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Abstract. We consider the response of external field to the theory of liquid crystals. We treat the Landau-de
Gennes functional with the Dirichlet boundary condition for the director field which may be non-constant. We show
that there exist two families of critical points such that one carries out the superheating fields of superconductors and
the other one carries out strong stability. We also show that under some conditions, strong field does not bring the
pure nematic state which is different response from superconductors.

1. Introduction

In this paper, we consider the change of stability of liquid crystals under applied external
fields (electric or magnetic fields). Let Fx(n, Vnr) be the classical Oseen-Frank density of
nematic liquid crystals. Then we must add an external density — x (H -n)? to Fy(n, Vn), and
consider a modified energy functional:

/ (Fn(n,Vn) — x(H - n)*}dx .
I?)

Here H is an applied field, x is a real parameter and n : 2 — S? is a director field of the
nematic crystals. See de Gennes and Prost [5, p. 287]. Though there are many article on liquid
crystals without external field (for example, Aramaki [1], [2], Bauman et al. [3], Hardt et al.
[9], Pan [11], [14]), there are few references which treat applied field. See Lin and Pan [10]
and Pan [12], [13].

According to the Landau-de Gennes theory, phase transitions of nematic states to smectic
states can be described by the minimizer (v, n) of the Landau-de Gennes functional:

2
(1.1) éw,n]:/ {|vqnw|2+%<1—|w|2)2
2

+ Klldivnl2 + Ks|n - curlnl2 + K3|n x curln|2 - X(H-n)z}dx
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where «, K1, K2, K3 and x are positive constants, and g is a real number. Here we denoted
Vyn¥ = Vi —igniyr. Without loss of generality, we may assume that ¢ > 0. For brevity, we
write

£ n] = GIY. n] + Fin] - / Y (H - n)dx
2
where
Fln] = / {Ki|divn|> + K»|n - curln|? + K3|n x curln|?}dx
2

is the simplified Oseen-Frank energy for nematics and

2
g[w,n]=/ {|vqnw|2+%(1—|w|2>2}dx
2

is the Ginzburg-Landau energy for smectics.
We consider the functional £ under the Dirichlet boundary condition for the director
field:

n=ey on 052
where eg € C%(352, S?). Thus we treat £ on the space W!2(£2, C) x W12(2, S?, ep) where
Wh2(£2,8% e0) = {n € WH2(2,R%); |n(x)| =1 ae.in £2,n = ey on 92} .

Here and from now, for some Euclidean space E (= R, C, R3, C3 or the space R® of real 3 x 3
matrices), W!2(§2, E) denotes the usual Sobolev space and we briefly denote wl2(2,R)
by W12(2).

Throughout this paper, we assume that §2 is a simply connected bounded domain with
smooth boundary in R? and H = oh where h is a unit constant vector and o is a positive
number denoting the intensity of the applied field, and assume that there exists e € C>(£2, S?)
such that

(H.1) curle=0, h-e=0, —Ae=|Ve|2e in 2, e=ep on 052
and e is a unique minimizer of

inf Fln].
neWl2(2,52 ey)

Here we note that there are many situations where (H.1) holds. For example, choose
the coordinate system x = (xp, x2,x3) such that h = (0,0, 1). Take some point a =
(a1,a2,a3) € R3 \ £2 so that

X2 —az . X2 —az
e(x1, x2,x3) = | cos| arctan , sin( arctan ,0
X1 — aj X1 —daj
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is well defined. Then e satisfies (H.1). There are a lot of choices of a.

(H.2) min{K, K2, K3} > Kjc(§2) max |Ve|?
xesf

where c(£2) > 0 is the best constant such that the following Poincaré inequality holds:

/ [w|?dx 50(.{2)/ [Vw|?dx
2 2

for any w € Wol"z(.Q, R3). Moreover assume that
(H.3) Forany p € £2, the integral curve of e through p intersects with 92.

[10] treated the case where h and eq are constant unit vectors such that 2 - eg = 0. Of
course the conditions (H.1), (H.2) and (H.3) hold for this case.

