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Abstract. We consider a singular nonlinear partial differential equation of the form

(t∂t )
mu = F

(
t, x,

{
(t∂t )

j ∂αx u
}
(j,α)∈Im

)

with arbitrary order m and Im = {(j, α) ∈ N × Nn ; j + |α| ≤ m, j < m} under the condition that
F(t, x, {zj,α}(j,α)∈Im ) is continuous in t and holomorphic in the other variables, and it satisfies F(0, x, 0) ≡ 0

and (∂F/∂zj,α)(0, x, 0) ≡ 0 for any (j, α) ∈ Im ∩ {|α| > 0}. In this case, the equation is said to be a nonlinear

Fuchsian partial differential equation. We show that if F(t, x, 0) vanishes at a certain order as t tends to 0 then the
equation has a unique solution with the same decay order.

1. Introduction

We denote by (t, x) = (t, x1, . . . , xn) the variables in Rt × Cnx . Let N = {0, 1, . . .}
and N∗ = {1, 2, . . .}. For α = (α1, . . . , αn) ∈ Nn we write |α| = α1 + · · · + αn and
∂αx = (∂/∂x1)

α1 · · · (∂/∂xn)αn . For m ∈ N∗ we define Im = {(j, α) ∈ N × Nn ; j + |α| ≤
m, j < m}, I+

m = {(j, α) ∈ Im ; |α| > 0}, andN = #Im. For R > 0 and ρ > 0, we set DR =
{x = (x1, . . . , xn) ∈ Cn ; |xi| < R for all 1 ≤ i ≤ n} and DNρ = {z = {zj,α}(j,α)∈Im ∈
C
N ; |zj,α| < ρ for all (j, α) ∈ Im}.

Let T0 > 0, R0 > 0, ρ0 > 0, and let F(t, x, z) be a function on [0, T0] ×DR0 ×DNρ0
. In

this paper, we consider the singular nonlinear partial differential equation

(t∂t )
mu = F

(
t, x,

{
(t∂t )

j ∂αx u
}
(j,α)∈Im

)
(1.1)

under the following assumptions:

(A1) F (t, x, z) is continuous in t and holomorphic in (x, z);
(A2) F (0, x, 0) ≡ 0 on DR0 ;
(A3) (∂F/∂zj,α)(0, x, 0) ≡ 0 on DR0 for any (j, α) ∈ I+

m .
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In this situation, the equation (1.1) is called a nonlinear Fuchsian (also known as Gérard-
Tahara type) partial differential equation.

In the case where F(t, x, z) is a holomorphic function in all the variables (t, x, z), the
equation (1.1) was studied quite well by Gérard and Tahara [3], Tahara and Yamane [10], and
Tahara and Yamazawa [11].

Some results can be found in the case where F(t, x, z) is holomorphic in (x, z) but only
continuous in t . The linear case was studied by Baouendi and Goulaouic [1], and Lope [4, 5].
In the nonlinear case, Baouendi and Goulaouic [2] considered (1.1) under some particular
conditions, while Lope, Roque and Tahara [6] investigated the first order equation in a more
general setting.

To the best of the authors’ knowledge, the general case for arbitrary order m had not
been solved yet. Thus the purpose of this paper is to solve the equation (1.1) in a completely
general setting.

2. Main result

Let us consider the equation (1.1) under the conditions (A1), (A2), and (A3). By writing
F(t, x, z) into its Taylor series expansion in z, (1.1) may be expressed in the form

(t∂t )
mu = a(t, x)+

∑
(j,α)∈Im

bj,α(t, x)(t∂t )
j ∂αx u

+ R2

(
t, x,

{
(t∂t )

j ∂αx u
}
(j,α)∈Im

)
(2.1)

where a(t, x) = F(t, x, 0), bj,α(t, x) = (∂F/∂zj,α)(t, x, 0), and R2(t, x, z) represents the
sum of all the remaining terms, each of which has a degree at least two with respect to z.

It is clear from (A2) and (A3) that we have a(0, x) ≡ 0 and bj,α(0, x) ≡ 0 for any

(j, α) ∈ I+
m . In order to describe the decay order of the functions a(t, x) and bj,α(t, x) as t

tends to 0, we introduce a weight function μ(t) on (0, T0], which is defined as a continuous,
nonnegative and increasing function on (0, T0] that satisfies

∫ T0

0

μ(s)

s
ds < ∞ .

By this definition, we have limt→0 μ(t) = 0, and the function

ϕ(t) =
∫ t

0

μ(s)

s
ds

is well defined on (0, T0]. Moreover, we have limt→0 ϕ(t) = 0 and ϕ′(t) = μ(t)/t on (0, T0).
Typical examples of such functions are tε and 1/(− log t)ε+1 with ε > 0.

