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Abstract. In the present paper we study the interface regularity of the solutions to the differential systems
of divergence free and rotation free defined by differential forms in the N(≥ 3)-dimensional Euclidean space. Our
results are natural extensions of the results of [3] and [5] for N = 3.

1. Introduction

1.1. Motivation. Let Ω ⊂ RN (N ≥ 3) be a bounded domain with C1,1-Lipschitz
boundary. Let M be a hypersurface in RN . We assume that M divides Ω into two domains
Ω±. Let Γ = Γ± = Ω ∩ M, and let ν be the outer unit normal vector on Γ−. If M is of

Ck,1, ν has a Ck,1 ∩ Wk+1,∞-extension to Ω , which is expressed with the same symbol ν.

Let B(x) = t (B1(x), B2(x), . . . , BN (x)) and J (x) = t (J 1(x), J 2(x), . . . , JN(N−1)/2(x)) be
RN(N−1)/2-valued functions, and let g be an R-valued function. We put, for x ∈ Γ (interface)

B±(x) := lim
Ω±�ξ→x

B(ξ) , [B]+− = B+ − B− on Γ .

The motivation of this study arises from the results on the interface vanishing of the solution
to the following equations (1) and (2) for N = 3

(1)

{
rot B = J ,

div B = 0 ,
in Ω± , (2)

{
rot B = 0 ,

div B = g ,
in Ω±

by Kobayashi, Suzuki and Watanabe [5] for (1), Kanou, Sato and Watanabe [3] for (2):

THEOREM 1.1 ([5]). Let M ⊂ R3 be a C1,1-surface and rot J ∈ L2(Ω±). If B ∈
H 1(Ω)3 is a solution to (1), then ν · B ∈ H 2

loc(Ω).

THEOREM 1.2 ([3]). Let M ⊂ R3 be a C1,1-surface, and g ∈ H 1(Ω±). If B ∈
H 1(Ω)3 is a solution of (2), then ν × B ∈ H 2

loc(Ω)3.
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We describe the historical background. In [1], Geselowitz studied the problem for Mag-
netroencepharography (MEG), which is the medical mathematics. We explain MEG, con-
cretely. Ω+ is a “head”, Ω− is the outside of the head and Γ is the surface of the head. Let
B be the magnetic field and let J be the electric current. The problem is: can we know the
electric current J by measurement of the magnetic field B in Ω− (the outside)? In [7], T.
Suzuki, K. Watanabe and M. Shimogawara examined the property of the solutions to (1) by
using the Newton potential. They also studied the inverse problem under the assumption that
the electric current J is a dipole.

In [4], T. Kobayashi, T. Suzuki and K. Watanabe obtained the same result as Theorem 1.1

by assuming that M is a C2-surface. In [5], they improved the result and obtained Theorem
1.1 above. To prove Theorem 1.1, they used the Green and the Gauss formulas in stead of the
Newton potential. In [3], M. Kanou, T. Sato and K. Watanabe obtained Theorem 1.2 above.

We remark that B ∈ H 2
loc(Ω) is not necessarily true even if B and J (resp. B and g)

satisfy the assumption of Theorem 1.1 (resp. 1.2). We give a concrete example. Let M =
{x = t (x1, x2, x3)|x3 = 0}, Ω = {|x| < 1}, ν = t (0, 0, 1). B = t (|x3|, x1, x2) (resp.
B = t (0, 0, |x3|)), and

J =
{

t (1, 1, 1) , (x3 > 0)

t (1,−1, 1) , (x3 < 0) .

(
resp. g =

{
1 , (x3 > 0)

−1 , (x3 < 0) .

)

Then we can easily check that B and J (resp. B and g) satisfy (1) (resp. (2)). In fact,

∇ × B = t (∂2x2, ∂3|x3|, ∂1x1) = J , ∇ · B = 0 .

(resp. ∇ · B = ∂3B
3 = ∂3|x3| = g , ∇ × B = t (0, 0, 0).)

