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Abstract. The homological monodromy of a degeneration whose singular fiber has at most normal crossings
was described by C. H. Clemens. In his work, local monodromies were described in detail. It is actually a classical
result that the local monodromy around a node is a Dehn twist. For higher-dimensional case, we describe local
monodromies alternatively: On a local smooth fiber of dimension n > 2, we construct n + 1 singular foliations and
then describe the action of the local monodromy on each leaf. Here the ith singular foliation is used for describing
its action on the ith face of the boundary of a local smooth fiber.

1. Introduction

Let 1 : M — A be a degenerating family (a degeneration) of complex manifolds
overadisk A = {z € C : |z] < r}, thatis, 7' (s) (s # 0) is smooth and 7~ (0) is
singular. The topological monodromy of 1 : M — A is an automorphism of a smooth
fiber 7~ (s) obtained from a ‘parallel translation” on M \ 7~ (0) as illustrated in Figure 1.
(In [8], a topological monodromy means the isotopy class of this automorphism.) For each
i=0,1,2,...,2dimz ! (s), the automorphism of H; (n_l (s), C) induced from the topo-
logical monodromy is the ith homological monodromy of m : M — A.

C. H. Clemens [3] described each homological monodromy of a degeneration whose sin-
gular fiber has at most normal crossings, and showed that it is quasi-unipotent, that is, some
power is unipotent. On the other hand, Y. Matsumoto and J. M. Montesinos [8] showed that
the topological type of a degeneration of Riemann surfaces of genus > 2 is determined by its
topological monodromy. A simple example of a degeneration of Riemann surfaces is a Lef-
schetz fibration whose topological monodromy is a Dehn twist. In higher-dimensional case,
there are two different generalizations of a Dehn twist: Consider additive and multiplicative
A-singularities:

Vi={Gnz . ... eC i+ g+ 2 =1,

W= {Gi 22, .z €C™ iz g = 1)
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FIGURE 1. A topological monodromy / : n'_l(s) — n_l(s)

Then f : V — C, f(z1,...,2n,t) =tand g : W — C, ¢g(z1,...,2n,t) = t are de-
generations, and their topological monodromies are two different generalizations of a Dehn
twist.

REMARK. Ifn > 3, V and W are not isomorphic (in contrast for n = 2, they are
isomorphic). In fact, the singularities of the singular fiber of g : W — C are not isolated,
while that of f : V — C is isolated.

The topological monodromy of the degeneration f : V — C is described by the dou-
ble covering method (see [2] p. 6). We will describe the topological monodromy of the de-

generation g : W — C. First note that W is isomorphic to C" via (z1,22,...,2n,1) H>
(z1,22,--+,2n), accordingly g : W — C is identified with a map = : C" — C given by
(21,22, -+, 2n) = 2122 Zn-

Now set N := {(z1,22,...,z2) € C" : |z122---zx| < 1}and D :={s € C : |s| < 1}.

The restriction 7w : N — D of r : C" — Cto N is a ‘shrinking’ of 7 : C* — C. Here
N is closed but not compact (see (1) of Schematic figure). To obtain a compact one, take
p>landset M := {(z1,22,...,20) € N : |zi] < p (i = 1,2,...,n)}. Note that M is
compact, indeed M is the intersection of the closed set N and the polydisk of radius p (see
(2) of Schematic figure). The restriction w : M — D of 7 : C"* — Cto M is a local model
of a degeneration of complex manifolds.