Let μ(t) be a weight function on (0, T0]. We suppose that

a(t, x) = O(μ(t)m) (as t −→ 0) uniformly on DR0 , (2.2)
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bj,α(t, x) = O(μ(t)|α|) (as t −→ 0) uniformly on DR0 (2.3)

for any (j, α) ∈ I+
m .

The characteristic polynomial associated with the equation (2.1) is given by

C(λ, x) = λm −
∑
j<m

bj,0(0, x)λj

and the roots λ1(x), . . . , λm(x) of the equation C(λ, x) = 0 are called the characteristic ex-
ponents of (2.1). As usual, we assume that

Re λj (0) < 0, j = 1, . . . ,m . (2.4)

Let 0 < T ≤ T0. For r > 0 and R > 0, we define the regionWr by

Wr = {(t, x) ∈ [0, T ] × C ; |x| + ϕ(t)/r < R} .
Note here that even though the region Wr also depends on T and R, this is not indicated in
our notation for the sake of simplicity. We then define two function spaces on the region W ,
which can either be Wr or [0, T ] ×DR .

DEFINITION 2.1. A functionw(t, x) is said to belong to the space X0(W) ifw(t, x) ∈
C0(W) and is holomorphic in x for any fixed t . In addition, if w(t, x) ∈ Cm(W ∩{(t, x) ; t >
0}) and (t∂t )jw(t, x) ∈ X0(W) for j = 1, . . . ,m, then w(t, x) is said to belong to the space
Xm(W).

The following is our main result.

THEOREM 2.2. Suppose that (A1)−(A3), (2.2), (2.3), and (2.4) hold. Then there exist
r > 0, R > 0, T > 0, and M > 0 with Mμ(T )m < ρ0 such that the equation (1.1) has a
unique solution u(t, x) in Xm(Wr) that satisfies the estimates

|(t∂t )j ∂αx u(t, x)| ≤ Mμ(t)m onWr for all (j, α) ∈ Im .
By setting

P = (t∂t )
m −

∑
j<m

bj,0(t, x)(t∂t )
j

and

�[u] =
∑

(j,α)∈I+
m

bj,α(t, x)(t∂t )
j ∂αx u+ R2

(
t, x,

{
(t∂t )

j ∂αx u
}
(j,α)∈Im

)
,

we can write the equation (1.1) in the simple form

Pu = a(t, x)+�[u] . (2.5)
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In the next section, we discuss some properties of the unique solution of the equation Pw = g

and other fundamental tools that are needed to prove our main result. In Section 4, we employ
the technique of Nirenberg [8] and Nishida [9] to prove Theorem 2.2 under the condition

a(t, x) = O(μ(t)2m) (as t −→ 0) uniformly on DR0 , (2.6)

and then we prove it in the general case (2.2) in Section 5. In the last section, we give a slight
generalization of our main result.

3. Basic tools

In this section, we present some known results that are essential for our proofs. The first
lemma, which is used to estimate the derivative of a holomorphic function, is due to Nagumo
[7] (see also Walter [12]).

LEMMA 3.1. Let u(t, x) ∈ X0(Wr ), a ≥ 0, and K ≥ 0. If the function u(t, x)
satisfies the estimate

|u(t, x)| ≤ K

(R − |x| − ϕ(t)/r)a
onWr ,

then we have∣∣∣ ∂u
∂xi

(t, x)

∣∣∣ ≤ Ke(a + 1)

(R − |x| − ϕ(t)/r)a+1 onWr for any i = 1, . . . , n .

The next lemma is very important to estimating some integral expressions involving the
weight function μ(t).

LEMMA 3.2. The following estimates hold for any L ≥ 1 and k ≥ 1:∫ t

0

μ(τ)L

(R − |x| − ϕ(τ)/r)k

dτ

τ
≤ μ(t)L−1ϕ(t)

(R − |x| − ϕ(t)/r)k
, (3.1)

∫ t

0

μ(τ)L

(R − |x| − ϕ(τ)/r)k+1

dτ

τ
≤ μ(t)L−1r

k(R − |x| − ϕ(t)/r)k
. (3.2)

PROOF. The first estimate (3.1) immediately follows from the definition of ϕ(t) and
the inequality∫ t

0

μ(τ)L

(R − |x| − ϕ(τ)/r)k

dτ

τ
≤ μ(t)L−1

(R − |x| − ϕ(t)/r)k

∫ t

0

μ(τ)

τ
dτ .

