One-parameter Families of Homeomorphisms, Topological Monodromies, and Foliations

Kenjiro SASAKI

Kyoto University

(Communicated by K. Ahara)

Abstract. The homological monodromy of a degeneration whose singular fiber has at most normal crossings was described by C. H. Clemens. In his work, local monodromies were described in detail. It is actually a classical result that the local monodromy around a node is a Dehn twist. For higher-dimensional case, we describe local monodromies alternatively: On a local smooth fiber of dimension $n \ge 2$, we construct n + 1 singular foliations and then describe the action of the local monodromy on each leaf. Here the *i*th singular foliation is used for describing its action on the *i*th face of the boundary of a local smooth fiber.

1. Introduction

Let $\pi: M \to \Delta$ be a degenerating family (a *degeneration*) of complex manifolds over a disk $\Delta = \{z \in \mathbb{C} : |z| < r\}$, that is, $\pi^{-1}(s)$ ($s \neq 0$) is smooth and $\pi^{-1}(0)$ is singular. The *topological monodromy* of $\pi: M \to \Delta$ is an automorphism of a smooth fiber $\pi^{-1}(s)$ obtained from a 'parallel translation' on $M \setminus \pi^{-1}(0)$ as illustrated in Figure 1. (In [8], a topological monodromy means the isotopy class of this automorphism.) For each $i = 0, 1, 2, \ldots, 2 \dim \pi^{-1}(s)$, the automorphism of $H_i(\pi^{-1}(s), \mathbb{C})$ induced from the topological monodromy is the *ith homological monodromy* of $\pi: M \to \Delta$.

C. H. Clemens [3] described each homological monodromy of a degeneration whose singular fiber has at most normal crossings, and showed that it is *quasi-unipotent*, that is, some power is unipotent. On the other hand, Y. Matsumoto and J. M. Montesinos [8] showed that the topological type of a degeneration of Riemann surfaces of genus ≥ 2 is determined by its topological monodromy. A simple example of a degeneration of Riemann surfaces is a Lefschetz fibration whose topological monodromy is a Dehn twist. In higher-dimensional case, there are two different generalizations of a Dehn twist: Consider *additive* and *multiplicative* A-singularities:

$$V := \{ (z_1, z_2, \dots, z_n, t) \in \mathbf{C}^{n+1} : z_1^2 + z_2^2 + \dots + z_n^2 = t \},$$

$$W := \{ (z_1, z_2, \dots, z_n, t) \in \mathbf{C}^{n+1} : z_1 z_2 \cdots z_n = t \}.$$

Received September 18, 2015; revised June 2, 2016

Mathematics Subject Classification: 32G05

Key words: degeneration of complex manifolds, topological monodromy, Dehn twist

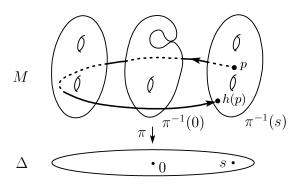


FIGURE 1. A topological monodromy $h: \pi^{-1}(s) \to \pi^{-1}(s)$

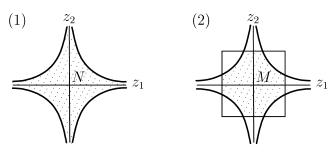
Then $f: V \to \mathbb{C}$, $f(z_1, \dots, z_n, t) = t$ and $g: W \to \mathbb{C}$, $g(z_1, \dots, z_n, t) = t$ are degenerations, and their topological monodromies are two different generalizations of a Dehn twist.

REMARK. If $n \geq 3$, V and W are *not* isomorphic (in contrast for n = 2, they are isomorphic). In fact, the singularities of the singular fiber of $g: W \to \mathbb{C}$ are not isolated, while that of $f: V \to \mathbb{C}$ is isolated.

The topological monodromy of the degeneration $f: V \to \mathbb{C}$ is described by the *double covering method* (see [2] p. 6). We will describe the topological monodromy of the degeneration $g: W \to \mathbb{C}$. First note that W is isomorphic to \mathbb{C}^n via $(z_1, z_2, \ldots, z_n, t) \mapsto (z_1, z_2, \ldots, z_n)$, accordingly $g: W \to \mathbb{C}$ is identified with a map $\pi: \mathbb{C}^n \to \mathbb{C}$ given by $\pi(z_1, z_2, \ldots, z_n) = z_1 z_2 \cdots z_n$.

Now set $N := \{(z_1, z_2, \dots, z_n) \in \mathbb{C}^n : |z_1 z_2 \dots z_n| \le 1\}$ and $D := \{s \in \mathbb{C} : |s| \le 1\}$. The restriction $\pi : N \to D$ of $\pi : \mathbb{C}^n \to \mathbb{C}$ to N is a 'shrinking' of $\pi : \mathbb{C}^n \to \mathbb{C}$. Here N is closed but not compact (see (1) of Schematic figure). To obtain a compact one, take $\rho > 1$ and set $M := \{(z_1, z_2, \dots, z_n) \in N : |z_i| \le \rho \ (i = 1, 2, \dots, n)\}$. Note that M is compact, indeed M is the intersection of the closed set N and the polydisk of radius ρ (see (2) of Schematic figure). The restriction $\pi : M \to D$ of $\pi : \mathbb{C}^n \to \mathbb{C}$ to M is a local model of a degeneration of complex manifolds.

In order to describe the homological monodromy of a degeneration of complex manifolds, Clemens [3] describes the monodromy of the degeneration $\pi:M\to D$ above. In this paper, we alternatively describe it from a different viewpoint. While for n=2, the topological monodromy of π is known to be a (-1)-Dehn twist of an annulus, for $n\geq 3$, we describe the action of the topological monodromy in terms of n foliations constructed on a smooth fiber of π ; precisely speaking, these are singular foliations — the dimension of some leaf is less than that of a generic leaf. The ith foliation is used for describing its action on the ith face of the boundary of a smooth fiber.



Schematic figure for n=2

Description of topological monodromies. The description of $\pi^{-1}(s)$ $(s = re^{i\xi} \neq 0)$ proceeds as follows:

STEP 1. Express
$$\pi^{-1}(s) = J_r \times K_{\xi}$$
, where
$$J_r := \left\{ (x_1, \dots, x_n) \in \mathbf{R}^n : 0 \le x_i \le \rho, \ x_1 \cdots x_n = r \right\},$$

$$K_{\xi} := \left\{ (e^{\mathrm{i}\alpha_1}, \dots, e^{\mathrm{i}\alpha_n}) \in T^n : \alpha_1 + \dots + \alpha_n \equiv \xi \mod 2\pi \right\}$$

are respectively homeomorphic to the standard (n-1)-simplex Δ_{n-1} and an (n-1)-dimensional torus T^{n-1} .

STEP 2. We explicitly construct homeomorphisms $\Psi: J_r \to \Delta_{n-1}$ and $\Phi: K_\xi \to T^{n-1}$. The construction of the former is quite involved and based on induction on the dimension. The latter is constructed as follows: Noting that $K_\xi \subset T^n$, let $\mathrm{pr}: T^n \to T^{n-1}$ be a projection given by $\mathrm{pr}: (e^{\mathrm{i}\alpha_1},\ldots,e^{\mathrm{i}\alpha_n}) \mapsto (e^{\mathrm{i}\alpha_1},\ldots,e^{\mathrm{i}\alpha_{n-1}})$. Then the restriction $\Phi = \mathrm{pr}|_{K_\xi}: K_\xi \to T^{n-1}$ is a homeomorphism.