In order to describe the homological monodromy of a degeneration of complex manifolds,
Clemens [3] describes the monodromy of the degeneration w : M — D above. In this paper,
we alternatively describe it from a different viewpoint. While for n = 2, the topological
monodromy of 7 is known to be a (—1)-Dehn twist of an annulus, for n > 3, we describe the
action of the topological monodromy in terms of n foliations constructed on a smooth fiber of
7; precisely speaking, these are singular foliations — the dimension of some leaf is less than
that of a generic leaf. The ith foliation is used for describing its action on the ith face of the
boundary of a smooth fiber.
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Schematic figure for n = 2

Description of topological monodromies. The description of 771 (s) (s = re' # 0)
proceeds as follows:

STEP 1. Express 77 (s) = J, x K¢, where
Jr :={(x1,...,x,,)€R":OSXiSP, xl"'xn=”}’
Ke = {(ei“',...,ei“”)eT":a1+~-~+anzémod27r}

are respectively homeomorphic to the standard (n — 1)-simplex A,_; and an (n — 1)-
dimensional torus 77!,

STEP 2. We explicitly construct homeomorphisms ¥ : J, — A,_j and ® : K¢ —
T"~!. The construction of the former is quite involved and based on induction on the di-
mension. The latter is constructed as follows: Noting that K¢ C T", letpr : T" — T"~!
be a projection given by pr : (e, ..., el%) > (¢l®, ..., ¢%-1). Then the restriction
® =prig, : K¢ — 7"~ is a homeomorphism.

STEP 3. Using W, we construct a l-parameter family of homeomorphisms {fj
M — Mo<p<or by fo i (21,....20) > (%121, ..., €%1z,), where (A1,..., ;) =
W(z1l, ..., |zal). Then h := for : 7' (s) — 7w~ !(s) is the topological monodromy of 7.
Under the identification of 7 ~!(s) with A,_ x T"~! via W x ®, we show that & is given by

(()\1, cees An), (1, ...,l‘n_l))

> (()"11 L) )\'n)v (ezni}‘ltls L) ezﬂi}‘n_lt}’l—l)) .

ey

(See Remark 1 in §4 for another 1-parameter family constructed by Clemens [3].)

STEP 4. As illustrated in Figure 2, we shrink the (n — 1)-simplex A,_; to obtain a
family of (n — 1)-simplexes A,_1j, (0 <u < 1) such that A,_1;; = A,_1 and A,_qjo is the
barycenter b of A,_1.

Then {dA,—1ju}o<u<1 is a singular foliation of A,,_;. We foliate A,,_1 x 771 by 0A,—1ju X
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FIGURE 2

T T3

FIGURE 3

T"-10<u<1):

Ay x T" "= ] @Aw—1ju x T"7") (disjoint union).

O<u<l

Now identify A,_1 x 7"~ with a smooth fiber of 7 : M — D and regard the topological
monodromy of 7 as a homeomorphism 4 : A,_1 x T"~! — A,_; x T"~!. By (1), h maps
each leaf A, 1), x T n=1 to jtself. To describe this action, we introduce n foliations of
AN 1y X T7"=1. First let T; (i = 1,2,...,n) be a foliation of Y by parallel subtori
Tl.'l'u_2 (v € SY) as illustrated in Figure 3 (for n = 3). Then dA,_1, x T"! is foliated by
OAn—1 x T}j 2 (v e §h.

As mentioned above, 4 maps A, 1, x T"~! toitself. We describe this action separately
foru = 0and u # 0.

(D1) Where b = 0A,,_1o is the barycenter of A,_1, h acts on {b} x 71 ag
(ba tla t27 M tn—l) > (b5 ezni/ntla e2ni/nt15 AR eznl/nt}’l—l) .

In particular, & maps {b} x T2 to (b} x T" 2

ilv ilve?Ti/n:

Now let 8A§lj_)1 (j = 1,2,...,n) denote the jth face of dA,_1, accordingly 8A££1|u
denotes the jth face of dA,_1j, (u # 0). See Figure 4.
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FIGURE 4
O
FIGURE 5

(D2) The action of 4 on dA,—1j, x T"~! (u # 0) maps each face 8A££1|u x T (j =

1—u
n

1,2,...,n) toitself. Setting u := , this map is explicitly given by

(()"17"‘5)"j—15 l»’(la)\'j-f-la"‘a)"n)’ (t17t27"‘7tn—1)) [ —

2ik 2mi 27ik,—
(()\1,...,)\,j_l,/L,)Lj+1,...,)\,n),(e Ty e m“tj,...,e T1hn lln—l))-