But ν × B = t (−x1, |x3|, 0) 
∈ H 2
loc(Ω)3 (resp. ν · B = |x3| 
∈ H 2

loc(Ω)), which means

B 
∈ H 2
loc(Ω).

In the present paper, we study an extension to the above theorems for general N by using
the differential forms.

This paper is organized as follows: In §1.2, we give some notations. In §2, we give the
main theorems. In §3, we give proofs of the theorems.

1.2. Preliminaries. Let D ⊂ RN be a domain with smooth boundary. We consider 1
or 2-forms on D, and we write as

B =
N∑

i=1

Bidxi (1-form) , J =
∑

1≤i<j≤N

J ij dxi ∧ dxj (2-form) .
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For 1-forms A = ∑N
i=1 Bidxi , B = ∑N

i=1 Bidxi , and 2-forms J = ∑
1≤i<j≤N J ij dxi∧dxj ,

K = ∑
1≤i<j≤N Kij dxi ∧ dxj , the inner product is respectively defined by

(A,B) :=
N∑

i=1

AiBi , (J,K) :=
∑

1≤i<j≤N

J ijKij .

Furthermore, the exterior product is given by

A ∧ B =
∑

1≤i<j≤N

(AjBi − AiBj )dxi ∧ dxj .

We define L2-inner product 〈·, ·〉 by

〈A,B〉 :=
∫

D

(A,B) , 〈J,K〉 :=
∫

D

(J,K) .

If 〈A,A〉 < ∞, 〈J, J 〉 < ∞, then we write,

A ∈ L2(D; RN) , J ∈ L2(D; RN(N−1)/2) .

When no confusion can arise, we simply write A ∈ L2(D), J ∈ L2(D). Concisely we write

∂Bi/∂xj as Bi
j . We define the differential operators for forms by

d0f :=
N∑

i=1

fidxi , d1B :=
∑

1≤i<j≤N

(B
j
i − Bi

j )dxi ∧ dxj ,

δ0B := −
N∑

i=1

Bi
i , δ1J := −

N∑
i=1

( N∑
l=1

J li
l

)
dxi .

Let Hm(D) be the Sobolev space of rank m. We define function spaces as follows:

Hm(D; RK) := {A = (A1, . . . , AK) ∈ L2(D; RK); 1 ≤ ∀j ≤ K, Aj ∈ Hm(D)},
H(d0; D) := {f ∈ L2(D); d0f ∈ L2(D; RN)},
H(δ0; D) := {B ∈ L2(D; RN); δ0B ∈ L2(D)},
H(d1; D) := {B ∈ L2(D; RN) : d1B ∈ L2(D; RN(N−1)/2)},
H(δ1; D) := {J ∈ L2(D; RN(N−1)/2) : δ1J ∈ L2(D; RN)}.

2. Main Theorems

We denote the outer unit normal vector on Ω− by ν, and assume that ν has an extension
to Ω . Here we will not consider the regularity of extension in detail. Identifying ν with
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1-form, we regard as

ν =
N∑

i=1

νidxi .

We consider the following equations:

(M)

{
d1B = J

δ0B = 0 ,
in Ω± , J ∈ H(δ1,Ω±) ,

(R)

{
d1B = 0

δ0B = g ,
in Ω±, g ∈ H(d0,Ω±) = H 1(Ω±) .

Here these equations mean as follows: In general, the equation F(u) = v in Ω± means

F(u)|Ω+ = v|Ω+ in Ω+ , and F(u)|Ω− = v|Ω− in Ω− .

J ∈ H(δ1,Ω±) means

J |Ω+ ∈ H(δ1; Ω+) and J |Ω− ∈ H(δ1; Ω−) .

Also, g ∈ H(d0; Ω±) means

g|Ω+ ∈ H(d0; Ω+) and g|Ω− ∈ H(d0; Ω−) .

And we define Bν , Bτ by

Bν := ν(ν, B) , Bτ := B − Bν .

