Interface Regularity of the Solutions for the Rotation Free and the Divergence Free Systems in Euclidian Space

Makoto KANOU, Tomohiko SATO and Kazuo WATANABE

Noda Zouen Corporation, Nihon University and Gakushuin University

Abstract

In the present paper we study the interface regularity of the solutions to the differential systems of divergence free and rotation free defined by differential forms in the $N(\geq 3)$-dimensional Euclidean space. Our results are natural extensions of the results of [3] and [5] for $N=3$.

1. Introduction

1.1. Motivation. Let $\Omega \subset \mathbf{R}^{N}(N \geq 3)$ be a bounded domain with $C^{1,1}$-Lipschitz boundary. Let \mathcal{M} be a hypersurface in \mathbf{R}^{N}. We assume that \mathcal{M} divides Ω into two domains $\Omega_{ \pm}$. Let $\Gamma=\Gamma_{ \pm}=\Omega \cap \mathcal{M}$, and let v be the outer unit normal vector on Γ_{-}. If \mathcal{M} is of $C^{k, 1}$, v has a $C^{k, 1} \cap W^{k+1, \infty}$-extension to Ω, which is expressed with the same symbol v. Let $B(x)={ }^{t}\left(B^{1}(x), B^{2}(x), \ldots, B^{N}(x)\right)$ and $J(x)={ }^{t}\left(J^{1}(x), J^{2}(x), \ldots, J^{N(N-1) / 2}(x)\right)$ be $\mathbf{R}^{N(N-1) / 2}$-valued functions, and let g be an \mathbf{R}-valued function. We put, for $x \in \Gamma$ (interface)

$$
B_{ \pm}(x):=\lim _{\Omega_{ \pm} \ni \xi \rightarrow x} B(\xi), \quad[B]_{-}^{+}=B_{+}-B_{-} \text {on } \Gamma
$$

The motivation of this study arises from the results on the interface vanishing of the solution to the following equations (1) and (2) for $N=3$

$$
\text { (1) }\left\{\begin{array} { l }
{ \operatorname { r o t } B = J , } \\
{ \operatorname { d i v } B = 0 , }
\end{array} \quad \text { in } \Omega _ { \pm } , \quad \text { (2) } \left\{\begin{array}{l}
\operatorname{rot} B=0, \\
\operatorname{div} B=g,
\end{array} \quad \text { in } \Omega_{ \pm}\right.\right.
$$

by Kobayashi, Suzuki and Watanabe [5] for (1), Kanou, Sato and Watanabe [3] for (2):
THEOREM 1.1 ([5]). Let $\mathcal{M} \subset \mathbf{R}^{3}$ be a $C^{1,1}$-surface and rot $J \in L^{2}\left(\Omega_{ \pm}\right)$. If $B \in$ $H^{1}(\Omega)^{3}$ is a solution to (1), then $\nu \cdot B \in H_{l o c}^{2}(\Omega)$.

Theorem 1.2 ([3]). Let $\mathcal{M} \subset \mathbf{R}^{3}$ be a $C^{1,1}$-surface, and $g \in H^{1}\left(\Omega_{ \pm}\right)$. If $B \in$ $H^{1}(\Omega)^{3}$ is a solution of (2), then $\nu \times B \in H_{\text {loc }}^{2}(\Omega)^{3}$.

[^0]We describe the historical background. In [1], Geselowitz studied the problem for Magnetroencepharography (MEG), which is the medical mathematics. We explain MEG, concretely. Ω_{+}is a "head", Ω_{-}is the outside of the head and Γ is the surface of the head. Let B be the magnetic field and let J be the electric current. The problem is: can we know the electric current J by measurement of the magnetic field B in Ω_{-}(the outside)? In [7], T. Suzuki, K. Watanabe and M. Shimogawara examined the property of the solutions to (1) by using the Newton potential. They also studied the inverse problem under the assumption that the electric current J is a dipole.

In [4], T. Kobayashi, T. Suzuki and K. Watanabe obtained the same result as Theorem 1.1 by assuming that \mathcal{M} is a C^{2}-surface. In [5], they improved the result and obtained Theorem 1.1 above. To prove Theorem 1.1, they used the Green and the Gauss formulas in stead of the Newton potential. In [3], M. Kanou, T. Sato and K. Watanabe obtained Theorem 1.2 above.