Next fixing u # 0 and i, set £, 1= dA,_q)y X T"~2 and consider a foliation F =

ilv
{Ly}yest Of 3A,_1y x T""1. Then £ = 8A££1|u X Tl'l'u_2 is the jth face of L£,. The

following holds:

(D3) & does not preserve F — each face El()j ) (j # i) of a leaf £, of F is not mapped to

a face of a leaf of F. In contrast, for the case j = i, h maps E,(j) to E.f)ie)eri(l—u) m- 10

describe the action of h on 8A,(li11| x T"1 we may thus describe its action on E,(f)

u

for each v € S! separately.

For the case n = 3, each face of d Ay, Tl'l'v_2 (u # 0) is an annulus, whichas u — 0,
shrinks to a circle S! (Figure 5).
Accordingly the action of the topological monodromy /4 varies from a (—1)-Dehn twist to the

2Tj'[-rotation of §! (Proposition 2). A similar description is valid for arbitrary dimension.
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FIGURE 6. The variation of the action of /

2. Local models of degenerations and their fibers

Let # : C" — C be a holomorphic map given by 7 (z1,22,...,2n) = 2122 2n-

Its singular fiber ¥ := 7~1(0) is a complex analytic variety z1z2---z, = 0 in C". Set

C* := C\ {0}. Each smooth fiber B := 7~ (s) (where s # 0) is biholomorphic to (C*)"~!
via

(@1, 22,5 20) € By /= (21,2200 zam) € (C)"7 2

Nextset N := {(z1,22,.--,20) € C" : |z122---zu| < 1}and D :=={s € C : |s]| < 1}.
Take p > 1 and set A = {(z1,22,...,2,) € C" : |zi| < p (i = 1,2,...,n)}. Set
M := N N A, then the restrictiont : M — D of r : C* — C to M is a degeneration.
Its singular fiber is X := Y N A while C; := B; N A (s # 0) is a smooth fiber. They are
compact. Note that since Cy is a domain in By, the positive orientation of By naturally defines
the positive orientation of the complex manifold Cj.

Write a nonzero complex number s as reté (r >0,0 <& < 2m). Then set

O<xi=p@G@=12,....n) }

X1X2 Xy =F

Jr = {(x11x27-~-1xn)eRn :

Ke = {(ei"“, el ...,ei"‘") eT" : a1+a2+-~-+anzfmod2n},

where 7" = §! x ! x ... x S! is an n-dimensional torus. (Note that K¢ is homeomorphic

to 7" ! via (¢!, el®%2, ... el%) ¢ K: — (el1, iz eln-1) ¢ =1y A smooth fiber

Cs=n"l(s)ofr : M — Dis homeomorphic to J, x K¢ via
@1 eeos Zn) = (1€, ) > (1, X), (€91, €M)

We say that J, is the real slice of C, which is a part of a higher dimensional hyperboloid in
R”" (Figure 7).

Note that J,- is homeomorphic to the standard (n — 1)-simplex A,—1 := {(A1, ..., Xy) €
R" : 0<A; <1, A1 +---+ X, = 1} (Figure 8). In §3, we explicitly construct a homeomor-
phism between them.

n n
The barycentric divisions of J, and A,_; are givenby J, = | J A; and A, = | Bi,
i=1 i=1
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FIGURE 7. (I)n=2.(2)n =3.