Similarly, we obtain∫ t

0

μ(τ)L

(R − |x| − ϕ(τ)/r)k+1

dτ

τ
≤ μ(t)L−1

∫ t

0

ϕ′(τ )
(R − |x| − ϕ(τ)/r)k+1 dτ

= μ(t)L−1

k

[ r

(R − |x| − ϕ(τ)/r)k

]t
0
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≤ μ(t)L−1r

k(R − |x| − ϕ(t)/r)k
,

which is the second estimate (3.2). �

Now let P be as in (2.5) and consider the equation

Pw = g(t, x) . (3.3)

We have the following result which is due to Baouendi and Goulaouic [1], and Lope [5,
Proposition 1].

PROPOSITION 3.3. Suppose that (2.4) holds. Let T > 0 and R > 0 be sufficiently
small, and setW be either [0, T ] ×DR orWr (with arbitrary r > 0). Then for any g(t, x) ∈
X0(W) the equation (3.3) has a unique solution w(t, x) ∈ Xm(W). Moreover, if |g(t, x)| ≤
Kψ(t) on W for some K > 0 and for some nondecreasing nonnegative function ψ(t), then
we have

|(t∂t )jw(t, x)| ≤ �1Kψ(t) onW for any j = 0, 1, . . . ,m ,

where �1 > 0 is a constant independent of g(t, x).

For any α ∈ Nn, we set

d(α) =
{

1 if α = 0 ,
|α| if |α| > 0 .

The next proposition plays an essential role in the proof of our main result, which makes
use of the method of Nirenberg [8] and Nishida [9].

PROPOSITION 3.4. Suppose that (2.4) holds. Let T > 0 and R > 0 be sufficiently
small, and let w(t, x) ∈ Xm(Wr) be the unique solution of (3.3) for a given g(t, x) ∈
X0(Wr). Then there is a constant � > 0, which is independent of g(t, x), such that the
following estimates hold for any K > 0 and for any nondecreasing nonnegative function
ψ(t):

(1) If |g(t, x)| ≤ Kψ(t)μ(t)m onWr , then for any (j, α) ∈ Im we have

|(t∂t )j ∂αx w(t, x)| ≤ �Kψ(t)μ(t)m−d(α)rd(α)−1ϕ(t)

R − |x| − ϕ(t)/r
onWr . (3.4)

(2) Similarly, if

|g(t, x)| ≤ Kψ(t)μ(t)m

R − |x| − ϕ(t)/r
onWr ,

then for any (j, α) ∈ Im we have

|(t∂t )j ∂αx w(t, x)| ≤ �Kψ(t)μ(t)m−d(α)rd(α)

R − |x| − ϕ(t)/r
onWr . (3.5)
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PROOF. Let us show (1). Since R > 0 is sufficiently small, we may assume that

0 < R ≤ 1, which implies that (R − |x| − ϕ(t)/r)−1 ≥ 1 on Wr . By Proposition 3.3, we
know that the unique solution w(t, x) satisfies

|(t∂t )iw(t, x)| ≤ �1Kψ(t)μ(t)
m on Wr for any i = 0, 1, . . . ,m . (3.6)

Let us first show (3.4) for any (j, 0) ∈ Im. Set

fj,0(t, x) = (t∂t + 1)(t∂t )
jw(t, x) . (3.7)

By (3.6) we have the estimate

|fj,0(t, x)| ≤ Aj,0�1Kψ(t)μ(t)
m ≤ Aj,0�1Kψ(t)μ(t)

m

R − |x| − ϕ(t)/r

for some Aj,0 > 0. Since (3.7) is equivalent to the integral equation

(t∂t )
jw(t, x) =

∫ t

0

(τ
t

)
fj,0(τ, x)

dτ

τ
,

by (1) of Lemma 3.2, we obtain

|(t∂t )jw(t, x)| ≤
∫ t

0
|fj,0(τ, x)|dτ

τ
≤

∫ t

0

Aj,0�1Kψ(τ)μ(τ)
m

R − |x| − ϕ(τ)/r

dτ

τ

≤ Aj,0�1Kψ(t)μ(t)
m−1ϕ(t)

R − |x| − ϕ(t)/r
on Wr ,

which proves (3.4) for any (j, 0) ∈ Im.
Now let us show (3.4) for any (j, α) ∈ I+

m . Set

fj,α(t, x) = (t∂t + 1)|α|(t∂t )j ∂αx w(t, x) . (3.8)

By (3.6) and Lemma 3.1, we have the estimate

|fj,α(t, x)| ≤ Aj,α�1Kψ(t)μ(t)
m

(R − |x| − ϕ(t)/r)|α|

for some Aj,α > 0. Since the equation (3.8) is equivalent to the integral equation

(t∂t )
j ∂αx w(t, x) =

∫ t

0
· · ·

∫ τ2

0

(τ|α|
t

)
· · ·

(τ1

τ2

)
fj,α(τ1, x)

dτ1

τ1
· · · dτ|α|

τ|α|
,

by (1) and (2) of Lemma 3.2, we obtain

|(t∂t )j ∂αx w(t, x)| ≤
∫ t

0
· · ·

∫ τ2

0
|fj,α(τ1, x)|dτ1

τ1
· · · dτ|α|

τ|α|

≤
∫ t

0
· · ·

∫ τ2

0

Aj,α�1Kψ(τ1)μ(τ1)
m

(R − |x| − ϕ(τ1)/r)|α|
dτ1

τ1
· · · dτ|α|

τ|α|
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≤ Aj,α�1Kψ(t)μ(t)
m−|α|r |α|−1ϕ(t)

(|α| − 1)! × (R − |x| − ϕ(t)/r)
on Wr .