By the hypothesis (H.1), £2 is simply connected and curle = 0 in £2, there exists a
unique function ¢ € C 3(£2) such that

(1.2) Vo=e in £2, /(pdxzo.
2

Our purpose is an extension of their result to the case where e( is non-constant and the
condition (H.1), (H.2) and (H.3) hold.
In our case, the energy functional can be rewritten by

(1.3) €LY n] = Gy, n] + Fln] — xo? / (h-m)dx .
Q
We also write
Fonlnl = Fln] — x02/ (h -n)*dx .
Q

Now we can see that the energy functional £ has two families of critical points:
(1.4) v=0, n=n,
where n, is a global minimizer of Fyp,:

Fonlns] = inf Fonln],
neWl2(2,52,ep)

and
(1.5) v =cel, n=e

where ¢ is as in (1.2) and c is an arbitrary complex number such that |c| = 1.

By the analogies between superconductors and liquid crystals (cf. [12] and [13]), we call
the family in (1.4) pure nematic states corresponding to the normal states of superconductor,
and the family in (1.5) pure smectic states corresponding to the Meissner states of supercon-
ductor. We shall see that there exists a critical field H,(0) > 0 such that for 0 < ¢ < H,(0),
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the only pure nematic state is (0, ). Moreover, we shall show that there exist critical fields
Hyj, and Hg where the pure smectic states change their weak stability (local minimality) at
Hyj, and change their strong stability (global minimality) at H. Thus the critical field Hjy,
look like the superheating field of superconductors. We shall also show that in the case of
K1 = K> = K3, aliquid crystal under very strong external field may not be in a pure nematic
state. On the other hand, in the theory of superconductor, the breakdown of superconductivity
occurs under strong external magnetic fields. See Giorgi and Phillips [7]. Thus liquid crystals
and superconductors have very different response in strong field.

The plan of this paper is as follows. In section 2, we state the weak stability of a critical
point of £. In section 3, we define a critical value Hyj, and show that when o increases, the
pure smectic states change their weak stabilities at Hyy,. In section 4, we define a critical value
Hg, and show that if 0 > Hj, the global minimizers of £ are not pure smectic states and if
o < Hg, the only global minimizers of £ are pure smectic states. Finally in section 5, we
show that the instabilities in pure nematic states. In the particular case of K1 = K> = K3,
when o is sufficiently large, the pure nematic states are not global minimizers of £. This
phenomena clarifies the difference between the liquid crystals and superconductors.

2. Weak stability of critical points

In this section, we give the definition of the weak stability of critical points and a neces-
sary condition for weak stability for a general applied field H and a boundary data u.

DEFINITION 2.1. (1) We say that (i, no) € WH2(£2,C) x Wh2(2,S%, up) is a
critical point of &, if and only if for any ¢ € W!H2(£2,C) and any v € WOI’Z(Q, R3) N
L>®(2,R?),

d
— EYy, =0
dr o [V, nt]
where
no +tv
2.1 Yr=vo+ip, np=—-—.
o + v

(2) We say that a critical point (9, rg) of £ is weakly stable (local minimizer), if for
any ¢ € WH2(£2, C) and any v € W, > (£2, R®) N L™(£2, R%), there exists T = T (¢, v) > 0
such that forany0 <t < T,

Eo, nol < E[Yy, ny].
By computations, we can write
(2.2) n, =ng+tn +t2ny + 0(>)

where

ny=v—(v-nono,
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m =~ no)w + 330 -0y’ ~ loPIno
and
(2.3) Vam ¥t = Vgno Vo + 1®1 + 1203 + O(1°)
where

@1 = an0¢ — iqnllﬂo ,
@y =—iqg(n1¢ + navy) .

Using these formulas, for small ¢, we can write
G, n:) = Glyo, nol
+2 fg {R[Vgng®Vany o — >p(1 — [0l ol
— qn1 - 3o Vgng Vo) dx
+ fzfg{l@li2 —12(1 = o) * + 26> (R (GY0))?

— 2¢3[(n1$ + navrg) - VanoYol}dx + O ().

Here and from now, we denote the real part and imaginary part of a complex number z by
9[z] and I[z], respectively.