We remark that $B \in H_{l o c}^{2}(\Omega)$ is not necessarily true even if B and J (resp. B and g) satisfy the assumption of Theorem 1.1 (resp. 1.2). We give a concrete example. Let $\mathcal{M}=$ $\left\{x={ }^{t}\left(x_{1}, x_{2}, x_{3}\right) \mid x_{3}=0\right\}, \Omega=\{|x|<1\}, v={ }^{t}(0,0,1) . B={ }^{t}\left(\left|x_{3}\right|, x_{1}, x_{2}\right)$ (resp. $\left.B={ }^{t}\left(0,0,\left|x_{3}\right|\right)\right)$, and

$$
J=\left\{\begin{array} { l l }
{ { } ^ { t } (1 , 1 , 1) , } & { (x _ { 3 } > 0) } \\
{ { } ^ { t } (1 , - 1 , 1) , } & { (x _ { 3 } < 0) . }
\end{array} \left(\text { resp. } g=\left\{\begin{array}{ll}
1, & \left(x_{3}>0\right) \\
-1, & \left(x_{3}<0\right) .
\end{array}\right)\right.\right.
$$

Then we can easily check that B and J (resp. B and g) satisfy (1) (resp. (2)). In fact,

$$
\begin{aligned}
& \nabla \times B={ }^{t}\left(\partial_{2} x_{2}, \partial_{3}\left|x_{3}\right|, \partial_{1} x_{1}\right)=J, \quad \nabla \cdot B=0 \\
& \left(\text { resp. } \nabla \cdot B=\partial_{3} B^{3}=\partial_{3}\left|x_{3}\right|=g, \quad \nabla \times B={ }^{t}(0,0,0) .\right)
\end{aligned}
$$

But $v \times B={ }^{t}\left(-x_{1},\left|x_{3}\right|, 0\right) \notin H_{l o c}^{2}(\Omega)^{3}$ (resp. $v \cdot B=\left|x_{3}\right| \notin H_{l o c}^{2}(\Omega)$), which means $B \notin H_{l o c}^{2}(\Omega)$.

In the present paper, we study an extension to the above theorems for general N by using the differential forms.

This paper is organized as follows: In §1.2, we give some notations. In §2, we give the main theorems. In $\S 3$, we give proofs of the theorems.
1.2. Preliminaries. Let $D \subset \mathbf{R}^{N}$ be a domain with smooth boundary. We consider 1 or 2 -forms on D, and we write as

$$
B=\sum_{i=1}^{N} B^{i} d x_{i}(1 \text {-form }), \quad J=\sum_{1 \leq i<j \leq N} J^{i j} d x_{i} \wedge d x_{j} \text { (2-form) }
$$

For 1-forms $A=\sum_{i=1}^{N} B^{i} d x_{i}, B=\sum_{i=1}^{N} B^{i} d x_{i}$, and 2-forms $J=\sum_{1 \leq i<j \leq N} J^{i j} d x_{i} \wedge d x_{j}$, $K=\sum_{1 \leq i<j \leq N} K^{i j} d x_{i} \wedge d x_{j}$, the inner product is respectively defined by

$$
(A, B):=\sum_{i=1}^{N} A^{i} B^{i}, \quad(J, K):=\sum_{1 \leq i<j \leq N} J^{i j} K^{i j}
$$

Furthermore, the exterior product is given by

$$
A \wedge B=\sum_{1 \leq i<j \leq N}\left(A^{j} B^{i}-A^{i} B^{j}\right) d x_{i} \wedge d x_{j}
$$

We define L^{2}-inner product $\langle\cdot, \cdot\rangle$ by

$$
\langle A, B\rangle:=\int_{D}(A, B), \quad\langle J, K\rangle:=\int_{D}(J, K) .
$$

If $\langle A, A\rangle<\infty,\langle J, J\rangle<\infty$, then we write,

$$
A \in L^{2}\left(D ; \mathbf{R}^{N}\right), \quad J \in L^{2}\left(D ; \mathbf{R}^{N(N-1) / 2}\right)
$$