STEP 3. Using Ψ , we construct a 1-parameter family of homeomorphisms $\{f_{\theta}: M \to M\}_{0 \leq \theta \leq 2\pi}$ by $f_{\theta}: (z_1,\ldots,z_n) \mapsto (e^{\mathrm{i}\theta\lambda_1}z_1,\ldots,e^{\mathrm{i}\theta\lambda_n}z_n)$, where $(\lambda_1,\ldots,\lambda_n):=\Psi(|z_1|,\ldots,|z_n|)$. Then $h:=f_{2\pi}:\pi^{-1}(s)\to\pi^{-1}(s)$ is the topological monodromy of π . Under the identification of $\pi^{-1}(s)$ with $\Delta_{n-1}\times T^{n-1}$ via $\Psi\times\Phi$, we show that h is given by

$$\frac{\left((\lambda_1,\ldots,\lambda_n),\ (t_1,\ldots,t_{n-1})\right)}{\longmapsto \left((\lambda_1,\ldots,\lambda_n),\ (e^{2\pi i\lambda_1}t_1,\ldots,e^{2\pi i\lambda_{n-1}}t_{n-1})\right)}.$$
(1)

(See Remark 1 in §4 for another 1-parameter family constructed by Clemens [3].)

STEP 4. As illustrated in Figure 2, we shrink the (n-1)-simplex Δ_{n-1} to obtain a family of (n-1)-simplexes $\Delta_{n-1|u}$ $(0 \le u \le 1)$ such that $\Delta_{n-1|1} = \Delta_{n-1}$ and $\Delta_{n-1|0}$ is the barycenter b of Δ_{n-1} .

Then $\{\partial \Delta_{n-1|u}\}_{0 \le u \le 1}$ is a singular foliation of Δ_{n-1} . We foliate $\Delta_{n-1} \times T^{n-1}$ by $\partial \Delta_{n-1|u} \times T^{n-1}$

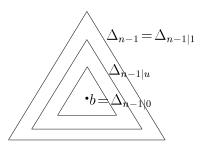


FIGURE 2

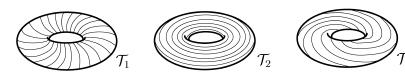


FIGURE 3

 T^{n-1} $(0 \le u \le 1)$:

$$\Delta_{n-1} \times T^{n-1} = \coprod_{0 \le u \le 1} (\partial \Delta_{n-1|u} \times T^{n-1})$$
 (disjoint union).

Now identify $\Delta_{n-1} \times T^{n-1}$ with a smooth fiber of $\pi: M \to D$ and regard the topological monodromy of π as a homeomorphism $h: \Delta_{n-1} \times T^{n-1} \to \Delta_{n-1} \times T^{n-1}$. By (1), h maps each leaf $\partial \Delta_{n-1|u} \times T^{n-1}$ to itself. To describe this action, we introduce n foliations of $\partial \Delta_{n-1|u} \times T^{n-1}$. First let \mathcal{T}_i ($i=1,2,\ldots,n$) be a foliation of T^{n-1} by parallel subtori $T^{n-2}_{i|v}$ ($v \in S^1$) as illustrated in Figure 3 (for n=3). Then $\partial \Delta_{n-1|u} \times T^{n-1}$ is foliated by $\partial \Delta_{n-1|u} \times T^{n-2}_{i|v}$ ($v \in S^1$).

As mentioned above, h maps $\partial \Delta_{n-1|u} \times T^{n-1}$ to itself. We describe this action separately for u = 0 and $u \neq 0$.

(D1) Where $b = \partial \Delta_{n-1|0}$ is the barycenter of Δ_{n-1} , h acts on $\{b\} \times T^{n-1}$ as

$$(b, t_1, t_2, \dots, t_{n-1}) \longmapsto (b, e^{2\pi i/n}t_1, e^{2\pi i/n}t_1, \dots, e^{2\pi i/n}t_{n-1}).$$

In particular, h maps $\{b\} \times T_{i|v}^{n-2}$ to $\{b\} \times T_{i|ve^{2\pi i/n}}^{n-2}$.

Now let $\partial \Delta_{n-1}^{(j)}$ $(j=1,2,\ldots,n)$ denote the jth face of $\partial \Delta_{n-1}$, accordingly $\partial \Delta_{n-1|u}^{(j)}$ denotes the jth face of $\partial \Delta_{n-1|u}$ $(u \neq 0)$. See Figure 4.

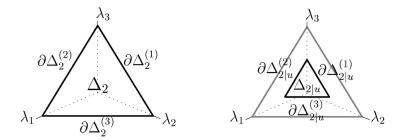


FIGURE 4

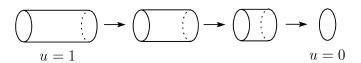


FIGURE 5

(D2) The action of h on $\partial \Delta_{n-1|u} \times T^{n-1}$ ($u \neq 0$) maps each face $\partial \Delta_{n-1|u}^{(j)} \times T^{n-1}$ (j = 1, 2, ..., n) to itself. Setting $\mu := \frac{1-u}{n}$, this map is explicitly given by $\left((\lambda_1, \ldots, \lambda_{j-1}, \mu, \lambda_{j+1}, \ldots, \lambda_n), (t_1, t_2, \ldots, t_{n-1})\right) \longmapsto \left((\lambda_1, \ldots, \lambda_{j-1}, \mu, \lambda_{j+1}, \ldots, \lambda_n), (e^{2\pi i \lambda_1} t_1, \ldots, e^{2\pi i \mu} t_j, \ldots, e^{2\pi i \lambda_{n-1}} t_{n-1})\right).$

Next fixing $u \neq 0$ and i, set $\mathcal{L}_v := \partial \Delta_{n-1|u} \times T_{i|v}^{n-2}$ and consider a foliation $\mathcal{F} = \{\mathcal{L}_v\}_{v \in S^1}$ of $\partial \Delta_{n-1|u} \times T^{n-1}$. Then $\mathcal{L}_v^{(j)} := \partial \Delta_{n-1|u}^{(j)} \times T_{i|v}^{n-2}$ is the *jth face* of \mathcal{L}_v . The following holds:

(D3) h does not preserve \mathcal{F} — each face $\mathcal{L}_v^{(j)}$ $(j \neq i)$ of a leaf \mathcal{L}_v of \mathcal{F} is not mapped to a face of a leaf of \mathcal{F} . In contrast, for the case j=i,h maps $\mathcal{L}_v^{(i)}$ to $\mathcal{L}_{ve^{2\pi i(1-u)/n}}^{(i)}$. To describe the action of h on $\partial \Delta_{n-1|u}^{(i)} \times T^{n-1}$, we may thus describe its action on $\mathcal{L}_v^{(i)}$ for each $v \in S^1$ separately.

For the case n=3, each face of $\partial \Delta_{n-1|u} \times T_{i|v}^{n-2}$ $(u \neq 0)$ is an annulus, which as $u \to 0$, shrinks to a circle S^1 (Figure 5).

Accordingly the action of the topological monodromy h varies from a (-1)-Dehn twist to the $\frac{2\pi}{3}$ -rotation of S^1 (Proposition 2). A similar description is valid for arbitrary dimension.