Fln/] = Flnol
—|—2t/ {Kl(divno)(divnl)
2
+ K (ng - curlng)(ny - curlng + ng - curlny)
+ K3(ng x curlng) - (ny x curlng + ng x curlnl)}dx
+z2/ {K1{(divnri)? + 2(divng) (divny)}
2
+K2{(n1 -curlng 4+ ng - culrlnl)2
+ 2(ng - curlng) (nz - curlng + ny - curlny + ng - curlny) }

+K3{|n; x curlng + ng x curln1|2
+ 2(ng x curlng) - (ny x curlng + ny x curl ny

+ ng x curlny)}dx + 0(t3).

/(H-nt)zdxzf (H - ng)’dx
2 2

+2t/ (H -no)(H - ny)dx
2
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+t2/ ((H -n)*+2(H -no)(H - n2)}dx + 0(t3) .
2

Therefore, we can write

2.4 El, ni] = ElYo, nol

+ 2t{A<wo,no; ¢, ) — x /Q(H -no)(H - m)dx}
+ fz{B(wo, no; ¢, v)

—X/Q{(H-n1)2+2(H'no)(H-n2)}dX}
+0(r)
where
2.5 A, no; ¢, v) = /Q {R[Vgno® - Vang¥o — €*¢(1 — [0l ¥l

—qni - I(YoVgny¥o) + K1 (divro)(divn)
+ Ko(ng - curlng)(n - curlng + ng - curlng)

+ K3(ng x curlng) - (n] x curlng + ng x curlnl)}dx s

2.6) B, no; ¢, v)=L{|ano¢—iqmwo|2—x2<1—|wo|2)|¢|2

+ 26 (R(@Y0))* — 2¢ 311§ + 120) Van Vol

+ K1{(divny)® + 2(div mo) (div m2)}

+ Ko{(n; - curlng 4+ nog - curln1)2

+ 2(ng - curlng)(ny - curlng + ny - curlng

+ ng - curlny)} + K3{|n| x curlng + ng x curlnll2
+ 2(ng x curlng) - (ny x curlng + ny x curl ny

+ ng x curlny)}dx .

Therefore, we have the following lemma.

LEMMA 2.2. (i) (Yo,n0) € Wh2(82,C) x WH2(82, S2, uo) is a critical point of £
if and only if for any ¢ € W'2($2, C) and any v € Wy'*(2, R%) N L™ (2, RY),

Ao, no; ¢, v) — x /Q(H-no)(H-nl)dx =0.
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(i) Ifa critical point (Yo, ng) € W2(2, C) x Wh2(2, S?, ug) is weakly stable, then
forany ¢ € W'2(2, C) and any v € Wy (2, R?) N L®(2, RY),

B(o, no; ¢, v) = x /Q{(H'nl)2 +2(H -no)(H - n3)}dx .

REMARK 2.3. (i) If (¢, n) is a critical point of &, then the Euler-Lagrange equation
for ¢ is the following.

Vo =20 = [yHy in 2,
V¥ -v =20 on 952

where v denotes the unit outer normal vector to 952.
(i) We note that under the hypothesis (H.1), (0, ng) = (ce'?%, e) where ¢ is as in
(1.2) is a critical point of £. In fact, since Vyu,%0 = 0 and |[p| = 1, forany ¢ € wl2(2,C)

and any v € WOI’Z(Q, R3) N L>®(£2, R3), it follows from (H.1) that
Ao, no; ¢, v) — XUZ/ (h-e)(h-nydx = K / (dive)(divn;)dx
2 2

=K / —V(dive) - (v — (v - e)e)dx .
Q

Since curl e = 0, it follows from the formula
curl’e = —Ae + V(dive)

that the last line of the above equality is equal to
—Ki / Ae-(v— (v-e)e)dx = K, / |Ve|2e -(v—(v-e)e)dx =0
2 2

from (H.1). Thus (¥, nro) is a critical point of £.

3. Loss of local minimality of pure smectic states

In this section we shall examine weak stability (local minimality) of pure smectic state
(Yo, no) = (ce'?, e) where ¢ € C and |c| = 1 and ¢ is as in (1.2).