When no confusion can arise, we simply write $A \in L^{2}(D), J \in L^{2}(D)$. Concisely we write $\partial B^{i} / \partial x_{j}$ as B_{j}^{i}. We define the differential operators for forms by

$$
\begin{aligned}
& d_{0} f:=\sum_{i=1}^{N} f_{i} d x_{i}, \quad d_{1} B:=\sum_{1 \leq i<j \leq N}\left(B_{i}^{j}-B_{j}^{i}\right) d x_{i} \wedge d x_{j} \\
& \delta_{0} B:=-\sum_{i=1}^{N} B_{i}^{i}, \quad \delta_{1} J:=-\sum_{i=1}^{N}\left(\sum_{l=1}^{N} J_{l}^{l i}\right) d x_{i}
\end{aligned}
$$

Let $H^{m}(D)$ be the Sobolev space of rank m. We define function spaces as follows:

$$
\begin{aligned}
& H^{m}\left(D ; \mathbf{R}^{K}\right):=\left\{A=\left(A^{1}, \ldots, A^{K}\right) \in L^{2}\left(D ; \mathbf{R}^{K}\right) ; 1 \leq \forall j \leq K, A^{j} \in H^{m}(D)\right\} \\
& H\left(d_{0} ; D\right):=\left\{f \in L^{2}(D) ; d_{0} f \in L^{2}\left(D ; \mathbf{R}^{N}\right)\right\} \\
& H\left(\delta_{0} ; D\right):=\left\{B \in L^{2}\left(D ; \mathbf{R}^{N}\right) ; \delta_{0} B \in L^{2}(D)\right\} \\
& H\left(d_{1} ; D\right):=\left\{B \in L^{2}\left(D ; \mathbf{R}^{N}\right): d_{1} B \in L^{2}\left(D ; \mathbf{R}^{N(N-1) / 2}\right)\right\} \\
& H\left(\delta_{1} ; D\right):=\left\{J \in L^{2}\left(D ; \mathbf{R}^{N(N-1) / 2}\right): \delta_{1} J \in L^{2}\left(D ; \mathbf{R}^{N}\right)\right\}
\end{aligned}
$$

2. Main Theorems

We denote the outer unit normal vector on Ω_{-}by v, and assume that v has an extension to Ω. Here we will not consider the regularity of extension in detail. Identifying v with

1-form, we regard as

$$
\nu=\sum_{i=1}^{N} v^{i} d x_{i}
$$

We consider the following equations:

$$
\begin{aligned}
& (M) \quad\left\{\begin{array}{l}
d_{1} B=J \\
\delta_{0} B=0,
\end{array} \quad \text { in } \Omega_{ \pm}, \quad J \in H\left(\delta_{1}, \Omega_{ \pm}\right),\right. \\
& (R) \quad\left\{\begin{array}{l}
d_{1} B=0 \\
\delta_{0} B=g,
\end{array} \quad \text { in } \Omega_{ \pm}, \quad g \in H\left(d_{0}, \Omega_{ \pm}\right)=H^{1}\left(\Omega_{ \pm}\right) .\right.
\end{aligned}
$$

Here these equations mean as follows: In general, the equation $F(u)=v$ in $\Omega_{ \pm}$means

$$
\left.F(u)\right|_{\Omega_{+}}=\left.v\right|_{\Omega_{+}} \quad \text { in } \Omega_{+}, \quad \text { and }\left.\quad F(u)\right|_{\Omega_{-}}=\left.v\right|_{\Omega_{-}} \text {in } \Omega_{-}
$$

$J \in H\left(\delta_{1}, \Omega_{ \pm}\right)$means

$$
\left.J\right|_{\Omega_{+}} \in H\left(\delta_{1} ; \Omega_{+}\right) \quad \text { and }\left.\quad J\right|_{\Omega_{-}} \in H\left(\delta_{1} ; \Omega_{-}\right)
$$

Also, $g \in H\left(d_{0} ; \Omega_{ \pm}\right)$means

$$
\left.g\right|_{\Omega_{+}} \in H\left(d_{0} ; \Omega_{+}\right) \quad \text { and }\left.\quad g\right|_{\Omega_{-}} \in H\left(d_{0} ; \Omega_{-}\right) .
$$

And we define B^{ν}, B^{τ} by

$$
B^{v}:=v(v, B), \quad B^{\tau}:=B-B^{v} .
$$

THEOREM 2.1. Let B, J satisfy (M). If $B \in H^{1}\left(\Omega ; \mathbf{R}^{N}\right)$ and $[B]_{-}^{+}=0$ on Γ, then we have $(\nu, B) \in H_{l o c}^{2}(\Omega)$.

