

k3γ + β2 c

λ
+ c

4
= 0 . (45)

When γ = 0, this shows β is constant. So it follows from Formula (15) that β2 = − c
4 , which

is impossible because c > 0. Hence γ �= 0 and we get from (45) that

k3 = −β2 c
λ

+ c
4

γ
.

If c1 = c2 = 0, as the proof of Proposition 4, by using (41)–(44), we arrive at a contra-
diction. Thus one of c1, c2 must be not zero.

Without loss of generality we set c1 �= 0. Taking the differentiation of (41) along ξ and
U , respectively, we obtain from (28) that ξ(c3) = U(c3) = 0 since β �= 0. In view of the
second equation of (44) and (40), we find k3 = 0, that is,

β2 c

λ
+ c

4
= 0 ,

thus β is constant. As before from Formula (15) we have β2 = − c
4 , which is impossible. This

completes the proof. �

PROOF OF THEOREM 6. Under the hypothesis of Theorem 6, by Proposition 5 we
know that M is a Hopf hypersurface of CP 2. That means that the structure vector field ξ

is a principal vector field, i.e., Aξ = aξ and a is constant as before.
For any point p ∈ M we consider a unit vector Z ∈ Dp such that AZ = μZ, then the

following relation holds (see [15, Corollary 2.3]):(
μ − a

2

)
AφZ =

(μa

2
+ c

4

)
φZ .

If μ = a
2 the above equation implies μa

2 + c
4 = 0, i.e., μ2 + c

4 = 0, that is impossible.

Hence μ �= a
2 , which means that φZ is a principal vector with principal curvature ν satisfying

μν = μ + ν

2
a + c

4
. (46)

Now we know that Span{Z,φZ} = Dp and {ξ, Z, φZ} is an orthonormal basis of TpM . By
a straightforward computation, we have

∇ZφZ = −g(∇ZZ, φZ)Z − μξ, ∇φZZ = νξ + g(∇φZZ, φZ)φZ .
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Taking X = Z and Y = φZ in Relation (8) and using the above formulas, we get

μν − νa = c

4
.

Next we distinguish into two cases.
Case 1. If a �= 0 then it follows μ = ν by combining with (46) and further μ, ν are

constant. Furthermore, we find μ = ν �= a, otherwise, the above formula will lead to c = 0.
By Theorem 2 we get that M is of Type A1.

Case 2. We assume a = 0, then μν = c
4 . In this case M is a ∗-Einstein hypersurface

(see [9, Remark 1]). ∗-Ricci Soliton Equation (1) shows W is a conformal Killing vector
field, i.e., LW g = 2(λ − 5c)g . From (7), we calculate the Ricci operator

QX = c

4
{5X − 3η(X)ξ} + hAX − A2X, for all X ∈ T M ,

where h = trace(A). Hence by a direct computation we can get that the scalar curvature
r = 3c + 2μν.

Notice that on an n-dimensional Riemannian manifold a conformal Killing vector field
X, i.e., LXg = 2ρg , satisfies

LXr = 2(n − 1)�ρ − 2ρr ,

where r is the scalar curvature (see [21, Eq. (5.38)]). Since μν = c
4 , the scalar curvature

r = 7c
2 �= 0. Using the above formula we find that W is a Killing vector field.
Moreover, since M is ∗-Einstein, we derive from Theorem 3 that M is one of Type

A1, A2, and B. But according to the list of principal curvatures of Type A1, A2 and B hyper-
surfaces (see [15, Theorems 3.13–3.15]), we find that in this case only Type A1 is satisfied.

Therefore we complete the proof of Theorem 6. �

6. Proof of Theorem 7

Since the tangent bundle T M can be decomposed as T M = Rξ ⊕ D, where D = {X ∈
T M : η(X) = 0}. Then Aξ can be written as

Aξ = aξ + V , (47)

where V ∈ D and a is a smooth function on M . In this section we assume that the hyper-
surface M of M̃n(c) is equipped with a ∗-Ricci soliton such that the potential vector field
W = V .

LEMMA 4. On M the following equation is valid:

(∇ξA)ξ = Da + 2AφV , (48)

where Da denotes the gradient vector field of a.
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PROOF. By (6) and (47), for any vector field X

(∇XA)ξ = ∇X(Aξ) − A∇Xξ

= X(a)ξ + a∇Xξ + ∇XV − AφAX .
(49)

Thus

g((∇XA)ξ, ξ) = X(a) + g(∇XV, ξ) − g(AφAX, ξ)

= X(a) − g(V ,∇Xξ) − g(φAX,Aξ)

= X(a) + 2g(AX, φV ) .