FIGURE 8

FIGURE 9. The barycentric divisions of J and A,,_1 for n = 3. The points p and g are the barycenters
of Jy and A,.

where
A ={(x1,...,xp) € Jy 1 x; = xjforany j #1i},

B ={(A1,...,Ay) € Ap—1 : A; < Ajforany j #i}.
The boundary d A, _1 of A,_1 consists of n faces 8A§31 (l=1,2,...,n), where 8A;l)_l
is defined by A; = 0 in A,_;. Similarly the boundary 9J, of J,. consists of n faces 8],(1)
(=1,2,...,n), where 3J" is defined by x; = p in J,.
Subsequently we explicitly construct a homeomorphism from J, to A,_; that maps the
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J®

FIGURE 10

I p, . [0, o0 [0, 1]

FIGURE 11. A := t o ¢ maps the midpoint of Jj to that of [0, 1]

barycentric division of J, to that of A,_; and maps BJr(l) toaA? 1= 1,2,...,n.

n—1°

3. Construction of a simplicial homeomorphism ¥

We construct a homeomorphism W : J, — A,_1. The construction is based on induction
on n, so it is convenient to write n — 1 as m and W, J,., A,—1 as W, Ju, A, We first
construct Wy (below, x; and x; are denoted by x and y). Leto : J; — [0,00] and 7T :

1
_ »t (t €[0,1])
[0, oc] — [0, 1] be maps given by o (x, y) = L=D and () = 2

p -5 (ellool)

then the composite map A := 7 oo : J; — [0, 1] is a homeomorphism.
Next define a homeomorphism ¢ : [0, 1] — Aj by ¢(¢#) = (1 — t,t). The composite map
Uy :=g@oAi:J; — Ajis the desired homeomorphism:

Vi (x,y)e1 —> (1 —A(x,y), Alx, y)) e A. 3)

As illustrated in Figure 12, W1 maps the barycentric division of J; to that of Aj.
The construction of ¥y, : J,,, — A, (m = 2,3, ...) proceeds as follows:

m+1 m+1
STEP 1. LetJ, = |J A; and A, = |J B; be the barycentric divisions. We then
i=1 i=l1
construct homeomorphisms ¥; : A; — B; (i = 1,2,...,m + 1) by using the homeomor-
phism W;,_1 @ Jp—1 = Ap—1.
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FIGURE 12. W maps A; to B; (i =1,2)

p
L.=An{z=c}
Ay ' = BN {\=d)
q

FIGURE 13

STEP 2. Weshowthaty; =¢;onA;NA;. Thusy; : A; — B (i =1,2,...,m+1)
together define a homeomorphism ¥, : J,, — A, that maps the barycentric division of J,
to that of A,,.

Construction of ¥V, : J, — Ay. LetJ, = A1 UAr U Az and A, = B; U By U B3 be
the barycentric divisions. We first construct ¥r; : A — Bj (below, x1, x2, x3 are denoted by

x,V,z). Foliate A, Bj as illustrated in Figure 13: A1 = {LC}%<C<p, B = {L;}0<d<1/3.

Note that L 37 = p, L’l/3 =g, and L/, (d # 1/3) is homeomorphic to A via ¢(d, y, z)
(1 —2d — (1 =3d)z, d + (1 —3d)z). For ¢ # /r, ahomeomorphism 1 : J; — L. is given
as follows: First take L. as subsets of R? by ignoring the x coordinate:

2 r r r

Lc={(y,Z)GR 5 <y<e¢ 5 =<z=q yz=—}.
c c ¢

Letv : R2 > R2be a parallel transport given by v(y,z) = (y +p —c¢, z+ p — ¢). For
(v,2) € J1, denote by u/(y, z) the intersection of v(L.) and the line connecting (y, z) and
(p, p). Then we have a homeomorphism u” : J; — v(L.), and hence the composition
w:=v"lou :J; = L.is ahomeomorphism.

Now letd : [/r, p] — [O, %] be a function given by d(c) := and for each

po—cC
3(p—r)
c € (Jr, pl,set e = (p_l oV¥jo M_l L. — L;(C), where W1 : J1 — Aj is the simplicial
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homeomorphism in (3):

tele,y, ) =9 loWion ' (y,2).