THEOREM 2.1. Let B, J satisfy (M). If B ∈ H 1(Ω; RN) and [B]+− = 0 on Γ , then

we have (ν, B) ∈ H 2
loc(Ω).

THEOREM 2.2. Let B, g satisfy (R). If B ∈ H 1(Ω; RN) and [B]+− = 0 on Γ , then we

have Bτ ∈ H 2
loc(Ω).

3. Proofs of Theorems

The following lemmas are needed to obtain Theorem 2.1 and 2.2.

LEMMA 3.1 (Gauss, Stokes formula). Let D ⊂ RN be a domain with smooth bound-
ary. For any ϕ ∈ C∞(D), C ∈ C∞(D; RN(N−1)/2), we have

〈δ0B, ϕ〉 = 〈B, d0ϕ〉 −
∫

∂D

(B, ν)ϕdS , (3.1)

〈d1B,C〉 = 〈B, δ1C〉 +
∫

∂D

(ν ∧ B,C)dS , (3.2)

where ν denotes the exterior unit normal and dS the surface element.
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PROOF (Ref. [6]). Integrating both sides of the formula (δ0B)ϕ = δ0(Bϕ) + (d0ϕ,B)

over D yields (3.1).
Next we prove (3.2). Clearly we have

(B, δ1C) = −
N∑

l=1

Bl
N∑

j=1

C
jl

j .

Noticing that Cii = 0, Cij = −Cji , we obtain

(d1B,C) =
∑
i<j

(B
j
i − Bi

j )C
ij

=
∑
i<j

{(BjCij )i − (BiCij )j − (BjC
ij
i − BiC

ij
j )}

=
∑
i<j

{(BjCij )i − (BiCij )j − (BjC
ij
i + BiC

ji
j )}

=
∑
i<j

{(BjCij )i − (BiCij )j } + (B, δ1C) .

Integrating both sides of the above leads to (3.2). �

LEMMA 3.2. If p ∈ H 1(Ω) and [p]+− = 0 on Γ , then we have [ν ∧ d0p]+− = 0 on Γ

as H−1/2(Γ ).

PROOF. Let pn ∈ C∞(Ω) be an approximate sequence of p in H 1(Ω). For any C ∈
C∞

0 (Ω; RN(N−1)/2), we have

0 = 〈d1d0pn,C〉

=
∫

Ω+
(d1d0pn,C) +

∫
Ω−

(d1d0pn,C)

= 〈d0pn, δ1C〉 +
∫

Γ

[(ν ∧ d0pn,C)]+−dS

= 〈pn, δ0δ1C〉 +
∫

Γ

[pn(ν, δ1C)]+−dS +
∫

Γ

[(ν ∧ d0pn,C)]+−dS

=
∫

Γ

[(ν ∧ d0pn,C)]+−dS .

By letting n → ∞, we obtain [ν ∧ d0p]+− = 0 on Γ. �

PROOF OF THEOREM 2.1. Notice that B ∈ H 2(Ω±; RN), since

−ΔB = (δ1d1 + d0δ0)B = δ1d1B = δ1J ∈ L2(Ω±) .
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By the elliptic regularity theorem (ref. [2]), it is sufficient to establish the following relation:
for any ϕ ∈ C∞

0 (Ω), ∫
Ω

(Δ(ν,B))ϕ =
∫

Ω

(ν,B)Δϕ . (3.3)

Noticing that Laplacian −Δ = δ0d0 for functions (0-forms) and using (3.1), we have

〈(ν, B), δ0d0ϕ〉 = 〈d0(ν, B), d0ϕ〉 +
∫

Γ

[(ν, B)(ν, d0ϕ)]+−dS .