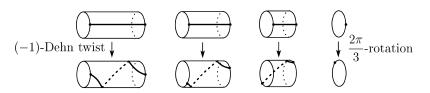


FIGURE 6. The variation of the action of h

2. Local models of degenerations and their fibers

Let $\pi: \mathbb{C}^n \to \mathbb{C}$ be a holomorphic map given by $\pi(z_1, z_2, \dots, z_n) = z_1 z_2 \cdots z_n$. Its singular fiber $Y := \pi^{-1}(0)$ is a complex analytic variety $z_1 z_2 \cdots z_n = 0$ in \mathbb{C}^n . Set $\mathbb{C}^\times := \mathbb{C} \setminus \{0\}$. Each smooth fiber $B_s := \pi^{-1}(s)$ (where $s \neq 0$) is biholomorphic to $(\mathbb{C}^\times)^{n-1}$ via

$$(z_1, z_2, \dots, z_n) \in B_s \longmapsto (z_1, z_2, \dots, z_{n-1}) \in (\mathbb{C}^{\times})^{n-1}.$$
 (2)

Next set $N:=\{(z_1,z_2,\ldots,z_n)\in \mathbb{C}^n:|z_1z_2\cdots z_n|\leq 1\}$ and $D:=\{s\in \mathbb{C}:|s|\leq 1\}$. Take $\rho>1$ and set $\Delta:=\{(z_1,z_2,\ldots,z_n)\in \mathbb{C}^n:|z_i|\leq \rho\ (i=1,2,\ldots,n)\}$. Set $M:=N\cap\Delta$, then the restriction $\pi:M\to D$ of $\pi:\mathbb{C}^n\to\mathbb{C}$ to M is a degeneration. Its singular fiber is $X:=Y\cap\Delta$ while $C_s:=B_s\cap\Delta\ (s\neq0)$ is a smooth fiber. They are compact. Note that since C_s is a domain in B_s , the positive orientation of B_s naturally defines the positive orientation of the complex manifold C_s .

Write a nonzero complex number s as $re^{i\xi}$ $(r > 0, 0 \le \xi < 2\pi)$. Then set

$$J_{r} = \left\{ (x_{1}, x_{2}, \dots, x_{n}) \in \mathbf{R}^{n} : \begin{array}{l} 0 \leq x_{i} \leq \rho \ (i = 1, 2, \dots, n) \\ x_{1}x_{2} \cdots x_{n} = r \end{array} \right\},$$

$$K_{\xi} = \left\{ (e^{i\alpha_{1}}, e^{i\alpha_{2}}, \dots, e^{i\alpha_{n}}) \in T^{n} : \alpha_{1} + \alpha_{2} + \dots + \alpha_{n} \equiv \xi \mod 2\pi \right\},$$

where $T^n = \underbrace{S^1 \times S^1 \times \cdots \times S^1}_n$ is an *n*-dimensional torus. (Note that K_{ξ} is homeomorphic

to T^{n-1} via $(e^{i\alpha_1}, e^{i\alpha_2}, \dots, e^{i\alpha_n}) \in K_{\xi} \mapsto (e^{i\alpha_1}, e^{i\alpha_2}, \dots, e^{i\alpha_{n-1}}) \in T^{n-1}$.) A smooth fiber $C_s = \pi^{-1}(s)$ of $\pi : M \to D$ is homeomorphic to $J_r \times K_{\xi}$ via

$$(z_1,\ldots,z_n)=(x_1e^{\mathrm{i}\alpha_1},\ldots x_ne^{\mathrm{i}\alpha_n})\mapsto \left((x_1,\ldots,x_n),\ (e^{\mathrm{i}\alpha_1},\ldots,e^{\mathrm{i}\alpha_n})\right).$$

We say that J_r is the *real slice* of C_s , which is a part of a higher dimensional hyperboloid in \mathbf{R}^n (Figure 7).

Note that J_r is homeomorphic to the standard (n-1)-simplex $\Delta_{n-1} := \{(\lambda_1, \dots, \lambda_n) \in \mathbf{R}^n : 0 \le \lambda_i \le 1, \ \lambda_1 + \dots + \lambda_n = 1\}$ (Figure 8). In §3, we explicitly construct a homeomorphism between them.

The barycentric divisions of J_r and Δ_{n-1} are given by $J_r = \bigcup_{i=1}^n A_i$ and $\Delta_{n-1} = \bigcup_{i=1}^n B_i$,

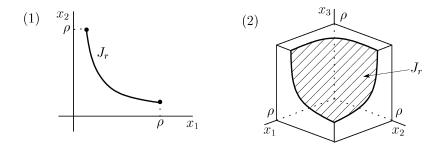


FIGURE 7. (1) n = 2. (2) n = 3.

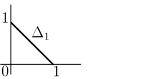
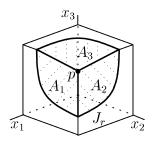


FIGURE 8



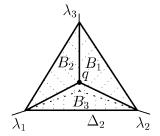


FIGURE 9. The barycentric divisions of J_r and Δ_{n-1} for n=3. The points p and q are the *barycenters* of J_r and Δ_2 .

where

$$A_i = \{(x_1, \dots, x_n) \in J_r : x_i \ge x_j \text{ for any } j \ne i\},$$

$$B_i = \{(\lambda_1, \dots, \lambda_n) \in \Delta_{n-1} : \lambda_i \le \lambda_j \text{ for any } j \ne i\}.$$

The boundary $\partial \Delta_{n-1}$ of Δ_{n-1} consists of n faces $\partial \Delta_{n-1}^{(l)}$ $(l=1,2,\ldots,n)$, where $\partial \Delta_{n-1}^{(l)}$ is defined by $\lambda_l=0$ in Δ_{n-1} . Similarly the boundary ∂J_r of J_r consists of n faces $\partial J_r^{(l)}$ $(l=1,2,\ldots,n)$, where $\partial J_r^{(l)}$ is defined by $x_l=\rho$ in J_r . Subsequently we explicitly construct a homeomorphism from J_r to Δ_{n-1} that maps the

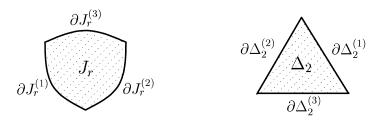


FIGURE 10

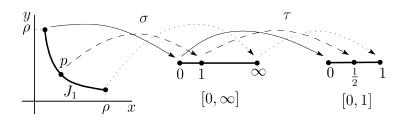


FIGURE 11. $\lambda := \tau \circ \sigma$ maps the midpoint of J_1 to that of [0, 1]

barycentric division of J_r to that of Δ_{n-1} and maps $\partial J_r^{(l)}$ to $\partial \Delta_{n-1}^{(l)}$, $l=1,2,\ldots,n$.

3. Construction of a simplicial homeomorphism Ψ

We construct a homeomorphism $\Psi: J_r \to \Delta_{n-1}$. The construction is based on induction on n, so it is convenient to write n-1 as m and Ψ , J_r , Δ_{n-1} as Ψ_m , J_m , Δ_m . We first construct Ψ_1 (below, x_1 and x_2 are denoted by x and y). Let $\sigma: J_1 \to [0, \infty]$ and $\tau: J_1 \to [0, \infty]$

$$[0,\infty] \to [0,1] \text{ be maps given by } \sigma(x,y) = \frac{\rho - y}{\rho - x} \text{ and } \tau(t) = \begin{cases} \frac{1}{2}t & (t \in [0,1]) \\ 1 - \frac{1}{2t} & (t \in [1,\infty]) \end{cases}$$

then the composite map $\lambda := \tau \circ \sigma : J_1 \to [0, 1]$ is a homeomorphism.