(d(c), d(c), 1 —2d(c))

The homeomorphism ¢ R L = L) /3 is naturally defined by ¢ %(p) = ¢q. Then the
family of homeomorphisms {¢; : Le — Ly} Yr<c<p determines the homeomorphism v :
A1 — Bj. In particular,

Yi(p,y.2) = ¢p(p.y.2) = (0. W10~ (3, 2)). @)

Similarly vr> and 3 are constructed. By construction, ; = v; on A; N A}, so they
together define a homeomorphism W3 : J, — Aj.

For m > 3, we can similarly construct ¥, : J, — Ay, from Wy, @ Jp—1 — Ap—1.
We refer to W,,, as a simplicial homeomorphism. The positive orientation of A,, induces the
positive orientation of J,,, via W, : J,,, = Ay,

4. One-parameter family of homeomorphisms and topological monodromy
Fix p > 1 and set
M={G12.....2) €C" t 5| <pG=12....n), lz1z2---zal < 1}.

Consider the degeneration 7 : M — D defined by 7 (z1,22,...2,) = 2122---25. Then

Cs := 7 (s) for nonzero s is a smooth fiber and X := 7~ 1(0) is its singular fiber. The
projection p : M — J, of M to its real slice J, is given by p : (21,22,...,22) >
(z1ls 1221, - -5 lzal). Let W : J. — A,_1 be the simplicial homeomorphism constructed

in §3, where Ayp_1 == {(Aq1,..., %) € R" © 0 <X < 1, A+ -+ 4, = 1} is the
standard (n — 1)-simplex. Consider the composite map F := Wop : M — A,_1. Set
(M, A2, .-, An) = F(21,22,...,2n), and for any 6 € R, defineamap fy : M — M by

fo(zi 22, oo ) = (721, €2z, .., €z, (5)

LEMMA 1. fg maps C to Cge. In particular, for maps Cs to itself.
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PROOF. It suffices to show that if zizo---z, = s, then (¢?%1z1)(e'%*2z;)---
(ei“"zn) = se'?.  Since A, A2, .. yAn) € ANty Mi + 2+ -+ Ay = 1, thus
(eiO)L]ZI)(eiQ)QZZ) . '(eiO)L,,Zn) — eiQZIZQ," Zp = eiQS. 0

Note that {fy : M — M}gcr is a l-parameter family of homeomorphisms: (i) fp is the
identity map and (ii) fo,+6, = fo, © fo,. (i) is obvious. (ii) is confirmed as follows: Note first
that

(z1,22, ..., 20) &) (eigz)“m, e027 ...,eigz)‘"zn)
Tor o o i611), ifhA i611), if2A
EAEN (e 4124 71, V17272275 L, "1 ne!"2 "zn),
where
(A1, A2, s An) = W (zals 22l - -2 JzaD),
W My oo M) = W(lePP iz, €225, L €12 z,]) .
Since |2 iz;| = |zi| (i = 1,2, ..., n), we have (A, Ayyoooihy) = (A, A2, ..., Ay). Hence
Joy 0 fo,(z1, 22, .., Zn) = (eig‘kleiez)‘lm, ef1h210%2 7, ...,eielk”eiez)‘”zn)
— (ei(9|+92)llzl’ ei(01+92))‘zzz, ...,ei(9'+02))‘"zn)
= fo,46,(21,22, - -1 Zn) .

In what follows, we consider {fp : M — M}o<p<2-. Take a circle Sl={zeC: |z =

r} contained in the unit disk D. For s € S!, the flow Fp = {fg (p) :0<06 < 27'[} starting
at p € Cy transversely intersects each smooth fiber C e (0 < 8 < 2m), which defines a
“parallel transport”.