THEOREM 2.2. Let B, g satisfy (R). If $B \in H^{1}\left(\Omega ; \mathbf{R}^{N}\right)$ and $[B]_{-}^{+}=0$ on Γ, then we have $B^{\tau} \in H_{l o c}^{2}(\Omega)$.

3. Proofs of Theorems

The following lemmas are needed to obtain Theorem 2.1 and 2.2.
Lemma 3.1 (Gauss, Stokes formula). Let $D \subset \mathbf{R}^{N}$ be a domain with smooth boundary. For any $\varphi \in C^{\infty}(D), C \in C^{\infty}\left(D ; \mathbf{R}^{N(N-1) / 2}\right)$, we have

$$
\begin{align*}
& \left\langle\delta_{0} B, \varphi\right\rangle=\left\langle B, d_{0} \varphi\right\rangle-\int_{\partial D}(B, v) \varphi d S \tag{3.1}\\
& \left\langle d_{1} B, C\right\rangle=\left\langle B, \delta_{1} C\right\rangle+\int_{\partial D}(v \wedge B, C) d S \tag{3.2}
\end{align*}
$$

where v denotes the exterior unit normal and $d S$ the surface element.

Proof (Ref. [6]). Integrating both sides of the formula $\left(\delta_{0} B\right) \varphi=\delta_{0}(B \varphi)+\left(d_{0} \varphi, B\right)$ over D yields (3.1).

Next we prove (3.2). Clearly we have

$$
\left(B, \delta_{1} C\right)=-\sum_{l=1}^{N} B^{l} \sum_{j=1}^{N} C_{j}^{j l}
$$

Noticing that $C^{i i}=0, C^{i j}=-C^{j i}$, we obtain

$$
\begin{aligned}
\left(d_{1} B, C\right) & =\sum_{i<j}\left(B_{i}^{j}-B_{j}^{i}\right) C^{i j} \\
& =\sum_{i<j}\left\{\left(B^{j} C^{i j}\right)_{i}-\left(B^{i} C^{i j}\right)_{j}-\left(B^{j} C_{i}^{i j}-B^{i} C_{j}^{i j}\right)\right\} \\
& =\sum_{i<j}\left\{\left(B^{j} C^{i j}\right)_{i}-\left(B^{i} C^{i j}\right)_{j}-\left(B^{j} C_{i}^{i j}+B^{i} C_{j}^{j i}\right)\right\} \\
& =\sum_{i<j}\left\{\left(B^{j} C^{i j}\right)_{i}-\left(B^{i} C^{i j}\right)_{j}\right\}+\left(B, \delta_{1} C\right)
\end{aligned}
$$

Integrating both sides of the above leads to (3.2).
LEmma 3.2. If $p \in H^{1}(\Omega)$ and $[p]_{-}^{+}=0$ on Γ, then we have $\left[v \wedge d_{0} p\right]_{-}^{+}=0$ on Γ as $H^{-1 / 2}(\Gamma)$.

Proof. Let $p_{n} \in C^{\infty}(\Omega)$ be an approximate sequence of p in $H^{1}(\Omega)$. For any $C \in$ $C_{0}^{\infty}\left(\Omega ; \mathbf{R}^{N(N-1) / 2}\right)$, we have

$$
\begin{aligned}
0 & =\left\langle d_{1} d_{0} p_{n}, C\right\rangle \\
& =\int_{\Omega_{+}}\left(d_{1} d_{0} p_{n}, C\right)+\int_{\Omega_{-}}\left(d_{1} d_{0} p_{n}, C\right) \\
& =\left\langle d_{0} p_{n}, \delta_{1} C\right\rangle+\int_{\Gamma}\left[\left(v \wedge d_{0} p_{n}, C\right)\right]_{-}^{+} d S \\
& =\left\langle p_{n}, \delta_{0} \delta_{1} C\right\rangle+\int_{\Gamma}\left[p_{n}\left(v, \delta_{1} C\right)\right]_{-}^{+} d S+\int_{\Gamma}\left[\left(v \wedge d_{0} p_{n}, C\right)\right]_{-}^{+} d S \\
& =\int_{\Gamma}\left[\left(v \wedge d_{0} p_{n}, C\right)\right]_{-}^{+} d S
\end{aligned}
$$