Next define a homeomorphism $\varphi: [0,1] \to \Delta_1$ by $\varphi(t) = (1-t,t)$. The composite map $\Psi_1 := \varphi \circ \lambda: J_1 \to \Delta_1$ is the desired homeomorphism:

$$\Psi_1: (x, y) \in J_1 \longmapsto (1 - \lambda(x, y), \lambda(x, y)) \in \Delta_1.$$
 (3)

As illustrated in Figure 12, Ψ_1 maps the barycentric division of J_1 to that of Δ_1 .

The construction of $\Psi_m: J_m \to \Delta_m \ (m=2,3,...)$ proceeds as follows:

STEP 1. Let $J_m = \bigcup_{i=1}^{m+1} A_i$ and $\Delta_m = \bigcup_{i=1}^{m+1} B_i$ be the barycentric divisions. We then construct homeomorphisms $\psi_i : A_i \to B_i$ (i = 1, 2, ..., m+1) by using the homeomorphism $\Psi_{m-1} : J_{m-1} \to \Delta_{m-1}$.

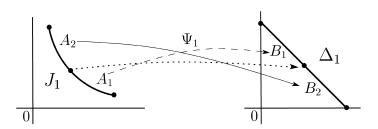


FIGURE 12. Ψ_1 maps A_i to B_i (i = 1, 2)

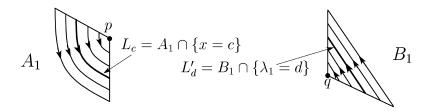


FIGURE 13

STEP 2. We show that $\psi_i = \psi_j$ on $A_i \cap A_j$. Thus $\psi_i : A_i \to B_i$ (i = 1, 2, ..., m+1) together define a homeomorphism $\Psi_m : J_m \to \Delta_m$ that maps the barycentric division of J_m to that of Δ_m .

Construction of $\Psi_2: J_2 \to \Delta_2$. Let $J_2 = A_1 \cup A_2 \cup A_3$ and $\Delta_2 = B_1 \cup B_2 \cup B_3$ be the barycentric divisions. We first construct $\psi_1: A_1 \to B_1$ (below, x_1, x_2, x_3 are denoted by x, y, z). Foliate A_1 , B_1 as illustrated in Figure 13: $A_1 = \{L_c\}_{\sqrt[3]{r} \le c \le \rho}$, $B_1 = \{L'_d\}_{0 \le d \le 1/3}$. Note that $L_{\sqrt[3]{r}} = p$, $L'_{1/3} = q$, and L'_d ($d \ne 1/3$) is homeomorphic to Δ_1 via $\varphi(d, y, z) \mapsto (1 - 2d - (1 - 3d)z, d + (1 - 3d)z)$. For $c \ne \sqrt[3]{r}$, a homeomorphism $\mu: J_1 \to L_c$ is given as follows: First take L_c as subsets of \mathbf{R}^2 by ignoring the x coordinate:

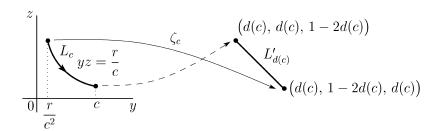
$$L_c = \left\{ (y, z) \in \mathbf{R}^2 : \frac{r}{c^2} \le y \le c, \frac{r}{c^2} \le z \le c, \ yz = \frac{r}{c} \right\}.$$

Let $\nu: \mathbf{R}^2 \to \mathbf{R}^2$ be a parallel transport given by $\nu(y,z) = (y+\rho-c,z+\rho-c)$. For $(y,z) \in J_1$, denote by $\mu'(y,z)$ the intersection of $\nu(L_c)$ and the line connecting (y,z) and (ρ,ρ) . Then we have a homeomorphism $\mu': J_1 \to \nu(L_c)$, and hence the composition $\mu:=\nu^{-1}\circ\mu': J_1\to L_c$ is a homeomorphism.

Now let $d: [\sqrt[3]{r}, \ \rho] \to \left[0, \ \frac{1}{3}\right]$ be a function given by $d(c) := \frac{\rho - c}{3(\rho - \sqrt[3]{r})}$, and for each $c \in (\sqrt[3]{r}, \ \rho]$, set $\zeta_c := \varphi^{-1} \circ \Psi_1 \circ \mu^{-1} : L_c \to L'_{d(c)}$, where $\Psi_1 : J_1 \to \Delta_1$ is the simplicial

homeomorphism in (3):

$$\zeta_c(c, y, z) = \varphi^{-1} \circ \Psi_1 \circ \mu^{-1}(y, z)$$
.



The homeomorphism $\zeta_{\sqrt[3]{r}}:L_{\sqrt[3]{r}}\to L'_{1/3}$ is naturally defined by $\zeta_{\sqrt[3]{r}}(p)=q$. Then the family of homeomorphisms $\{\zeta_c:L_c\to L_{d(c)}\}_{\sqrt[3]{r}\leq c\leq \rho}$ determines the homeomorphism $\psi_1:A_1\to B_1$. In particular,

$$\psi_1(\rho, y, z) = \zeta_{\rho}(\rho, y, z) = (0, \Psi_1 \circ \mu^{-1}(y, z)). \tag{4}$$

Similarly ψ_2 and ψ_3 are constructed. By construction, $\psi_i = \psi_j$ on $A_i \cap A_j$, so they together define a homeomorphism $\Psi_2 : J_2 \to \Delta_2$.

For $m \geq 3$, we can similarly construct $\Psi_m: J_m \to \Delta_m$ from $\Psi_{m-1}: J_{m-1} \to \Delta_{m-1}$. We refer to Ψ_m as a *simplicial homeomorphism*. The positive orientation of Δ_m induces the positive orientation of J_m via $\Psi_m: J_m \to \Delta_m$.

4. One-parameter family of homeomorphisms and topological monodromy

Fix $\rho > 1$ and set

$$M = \{(z_1, z_2, \dots, z_n) \in \mathbb{C}^n : |z_i| \le \rho \ (i = 1, 2, \dots, n), \ |z_1 z_2 \cdots z_n| \le 1\}.$$

Consider the degeneration $\pi: M \to D$ defined by $\pi(z_1, z_2, \ldots z_n) = z_1 z_2 \cdots z_n$. Then $C_s := \pi^{-1}(s)$ for nonzero s is a smooth fiber and $X := \pi^{-1}(0)$ is its singular fiber. The projection $p: M \to J_r$ of M to its real slice J_r is given by $p: (z_1, z_2, \ldots, z_n) \mapsto (|z_1|, |z_2|, \ldots, |z_n|)$. Let $\Psi: J_r \to \Delta_{n-1}$ be the simplicial homeomorphism constructed in §3, where $\Delta_{n-1} := \{(\lambda_1, \ldots, \lambda_n) \in \mathbf{R}^n : 0 \le \lambda_i \le 1, \lambda_1 + \cdots + \lambda_n = 1\}$ is the standard (n-1)-simplex. Consider the composite map $F := \Psi \circ p: M \to \Delta_{n-1}$. Set $(\lambda_1, \lambda_2, \ldots, \lambda_n) := F(z_1, z_2, \ldots, z_n)$, and for any $\theta \in \mathbf{R}$, define a map $f_\theta: M \to M$ by

$$f_{\theta}(z_1, z_2, \dots, z_n) = \left(e^{i\theta\lambda_1} z_1, e^{i\theta\lambda_2} z_2, \dots, e^{i\theta\lambda_n} z_n \right). \tag{5}$$

LEMMA 1. f_{θ} maps C_s to $C_{se^{i\theta}}$. In particular, $f_{2\pi}$ maps C_s to itself.