The homeomorphism / := fo, : Cs — Cj is the topological monodromy of m : M —
D. For ((x1,...,xn), (wi,...,wp)) € Jr x Kg (= Cy), set (A, ..., Ay) := W (X1, ..., X),
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then
R((xr, .oy xn), (Wi ..., wy)) (6)
= ((x1, e X)), (@ Py, ...,eZ”i)‘”wn)) .
Recall that foreach / = 1,2, ..., n, ¥ maps the /th face 8],(1) of dJ, (defined by x; = p)
to the /th face BA;Q | of A, (defined by A; = 0). Hence the action of & on the /th face
8],(1) x K¢ of the boundary 9J, x K¢ of J, x K¢ is given by setting x; = p and A; = 0 in (6):

h((-xlv-~-7xl—17p1xl+17'~-7xn)7 (wls'-~7wn)) (7)
:((x11"'7‘xl_17p7‘xl+17"'7‘xn)1
@ Pwy, e Mty wy, e L eZ”iA”wn)) .

We next construct a homeomorphism between Cs and A,_1 X T"_l, and regard the
topological monodromy % : C; — Cy as a homeomorphism A,,_; x 7" — A,_; x T"71,
which is more easy to describe.

First let pr : T" — T"~! be the projection given by pr : (e, ..., e%)
(e, ..., el%-1). The restriction pr : K¢ — T"~! is a homeomorphism, in fact its inverse
is given by

(€1, ... ey e T" s (e, .. el QlE = men1)) ¢ g @)

The positive orientation of 7"~! induces the positive orientation of K¢ viapr: Kg — T,
Then¢ := V¥ xpr: C; = J x Kg = A1 xT n=1 s an orientation-preserving homeo-
morphism. We say that ¢ is a datum homeomorphism, which gives a trivialization of Cj (this
is analogous to the trivialization of vector bundle). Similarly, for C 0 (0 < 6 < 2m), define

the datum homeomorphism ¢y : Cy v = Jr X Kep9 — Ap_q X 771 by ¢9p = ¥ x pr.
Set Fy := ¢pp o fg o ¢_1; then Fo, = ¢ o fog o ¢_1 as ¢or = ¢. The following diagram
commutes, and thus, to describe fy, it suffices to describe Fy.

Cs Jo C,.i0

ok

Apy x TV — 7 S A, | xT" L.

LEMMA 2. Fp: A, xT" ' > A, xT" Lis given by
F9 (()"11 IR ] )"Vl)s (tlv RIS ] t}’l—l))z(()"lv RIS ] )"Vl)s (ei)\lgtlv L] ei)‘n_let}’l—l)) .

PROOF. Write #; as €% (i = 1,2,....,n — 1). For (A1,...,An) € A,_1, set
(1, ..., xp) ==V~ 0\, ..., Ay). Then

Fe(()\'la"'a)\'}’l)a (eic{]""’ei(xnil))
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=¢oo foo ¢_1(()Ll, ce ), (€9 eian—l))

=g o fo(x1,...,xn), (€, ... %1, G me-1)y)
— ¢9 ((xl’ o xn)’ (ei)qeeia] e, eikn,leei(xn,] , eikneei(f—c{]—m—(xn,])))
= ((Al, e An), (ei)‘leei“', . ei)‘"—leei‘x”—')) .

O

The Ith face 9A" | (1 = 1,2,...,n) of the boundary 9A,_1 of A,_; is defined by
A1 = 0. Hence:

COROLLARY 1. The action of Fy on the lth face aA}?_l x T"1 of the boundary
A1 x T" Vof A1 x T" 1 is given by
Fo(, vy M=1,0, Mgty ooy A, (11, oo Bam1))
= (Ods ey M1, O, Aty oy A)y @M1y, @10, )
Forn =2, A,_1 x T" Visan annulus A; x 7! and by Lemma 2,
For i (1, 22), 1) € Ay x T 5 (M, 22), 2™ 41) e Ay x T 9)

Here A1 + A2 = 1, Ap varies from O to 1 and ¢ : A € [0,1] — (1 — A2, A2) €
A1 is an orientation-preserving homeomorphism, so Fp, : ((1 — A2, A2), tl) — ((1 —
A2, A2), e~ 2™*24)), which is a (—1)-Dehn twist of Ay x T