Forany ¢ € WH2(£2,C)andany v € W(}Q(Q, R3)NL>®(£2, R3), define y; and n; as in
(2.1) with ng = e. Then we see from h-e(x) = 0,thatn; = v—(v-e)eandoh-n; = o (v-h).
Thus if the critical point (Y, e) is weakly stable, then we see from Lemma 2.2 (ii) that

(3.1) B(Wo, e; ¢, v) > XO'Z/ (v-h)%dx.
2

Since W, (2, R%) N L™(2,R3) is dense in W, (2, R?), (3.1) holds for any ¢ €
W12(2,C) and any v € Wy 2($2, R?). Since Vyu, o = Vge(ce'??) = 0 and [yo| = 1,
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we have, from (2.6),
B(o, no; ¢, v) = /Q{Iqu¢ — igniyol* + 22 (R(PYo))?
+ K1 ((divr))? + 2(dive)(divna)) + Ka(e - curlnp)?
+ K3le x curlnllz}dx.
For any ¢ € Wwb2(2, C), we can write ¢ = icqei’”’u, u € WH2(2, C). Therefore,
Vot — iqnivo = icqe'?*(Vu —ny)

and R (Pyo) = |c|*R(iqu) = —q(u). Here since ny € Wé’z([), R3),
2/ (dive)(divmy)dx = —2/ V(dive) - nydx .
I?) I?)

By the formula: curl’e = —Ae + V(dive) and the hypothesis (H.1), we have V(dive) =
Ae = —|Ve|*e. Moreover, we have 2e - ny = (v - €)> — |v|> = —|n1|*. If we write n = w,
then w € Wol’z(.Q, R3) and w(x) - e(x) = 0 a.e. in £2. Hence we can rewrite

B(o, n0; ¢, v) = fg (@2IVi = w]? + 2G2S ) — K1 Ve ]

+ K1 (div w)2 + Ks(e - culrlw)2 + K3le x curlwlz}dx.

If (¢, v) minimizes B(yq, no; ¢, v)/||v-h ||iz(9), then u is real valued. Thus we may assume
that u = —ée""f‘%) is a real valued function. We write B(y, ro; ¢, v) by B(u, w). That is
to say,
(3.2) B(u, w) = / {g*|Vu — w|* — K1|Ve*|w|*}dx + F(e)[w]

Q
where

F(e)w] = / (K1 (divw)? + Ka(e - curl w)? + K3le x curlw|?}dx .
2

Here we note that under the hypothesis (H.2), we can show the following.

LEMMA 3.1. Assume that (H.2) holds. Then there exists a constant ¢ > 0 such that
(3.3) F(e)[w] — K, /Q IVel*lwl*dx = cllwllfyi2p g

forallw € Wy*(£2, R).
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PROOF. Since (e - curl w)? + |e x curl w|?> = |curl w|? and w € Wol’z(.Q, R3), we have

F(e)[w] — K, f |Ve|?|w|>dx
2
> min{K, K>, K3}/ {|divw|? + |curl w|*}dx — K max|Ve|2/ [w|?dx
2
> min{K1, K>, K3}/ |Vw|2dx — K| max |Ve|zc((2) IVwIde
2 xe2 2

> (min{K\. K2, K3} = Kie(2) max Ve|*) |Vw|2dx
9]

> cl{mm{Kl,Kz,Ka}—ch(sz)max|w| }||w||2 120 g
0 (2.R%)

for some positive constant c. Thus (3.3) holds with

¢ = ci(min{K1, K2, K3} — K1c(£2) max |Ve|?). g
xesf

DEFINITION 3.2. Forg > 0,« > 0,K; > 0,K> > 0 and K3 > 0, define Hy;, =
HS‘]’L(ana K17K27K3797h9e) by

= L B0

H} = — D, w) € W) x Wy P (2, RY),
k- w]?

L2(£2)

w(x)-e(x) =0 ae.in £2,h-w(x)#0 in Q}

From the above arguments, we have the following lemma.

LEMMA 3.3. Ifo < Hgp, then we see that the pure smectic state is weakly stable and
if o > Hgp, then the pure smectic state is not weakly stable.

PROOFE. Ifo < Hyp, then
(3.4) o xllh - w7y o) < Blu, w)

for all (u, w) € Wh2(2) x Wy 2(2, R?) with w(x) - e(x) = O ace. in £2 and h - w(x) # 0.