By letting $n \rightarrow \infty$, we obtain $\left[v \wedge d_{0} p\right]_{-}^{+}=0$ on Γ.
Proof of Theorem 2.1. Notice that $B \in H^{2}\left(\Omega_{ \pm} ; \mathbf{R}^{N}\right)$, since

$$
-\Delta B=\left(\delta_{1} d_{1}+d_{0} \delta_{0}\right) B=\delta_{1} d_{1} B=\delta_{1} J \in L^{2}\left(\Omega_{ \pm}\right)
$$

By the elliptic regularity theorem (ref. [2]), it is sufficient to establish the following relation: for any $\varphi \in C_{0}^{\infty}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega}(\Delta(v, B)) \varphi=\int_{\Omega}(v, B) \Delta \varphi \tag{3.3}
\end{equation*}
$$

Noticing that Laplacian $-\Delta=\delta_{0} d_{0}$ for functions (0 -forms) and using (3.1), we have

$$
\left\langle(v, B), \delta_{0} d_{0} \varphi\right\rangle=\left\langle d_{0}(v, B), d_{0} \varphi\right\rangle+\int_{\Gamma}\left[(v, B)\left(v, d_{0} \varphi\right)\right]_{-}^{+} d S
$$

Since the second term of the right hand side is 0 , we have

$$
\left\langle(v, B), \delta_{0} d_{0} \varphi\right\rangle=\left\langle\delta_{0} d_{0}(\nu, B), \varphi\right\rangle+\int_{\Gamma}\left[\left(d_{0}(\nu, B), v\right) \varphi\right]_{-}^{+} d S
$$

from (3.1). Hence it suffices to prove

$$
\begin{equation*}
\left[\left(d_{0}(v, B), v\right)\right]_{-}^{+}=\left[\left(v, d_{0}(v, B)\right)\right]_{-}^{+}=0 \quad \text { on } \Gamma . \tag{3.4}
\end{equation*}
$$

Definition. We define the differential operators to normal direction $\left(v, d_{0}\right)$ by

$$
\left(v, d_{0}\right) f:=\sum_{j=1}^{N} v^{j} f_{j}, \quad\left(v, d_{0}\right) B:=\sum_{i=1}^{N}\left(\sum_{j=1}^{N} v^{j} B_{j}^{i}\right) d x_{i}
$$

Furthermore, we put

$$
\begin{align*}
d_{0 v} f & :=v\left(v, d_{0}\right) f, \quad d_{0 \tau} f:=d_{0} f-d_{0 v} f, \tag{3.5}\\
\delta_{0 v} B & :=-\left(v,\left(v, d_{0}\right) B\right), \quad \delta_{0 \tau} B:=\delta_{0} B-\delta_{0 v} B \tag{3.6}
\end{align*}
$$

Then (3.4) is rewritten as

$$
\left[\left(v, d_{0}\right)(v, B)\right]_{-}^{+}=0
$$

LEMMA 3.3. We can decompose $\delta_{0} B$ as follows:

$$
\begin{equation*}
\delta_{0} B=\delta_{0 \tau} B^{\tau}-\left(v, d_{0}\right)(v, B)+(v, B) \delta_{0}(v)+\left(\left(v, d_{0}\right) v, B^{\tau}\right) . \tag{3.7}
\end{equation*}
$$

Proof. From (3.5) and (3.6) we have

$$
\delta_{0} B=\delta_{0 \tau} B^{\tau}+\delta_{0 v} B^{\tau}+\delta_{0 \tau} B^{v}+\delta_{0 v} B^{v}
$$

To prove the lemma, we prepare next two equalities for 1-form ω and 0 -form f,

$$
\begin{align*}
& \delta_{0}(f \omega)=-\left(d_{0} f, \omega\right)+f \delta_{0} \omega \tag{3.8}\\
& \left(v,\left(v, d_{0}\right) v\right)=0 \tag{3.9}
\end{align*}
$$