Since the second term of the right hand side is 0, we have

〈(ν, B), δ0d0ϕ〉 = 〈δ0d0(ν, B), ϕ〉 +
∫

Γ

[(d0(ν, B), ν)ϕ]+−dS

from (3.1). Hence it suffices to prove

[(d0(ν, B), ν)]+− = [(ν, d0(ν, B))]+− = 0 on Γ . (3.4)

DEFINITION. We define the differential operators to normal direction (ν, d0) by

(ν, d0)f :=
N∑

j=1

νjfj , (ν, d0)B :=
N∑

i=1

( N∑
j=1

νjBi
j

)
dxi .

Furthermore, we put

d0νf := ν(ν, d0)f , d0τf := d0f − d0νf , (3.5)

δ0νB := −(ν, (ν, d0)B) , δ0τB := δ0B − δ0νB . (3.6)

Then (3.4) is rewritten as

[(ν, d0)(ν, B)]+− = 0 .

LEMMA 3.3. We can decompose δ0B as follows:
δ0B = δ0τB

τ − (ν, d0)(ν, B) + (ν, B)δ0(ν) + ((ν, d0)ν, Bτ ) . (3.7)

PROOF. From (3.5) and (3.6) we have

δ0B =δ0τB
τ + δ0νB

τ + δ0τB
ν + δ0νB

ν .

To prove the lemma, we prepare next two equalities for 1-form ω and 0-form f ,

δ0(f ω) = −(d0f,ω) + f δ0ω , (3.8)

(ν, (ν, d0)ν) = 0 . (3.9)

We obtain (3.8) by the definitions of δ0 and d0. (3.9) follows from

2(ν, (ν, d0)ν) =2
N∑

i=1

νi

N∑
j=1

νj νi
j =

N∑
j=1

νj

N∑
i=1

{(νi)2}j =
N∑

j=1

( N∑
i=1

(νi)2
)

j

νj
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=0 .

We can then compute as follows:

δ0νB
τ = −(ν, (ν, d0)B

τ ) = −(ν, d0)(ν, Bτ ) + ((ν, d0)ν, Bτ )

= ((ν, d0)ν, Bτ ) , (3.10)

δ0τB
ν = δ0B

ν + (ν, (ν, d0)B
ν) = δ0(ν(ν, B)) + (ν, (ν, d0)ν(ν, B))

= −(d0(ν, B), ν) + (ν, B)δ0(ν) + (ν, d0)(ν, ν(ν, B)) − ((ν, d0)ν, ν(ν, B))

= −(ν, d0)(ν, B) + (ν, B)δ0(ν) + (ν, d0)(ν, B)

− ((ν, d0)ν, ν)(ν, B) (3.11)

= (ν, B)δ0(ν),

δ0νB
ν = −(ν, (ν, d0){ν(ν, B)}) = −(ν, d0)(ν, ν(ν, B)) + ((ν, d0)ν, ν(ν, B))

= −(ν, d0)(ν, B).

In order to obtain (3.11), we used (3.8). Hence we obtain (3.7). �

We continue to prove (3.4). Since δ0B = 0 on Ω± and [B]+− = 0, we have from (3.7)

0 = [δ0B]+− = [δ0τB
τ − (ν, d0)(ν, B) + (ν, B)δ0(ν) + δ0νB

ν]+−
= [δ0τB

τ ]+− − [(ν, d0)(ν, B)]+−
on Γ.

To show (3.4), it suffices to prove [δ0τB
τ ]+− = 0. We put

δ
(j)

0 f := −fj , δ
(j)

0ν f := −νj (ν, d0)f , δ
(j)

0τ f := δ
(j)

0 f − δ
(j)

0ν f .