This proves (3.4) for any (j, α) ∈ I+
m .

From the above computations, it is clear that a suitable � > 0 exists so that (3.4) holds
for any (j, α) ∈ Im. The estimate in (2) can be proved in the same way, noting that μ(t) ≤
μ(T ) ≤ r for sufficiently small T > 0. �

4. Proof of Theorem 2.2 under (2.6)

In this section, we solve the equation (1.1) under the following assumptions:

|a(t, x)| ≤ Aμ(t)2m on [0, T1] ×DR1 , (4.1)

|bj,α(t, x)| ≤ Bj,αμ(t)
|α| on [0, T1] ×DR1 , (4.2)

for some A > 0, Bj,α > 0 ((j, α) ∈ I+
m ), 0 < T1 < T0, and 0 < R1 < R0.

Take any 0 < ρ1 < ρ0. We have the following result.

THEOREM 4.1. Suppose that (4.1) and (4.2) hold. Then there exist T > 0, R > 0,
r > 0, and M > 0 with Mμ(T )m < ρ1 such that the equation (1.1) has a unique solution
u(t, x) ∈ Xm(Wr) that satisfies the estimates

|(t∂t )j ∂αx u(t, x)| ≤ Mμ(t)2m−d(α) onWr for all (j, α) ∈ Im .
We prove this result by the method of Nirenberg [8] and Nishida [9] with a slight modi-

fication so that it can be applied to the casem ≥ 2 without reducing the equation to first order
systems.

Set �1 = [0, T1] ×DR1 ×DNρ1
and

CR = sup
�1

{∣∣∣ ∂2R2

∂zj,α∂zi,β
(t, x, z)

∣∣∣ ; (j, α), (i, β) ∈ Im
}
.

Let 0 < T ≤ T1 and 0 < R ≤ R1. As in the previous sections, we set W to be either
[0, T ] ×DR or Wr (with arbitrary r > 0).

LEMMA 4.2. Let wi(t, x) ∈ Xm(W) (i = 1, 2). If |(t∂t )j ∂αx wi | ≤ Mμ(t)m ≤ ρ1

(i = 1, 2) onW for any (j, α) ∈ Im, then�[wi] ∈ X0(W) (i = 1, 2) and we have

|�[w1] −�[w2]| ≤
∑

(j,α)∈Im
(Bj,α + CRNM)μ(t)d(α)|(t∂t )j ∂αx (w1 −w2)|

onW , where Bj,0 = 0 (for j < m).

Before constructing approximate solutions uk(t, x) (k = 0, 1, 2, . . .) for the equation
(1.1), we introduce a decreasing sequence of positive numbers {rk}∞k=0 that will play an im-
portant role in the proof of their convergence. We take any M ≥ A and then choose a suffi-
ciently small T > 0 so that Mμ(T )m ≤ ρ1. We also take a sufficiently small R > 0 so that
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Propositions 3.3 and 3.4 are valid on W . Take a constant c0 > 0 such that

c0 ≥ max
{

1, CRN2M +
∑

(j,α)∈I+
m

Bj,α

}
(4.3)

and let � be the same constant as in Proposition 3.4. We choose r0 > 0 sufficiently small so
that 0 < 2�c0r0 < 1 and 0 < r0 ≤ 1, and define the decreasing sequence r0 > r1 > r2 > · · ·
by

rk = r0 ×
k∏

p=1

(
1 − (2�c0r0)

p
)
, k = 1, 2, . . . .

This is a sequence of positive numbers converging to a positive number r∞. Moreover, we
have

(�c0r0)
k

1 − rk/rk−1
=

(1

2

)k
, k = 1, 2, . . . . (4.4)

In addition to the condition set on T > 0, we also require it to satisfy μ(T ) ≤ r∞.
Now let us solve the equation (1.1). As seen in (2.5), we can consider the equation in the

form

Pu = a(t, x)+�[u] . (4.5)

We solve (4.5) by the method of successive approximations. Set u0(t, x) ≡ 0 and define the
approximate solutions uk(t, x) ∈ Xm(Wrk−1) (k = 1, 2, . . .) by

Puk = a(t, x)+�[uk−1] . (4.6)

Since rk > rk+1 for any k ≥ 0, we have

Wr0 ⊃ Wr1 ⊃ Wr2 ⊃ · · · ⊃ Wrk ⊃ · · · ⊃ Wr∞ .

