Some Remarks on the Existence of Certain Unramified *p*-extensions

Akito NOMURA

Kanazawa University
(Communicated by M. Kurihara)

Abstract. We study the inverse Galois problem with restricted ramifications. Let p and q be distinct odd primes. Let E be a non-abelian p-group of order p^3 , and let k be a cyclic extension over \mathbf{Q} of degree q. In this paper, we study the existence of unramified extensions over k with the Galois group E.

1. Introduction

Let k be an algebraic number field. Let p be a prime number and G a p-group. Whether there is an unramified Galois extension over k with the Galois group G is an interesting problem in algebraic number theory. In the case when G is an abelian group, by class field theory, this problem is closely related to the ideal class group of k. Bachoc-Kwon[1] and Couture-Derhem[3] studied the case when k is a cyclic cubic field and G is the quaternion group of order 8. The author[10] studied the case when k is a cyclic quintic field and G is a certain non-abelian 2-group of order 32. For an odd prime p, let E_1 be the non-abelian group of order p^3 such that the exponent is equal to p. In [8], the author studied the case when k is a quadratic field and $G = E_1$. Lemmermeyer[6] generalized this result to quadratic extensions over any number field.

Let p and q be distinct odd primes such that $p \equiv -1 \mod q$. Let E be a non-abelian p-group of order p^3 , and let k be a cyclic extension over \mathbf{Q} of degree q. In this paper, we shall study the existence of unramified extensions over k with the Galois group E.

In this paper, we call a field extension L/K/F is a Galois extension if L/F and K/F are Galois extensions.

Received November 7, 2012; revised May 13, 2013

Mathematics Subject Classification: 12F12

Key words and phrases: Inverse Galois problem, unramified extensions, class numbers

Supported by Grand-in-Aid for Scientific Research (C) No. 23540010, Japan Society for the Promotion of Science

2. Preliminary from group theory and embedding problems

We shall focus on some groups. Let p and q be distinct odd primes such that $p \equiv -1 \mod q$. Let

$$E_1 = \langle x, y, z \mid x^p = y^p = z^p = 1, \ xy = yx, \ xz = zx, \ z^{-1}yz = xy \rangle,$$

 $E_2 = \langle x, y \mid x^{p^2} = y^p = 1, \ y^{-1}xy = x^{1+p} \rangle.$

These groups are non-abelian p-groups of order p^3 . The exponent of E_1 is p, and the exponent of E_2 is p^2 .

Let t be a primitive root in \mathbf{F}_{p^2} of the congruence $t^q \equiv 1 \mod p$, where \mathbf{F}_{p^2} is the finite field with p^2 elements. Since $t^p + t$ is fixed by the action of $\operatorname{Gal}(\mathbf{F}_{p^2}/\mathbf{F}_p)$, $t^p + t$ is contained in \mathbf{F}_p . Let

$$\Gamma_{0} = \langle x, y, w \mid x^{p} = y^{p} = w^{q} = 1, \ xy = yx, \ w^{-1}xw = y, \ w^{-1}yw = x^{-1}y^{t^{p}+t} \rangle,$$

$$\Gamma_{1} = \langle x, y, z, w \mid x^{p} = y^{p} = z^{p} = w^{q} = 1, \ xz = zx, \ yz = zy, \ zw = wz$$

$$y^{-1}xy = zx, \ w^{-1}xw = y, \ w^{-1}yw = x^{-1}y^{t^{p}+t} \rangle.$$

For these two groups, we refer Burnside [2] and Western [11]. We shall describe some lemmas which will be needed below.

LEMMA 1 ([2, §59]). Let p and q be odd primes such that $p \equiv -1 \mod q$, and let G be a finite group. Assume that G satisfies the conditions:

- (1) The order of G is equal to p^2q .
- (2) G has a normal subgroup which is isomorphic to $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.
- (3) G does not have a normal subgroup of order q.

Then G is isomorphic to Γ_0 .

We denote by Aut(G) the automorphism group of a finite group G.

LEMMA 2 ([12, Theorem 1]). The order of the group $Aut(E_2)$ is $p^3(p-1)$.

LEMMA 3 ([9, Theorem 8]). Let p be an odd prime. Assume that the Galois extension $K/k/\mathbb{Q}$ satisfies the conditions:

- (1) The degree $[k : \mathbf{Q}]$ is prime to p.
- (2) K/k is an unramified p-extension.

Let $(\varepsilon): 1 \to \mathbb{Z}/p\mathbb{Z} \to E \to \operatorname{Gal}(K/\mathbb{Q}) \to 1$ be a non-split central extension. Then there exists a Galois extension $L/K/\mathbb{Q}$ such that

- (i) $1 \to \operatorname{Gal}(L/K) \to \operatorname{Gal}(L/\mathbb{Q}) \to \operatorname{Gal}(K/\mathbb{Q}) \to 1$ coincides with (ε) , and
- (ii) L/K is unramified.