For any ¢ € W2(£2,C) and any v € Wé’z(.Q, R3) N L®(£2, R?), we define ¥, and n; by
(2.1). We show that

(3.5 Elo, nol < ElYr, nt]

for small |¢| > O.
In the case where v = 0, we see that n, = e. Thus we have

(3.6) W, me] = Gl me] + Flng] - /Q (h - m)dx
= Gy, e] + Flel
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> K, / \divel?dx = E[o. nol.
2

Thus we see that (3.5) holds for small .

In the case where v # 0, we may assume that |[v] = 1. When v = =+e, then w =
v — (v - e)e = 0 and n; = e. Thus since (3.6) holds, we see that (3.5) holds. When v # *e,
w=v—(v-e)e#0.Ifh-wkx) =0, putting u = —i%e“"”’q}, it follows from (3.3) and

the Poincaré inequality that
B(u, w) > c/ |Vw|?dx > c1/ lw|?dx > 0 = / (h-w)?dx.
2 2 2

Thus it follows from (2.4) that (3.5) holds. If & - w(x) # 0, using (3.4) we can see that (3.5)
also holds.
If o > Hyp, there exists (u, w) € WH2(2) x Wy 2(2, R?) with w(x) - h # 0 and
w(x) - e(x) = 01in £2 such that
B(u,w) < xo |k - w5 g, -
It follows from Lemma 2.2 (ii) that (¥, rg) is not weakly stable. O

For a further simple expression of Hyy, let (u, w) be a minimizer of Hyj;. Then u satisfies
the equation

Au =divw in 2,
(3.7)

‘33 =w-v=0 on 4£2.
If we impose f_Q udx = 0, the solution of (3.7) is unique. We write u = &,,. Then it is clear
that &, is a minimizer of

w(w Ve — wlldx .
(W)= seW”(m IQI/I

Hence &,, satisfies
/ |VEw — wldx = o(w)|£2].
2

Write B(w) = B(&y, w). It is clear that for any b > 0, &,y = b&y, and so B(bw) = b*B(w).
Therefore we can write

HZ = inf{B(w); we Wy (2,RY), w(x) - e(x)
X

=0 ae.in 2, k- w2 = 1}.
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Here we note that the pure smectic state involves a complex number ¢, but B(u, w) and B(w)
are independent of c¢. From now we write Hyj, by Hs,(q). Then we see that

2 L. 2. 12 1,2 3
H,(0) = — inf{F(e)[w] — Ky Vel |lw|“dx; w € W," (2, R7),
X Q2

w(x)-e(x) =0 ae. in 2, k- wl2g =1}.

PROPOSITION 3.4. Assume that §2 is simply connected domain with smooth bound-
ary, and (H.1), (H.2) and (H.3) hold. Then H;,(q) > 0 and it is achieved. For fixed k, K1,
K>, K3, 2, h and e, we have

lim Hgp(g) = +00.
q—+00

PROOF. Step 1. Letw; € Wy (2, R%), &; = &, satisfy w; (x) - e(x) = 0 ae. in 2,
lh-wjll20) = 1and B(w)) — xH2(q) as j — oco. Since w; € W,>(£2, R), it follows

from (3.3) that there exist constants ¢, C > 0 such that ||wj||€vl_2(9 ) <cB(w;) < C. Thus
0 3

passing to a subsequence, we may assume that w; — wo weakly in Wol’z(.Q, R3), strongly
in L%(£2, R3) and a.e. in 2. Hence wo(x) - e(x) = 0 a.e. in £2. Since

1
/Q |VE; —w;lPdx < a8 =C.

we see that || V&2 g3y is bounded. Since f_q &jdx = 0, again applying the Poincaré

Cllwjllwi2ersy < C, wj =00n3d§2 and §; = &, is a unique solution of (3.7), it follows

inequality, we see that {&;} is bounded in W12(£2, R). Moreover, since ||div willp2e) <

from the elliptic estimate that {£;} is bounded in W?22(£2). After passing to a subsequence,

we may assume that §; — & weakly in W22(£2) and strongly in W12(£2). Then & satisfies
(3.7) for w = wy, i.e., § = &y,. Therefore,

B(wo) = B(&w,, wo) < liminf B(&;, w;) = x H2,(q) .
j—0o0

Since |wo - kll 20y = limjsoo W) - Al 2oy = 1, we see that B(wo) > XHYZh(q). Thus wq
is a minimizer of B(w), so (§w,, wo) achieves Hy;(q).