LEMMA 4.3. For any k ≥ 1, the equation (4.6) has a unique solution uk(t, x) ∈
Xm(Wrk−1) which satisfies the following estimates for any (j, α) ∈ Im:

|(t∂t )j ∂αx (uk − uk−1)| ≤ �c0(�c0r0)
k−1Mμ(t)2m−d(α)ϕ(t)

R − |x| − ϕ(t)/rk−1
onWrk−1 , (4.7)

|(t∂t )j ∂αx uk| ≤
k∑
i=1

(1/2)iMμ(t)2m−d(α) onWrk . (4.8)

Before proceeding to the proof of Lemma 4.3, we note that in the equation (4.6), if
uk−1(t, x) ∈ Xm(Wrk−1) is already known and on Wrk−1 , it satisfies |(t∂t )j ∂αx uk−1(t, x)| ≤
Mμ(t)m for any (j, α) ∈ Im, then the right-hand side of the equation makes sense and we can
consider it as an equation with unknown function uk.
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PROOF OF LEMMA 4.3. We prove by mathematical induction.
(Base case) By (1) of Proposition 3.4, we see that the equation (4.6) (k = 1) has a unique

solution u1(t, x) ∈ Xm(Wr0) which satisfies

|(t∂t )j ∂αx u1| ≤ �Aμ(t)2m−d(α)rd(α)−1
0 ϕ(t)

R − |x| − ϕ(t)/r0
.

This leads to (4.7) (k = 1) since M ≥ A, c0 ≥ 1, and 0 < r0 ≤ 1. Consequently, since
R − |x| − ϕ(t)/r0 ≥ ϕ(t)(1/r1 − 1/r0) onWr1 , we obtain

|(t∂t )j ∂αx u1| ≤ �c0Mμ(t)
2m−d(α)ϕ(t)

ϕ(t)(1/r1 − 1/r0)
= �c0r1Mμ(t)

2m−d(α)

1 − r1/r0

≤ �c0r0Mμ(t)
2m−d(α)

1 − r1/r0
= (M/2)μ(t)2m−d(α) onWr1 .

The last equality follows from (4.4) with k = 1. This proves (4.8) (k = 1).
(Inductive step) Suppose that for each k = 1, 2, . . . , p, the equation (4.6) has a unique

solution uk(t, x) ∈ Xm(Wrk−1) satisfying the estimates (4.7) and (4.8). Let us consider the
equation (4.6) (k = p + 1) on Wrp , that is,

Pup+1 = a(t, x)+�[up] on Wrp . (4.9)

By Lemma 4.2 we have �[up] ∈ X0(Wrp) and so by Proposition 3.3, (4.9) has a unique
solution up+1(t, x) ∈ Xm(Wrp).

Let us show (4.7) (k = p + 1). We know that (up+1 − up)(t, x) is the unique solution
of the equation

P(up+1 − up) = �[up] −�[up−1] onWrp . (4.10)

By (4.7) (k = p), (4.8) (k = p − 1, p), and the fact that rp < rp−1, Wrp ⊂ Wrp−1 , and
μ(t) ≤ μ(T ) ≤ r∞ < 1, the following estimates hold onWrp for any (j, α) ∈ Im:

|(t∂t )j ∂αx (up − up−1)| ≤ �c0(�c0r0)
p−1Mμ(t)2m−d(α)ϕ(t)

R − |x| − ϕ(t)/rp
,

|(t∂t )j ∂αx up| ≤ Mμ(t)2m−d(α) ≤ Mμ(t)m ,

|(t∂t )j ∂αx up−1| ≤ Mμ(t)2m−d(α) ≤ Mμ(t)m .

Thus, by Lemma 4.2 with w1 = up and w2 = up−1, we obtain

|�[up] −�[up−1]|

≤
∑

(j,α)∈Im
(Bj,α + CRNM)μ(t)d(α) × �c0(�c0r0)

p−1Mμ(t)2m−d(α)ϕ(t)
R − |x| − ϕ(t)/rp

≤ �c2
0(�c0r0)

p−1Mμ(t)2mϕ(t)

R − |x| − ϕ(t)/rp
on Wrp .