= — Q5

A1XT1 A1XT1

REMARK 1. Instead of # : M — D, Clemens [3] began with the ‘whole map’ 7 :

C" — C; so J, is replaced with an (infinite) hyperboloid J;*"P '

defined by x1x2---x, =71
in R” . Then instead of ¥ : J, — A,_;, he constructed a map J;' omePt A, that
is a composition of a homeomorphism and a retraction as illustrated in Figure 14, and then

he restricted this map to a compact domain in J," on-cpt, Using this map, he constructed a 1-
parameter family of homeomorphisms Fj : A,—y x T"" 1 — A,_; x T"71 (0 < 6 < 27)

different from ours.

5. Description of the action of the topological monodromy on foliations

We describe the action of the topological monodromy Fa, on A,_1 X 771 (n>3)in
terms of foliations. As illustrated in Figure 15, we shrink the standard (n — 1)-simplex A,_
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JRon-ept oy [ retract
—_— —_—

FIGURE 14. H is the hyperplane in R” containing A,,_j.

FIGURE 15
ICl 2 §§ §K3
FIGURE 16

to obtain a family of (n — 1)-simplexes A,_1), (0 < u < 1) such that A,_j;1 = A,_; and
Ap_1)0 is the barycenter b of A, _;.

Then {0A,—1ju}o<u<1 is a (singular) foliation of A,_1, and {0A, 1, X T"‘1}0§u51 gives a
foliation of a smooth fiber A,_; x T"~ 1.

The topological monodromy 4 := Fa; : A, x T" ™' — A,_1 x T"~! maps each
leaf dA,_q1ju % 7"~ to itself. To describe it explicitly, we introduce n foliations on 771,
First foreachi = 1,2,...,n,let M;), (v € Sl) be the (n — 2)-dimensional subtorus in K¢
defined by ¢% = v, then K; = {M;y},cg! is a foliation on K¢ by parallel subtori (Figure 16
forn = 3).

The homeomorphismpr : K¢ (C T") — 71 given by (€, ..., e%) > (el ..., el%n-1)
transforms the foliation K; = {M;}, g1 to a foliation 7; = {Tirllu_z}vey of 7"~!. Then

{04 _1ju X Y‘i"‘v_z}UeS] is a foliation of A, 1, X T"~!. Here varying u yields a singular
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foliation of A,,_; x T"~ 1,

The monodromy action on {b} x T”~!. The barycenter b (= 0A,_1)0) of A,_y is

(%, %), and the topological monodromy & : A,_1 X 771 5 A,_; x T" ! acts on
(b} x T" " as
(ba tla t25 MR t}’l—l) > (ba ezni/ntl5 eiji/nth AR ezni/ntn—l) .
In particular & maps each leaf {b} x T}~ 2 to {b}) x Tl"lv_e%m Int
The monodromy action on 0A,_1}, X 7" ' (u #0). Foreach j =1,2,...,n, let
BA;j_)W denote the jth face of dA,_1), = dA,_1; then BA;j_)W x T"1is the jth face of

A _1ju X 771, Fixing u # 0 and i, set £, := dA,_1, X Tl’llu_2 and consider a foliation

F ={Ly}yest of dAn_1jy x T"~ 1. Then £l = 8A£/21|u x Tl"lv_z is the jth face of £,. While
h maps each face of A, 1, % 7" to itself. h does not map a leaf L, to itself. Moreover,
as we will see below, h maps E,(,j) toitselfonlyif j =i andu = 1.