We obtain (3.8) by the definitions of δ_{0} and d_{0}. (3.9) follows from

$$
2\left(v,\left(v, d_{0}\right) v\right)=2 \sum_{i=1}^{N} v^{i} \sum_{j=1}^{N} v^{j} v_{j}^{i}=\sum_{j=1}^{N} v^{j} \sum_{i=1}^{N}\left\{\left(v^{i}\right)^{2}\right\}_{j}=\sum_{j=1}^{N}\left(\sum_{i=1}^{N}\left(v^{i}\right)^{2}\right) v_{j}^{j}
$$

$$
=0
$$

We can then compute as follows:

$$
\begin{align*}
\delta_{0 v} B^{\tau}= & -\left(v,\left(v, d_{0}\right) B^{\tau}\right)=-\left(v, d_{0}\right)\left(v, B^{\tau}\right)+\left(\left(v, d_{0}\right) v, B^{\tau}\right) \\
= & \left(\left(v, d_{0}\right) v, B^{\tau}\right) \tag{3.10}\\
\delta_{0 \tau} B^{v}= & \delta_{0} B^{v}+\left(v,\left(v, d_{0}\right) B^{v}\right)=\delta_{0}(v(v, B))+\left(v,\left(v, d_{0}\right) v(v, B)\right) \\
= & -\left(d_{0}(v, B), v\right)+(v, B) \delta_{0}(v)+\left(v, d_{0}\right)(v, v(v, B))-\left(\left(v, d_{0}\right) v, v(v, B)\right) \\
= & -\left(v, d_{0}\right)(v, B)+(v, B) \delta_{0}(v)+\left(v, d_{0}\right)(v, B) \\
& -\left(\left(v, d_{0}\right) v, v\right)(v, B) \tag{3.11}\\
= & (v, B) \delta_{0}(v) \\
\delta_{0 v} B^{v}= & -\left(v,\left(v, d_{0}\right)\{v(v, B)\}\right)=-\left(v, d_{0}\right)(v, v(v, B))+\left(\left(v, d_{0}\right) v, v(v, B)\right) \\
= & -\left(v, d_{0}\right)(v, B) .
\end{align*}
$$

In order to obtain (3.11), we used (3.8). Hence we obtain (3.7).
We continue to prove (3.4). Since $\delta_{0} B=0$ on $\Omega_{ \pm}$and $[B]_{-}^{+}=0$, we have from (3.7)

$$
\begin{aligned}
0 & =\left[\delta_{0} B\right]_{-}^{+}=\left[\delta_{0 \tau} B^{\tau}-\left(v, d_{0}\right)(v, B)+(v, B) \delta_{0}(v)+\delta_{0 v} B^{v}\right]_{-}^{+} \\
& =\left[\delta_{0 \tau} B^{\tau}\right]_{-}^{+}-\left[\left(v, d_{0}\right)(v, B)\right]_{-}^{+}
\end{aligned}
$$

on Γ.
To show (3.4), it suffices to prove $\left[\delta_{0 \tau} B^{\tau}\right]_{-}^{+}=0$. We put

$$
\delta_{0}^{(j)} f:=-f_{j}, \quad \delta_{0 \nu}^{(j)} f:=-v^{j}\left(\nu, d_{0}\right) f, \quad \delta_{0 \tau}^{(j)} f:=\delta_{0}^{(j)} f-\delta_{0 \nu}^{(j)} f
$$

The j-th element of B^{τ} is denoted by $B^{\tau j}$. It follows that

$$
\begin{equation*}
\delta_{0 \tau} B^{\tau}=\sum_{j=1}^{N} \delta_{0 \tau}^{(j)} B^{\tau j}=-\sum_{j=1}^{N}\left(B_{j}^{\tau j}-v^{j}\left(v, d_{0}\right) B^{\tau j}\right) \tag{3.12}
\end{equation*}
$$

We begin to compute $\delta_{0 \tau}^{(j)} B^{\tau j}$ directly. Since $\sum_{k=1}^{N}\left(\nu^{k}\right)^{2}=1$,

$$
\begin{aligned}
-\left[\delta_{0 \tau}^{(j)} B^{\tau j}\right]_{-}^{+} & =\left[B_{j}^{\tau j}-v^{j}\left(v, d_{0}\right) B^{\tau j}\right]_{-}^{+} \\
& =\left[\sum_{k=1}^{N}\left(v^{k}\right)^{2} B_{j}^{\tau j}-\sum_{k=1}^{N} v^{j} v^{k} B_{k}^{\tau j}\right]_{-}^{+} \\
& =\left[\sum_{k=1}^{N} v^{k}\left(v^{k} B_{j}^{\tau j}-v^{j} B_{k}^{\tau j}\right)\right]_{-}^{+}
\end{aligned}
$$

Since $\left[\nu \wedge d_{0} B^{\tau j}\right]_{-}^{+}=0$ from Lemma $3.2\left(B^{\tau} \in H^{1}\left(\Omega ; \mathbf{R}^{N}\right),\left[B^{\tau}\right]_{-}^{+}=0\right)$, we obtain the desired result.