234 DENNIS B. BACANI, JOSE ERNIE C. LOPE AND HIDETOSHI TAHARA

Applying (2) of Proposition 3.4 with ψ(t) = μ(t)mϕ(t) to the equation (4.10), we arrive at
the estimate

|(t∂t )j ∂αx (up+1 − up)| ≤ �× �c2
0(�c0r0)

p−1Mμ(t)2m−d(α)rd(α)p ϕ(t)

R − |x| − ϕ(t)/rp

≤ �c0(�c0r0)
pMμ(t)2m−d(α)ϕ(t)

R − |x| − ϕ(t)/rp
on Wrp

for any (j, α) ∈ Im, where the second inequality follows from the fact that rd(α)p < r0. This
proves (4.7) (k = p + 1).

Now let us show (4.8) (k = p+ 1). Since R− |x|− ϕ(t)/rp ≥ ϕ(t)(1/rp+1 − 1/rp) on
Wrp+1 , by (4.7) (k = p + 1) we have

|(t∂t )j ∂αx (up+1 − up)| ≤ �c0(�c0r0)
pMμ(t)2m−d(α)ϕ(t)

ϕ(t)(1/rp+1 − 1/rp)

≤ (�c0r0)
p+1Mμ(t)2m−d(α)

(1 − rp+1/rp)

=
(1

2

)p+1
Mμ(t)2m−d(α) on Wrp+1 .

This estimate together with (4.8) (k = p) yields (4.8) (k = p+1)when we apply the Triangle
Inequality. This concludes the inductive step and the proof of Lemma 4.3. �

Let us show the existence of a solution of (4.5) by using the approximate solutions
uk(t, x) ∈ Xm(Wrk ) (k = 1, 2, . . .) constructed in Lemma 4.3. Since r0 > r1 > r2 >

· · · > r∞ > 0, by restricting the domain of uk(t, x) (k = 1, 2, . . .) to Wr∞ , we have
uk(t, x) ∈ Xm(Wr∞) and

uk(t, x) =
k∑
i=1

(ui(t, x)− ui−1(t, x)) on Wr∞ .

As can be seen in the proof of Lemma 4.3, the estimates (4.7) and (4.8) imply that our ap-

proximate solutions converge to a function u(t, x) ∈ Xm(Wr∞) satisfying |(t∂t )j ∂αx u| ≤
Mμ(t)2m−d(α) on Wr∞ for any (j, α) ∈ Im. This proves the existence of a solution of (1.1).

The uniqueness of the solution can be proved in the same way. This completes the proof
of Theorem 4.1.

5. Proof of Theorem 2.2 in the general case

In this section, we prove Theorem 2.2 in the general case, that is, we solve the equation
(1.1) under the following assumptions:

|a(t, x)| ≤ Aμ(t)m on [0, T1] ×DR1 , (5.1)
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|bj,α(t, x)| ≤ Bj,αμ(t)
|α| on [0, T1] ×DR1 , (5.2)

for some A > 0, Bj,α > 0 ((j, α) ∈ I+
m ), 0 < T1 < T0 and 0 < R1 < R0.

Take any 0 < ρ1 < ρ0. We have the following result:

PROPOSITION 5.1. Suppose that (5.1) and (5.2) hold. Then there exist T > 0, R > 0,
M > 0 with Mμ(T )m < ρ1, A� > 0, and w(t, x) ∈ Xm([0, T ] × DR) that satisfy the
following conditions:

|(t∂t )j ∂αx w(t, x)| ≤ Mμ(t)m on [0, T ] ×DR for any (j, α) ∈ Im , (5.3)

|a(t, x)+�[w] − Pw| ≤ A�μ(t)2m on [0, T ] ×DR . (5.4)

Let us assume Proposition 5.1 for a while. Using this result, we can reduce our problem
to Theorem 4.1 in the following way. By setting

a�(t, x) = a(t, x)+�[w] − Pw ,
u(t, x) = w(t, x)+ V (t, x) ,

the equation (1.1) with respect to u(t, x) can be reduced to the equation

PV = a�(t, x)+�[w + V ] −�[w] (5.5)

with unknown function V (t, x). It is easy to see that the equation (5.5) may be expressed in
the form

(t∂t )
mV = a�(t, x)+

∑
(j,α)∈Im

b�j,α(t, x)(t∂t )
j ∂αx V

+ R�
2

(
t, x,

{
(t∂t )

j ∂αx V
}
(j,α)∈Im

)
(5.6)

for some b�j,α(t, x) and R�
2(t, x, z), which are continuous functions in t and holomorphic in

the other variables. Moreover, we have

b�j,α(t, x) = bj,α(t, x)+ ∂R2

∂zj,α

(
t, x,

{
(t∂t )

i∂βx w
}
(i,β)∈Im

)

= O(μ(t)|α|)+O(μ(t)m) = O(μ(t)|α|) (as t −→ 0)

uniformly on DR for any (j, α) ∈ I+
m . Thus, by applying Theorem 4.1 to the equation (5.6),

we obtain a solution V (t, x) ∈ Xm(Wr) of (5.5) for some r > 0. This in turn gives the
desired solution u(t, x) = w(t, x) + V (t, x) ∈ Xm(Wr) in Theorem 2.2, the uniqueness of
which can be proved by the same reduction technique above.