The j -th element of Bτ is denoted by Bτj . It follows that

δ0τB
τ =

N∑
j=1

δ
(j)

0τ Bτj = −
N∑

j=1

(B
τj
j − νj (ν, d0)B

τj ) . (3.12)

We begin to compute δ
(j)

0τ Bτj directly. Since
∑N

k=1(ν
k)2 = 1,

−[δ(j)

0τ Bτj
]+
− = [

B
τj

j − νj (ν, d0)B
τj
]+
−

=
[ N∑

k=1

(νk)2B
τj
j −

N∑
k=1

νj νkB
τj
k

]+

−

=
[ N∑

k=1

νk(νkB
τj

j − νjB
τj

k )

]+

−
.
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Since [ν ∧ d0B
τj ]+− = 0 from Lemma 3.2 (Bτ ∈ H 1(Ω; RN), [Bτ ]+− = 0), we obtain the

desired result. �

PROOF OF THEOREM 2.2. Notice that B ∈ H 2(Ω±; RN), since

−ΔB = (δ1d1 + d0δ0)B = d0δ0B = d0g ∈ L2(Ω±; RN)

from equation (R). For any C ∈ C∞
0 (Ω; RN), we have

〈d0δ0B
τ ,C〉 = 〈δ0B

τ , δ0C〉 −
∫

Γ

[δ0B
τ (ν, C)]+−dS

= 〈Bτ , d0δ0C〉 −
∫

Γ

[(ν, Bτ )δ0C]+−dS −
∫

Γ

[δ0B
τ (ν, C)]+−dS

= 〈Bτ , d0δ0C〉 −
∫

Γ

[δ0B
τ ]+−(ν, C)dS .

Using (3.10), we compute [δ0B
τ ]+−.

[δ0τB
τ ]+− = [δ0B

τ ]+− − [δ0νB
τ ]+− = [δ0B

τ ]+− = [δ0(B − ν(ν, B))]+−

= −
[ N∑

i=1

Bi
i −

N∑
i=1

(νi(ν, B))i

]+

−

= −
[ N∑

i=1

Bi
i −

N∑
i=1

νi(ν, B)i −
N∑

i=1

νi
i (ν, B)

]+

−

= −
[ N∑

i=1

Bi
i −

N∑
i=1

νi

( N∑
l=1

νlBl

)
i

]+

−

= −
[ N∑

i=1

Bi
i −

N∑
i=1

νi
N∑

l=1

νlBl
i −

N∑
i=1

N∑
l=1

νiνl
iB

l

]+

−

= −
[ N∑

i=1

Bi
i −

N∑
i=1

νi

N∑
l=1

νlBl
i

]+

−

= −
[ N∑

i=1

N∑
l=1

(νl)2Bi
i −

N∑
i=1

νi

N∑
l=1

νlBl
i

]+

−

= −
[ N∑

i=1

N∑
l=1

νl
{
νlBi

i − νiBl
i

}]+

−

= −
[ N∑

i=1

N∑
l=1

νl
{
νlBi

i − νiBi
l

}]+

−
(3.13)

= 0 . (3.14)
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In fact, (3.13) follows from B
j
i − Bi

j = 0 (since d1B = 0 ), and replacing p by Bi in Lemma

3.2 leads to (3.14). Then it follows that

〈d0δ0B
τ ,C〉 = 〈Bτ , d0δ0C〉 .

Next we compute 〈B, d1δ1C〉. Notice that [B]+− = 0 and from (3.2), we have

〈Bτ , δ1d1C〉 = 〈d1B
τ , d1C〉 +

∫
Γ

[(Bτ ∧ ν, d1C)]+−dS

= 〈δ1d1B
τ ,C〉 +

∫
Γ

[(d1B
τ ,C ∧ ν)]+−dS .

Note that d1B = 0. By replacing p by (ν, B) in Lemma 3.2, it follows that

[d1B
τ ]+− = [d1(B − ν(ν, B)) = −[d1(ν(ν, B))]+− = [ν ∧ d0(ν, B) − (ν, B)d1ν]+−

= 0 .

Then

〈Bτ , δ1d1C〉 = 〈δ1d1B
τ ,C〉 ,

which implies that

〈−ΔBτ ,C〉 = 〈Bτ ,−ΔC〉 .

From the elliptic regularity theorem ([2]), we obtain Bτ ∈ H 2
loc(Ω; RN). �
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