The following lemma is well-known. See for example Metsänkylä [7].

LEMMA 4. Let p and q be distinct odd primes, and ζ_q a primitive q-th root of unity. Let $G = \langle \sigma \rangle$ be the cyclic group of order q. We consider $\mathbf{Z}[\zeta_q]$ as G-module by $\sigma x = \zeta_q x$. Then the irreducible decomposition of $\mathbf{F}_p[G]$ as G-module is

$$\mathbf{F}_p[G] \cong \mathbf{F}_p \oplus \bigoplus_{i=1}^g \mathbf{Z}[\zeta_q]/\mathfrak{p}_i \mathbf{Z}[\zeta_q]$$

where the \mathfrak{p}_i are prime ideals defined by $p\mathbf{Z}[\zeta_q] = \mathfrak{p}_1\mathfrak{p}_2 \dots \mathfrak{p}_g$, and \mathbf{F}_p is the finite field with p elements.

3. Theorems and the proofs

Let p and q be distinct odd primes, and let k/\mathbf{Q} be a cyclic extension of degree q.

THEOREM 1. Let p and q be odd primes such that $p \equiv -1 \mod q$. Assume that the class number of k is divisible by p. Then there exists a Galois extension $L/k/\mathbb{Q}$ such that

- (1) L/k is an unramified extension, and
- (2) Gal(L/k) is isomorphic to E_1 which is defined in the section 2.

PROOF. By the assumption of the class number of k, there exists an unramified cyclic extension k_1/k of degree p. Let K_1 be the Galois closure of k_1/\mathbf{Q} . Then $\mathrm{Gal}(K_1/k)$ is an elementary abelian p-group, and $\mathrm{Gal}(k/\mathbf{Q})$ acts naturally on the group $\mathrm{Gal}(K_1/k)$. Let \mathfrak{p}_i are prime ideals defined by $p\mathbf{Z}[\zeta_q] = \mathfrak{p}_1\mathfrak{p}_2 \dots \mathfrak{p}_g$. Since the order of $p \mod q$ is 2, $\mathbf{Z}[\zeta_q]/\mathfrak{p}_i\mathbf{Z}[\zeta_q] \cong \mathbf{Z}/p\mathbf{Z} \times \mathbf{Z}/p\mathbf{Z}$. By Lemma 4, the p-rank of any irreducible $\mathbf{F}_p[G]$ -module with non-trivial action is equal to 2. Then there exists a Galois extension $K/k/\mathbf{Q}$ such that K/k is unramified and that $\mathrm{Gal}(K/k) \cong \mathbf{Z}/p\mathbf{Z} \times \mathbf{Z}/p\mathbf{Z}$. We claim that K has no subfield N such that N/\mathbf{Q} is Galois and that [K:N]=q. Indeed, let $K/N/\mathbf{Q}$ be a Galois extension such that [K:N]=q. Then, by considering the ramification index in N/\mathbf{Q} , we see that N/\mathbf{Q} is an unramified extension. This is a contradiction. Therefore $\mathrm{Gal}(K/\mathbf{Q})$ satisfies the conditions (1)(2)(3) in Lemma 1. Hence $\mathrm{Gal}(K/\mathbf{Q}) \cong \Gamma_0$ by Lemma 1.

Let C be the center of Γ_1 , then C is a cyclic group of order p generated by z. Let $j:\Gamma_1\to \Gamma_0$ be the homomorphism defined by $x\mapsto x,y\mapsto y,w\mapsto w,z\mapsto 1$, then j induces the isomorphism $\Gamma_1/C\cong \Gamma_0$. Then there exists a central extension $1\to \mathbf{Z}/p\mathbf{Z}\to \Gamma_1\to \mathrm{Gal}(K/\mathbf{Q})\to 1$. Since Γ_1 is not isomorphic to the direct product $\Gamma_0\times \mathbf{Z}/p\mathbf{Z}$, this exact sequence is non-split. By Lemma 3, there exists a Galois extension $L/K/\mathbf{Q}$ such that $\mathrm{Gal}(L/\mathbf{Q})\cong \Gamma_1$ and that L/K is unramified. Since the p-Sylow subgroup of Γ_1 is isomorphic to E_1 , $\mathrm{Gal}(L/k)$ is isomorphic to E_1 . Therefore L/k is a required extension. This proves the theorem.

REMARK 1. Assume that k/\mathbf{Q} satisfies the same conditions of Theorem 1. By the proof of Theorem 1, we obtained the following. Let $K/k/\mathbf{Q}$ be a Galois extension such that K/k is unramified and that $\operatorname{Gal}(K/k) \cong \mathbf{Z}/p\mathbf{Z} \times \mathbf{Z}/p\mathbf{Z}$. Then there exists a Galois extension L/K/k such that L/k is unramified and that $\operatorname{Gal}(L/k) \cong E_1$.