We show that Hy,(q) > 0. If Hyp(q) = 0O, then B(wp) = 0 and so V&, = wg and
divwo = 0. By the uniqueness of the solution of (3.7) with f o udx = 0, we have &,, = 0,
and so wo = 0. This contradicts the fact that ||k - wol| 2(o) = 1.

Step 2. Suppose that Hy,(q) < ¢ for all g > 0. Choose g; — oo and choose u; €

W'2(2) and w; € W, (52, R?) such that

/ ujdx =0,e(x) wj(x) =0 ae. in2, |h-wjl20 =1,
2
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and (u;, w;) achieves Hy,(g;). Then

/q]2.|w,-—w,~|2dx+f(e)[w,-]—1<1f |Ve|*|w;|>dx
2 2
< XCZ/ (h - wj)zdx = Xcz.
2

Thus from (3.3) , {w} is bounded in Wol"z(.Q, R3). Passing to a subsequence, we may assume
that w; — w weakly in WOI’Z(Q, RY), strongly in L*(£2,R?) and a.e. in £2. Hence this im-
plies that ||k - W||;2(p) = 1 and W(x) - e(x) = O a.e. in £2. Since [|[Vu; — wjll;20 g3 =
O(qj_l) and w; — w strongly in L%(2,RY), {Vu;} is bounded in L%(£2,R3). Since
foujdx = 0, it follows from the Poincaré inequality that {u;} is bounded in W!2(£2).
Passing to a subsequence, we may assume that u; — & weakly in W12(£2) and strongly in
L2(£2). Since Vuj — Vu weakly in L%(£2,R3?) and Vuj — w strongly in L%(£2,R?), we
have Vit = W and Vu; — Vi strongly in L?(£2, R?). Thus we see that u; — @ strongly in
W12(£2). Moreover, Vit = % = 0 on 852 and Vi - e = 0 in £2. By the hypothesis (H.3), we
see that Vir = 0 in £2. In fact, assume that ViZ(p) # 0 for some point p € §2. Let x = x(¢)
be the integral curve of e through p. Then since

%Vﬁ(x(t)) = V(Vi(x(1)) - e(x(t)) =0,

Viu(x(r)) is independent of ¢. By the hypothesis (H.3), x(¢) intersects with 3£2. This con-
tradicts the fact that Viz = 0 on 9£2. Thus Viz = 0 in £2 and so W = Vu = 0in £2. This
contradicts || - Wl ;2o = 1. O

We shall derive the Euler-Lagrange equation for the minimizer of Hgy,(g). Let (&, w)
be a minimizer of Hyj;(q). Then we see that w satisfies

2 1@NIVE — Wl gy + F(O)[W] = K [ Vel |w|*dx
Hi(@) = :

2
”h : w”LZ(_Q)

For v € W, (2, R?) with v(x) - e(x) = 0, since &y 11y = &w + 1&, and
/ (h-(w+tv)dx = f (h - w)?dx + 2zf (h-w)(h-v)dx + 0(?),
2 2 2

we have

IVEwrio — W + 101175 g3y = 6w — W72 g o)

+2t/ (VEp — w) - (V& — v)dx + O(12),
2

F(e)[w +1v] — Ky / |Ve|*|w + tv|*dx = F(e)[w]
2
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K, / [Ve|*|w|?dx
2

+2t/ {K1(divw)(divv) + K2 (e - curl w)(e - curl v)
2

+K3(e x curlw) - (e x curlv) — K1|Ve|>(w - v)}dx + O(1?).
Here we note that
(e x curlw) - (e x curlv) = (curl w - curlv) — (curlw - e)(curlv - e) .

Thus if we define k(x) = h x e(x) and an orthogonal projection P onto the space
[k(x), h] spanned by k(x) and k, we get the Euler-Lagrange equation

P[—KV(divw) — Kze x V(e - curl w)
+K3(curl>w + e x V(e - curl w))
+q*(w — V&) — K1|Vel*w]

= X H;,(¢)(h - w)h in 2,
w=0 on d52.
In particular case where K1 = K = K3 = K, since curl 2w = —Aw + Vdiv w, we have

P[—KAw + ¢*(w — V&) — K|Vel*|lw|?] = xH% (h - w)h in £2,
w=0 on 082

4. Loss of global minimality of pure smectic states

In this section, we examine loss of global minimality of pure smectic states. In order
to do so, let (Y, ng) be a pure smectic state. That is to say, ¥y = ce'1? ny = e with
ceC,|c|]=1andgisasin (1.2).