We specify the parameter u such that the side length of A, 1}, (u # 0) is V2u. Then

for u # 0, the jth face 8A§lj_)l‘u of dA,_1}, is defined by A; = 1—u in oA, 1. We

n
first consider the case j = i; we describe the action of 4 on E,(j) = 8A,(li11|u X Tl’(v_ 2 Set
(@)
v

wi= 1 ; U Then by Lemma 2, the restriction of / to £

is explicitly given by
(()"11 "'1)"i—17 /“Ls)"l.“rl?"'s)"n)s (t],...,ti_],U,t[-‘,—],...'tn_])) [

(()\'17 MR )"l—la ,u‘a )"l-‘rl’ MR )"n)a (ezj-[i)hltla MR eZﬂiH«v’ L] ezj-[i)\niltn—l)) M
We thus obtain the following:

LEMMA 3. & maps L to L7 In particular when u = 1, it maps L to

ve2mi(l—u)/n*

itself, and is explicitly given by
h : (()"11 .. ')"l'—lv O, )"i—l-ls ] )"Vl)s (tlv .. -ti—lv U, ti+17 ] t}’l—l)) >

(()"la . ')"i—la 05 )"l-'rla MR )‘-n), (ezni)hltl5 AR Ua AR ezj-[i)\niltn—l)) .

REMARK 2. While 7 maps £{ to £ for j # i, h does not map L (j # i)

vemi(l—u)/n?
to a face of a leaf of F. Indeed,

RS = (Mt os An), (t1s - 1am1)) € DAY

RESTIR T g = ve?iMy

S YN

n—1lu

To emphasize n, write h as hy, : A,—1 X 771 5 A, x T" ', Here aAr(liim X Tlr“v_z
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= O » (B 0,

(—1)-Dehn twist | | —-IO‘(athIl

O\$Q7-O

FIGURE 17

is homeomorphicto A,_» x T =2 via
(0 : (()\'17 "‘7)\'i—1507 )\'l+17 "‘7)"}’1)7 (t15 "'7ti—15 U5tl+la "‘t}’l—l))
[ — (()"15 . '5)"i—la)\'i+17 e 7)\'}’1)7 (t15 . '7ti—15 tl-‘rl’ . 't}’l—l)) .

Identify BASZM X Tl'l'v_2 with Ap_s x T"2 via ¢. From Lemma 3,

gohyoe (A1, o hnm)s (t1y ..  t—2))
=@ohy((A1y.o Aot 0, A4, ooy Age1), (1 lim, U By o Ba—2))
=<p((k1,...ki_1,0, Mivenss hne1), (€ H1gy ...,v,...,ezni)‘"—ztn_z))
= (Ods ey dnm1), @M1y, o, @22y, 5))

= h}’l—l(()"l5 M) )\'}’l—l)a (tla AR tn—2)) .
Thus ¢ o by 0 9! = h,_1, s0

PROPOSITION 1. The restriction of hy to BASZM x T

i s hu_1.

Variation of topological monodromy. Asu — 0, the ith face E,(f) = 8AS) 1 Tl"lv 2
of the leaf £, = dA,_1)u X T2

il shrinks to the (n —2)-dimensional torus 7" ~2. Accordingly

hy, .=h |£<,-> varies. In the case n = 3, E,(j) for u # 0 is an annulus and for u = 0 a circle,

and as we see below, A, varies from a (—1)-Dehn twist to a rotation of S, where recall that
for each integer k, a k-Dehn twist is a self-homeomorphism of an annulus [0, 1] x S! given
by (x,1) € [0, 1] x S! — (x, 2™ **1) € [0, 1] x S!.

PROPOSITION 2 (n = 3). As u varies from 1 to 0, h, varies from a (—1)-Dehn twist

to the 2Tﬂ-rotation of 8! as illustrated in Figure 17.

PROOF. We show the assertion for i = 1 (it is similarly shown for other /). Iden-
tify £V and 5(1)27“(1_“)/3 with the annulus [13%, 424] x §! via the homeomorphism

((Al,kz,kg), (11, tz)) + (A3, r). Regard then A, : E,(Jl) — El()le)zm(,_um as a homeomor-
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phism

hut(x,t) € [155, 28] x ST > (x, e 2milet (-3l g [Lou Lt2u] o gl

As u varies from 1 to 0, this varies from a (—1)-Dehn twist of [0, 1] x § 1 to the 2?ﬂ-rotation

of S! as illustrated in Figure 17. 0
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