PROOF. It suffices to show that if $z_1z_2\cdots z_n=s$, then $(e^{\mathrm{i}\theta\lambda_1}z_1)(e^{\mathrm{i}\theta\lambda_2}z_2)\cdots (e^{\mathrm{i}\theta\lambda_n}z_n)=se^{\mathrm{i}\theta}$. Since $(\lambda_1,\lambda_2,\ldots,\lambda_n)\in\Delta_{n-1},\ \lambda_1+\lambda_2+\cdots+\lambda_n=1$, thus $(e^{\mathrm{i}\theta\lambda_1}z_1)(e^{\mathrm{i}\theta\lambda_2}z_2)\cdots (e^{\mathrm{i}\theta\lambda_n}z_n)=e^{\mathrm{i}\theta}z_1z_2\cdots z_n=e^{\mathrm{i}\theta}s$.

Note that $\{f_{\theta}: M \to M\}_{\theta \in \mathbb{R}}$ is a 1-parameter family of homeomorphisms: (i) f_0 is the identity map and (ii) $f_{\theta_1+\theta_2}=f_{\theta_1}\circ f_{\theta_2}$. (i) is obvious. (ii) is confirmed as follows: Note first that

$$(z_1, z_2, \dots, z_n) \xrightarrow{f_{\theta_2}} \left(e^{i\theta_2\lambda_1} z_1, e^{i\theta_2\lambda_2} z_2, \dots, e^{i\theta_2\lambda_n} z_n \right)$$

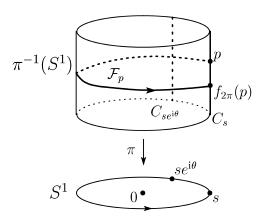
$$\xrightarrow{f_{\theta_1}} \left(e^{i\theta_1\lambda'_1} e^{i\theta_2\lambda_1} z_1, e^{i\theta_1\lambda'_2} e^{i\theta_2\lambda_2} z_2, \dots, e^{i\theta_1\lambda'_n} e^{i\theta_2\lambda_n} z_n \right),$$

where

$$\begin{cases} (\lambda_1, \lambda_2, \dots, \lambda_n) = \Psi(|z_1|, |z_2|, \dots, |z_n|), \\ (\lambda'_1, \lambda'_2, \dots, \lambda'_n) = \Psi(|e^{i\theta_2\lambda_1}z_1|, |e^{i\theta_2\lambda_2}z_2|, \dots, |e^{i\theta_2\lambda_n}z_n|). \end{cases}$$

Since $|e^{2\pi i \lambda_i} z_i| = |z_i|$ (i = 1, 2, ..., n), we have $(\lambda'_1, \lambda'_2, ..., \lambda'_n) = (\lambda_1, \lambda_2, ..., \lambda_n)$. Hence $f_{\theta_1} \circ f_{\theta_2}(z_1, z_2, ..., z_n) = (e^{i\theta_1 \lambda_1} e^{i\theta_2 \lambda_1} z_1, e^{i\theta_1 \lambda_2} e^{i\theta_2 \lambda_2} z_2, ..., e^{i\theta_1 \lambda_n} e^{i\theta_2 \lambda_n} z_n)$ $= (e^{i(\theta_1 + \theta_2)\lambda_1} z_1, e^{i(\theta_1 + \theta_2)\lambda_2} z_2, ..., e^{i(\theta_1 + \theta_2)\lambda_n} z_n)$ $= f_{\theta_1 + \theta_2}(z_1, z_2, ..., z_n).$

In what follows, we consider $\{f_{\theta}: M \to M\}_{0 \le \theta \le 2\pi}$. Take a circle $S^1 = \{z \in \mathbb{C}: |z| = r\}$ contained in the unit disk D. For $s \in S^1$, the flow $\mathcal{F}_p := \{f_{\theta}(p): 0 \le \theta \le 2\pi\}$ starting at $p \in C_s$ transversely intersects each smooth fiber $C_{se^{\mathrm{i}\theta}}$ ($0 < \theta < 2\pi$), which defines a "parallel transport".



The homeomorphism $h := f_{2\pi} : C_s \to C_s$ is the topological monodromy of $\pi : M \to D$. For $((x_1, \ldots, x_n), (w_1, \ldots, w_n)) \in J_r \times K_{\xi} (= C_s)$, set $(\lambda_1, \ldots, \lambda_n) := \Psi(x_1, \ldots, x_n)$,

then

$$h((x_1, ..., x_n), (w_1, ..., w_n))$$

$$= ((x_1, ..., x_n), (e^{2\pi i \lambda_1} w_1, ..., e^{2\pi i \lambda_n} w_n)).$$
(6)

Recall that for each $l=1,2,\ldots,n,$ Ψ maps the lth face $\partial J_r^{(l)}$ of ∂J_r (defined by $x_l=\rho$) to the lth face $\partial \Delta_{n-1}^{(l)}$ of $\partial \Delta_{n-1}$ (defined by $\lambda_l=0$). Hence the action of h on the lth face $\partial J_r^{(l)} \times K_\xi$ of the boundary $\partial J_r \times K_\xi$ of $J_r \times K_\xi$ is given by setting $x_l=\rho$ and $\lambda_l=0$ in (6):

$$h((x_1, \dots, x_{l-1}, \rho, x_{l+1}, \dots, x_n), (w_1, \dots, w_n))$$

$$= ((x_1, \dots, x_{l-1}, \rho, x_{l+1}, \dots, x_n),$$

$$(e^{2\pi i \lambda_1} w_1, \dots, e^{2\pi i \lambda_{l-1}} w_{l-1}, w_l, e^{2\pi i \lambda_{l+1}} w_{l+1}, \dots, e^{2\pi i \lambda_n} w_n)).$$
(7)

We next construct a homeomorphism between C_s and $\Delta_{n-1} \times T^{n-1}$, and regard the topological monodromy $h: C_s \to C_s$ as a homeomorphism $\Delta_{n-1} \times T^{n-1} \to \Delta_{n-1} \times T^{n-1}$, which is more easy to describe.