THEOREM 2. Assume that $p \not\equiv 1 \mod q$. Then there exists no Galois extension $L/k/\mathbb{Q}$ such that L/k is unramified and $Gal(L/k) \cong E_2$.

PROOF. Assume that there exists a such Galois extension $L/k/\mathbb{Q}$. Let $\Gamma = \operatorname{Gal}(L/\mathbb{Q})$ and $E = \operatorname{Gal}(L/k)$. Then E is isomorphic to E_2 . Since the order of Γ is p^3q , there exists a non-trivial element τ of Γ such that $\tau^q = 1$. Let $\theta_\tau(x) = \tau^{-1}x\tau$ ($x \in E$). Since E is a normal subgroup of Γ , θ_τ is an automorphism of E. Since $(\theta_\tau)^q(x) = \tau^{-q}x\tau^q = x$, then $(\theta_\tau)^q = 1$. By Lemma 2 and the assumption $p \not\equiv 1 \mod q$, there is no automorphism of E of order q. Hence, $\theta_\tau = 1$. Then $\tau^{-1}x\tau = x$ for all x in E. Since $\Gamma = \langle E, \tau \rangle$, then $\langle \tau \rangle$ is a normal subgroup of Γ . Hence the fixed field of $\langle \tau \rangle$ in E is an unramified Galois extension over \mathbb{Q} . This is a contradiction.

We denote by Cl(k) the ideal class group of k. We also denote by exp(G) the exponent of the group G.

THEOREM 3. Assume that $p \equiv -1 \mod q$ and the p-rank of Cl(k) is equal to 2. Then the following two conditions are equivalent.

- (1) Cl(k) has an element of order p^2 .
- (2) There exists an unramified Galois extension L/k such that $Gal(L/k) \cong E_2$.

PROOF. At first, we show that the assertion (1) implies (2). By the assumption p-rank Cl(k) = 2, there exists an unramified Galois extension K/k such that K is a Galois extension over \mathbf{Q} and that $Gal(K/k) \cong \mathbf{Z}/p\mathbf{Z} \times \mathbf{Z}/p\mathbf{Z}$. By Theorem 1 and the Remark, there exists a Galois extension $L_1/K/k$ such that L_1/k is unramified and that $Gal(L_1/k) \cong E_1$. On the other hand, by the condition (1), Cl(k) has a subgroup isomorphic to $\mathbf{Z}/p^2\mathbf{Z} \times \mathbf{Z}/p\mathbf{Z}$. Then there exists a Galois extension $L_2/K/k$ such that L_2/k is unramified and that $Gal(L_2/k) \cong \mathbf{Z}/p^2\mathbf{Z} \times \mathbf{Z}/p\mathbf{Z}$.

Let $M = L_1L_2$, then M/k is a p-extension. Let L_3 be a subfield of M satisfying the conditions: (i) $L_3 \supset K$ and $[L_3:K] = p$, (ii) $L_3 \ne L_i (i=1,2)$. Since $\operatorname{Gal}(M/L_i) (i=1,2)$ are normal subgroups of $\operatorname{Gal}(M/k)$ of order p, $\operatorname{Gal}(M/L_i)$ are contained in the center of $\operatorname{Gal}(M/k)$. Then $\operatorname{Gal}(M/K)$ is contained in the center of $\operatorname{Gal}(M/k)$. Hence $\operatorname{Gal}(M/L_3)$ is a normal subgroup of $\operatorname{Gal}(M/k)$ and L_3/k is an unramified Galois extension. Since L_2/k is an abelian extension and M/k is a non-abelian extension, then L_3/k is a non-abelian extension. We remark that $\operatorname{Gal}(M/k)$ is isomorphic to a subgroup of the direct product $\operatorname{Gal}(L_1/k) \times \operatorname{Gal}(L_2/k)$. Since $\exp(\operatorname{Gal}(L_1/k)) = p$ and $\exp(\operatorname{Gal}(L_2/k)) = p^2$, then $\exp(\operatorname{Gal}(M/k)) = p$ or p^2 . On the other hand, $\operatorname{Gal}(L_2/k)$ is isomorphic to a factor group of $\operatorname{Gal}(M/k)$. Therefore $\exp(\operatorname{Gal}(M/k)) = p^2$. Since $\operatorname{Gal}(M/k)$ is isomorphic to a subgroup of $\operatorname{Gal}(L_1/k) \times \operatorname{Gal}(L_3/k)$ and $\exp(\operatorname{Gal}(L_1/k)) = p$, then $\exp(\operatorname{Gal}(L_3/k)) = p^2$. Thus $\operatorname{Gal}(L_3/k)$ is a non-abelian p-group such that the order is equal to p^3 and that $\exp(\operatorname{Gal}(L_3/k)) = p^2$. Hence $\operatorname{Gal}(L_3/k)$ is isomorphic to E_2 .