Proof of Theorem 2.2. Notice that $B \in H^{2}\left(\Omega_{ \pm} ; \mathbf{R}^{N}\right)$, since

$$
-\Delta B=\left(\delta_{1} d_{1}+d_{0} \delta_{0}\right) B=d_{0} \delta_{0} B=d_{0} g \in L^{2}\left(\Omega_{ \pm} ; \mathbf{R}^{N}\right)
$$

from equation (R). For any $C \in C_{0}^{\infty}\left(\Omega ; \mathbf{R}^{N}\right)$, we have

$$
\begin{aligned}
\left\langle d_{0} \delta_{0} B^{\tau}, C\right\rangle & =\left\langle\delta_{0} B^{\tau}, \delta_{0} C\right\rangle-\int_{\Gamma}\left[\delta_{0} B^{\tau}(v, C)\right]_{-}^{+} d S \\
& =\left\langle B^{\tau}, d_{0} \delta_{0} C\right\rangle-\int_{\Gamma}\left[\left(v, B^{\tau}\right) \delta_{0} C\right]_{-}^{+} d S-\int_{\Gamma}\left[\delta_{0} B^{\tau}(v, C)\right]_{-}^{+} d S \\
& =\left\langle B^{\tau}, d_{0} \delta_{0} C\right\rangle-\int_{\Gamma}\left[\delta_{0} B^{\tau}\right]_{-}^{+}(v, C) d S
\end{aligned}
$$

Using (3.10), we compute $\left[\delta_{0} B^{\tau}\right]_{-}^{+}$.

$$
\begin{align*}
{\left[\delta_{0 \tau}\right.} & \left.B^{\tau}\right]_{-}^{+}=\left[\delta_{0} B^{\tau}\right]_{-}^{+}-\left[\delta_{0 v} B^{\tau}\right]_{-}^{+}=\left[\delta_{0} B^{\tau}\right]_{-}^{+}=\left[\delta_{0}(B-v(v, B))\right]_{-}^{+} \\
& =-\left[\sum_{i=1}^{N} B_{i}^{i}-\sum_{i=1}^{N}\left(v^{i}(v, B)\right)_{i}\right]_{-}^{+} \\
& =-\left[\sum_{i=1}^{N} B_{i}^{i}-\sum_{i=1}^{N} v^{i}(v, B)_{i}-\sum_{i=1}^{N} v_{i}^{i}(v, B)\right]_{-}^{+} \\
& =-\left[\sum_{i=1}^{N} B_{i}^{i}-\sum_{i=1}^{N} v^{i}\left(\sum_{l=1}^{N} v^{l} B^{l}\right)_{i}\right]_{-}^{+} \\
& =-\left[\sum_{i=1}^{N} B_{i}^{i}-\sum_{i=1}^{N} v^{i} \sum_{l=1}^{N} v^{l} B_{i}^{l}-\sum_{i=1}^{N} \sum_{l=1}^{N} v^{i} v_{i}^{l} B^{l}\right]_{-}^{+} \\
& =-\left[\sum_{i=1}^{N} B_{i}^{i}-\sum_{i=1}^{N} v^{i} \sum_{l=1}^{N} v^{l} B_{i}^{l}\right]_{-}^{+} \\
& =-\left[\sum_{i=1}^{N} \sum_{l=1}^{N}\left(v^{l}\right)^{2} B_{i}^{i}-\sum_{i=1}^{N} v^{i} \sum_{l=1}^{N} v^{l} B_{i}^{l}\right]_{-}^{+} \\
& =-\left[\sum_{i=1}^{N} \sum_{l=1}^{N} v^{l}\left\{v^{l} B_{i}^{i}-v^{i} B_{i}^{l}\right\}\right]_{-}^{+} \\
& =-\left[\sum_{i=1}^{N} \sum_{l=1}^{N} v^{l}\left\{v^{l} B_{i}^{i}-v^{i} B_{l}^{i}\right\}\right]_{-}^{+} \tag{3.13}\\
& =0 \tag{3.14}
\end{align*}
$$