First let pr : $T^n \to T^{n-1}$ be the projection given by pr : $(e^{i\alpha_1}, \ldots, e^{i\alpha_n}) \mapsto (e^{i\alpha_1}, \ldots, e^{i\alpha_{n-1}})$. The restriction pr : $K_{\xi} \to T^{n-1}$ is a homeomorphism, in fact its inverse is given by

$$(e^{i\alpha_1}, \dots, e^{i\alpha_{n-1}}) \in T^{n-1} \mapsto (e^{i\alpha_1}, \dots, e^{i\alpha_{n-1}}, e^{i(\xi - \alpha_1 - \dots - \alpha_{n-1})}) \in K_{\xi}.$$
 (8)

The positive orientation of T^{n-1} induces the positive orientation of K_{ξ} via pr : $K_{\xi} \to T^{n-1}$. Then $\phi := \Psi \times \operatorname{pr} : C_s = J_r \times K_{\xi} \to \Delta_{n-1} \times T^{n-1}$ is an orientation-preserving homeomorphism. We say that ϕ is a *datum homeomorphism*, which gives a trivialization of C_s (this is analogous to the trivialization of vector bundle). Similarly, for $C_{se^{i\theta}}$ ($0 < \theta \le 2\pi$), define the datum homeomorphism $\phi_{\theta} : C_{se^{i\theta}} = J_r \times K_{\xi+\theta} \to \Delta_{n-1} \times T^{n-1}$ by $\phi_{\theta} = \Psi \times \operatorname{pr}$. Set $F_{\theta} := \phi_{\theta} \circ f_{\theta} \circ \phi^{-1}$; then $F_{2\pi} = \phi \circ f_{2\pi} \circ \phi^{-1}$ as $\phi_{2\pi} = \phi$. The following diagram commutes, and thus, to describe f_{θ} , it suffices to describe F_{θ} .

$$\begin{array}{c|c}
C_s & \xrightarrow{f_{\theta}} & C_{se^{i\theta}} \\
\phi \downarrow & & \downarrow \phi_{\theta} \\
\Delta_{n-1} \times T^{n-1} & \xrightarrow{F_{\theta}} & \Delta_{n-1} \times T^{n-1}
\end{array}$$

LEMMA 2.
$$F_{\theta}: \Delta_{n-1} \times T^{n-1} \to \Delta_{n-1} \times T^{n-1}$$
 is given by $F_{\theta}((\lambda_1, \dots, \lambda_n), (t_1, \dots, t_{n-1})) = ((\lambda_1, \dots, \lambda_n), (e^{i\lambda_1 \theta}t_1, \dots, e^{i\lambda_{n-1} \theta}t_{n-1}))$.

PROOF. Write t_i as $e^{i\alpha_i}$ (i = 1, 2, ..., n - 1). For $(\lambda_1, ..., \lambda_n) \in \Delta_{n-1}$, set $(x_1, ..., x_n) := \Psi^{-1}(\lambda_1, ..., \lambda_n)$. Then

$$F_{\theta}((\lambda_1,\ldots,\lambda_n), (e^{i\alpha_1},\ldots,e^{i\alpha_{n-1}}))$$

$$\begin{split} &=\phi_{\theta}\circ f_{\theta}\circ \phi^{-1}\big((\lambda_{1},\ldots,\lambda_{n}),\ (e^{\mathrm{i}\alpha_{1}},\ldots,e^{\mathrm{i}\alpha_{n-1}})\big)\\ &=\phi_{\theta}\circ f_{\theta}\big((x_{1},\ldots,x_{n}),\ (e^{\mathrm{i}\alpha_{1}},\ldots,e^{\mathrm{i}\alpha_{n-1}},\ e^{\mathrm{i}(\xi-\alpha_{1}-\cdots-\alpha_{n-1})})\big)\\ &=\phi_{\theta}\big((x_{1},\ldots,x_{n}),\ (e^{\mathrm{i}\lambda_{1}\theta}e^{\mathrm{i}\alpha_{1}},\ldots,e^{\mathrm{i}\lambda_{n-1}\theta}e^{\mathrm{i}\alpha_{n-1}},\ e^{\mathrm{i}\lambda_{n}\theta}e^{\mathrm{i}(\xi-\alpha_{1}-\cdots-\alpha_{n-1})})\big)\\ &=\big((\lambda_{1},\ldots,\lambda_{n}),\ (e^{\mathrm{i}\lambda_{1}\theta}e^{\mathrm{i}\alpha_{1}},\ldots,e^{\mathrm{i}\lambda_{n-1}\theta}e^{\mathrm{i}\alpha_{n-1}})\big)\,. \end{split}$$

The *l*th face $\partial \Delta_{n-1}^{(l)}$ $(l=1,2,\ldots,n)$ of the boundary $\partial \Delta_{n-1}$ of Δ_{n-1} is defined by $\lambda_l=0$. Hence:

COROLLARY 1. The action of F_{θ} on the 1th face $\partial \Delta_{n-1}^{(l)} \times T^{n-1}$ of the boundary $\partial \Delta_{n-1} \times T^{n-1}$ of $\Delta_{n-1} \times T^{n-1}$ is given by

$$F_{\theta}((\lambda_{1},...,\lambda_{l-1},0,\lambda_{l+1},...,\lambda_{n}), (t_{1},...,t_{n-1}))$$

$$= ((\lambda_{1},...,\lambda_{l-1},0,\lambda_{l+1},...,\lambda_{n}), (e^{i\lambda_{1}\theta}t_{1},...,t_{l},...,e^{i\lambda_{n-1}\theta}t_{n-1})).$$

For n = 2, $\Delta_{n-1} \times T^{n-1}$ is an annulus $\Delta_1 \times T^1$ and by Lemma 2,

$$F_{2\pi}: \left((\lambda_1, \lambda_2), t_1 \right) \in \Delta_1 \times T^1 \mapsto \left((\lambda_1, \lambda_2), e^{2\pi i \lambda_1} t_1 \right) \in \Delta_1 \times T^1. \tag{9}$$

Here $\lambda_1 + \lambda_2 = 1$, λ_2 varies from 0 to 1 and $\varphi : \lambda_2 \in [0, 1] \mapsto (1 - \lambda_2, \lambda_2) \in \Delta_1$ is an orientation-preserving homeomorphism, so $F_{2\pi} : ((1 - \lambda_2, \lambda_2), t_1) \mapsto ((1 - \lambda_2, \lambda_2), e^{-2\pi i \lambda_2} t_1)$, which is a (-1)-Dehn twist of $\Delta_1 \times T^1$.

$$\begin{array}{cccc}
& & F_{2\pi} \\
& & & \\
& & \Delta_1 \times T^1
\end{array}$$

$$\begin{array}{cccc}
& & \Delta_1 \times T^1
\end{array}$$

REMARK 1. Instead of $\pi: M \to D$, Clemens [3] began with the 'whole map' $\pi: \mathbb{C}^n \to \mathbb{C}$; so J_r is replaced with an (infinite) hyperboloid $J_r^{\text{non-cpt}}$ defined by $x_1x_2\cdots x_n = r$ in $\mathbb{R}^n_{>0}$. Then instead of $\Psi: J_r \to \Delta_{n-1}$, he constructed a map $J_r^{\text{non-cpt}} \to \Delta_{n-1}$ that is a composition of a homeomorphism and a retraction as illustrated in Figure 14, and then he restricted this map to a compact domain in $J_r^{\text{non-cpt}}$. Using this map, he constructed a 1-parameter family of homeomorphisms $F'_{\theta}: \Delta_{n-1} \times T^{n-1} \to \Delta_{n-1} \times T^{n-1}$ $(0 \le \theta \le 2\pi)$ different from ours.

5. Description of the action of the topological monodromy on foliations

We describe the action of the topological monodromy $F_{2\pi}$ on $\Delta_{n-1} \times T^{n-1}$ $(n \ge 3)$ in terms of foliations. As illustrated in Figure 15, we shrink the standard (n-1)-simplex Δ_{n-1}

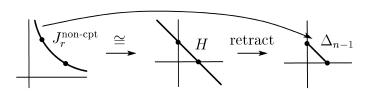


FIGURE 14. *H* is the hyperplane in \mathbb{R}^n containing Δ_{n-1} .