From the well-known relation g((∇XA)ξ, ξ) = g((∇ξA)ξ,X) (see [15, Corollary 2.1]), we
arrive at (48). �

Next it follows from (49) and Relation (8) that

∇XV = (∇XA)ξ − X(a)ξ − a∇Xξ + AφAX

= (∇ξA)X − c
4φX − X(a)ξ − aφAX + AφAX .

(50)

Therefore, by Lemma 4 we have

∇ξV =(∇ξA)ξ − ξ(a)ξ − aφAξ + AφAξ

= − aφV + Da − ξ(a)ξ + 3AφV .
(51)

Since η(V ) = 0, differentiating this along any vector X, we have

g(∇XV, ξ) + g(V , φAX) = 0 . (52)

In particular, by taking X = ξ in (52), we find g(∇ξ V , ξ) = 0 because of ∇ξ ξ = φV . Hence,
taking into account X = Y = ξ in Formula (10), we conclude that λ = 0.

Take X = ξ and Y = ξ respectively in Formula (10), and it follows from (51) and (52)
that

−aφV + Da − ξ(a)ξ + 4AφV − 2φAφV = 0 ,

−aφV + Da − ξ(a)ξ + 4AφV = 0 .

Hence φAφV = 0, which implies AφV = 0 because of (3) and (47). Differentiating AφV =
0 along vector field ξ and using the first equation of (6), (50), and (51), we get

0 = ∇ξ (AφV ) = (∇ξA)φV + A(∇ξφ)V + Aφ(∇ξV )

= ∇φV V − c

4
V + (φV )(a)ξ + aAV + Aφ(Da) .

Therefore

∇φV V = c

4
V − (φV )(a)ξ − aAV − Aφ(Da) . (53)
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If we put X = Y = φV in Formula (10), then Equation (53) leads to nc|V |2 = 0, i.e., V is a
zero vector field. Since λ = 0, the following proposition is proved:

PROPOSITION 6. Every real hypersurface in a non-flat complex space form M̃n(c),
n ≥ 2, admitting a ∗-Ricci soliton with potential vector field V , is a ∗-Ricci flat Hopf hyper-
surface.

PROOF OF THEOREM 7. Let M be a ∗-Ricci flat Hopf hypersurface, namely, Aξ = aξ

and Q∗X = 0 for all X, where a is constant. In view of (9), we have cn
2 φ2X + (φA)2X = 0

for all X, which further implies

cn

2
φX + AφAX = 0 . (54)

For any point p ∈ M , let Z ∈ Dp is a principal vector, namely, there is a certain function μ1

such that AZ = μ1Z, then it follows from (54)

μ1AφZ = −cn

2
φZ ,

which shows that φZ is also a principal curvature vector, i.e., AφZ = νφZ with ν = − cn
2μ1

.

On the other hand, as before we know that the following relation is also valid:(
μ1 − a

2

)
AφZ =

(μ1a

2
+ c

4

)
φZ . (55)

In the following we divide into two cases.

• Case I: a2 + c �= 0.
If μ1 = a

2 then μ1a
2 + c

4 = 0, which is a contradiction. Hence μ1 �= a
2 and from (55) we find

that the principal curvature ν is also equal (
μ1a

2 + c
4 )

/
(μ1 − a

2 ). Hence we obtain that μ1

satisfies

2aμ2
1 + (1 + 2n)cμ1 − acn = 0 , (56)

from which we can see that μ1 is constant. Thus M has constant principal curvatures. How-
ever, since M is ∗-Ricci flat, in view of Theorem 1 and Section 3 in [8], we find that there are
no hypersurfaces in CPn satisfying this case.

For the case of CHn, in terms of Section 3 in [8], only Type A11 and A12 hypersurfaces

may be ∗-Ricci flat. But for the Type A12, we further get 2n = tanh2(u), which is impossible
since 0 < tanh(u) < 1.

• Case II: a2 + c = 0.
In this case the ambient space is CHn, since c = −a2 < 0, a �= 0. If μ1 �= a

2 , by (56), we get

μ1 = na and ν = a
2 . If μ1 = a

2 then ν = na. Hence it is proved that there are three distinct
constant principal curvatures for all p ∈ M .
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However, since M is a Hopf, in terms of Theorem 1 and the analysis of Section 3 in [8],
we know that the Type A2 hypersurfaces cannot be ∗-Einstein, and the Type B and Type N

hyersurfaces cannot be ∗-Ricci flat.

Summarizing this two cases, we complete the proof of Theorem 7. �
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