In fact, (3.13) follows from $B_{i}^{j}-B_{j}^{i}=0$ (since $d_{1} B=0$), and replacing p by B^{i} in Lemma 3.2 leads to (3.14). Then it follows that

$$
\left\langle d_{0} \delta_{0} B^{\tau}, C\right\rangle=\left\langle B^{\tau}, d_{0} \delta_{0} C\right\rangle
$$

Next we compute $\left\langle B, d_{1} \delta_{1} C\right\rangle$. Notice that $[B]_{-}^{+}=0$ and from (3.2), we have

$$
\begin{aligned}
\left\langle B^{\tau}, \delta_{1} d_{1} C\right\rangle & =\left\langle d_{1} B^{\tau}, d_{1} C\right\rangle+\int_{\Gamma}\left[\left(B^{\tau} \wedge v, d_{1} C\right)\right]_{-}^{+} d S \\
& =\left\langle\delta_{1} d_{1} B^{\tau}, C\right\rangle+\int_{\Gamma}\left[\left(d_{1} B^{\tau}, C \wedge \nu\right)\right]_{-}^{+} d S
\end{aligned}
$$

Note that $d_{1} B=0$. By replacing p by (ν, B) in Lemma 3.2, it follows that

$$
\begin{aligned}
{\left[d_{1} B^{\tau}\right]_{-}^{+} } & =\left[d_{1}(B-v(v, B))=-\left[d_{1}(v(v, B))\right]_{-}^{+}=\left[v \wedge d_{0}(v, B)-(v, B) d_{1} v\right]_{-}^{+}\right. \\
& =0
\end{aligned}
$$

Then

$$
\left\langle B^{\tau}, \delta_{1} d_{1} C\right\rangle=\left\langle\delta_{1} d_{1} B^{\tau}, C\right\rangle
$$

which implies that

$$
\left\langle-\Delta B^{\tau}, C\right\rangle=\left\langle B^{\tau},-\Delta C\right\rangle
$$

From the elliptic regularity theorem ([2]), we obtain $B^{\tau} \in H_{l o c}^{2}\left(\Omega ; \mathbf{R}^{N}\right)$.
Acknowledgements. The authors thank Professor Takashi Suzuki for suggesting the generalizations of the results in [3] and [5].

References

[1] D. B. Geselowitz, On the magnetic field generated outside an inhomogeneous volume conductor by internal current sources, IEEE trans. Magn. 6 (1970), 346-367.
[2] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order (Reprint of the 1998 Edition), Springer, 2001.
[3] M. Kanou, T. Sato and K. Watanabe, Interface regularity of the solutions for the rotation free and the divergence free systems, to be submitted.
[4] T. Kobayashi, T. Suzuki and K. Watanabe, Interface regularity for Maxwell and Stokes system, Osaka J. Math. 40 (2003), 925-943.
[5] T. Kobayashi, T. Suzuki and K. Watanabe, Interface vanishing for solutions to Maxwell and Stokes systems, J. Math. Fluid Mech. 8 (2006), 382-397.
[6] S. Lang, Differential and Riemannian Manifolds, Springer-Verlag, GTM vol. 160, 1995.
[7] T. SuZuki, K. WATANABE and M. Shimogawara, Current state and mathematical analysis of magnetoencephalography (in Japanese), Osaka Univ. Research Reports in Math. no. 1 (2000).

Present Addresses:
Makoto Kanou
4-18-7 Zenpukuil, Suginami-Ku,
TOKYo, 167-0041 JAPAN.
Tomohiko Sato
Department of Liberal Arts and Basic Sciences,
College of Industrial Technology, Nihon University,
2-11-1 SHIN-EI, NARASHINO, CHIBA, 275-8576 JAPAN.
e-mail: sato.tomohiko@nihon-u.ac.jp
Kazuo Watanabe
Department of Mathematics, Faculty of Science,
Gakushuin University,
1-5-1 MEJIRO, TOSHIMA-KU, TOKYO, 171-8588 JAPAN.
e-mail: kazuo.watanabe@gakushuin.ac.jp

[^0]: Received July 5, 2012; revised November 29, 2012; revised February 21, 2013
 2000 Mathematics Subject Classification: 35Q60, 58A10, 76N10
 2010 Mathematics Subject Classification: 35Q61, 58A10, 76N10
 Key words: Interface regularity, differential forms, Maxwell system, Rotation free