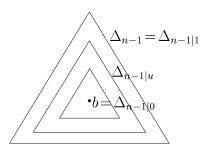
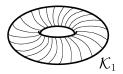


FIGURE 15



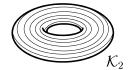


FIGURE 16

to obtain a family of (n-1)-simplexes $\Delta_{n-1|u}$ $(0 \le u \le 1)$ such that $\Delta_{n-1|1} = \Delta_{n-1}$ and $\Delta_{n-1|0}$ is the barycenter b of Δ_{n-1} .

Then $\{\partial \Delta_{n-1|u}\}_{0 \le u \le 1}$ is a (singular) foliation of Δ_{n-1} , and $\{\partial \Delta_{n-1|u} \times T^{n-1}\}_{0 \le u \le 1}$ gives a foliation of a smooth fiber $\Delta_{n-1} \times T^{n-1}$.

The topological monodromy $h:=F_{2\pi}:\Delta_{n-1}\times T^{n-1}\to\Delta_{n-1}\times T^{n-1}$ maps each leaf $\partial\Delta_{n-1|u}\times T^{n-1}$ to itself. To describe it explicitly, we introduce n foliations on T^{n-1} . First for each $i=1,2,\ldots,n$, let $\mathcal{M}_{i|v}$ $(v\in S^1)$ be the (n-2)-dimensional subtorus in K_ξ defined by $e^{\mathrm{i}\alpha_i}=v$, then $\mathcal{K}_i=\{\mathcal{M}_{i|v}\}_{v\in S^1}$ is a foliation on K_ξ by parallel subtori (Figure 16 for n=3).

The homeomorphism pr: K_{ξ} ($\subset T^n$) $\to T^{n-1}$ given by $(e^{i\alpha_1}, \ldots, e^{i\alpha_n}) \mapsto (e^{i\alpha_1}, \ldots, e^{i\alpha_{n-1}})$ transforms the foliation $\mathcal{K}_i = \{\mathcal{M}_{i|v}\}_{v \in S^1}$ to a foliation $\mathcal{T}_i = \{T_{i|v}^{n-2}\}_{v \in S^1}$ of T^{n-1} . Then $\{\partial \Delta_{n-1|u} \times T_{i|v}^{n-2}\}_{v \in S^1}$ is a foliation of $\partial \Delta_{n-1|u} \times T^{n-1}$. Here varying u yields a singular

foliation of $\Delta_{n-1} \times T^{n-1}$.

The monodromy action on $\{b\} \times T^{n-1}$. The barycenter $b (= \partial \Delta_{n-1|0})$ of Δ_{n-1} is $\left(\frac{1}{n}, \dots, \frac{1}{n}\right)$, and the topological monodromy $h : \Delta_{n-1} \times T^{n-1} \to \Delta_{n-1} \times T^{n-1}$ acts on $\{b\} \times T^{n-1}$ as

$$(b, t_1, t_2, \dots, t_{n-1}) \longmapsto (b, e^{2\pi i/n} t_1, e^{2\pi i/n} t_2, \dots, e^{2\pi i/n} t_{n-1}).$$

In particular h maps each leaf $\{b\} \times T_{i|v}^{n-2}$ to $\{b\} \times T_{i|ve^{2\pi i/n}}^{n-2}$.

The monodromy action on $\partial \Delta_{n-1|u} \times T^{n-1}$ ($u \neq 0$). For each j = 1, 2, ..., n, let $\partial \Delta_{n-1|u}^{(j)}$ denote the jth face of $\partial \Delta_{n-1|u} \cong \partial \Delta_{n-1}$; then $\partial \Delta_{n-1|u}^{(j)} \times T^{n-1}$ is the jth face of $\partial \Delta_{n-1|u} \times T^{n-1}$. Fixing $u \neq 0$ and i, set $\mathcal{L}_v := \partial \Delta_{n-1|u} \times T^{n-2}_{i|v}$ and consider a foliation $\mathcal{F} = \{\mathcal{L}_v\}_{v \in S^1}$ of $\partial \Delta_{n-1|u} \times T^{n-1}$. Then $\mathcal{L}_v^{(j)} := \partial \Delta_{n-1|u}^{(j)} \times T^{n-2}_{i|v}$ is the jth face of \mathcal{L}_v . While i maps each face of i decomposition i to itself, i does not map a leaf i to itself. Moreover, as we will see below, i maps i to itself only if i is and i = 1.

We specify the parameter u such that the side length of $\partial \Delta_{n-1|u}$ ($u \neq 0$) is $\sqrt{2}u$. Then for $u \neq 0$, the jth face $\partial \Delta_{n-1|u}^{(j)}$ of $\partial \Delta_{n-1|u}$ is defined by $\lambda_j = \frac{1-u}{n}$ in $\partial \Delta_{n-1|u}$. We first consider the case j=i; we describe the action of h on $\mathcal{L}_v^{(i)} = \partial \Delta_{n-1|u}^{(i)} \times T_{i|v}^{n-2}$. Set $\mu := \frac{1-u}{n}$. Then by Lemma 2, the restriction of h to $\mathcal{L}_v^{(i)}$ is explicitly given by

$$((\lambda_1,\ldots,\lambda_{i-1},\mu,\lambda_{i+1},\ldots,\lambda_n),(t_1,\ldots,t_{i-1},v,t_{i+1},\ldots,t_{n-1})) \longmapsto ((\lambda_1,\ldots,\lambda_{i-1},\mu,\lambda_{i+1},\ldots,\lambda_n),(e^{2\pi i\lambda_1}t_1,\ldots,e^{2\pi i\mu}v,\ldots,e^{2\pi i\lambda_{n-1}}t_{n-1})).$$

We thus obtain the following:

LEMMA 3. h maps $\mathcal{L}_v^{(i)}$ to $\mathcal{L}_{ve^{2\pi i(1-u)/n}}^{(i)}$. In particular when u=1, it maps $\mathcal{L}_v^{(i)}$ to itself, and is explicitly given by

$$h: ((\lambda_{1}, \dots \lambda_{i-1}, 0, \lambda_{i+1}, \dots, \lambda_{n}), (t_{1}, \dots t_{i-1}, v, t_{i+1}, \dots, t_{n-1})) \longmapsto ((\lambda_{1}, \dots \lambda_{i-1}, 0, \lambda_{i+1}, \dots, \lambda_{n}), (e^{2\pi i \lambda_{1}} t_{1}, \dots, v, \dots, e^{2\pi i \lambda_{n-1}} t_{n-1})).$$

REMARK 2. While h maps $\mathcal{L}_{v}^{(i)}$ to $\mathcal{L}_{ve^{2\pi i(1-u)/n}}^{(i)}$, for $j \neq i$, h does *not* map $\mathcal{L}_{v}^{(j)}$ ($j \neq i$) to a face of a leaf of \mathcal{F} . Indeed,

$$h(\mathcal{L}_{v}^{(j)}) = \{ ((\lambda_{1}, \dots, \lambda_{n}), (t_{1}, \dots, t_{n-1})) \in \partial \Delta_{n-1|u}^{(j)} \times T^{n-1} : t_{i} = ve^{2\pi i \lambda_{i}} \}$$

$$\cong \partial \Delta_{n-1|u}^{(j)} \times T^{n-2}.$$

To emphasize n, write h as $h_n: \Delta_{n-1} \times T^{n-1} \to \Delta_{n-1} \times T^{n-1}$. Here $\partial \Delta_{n-1|1}^{(i)} \times T_{i|v}^{n-2}$