If a global minimizer (Y, n) € Wh2(2,C) x Wh2(2,S?%, eg) is not a pure smectic
state, then we claim that
4.1) h-n#0 in 2.

Infact,if h -n =01in £2,

£l n] = Gl n] + Fln) < Elvo, nol = / Ki|divel?dx .
2

Hence since F[n] < K| ||dive||iz(9) = Fle], we have n = e from (H.1), Moreover, we have
2 i 242
0=Q[1ﬂ,n]=/ {va—iqmﬂl +7(1—le ) }dx-
Q
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Therefore, since || = 1, we can write ¢ = €% with |c] = 1 locally for some function
@. Therefore, 0 = Vy —igey = icq(V@—e)e'9%. Thus V@ = e, so we can write = ce'9?
with |c| = 1 locally where ¢ is as in (1.2). Since £2 is connected, ¥ = ce'9? in £2. Then
(¥, n) = (Yo, no) is a pure smectic state. Hence (4.1) holds.

Thus if (¢, n) is a global minimizer of £ which is not a pure smectic state, we have

Glyr, nl + Flnl = Killdivell?, o) < xo k- nll7s g, -

DEFINITION 4.1. For giveng > 0,« > 0, K1, K2, K3 > 0 and h, eg, define H; =
HS‘(Q9K7 K17 K27 K37 ‘Q’ ha eO) by

: 2
42 H =1 inf{ i m + Flnl = Killdivell,z )
X

N 2 4
”h . n”LZ(_Q)

(W,n) e WH2(2: C) x Wh2(£2,8%, e0), h -n(x) 0 in 9}

Then we have the following lemma.

LEMMA 4.2. Under the assumptions (H.1), (H.2) and (H.3), we have following.
(1) If there exists a global minimizer (\r, n) of € which is not a pure smectic state,
then o > H;.
(i) Ifo > Hy, then the global minimizers of £ are not pure smectic states.
(iii) If0 < o < Hjy, then the only global minimizers of £ are pure smectic states.

PROOF. (i) If (v, n) is a global minimizer of £ which is not a pure smectic state, then

from (4.1) h -n £ 0in 2 and E[Y, n] < E[Yo, no] = K1||dive||iz(m. Therefore, we have

Gl n) + Flul = Kilivelag, < 207 [ th-nd.

This implies that H; < o.
(i) Ifo > Hy, there exists (Y, n) € W2(§2,C) x WI2(2,S%, eg) with h - n # 0 in
£2 and

| Gl nl+ Flnl - Killdivel], o
— 2 <o".

L2(£2)

X A - ni
Thus we have
LY. n] = Gy, nl + Flnl — xo?|h - nl}s o) < ElVo. nol = Killdivel ] g, -

This implies that global minimizers of £ are not pure smectic states.
(i) If0 < o < H, and there exists a global minimizer which is not a pure smectic
state, it follows from (i) that o > Hj. O
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In the following we write Hs by H(k,g). Since pure smectic states lose the global
minimality at Hy(k, ¢) and lose local minimality at Hyj(g), we see that

(4.3) H(k,q) < Hsn(q) -
We define a number H,, which is closely related to Hj.
DEFINITION 4.3. H, = H,(q) = H,(q,«, K1, K2, K3, 2, h, ep) is defined by

1 {cﬁuw =2, g oy + Flnl = K1 dive]?

g2 = Line L2(2.R3 L2(Q) |

(u,n) € WH2(2) x Wh2(2, 8% eg), h -n % 0in 9}

We note that

Flnl - Killdivell?, o

Ih-nlgsg

1
H2(0) = —inf{ newh(2,8% ey, h-n#0in 9}
X

LEMMA 4.4. For any k > 0, we have Hs(x,0) = H,(0), and for any « > 0 and
g > 0, we have Hy(k, q) > Hy,(0).