Thus, to complete the proof of Theorem 2.2, it is sufficient to show Proposition 5.1.

PROOF OF PROPOSITION 5.1. Set w0(t, x) ≡ 0 and define the approximate solutions
wi(t, x) (i = 1, . . . ,m) for the equation (1.1) by

Pwi = a(t, x)+�[wi−1] . (5.7)



236 DENNIS B. BACANI, JOSE ERNIE C. LOPE AND HIDETOSHI TAHARA

Set w(t, x) = wm(t, x). Let us show that this w(t, x) satisfies the conditions (5.3) and
(5.4).

For simplicity, we take T1 > 0 and R1 > 0 sufficiently small so that Proposition 3.3 is
valid for W = [0, T ] ×DR for any 0 < T ≤ T1 and 0 < R ≤ R1. We also take a constant
c0 > 0 satisfying (4.3), a sequence 0 < Rm+1 < Rm < · · · < R2 < R1, and then choose a
sequence {Mi; i = 0, 1, . . . ,m} such that M0 = A (the constant in (5.3)) and

m!�1c0Mi−1

(Ri − Ri+1)m
≤ Mi for i = 1, . . . ,m . (5.8)

Finally, we take T > 0 sufficiently small so that μ(T ) ≤ 1 and

(M1 + · · · +Mm)μ(T )
m ≤ ρ1 .

LEMMA 5.2. For any 1 ≤ i ≤ m, there exists a unique solution wi(t, x) ∈ Xm([0, T ]
×DRi ) of the equation (5.7) that satisfies the following estimates for any (j, α) ∈ Im:

|(t∂t )j ∂αx (wi −wi−1)| ≤ Miμ(t)
m+i−1 on [0, T ] ×DRi+1 , (5.9)

|(t∂t )j ∂αx wi | ≤ (M1 + · · · +Mi)μ(t)
m on [0, T ] ×DRi+1 . (5.10)

PROOF. Since w0(t, x) ≡ 0, by (5.1) and Proposition 3.3, the equation (5.7) (i = 1)

has a unique solution w1(t, x) ∈ Xm([0, T ] ×DR1) and it satisfies |(t∂t )jw1| ≤ �1Aμ(t)
m

on [0, T ] ×DR1 for any j = 0, 1, . . . ,m. Then, by Cauchy’s estimate, we obtain

|(t∂t )j ∂αx w1| ≤ |α|!�1Aμ(t)
m

(R1 − R2)|α| ≤ M1μ(t)
m on [0, T ] ×DR2

for any (j, α) ∈ Im. This proves that (5.9) and (5.10) hold for i = 1.
We now proceed to the inductive step. Suppose that for each i = 1, . . . , p, the equation

(5.7) has a unique solution wi(t, x) ∈ Xm([0, T ] ×DRi ) that satisfies the estimates (5.9) and
(5.10). Let us now consider the equation (5.7) (i = p + 1) on [0, T ] ×DRp+1 , that is,

Pwp+1 = a(t, x)+�[wp] on [0, T ] ×DRp+1 . (5.11)

By Lemma 4.2 we have �[wp] ∈ X0([0, T ] ×DRp+1) and so by Proposition 3.3, (5.11) has

a unique solution wp+1(t, x) ∈ Xm([0, T ] ×DRp+1).
Let us show (5.9) (i = p + 1). We know that (wp+1 − wp)(t, x) is the unique solution

of the equation

P(wp+1 −wp) = �[wp] −�[wp−1] on [0, T ] ×DRp+1 . (5.12)

By Lemma 4.2 and the induction hypothesis, we have

|�[wp] −�[wp−1]|
≤

∑
(j,α)∈Im

(Bj,α + CRNM)μ(t)d(α) ×Mpμ(t)
m+p−1
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≤ c0Mpμ(t)
m+p on [0, T ] ×DRp+1 .

Therefore, by applying Proposition 3.3 to the equation (5.12), we arrive at the estimate

|(t∂t )j (wp+1 − wp)| ≤ �1c0Mpμ(t)
m+p on [0, T ] ×DRp+1 for any j = 0, 1, . . . ,m. Con-

sequently, when we apply Cauchy’s estimates and (5.8), we obtain

|(t∂t )j ∂αx (wp+1 −wp)| ≤ |α|!�1c0Mpμ(t)
m+p

(Rp+1 − Rp+2)|α| ≤ Mp+1μ(t)
m+p

on [0, T ] ×DRp+2 for any (j, α) ∈ Im. This proves (5.9) (i = p + 1).
The estimate (5.10) (i = p + 1) follows immediately from (5.9) (i = p + 1) and (5.10)