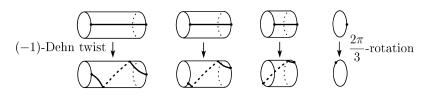


FIGURE 17

is homeomorphic to $\Delta_{n-2} \times T^{n-2}$ via

$$\varphi: ((\lambda_1, \dots, \lambda_{i-1}, 0, \lambda_{i+1}, \dots, \lambda_n), (t_1, \dots, t_{i-1}, v, t_{i+1}, \dots t_{n-1}))$$

$$\longmapsto ((\lambda_1, \dots, \lambda_{i-1}, \lambda_{i+1}, \dots, \lambda_n), (t_1, \dots, t_{i-1}, t_{i+1}, \dots t_{n-1})).$$

Identify $\partial \Delta_{n-1|1}^{(i)} \times T_{i|v}^{n-2}$ with $\Delta_{n-2} \times T^{n-2}$ via φ . From Lemma 3,

$$\varphi \circ h_{n} \circ \varphi^{-1} ((\lambda_{1}, \dots, \lambda_{n-1}), (t_{1}, \dots, t_{n-2}))$$

$$= \varphi \circ h_{n} ((\lambda_{1}, \dots, \lambda_{i-1}, 0, \lambda_{i}, \dots, \lambda_{n-1}), (t_{1}, \dots, t_{i-1}, v, t_{i}, \dots, t_{n-2}))$$

$$= \varphi ((\lambda_{1}, \dots, \lambda_{i-1}, 0, \lambda_{i}, \dots, \lambda_{n-1}), (e^{2\pi i \lambda_{1}} t_{1}, \dots, v, \dots, e^{2\pi i \lambda_{n-2}} t_{n-2}))$$

$$= ((\lambda_{1}, \dots, \lambda_{n-1}), (e^{2\pi i \lambda_{1}} t_{1}, \dots, e^{2\pi i \lambda_{n-2}} t_{n-2}))$$

$$= h_{n-1} ((\lambda_{1}, \dots, \lambda_{n-1}), (t_{1}, \dots, t_{n-2})).$$

Thus $\varphi \circ h_n \circ \varphi^{-1} = h_{n-1}$, so

PROPOSITION 1. The restriction of h_n to $\partial \Delta_{n-1|1}^{(i)} \times T_{i|n}^{n-2}$ is h_{n-1} .

Variation of topological monodromy. As $u \to 0$, the ith face $\mathcal{L}_v^{(i)} = \partial \Delta_{n-1|u}^{(i)} \times T_{i|v}^{n-2}$ of the leaf $\mathcal{L}_v = \partial \Delta_{n-1|u} \times T_{i|v}^{n-2}$ shrinks to the (n-2)-dimensional torus T^{n-2} . Accordingly $h_u := h \mid_{\mathcal{L}_v^{(i)}}$ varies. In the case n=3, $\mathcal{L}_v^{(i)}$ for $u \neq 0$ is an annulus and for u=0 a circle, and as we see below, h_u varies from a (-1)-Dehn twist to a rotation of S^1 , where recall that for each integer k, a k-Dehn twist is a self-homeomorphism of an annulus $[0,1] \times S^1$ given by $(x,t) \in [0,1] \times S^1 \to (x,e^{2\pi ikx}t) \in [0,1] \times S^1$.

PROPOSITION 2 (n = 3). As u varies from 1 to 0, h_u varies from a (-1)-Dehn twist to the $\frac{2\pi}{3}$ -rotation of S^1 as illustrated in Figure 17.

PROOF. We show the assertion for i=1 (it is similarly shown for other i). Identify $\mathcal{L}_v^{(1)}$ and $\mathcal{L}_{ve^{2\pi\mathrm{i}(1-u)/3}}^{(1)}$ with the annulus $\left[\frac{1-u}{3},\frac{1+2u}{3}\right]\times S^1$ via the homeomorphism $\left((\lambda_1,\lambda_2,\lambda_3),\ (t_1,t_2)\right)\mapsto (\lambda_3,\ t_2)$. Regard then $h_u:\mathcal{L}_v^{(1)}\to\mathcal{L}_{ve^{2\pi\mathrm{i}(1-u)/3}}^{(1)}$ as a homeomorphism

phism

$$h_u: (x,t) \in \left\lceil \tfrac{1-u}{3}, \tfrac{1+2u}{3} \right\rceil \times S^1 \mapsto (x,e^{-2\pi \mathrm{i}\{x+(1-u)/3\}}t) \in \left\lceil \tfrac{1-u}{3}, \tfrac{1+2u}{3} \right\rceil \times S^1 \,.$$

As u varies from 1 to 0, this varies from a (-1)-Dehn twist of $[0, 1] \times S^1$ to the $\frac{2\pi}{3}$ -rotation of S^1 as illustrated in Figure 17.

ACKNOWLEDGMENT. The author would like to express his deep gratitude to Professor Shigeru Takamura for useful advice.

References

- [1] N. A'CAMPO, La fonction zêta d'une monodromie, Comment. Math. Helv. 50 (1975), 233-248.
- [2] V. I. ARNOLD, S. M. GUSEIN-ZADE and A. N. VARCHENKO, Singularities of differentiable maps, II, Birkhäuser (1988).
- [3] C. H. CLEMENS, Picard-Lefschetz theorem for families of nonsingular algebraic varieties acquiring ordinary singularities, Trans. Amer. Math. Soc. 136 (1969), 93–108.
- [4] C. H. CLEMENS, Degeneration of Kahler manifolds, Duke Math. J. 44 (2) (1977), 215–290.
- [5] C. J. EARLE and P. L. SIPE, Families of Riemann surfaces over the punctured disk, Pacific J. Math. 150 (1991), 79–86.
- [6] Y. IMAYOSHI, Holomorphic families of Riemann surfaces and Teichmüller spaces in Riemann surfaces and related topics, Ann. of Math. Studies 97 (1981), 277–300.
- [7] Y. MATSUMOTO and J. M. MONTESINOS-AMILIBIA, Pseudo-periodic homeomorphisms and degeneration of Riemann surfaces, Bull. Amer. Math. Soc. 30 (1994), 70–75.
- [8] Y. MATSUMOTO and J. M. MONTESINOS-AMILIBIA, Pseudo-periodic maps and degeneration of Riemann surfaces, Springer Lecture Notes in Math. 2030 (2011).
- [9] H. SHIGA and H. TANIGAWA, On the Maskit coordinates of Teichmüller spaces and modular transformations, Kodai Math. J. 12 (1989), 437–443.
- [10] S. TAKAMURA, Towards the classification of atoms of degenerations, II (Geometry of Degenerations of Complex Curves), Preprint (2014).
- [11] H. ZOLADEK, The Monodromy Group, Birkhäuser (2006).

Present Address:

DEPARTMENT OF MATHEMATICS,

KYOTO UNIVERSITY,

Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto~606-8502, Japan.

e-mail: kjr-ssk@math.kyoto-u.ac.jp