Next, we show that the assertion (2) implies (1). By Theorem 1, there exists a Galois extension $L_1/K/k$ such that L_1/k is unramified and that $Gal(L_1/k) \cong E_1$. By the

assumption, there exists a Galois extension $L_2/K/k$ such that L_2/k is unramified and that $Gal(L_2/k) \cong E_2$. Let $M = L_1L_2$ and $G_M = Gal(M/k)$. Let C_M be the center of G_M , and $[G_M, G_M]$ the commutator subgroup of G_M . Since $Gal(M/L_i)(i = 1, 2)$ are contained in C_M , $Gal(M/K) \subset C_M \subset G_M$.

We claim that $C_M = \operatorname{Gal}(M/K)$. Indeed, if $\operatorname{Gal}(M/K) \subsetneq C_M$, then G_M/C_M is a cyclic group. Therefore G_M is abelian. This is a contradiction.

Let K^* be the subfield of M corresponding to the group $C_M \cap [G_M, G_M]$. It is well known that $C_M \cap [G_M, G_M]$ is isomorphic to a quotient group of the Schur multiplier of G_M/C_M . (See for example Karpilovsky[5, Proposition 2.1.7] or Furuta[4].) The Schur multiplier of the group $G_M/C_M \cong \mathbf{Z}/p\mathbf{Z} \times \mathbf{Z}/p\mathbf{Z}$ is isomorphic to $\mathbf{Z}/p\mathbf{Z}$. Since K/k is abelian, then $[G_M, G_M]$ is contained in $C_M = \operatorname{Gal}(M/K)$. Since M/k is nonabelian, then $[G_M, G_M] = C_M \cap [G_M, G_M] \cong \mathbf{Z}/p\mathbf{Z}$. Hence $[M: K^*] = p$, and $\operatorname{Gal}(K^*/k) \cong \mathbf{Z}/p^2\mathbf{Z} \times \mathbf{Z}/p\mathbf{Z}$.

COROLLARY 1. Assume that $p \not\equiv 1 \mod q$. If L/k is an unramified Galois extension such that $\operatorname{Gal}(L/k) \cong E_2$, then the class number of L is divisible by p.

PROOF. Let \hat{k} be the maximal unramified p-extension of k. Then \hat{k}/\mathbf{Q} is a Galois extension and $L \subset \hat{k}$. By Theorem 2, L/\mathbf{Q} is not a Galois extension. Then $L \subsetneq \hat{k}$, and the class number of L is divisible by p.

ACKNOWLEDGMENT. The author should like to express my gratitude to Professor Katsushi Waki for his useful advice about automorphism groups of *p*-groups. The author also thanks the referee for her/his careful reading and for her/his advice.

References

- [1] C. BACHOC and S. H. KWON, Sur les extensions de group de Galois \widetilde{A}_4 , Acta Arith. 62 (1992), 1–10.
- [2] W. BURNSIDE, Theory of groups of finite order, Cambridge University Press, 1911.
- [3] R. COUTURE and A. DERHEM, Un problème de capitulation, C. R. Acad. Sci. Paris 314 (1992), 785–788.
- [4] Y. FURUTA, Supplementary notes on Galois groups of central extensions of algebraic number fields, Science Reports of Kanazawa Univ. 29 (1984), 9–14. (Kanazawa University Repository for Academic resources, http://hdl.handle.net/2297/10540)
- [5] G. KARPILOVSKY, The Schur multiplier, London Mathematical Society Monographs New Series 2, Oxford Science Publications. 1987.
- [6] F. LEMMERMEYER, Class groups of dihedral extensions, Math. Nachr. 278 (2005), 679–691.
- [7] T. METSÄNKYLÄ, On the history of the study of ideal class groups, Expo. Math. 25 (2007), 325-340.
- [8] A. NOMURA, On the existence of unramified p-extensions, Osaka J. Math. 28 (1991), 55–62.
- [9] A. NOMURA, On the class number of certain Hilbert class fields, Manuscripta Math. 79 (1993), 379–390.
- [10] A. NOMURA, Notes on the existence of certain unramified 2-extensions, Illinois J. Math. 46 (2002), 1279– 1286
- [11] A. E. WESTERN, Groups of order p^3q , Proc. London Math. Soc. Ser.1, 30 (1899), 209–263.
- [12] D. L. WINTER, The automorphism group of an extraspecial p-group, Rocky Mountain J. Math. 2 (1972), 159–168.

Present Address:
INSTITUTE OF SCIENCE AND ENGINEERING,
KANAZAWA UNIVERSITY,
KAKUMA-MACHI, KANAZAWA, 920–1192 JAPAN.
e-mail: nomura@se.kanazawa-u.ac.jp