(i = p) when we apply the Triangle Inequality. This completes the proof of Lemma 5.2. �

Now, let us complete the proof of Proposition 5.1. Set R = Rm+1 andM = M1 + · · · +
Mm. Then it follows that the function w(t, x) = wm(t, x) belongs to Xm([0, T ] ×DR) and
by (5.10) (i = m), it satisfies the estimate (5.3). Moreover, by Lemma 4.2 we see that this
function also satisfies the estimate

|a(t, x)+�[w] − Pw| = |�[wm] −�[wm−1]|
≤

∑
(j,α)∈Im

(Bj,α + CRNM)μ(t)d(α) ×Mmμ(t)
2m−1

≤ c0Mmμ(t)
2m ≤ A�μ(t)2m on [0, T ] ×DR ,

for some A� > 0. �

6. A generalization

We finish off by giving a slight generalization of our main result. It is clear that Theo-
rem 2.2 holds when a(t, x) = O(μ(t)q) for some q ∈ [m,∞). Now, let 0 < q < m, and let
us consider the case

a(t, x) = O(μ(t)q) uniformly on DR0 (as t −→ 0) . (6.1)

In this case, it seems difficult to solve the equation (1.1) restricted only to the conditions
(A1)− (A3), (2.3), and (2.4). However, we can obtain a unique solvability result by imposing
the following additional assumption on the second-order partial derivatives of R2:

∂2R2

∂zj,α∂zi,β
(t, x, z) = O(μ(t)max{|α|,|β|}−q) uniformly on DR0 ×DNρ0

(as t −→ 0) for any (j, α), (i, β) ∈ Im. (6.2)

Note that (6.2) is trivial if q ≥ m.
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THEOREM 6.1. Suppose that (A1) − (A3), (2.3), (2.4), (6.1), and (6.2) hold. Then
there exist r > 0, R > 0, T > 0, andM > 0 withMμ(T )q < ρ0 such that the equation (1.1)
has a unique solution u(t, x) in Xm(Wr) that satisfies the estimates

|(t∂t )j ∂αx u(t, x)| ≤ Mμ(t)q onWr for all (j, α) ∈ Im .
Set δ = min{q, 1} > 0. The following lemma shows that Theorem 6.1 can be proved in

a similar way as Theorem 2.2.

LEMMA 6.2. The following statements hold for sufficiently small T1 > 0 and R1 > 0:
(1) Let 0 < T ≤ T1 and 0 < R ≤ R1. Let wi(t, x) ∈ Xm(W) (i = 1, 2), where W can

be either [0, T ] ×DR orWr (for any r > 0). If |(t∂t )j ∂αx wi | ≤ Mμ(t)q (i = 1, 2) on W for
any (j, α) ∈ Im, then �[wi] ∈ X0(W) (i = 1, 2) and we have

|�[w1] −�[w2]| ≤
∑

(j,α)∈Im
(Bj,α + CRNM)μ(t)δ |(t∂t )j ∂αx (w1 −w2)|

onW , where Bj,0 = 0 (for j < m).

(2) Let w(t, x) ∈ Xm([0, T1] × DR1). If |(t∂t )k∂γx w| ≤ Mμ(t)q on [0, T1] × DR1 for
any (k, γ ) ∈ Im, then there exists Cj,α > 0 such that

∣∣∣ ∂R2

∂zj,α

(
t, x,

{
(t∂t )

k∂
γ
x w

}
(k,γ )∈Im

)∣∣∣ ≤ Cj,αμ(t)
|α| on [0, T1] ×DR1

for any (j, α) ∈ I+
m .

PROOF. The first result (1) of this lemma can be verified in the same way as
Lemma 4.2.

Let us show the second result. Under the additional assumption (6.2), we see that

∂R2

∂zj,α

(
t, x,

{
(t∂t )

k∂
γ
x w

}
(k,γ )∈Im

)

=
∑

(i,β)∈Im

∫ 1

0

∂2R2

∂zi,β∂zj,α

(
t, x,

{
s(t∂t )

k∂
γ
x w

}
(k,γ )∈Im

)
ds × (t∂t )

i∂βx w

=
∑

(i,β)∈Im
O(μ(t)max{|α|,|β|}−q )×O(μ(t)q)

= O(μ(t)|α|) uniformly on DR1 (as t −→ 0) .

This gives the desired estimate in (2). �

By using (1) of Lemma 6.2, we can find a w(t, x) ∈ Xm([0, T ] × DR) such that the
conditions (5.3) and (5.4) are satisfied. Following the computations in Section 5, by using
(2) of Lemma 6.2, we can reduce our problem to the same situation in Theorem 4.1. This
completes the proof of Theorem 6.1.
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