PROOF. We choose a test field ¥ = 1 and any n € WI’Z(Q, S?, eo) with h - n # 0 in
£2, we see that G[y, ”]’q=o= 0. Thus Hsz(/c, 0) < an(O). On the other hand, for any « > 0
and g > 0, it is easily seen that

Fln] — K, ||div e

L2(92)
2 9
”h : n”LZ(Q)

1
H2(k,q) > —inf{ newh2(2,8% ey, h-n# 0}
X

= H2(0). O

THEOREM 4.5. Let 2 be a simply connected bounded domain in R3 with smooth
boundary and assume that (H.1), (H.2) and (H.3) hold. Then we can get the following.
(i) Foranyk > 0andanyq > 0,

0 < Hy(k,q) < Hy(q) < Hsn(q) .

(i) Foranyk > 0andanyq > 0, if Hy(x, q) < Hsp(q), then Hg(k, q) is achieved.
(iii) Foranyq > 0, if H,(q) < Hsn(q), then H,(q) is achieved. In this case, we have
H;(x,q) < Hsp(q), so Hg(k, q) is achieved.

PROOF. From now, we denote various constants by ¢, C, C1 which may vary from line
to line.
(i) Step 1. We show that H(k, q) < H,(q).
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For any ¢ € wb2(£2) and any n € wh2(2,S2, ep) with n - h # 0 in £2, we take
(€9 n) as a test function of Hy(k, ¢). Then we have

2 \V/ 2 F : 2
1 61 ” ¢ n”LZ 0 R3 [n] Kl'ldlve”LZ 0
Hf(lc,q)s—x (@2 @

2
”h : n”LZ(_Q)

This implies that H2(k, ¢) < H2(q).
Step 2. We show that H,(q) < Hyn(q).
Letu € W'2(2), w € Wy (2, R) N L®(2,R?) withe - w=0in 2 andh - w # 0
in £2 and put
e+tw

= =e+1w+ O@F>)
le + tw|

or=¢+itu, m

where ¢ is as in (1.2). Then we have

@IS = nill72 g msy = 17471V = w75 g g3y + O,
Fln,) = Flel + tz{]-'(e)[w] + 2K, / (div e)(divnz)dx} + 0@,
22
/ (h-n,)zdxztzf (h-w)2dx + 0(>).
2 2

Since ny, = — %lwlze, it follows from the hypothesis (H.1) that

2K1/ (dive)(divnz)dszI/ V(dive)-|w|2edx=—K1/ [Ve|?|w|?dx.
2 2 2

Therefore,
@IS = nill75 g sy + Fluel = Fle]
2
”h -y ”LZ(Q)
¢ Vu — w||§2(9 ) T F@lw] + 2K, [, (dive)(divm)dx o
= » +0(
2
@IV = w75 g sy + F@w] = K1 [ [Vel*|w|*dx o
— . +0(@).
Hence, we have
) < @IS = nill7s g sy + Fluel — Fle]
T Ik - nell7s g
Q*IVu = w75 g sy + F@Lw] = K1 [ [Ve*|w|*dx
= : 5 +0().
Ik - w]|

L2(£2)
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Letting ¢t — 0, we have

s @PIVu = wlTs g g + F@w] = K1 [ [VelPw]?dx
xH,(q) < ol .
” : w||L2(Q)

Since W, 2(2, R?) N L (2, R?) is dense in W2 (82, R?), we get Hy(q) < Hyi(q)-

Step 3. We show that H,(x, g) > 0.

Since Hyp,(g) > 0 from Proposition 3.4, if Hs(k, q) = Hy;(g), the result is trivial. So we
assume that Hy (x, q) < Hsp(q). We borrow the result of (ii) which is proved independently of
(i). Since H(k, q) is achieved, let (¥, n) be a minimizer of H,(k, g). Assume that Hy(k, g) =
0. Then we have

0 <Gy, n]+ Fln] — K, ||dive||iz(m
= xH} e, )b nlyp =0, h-n#0in 2.

This implies that F[n] = K, ||dive||iz(m. By the hypothesis (H.1), we see that n = e in

£2. This contradicts the fact that B - n # 0. Thus we see that (i) holds if (ii) is proved
independently.

Proof of (ii). We assume that Hy(k, g) < Hgp(q).

Step 4. Let{(¥}, n;)} be a minimizing sequence of Hy(«, g). Then

@4)  GlYj,nj)+ Flnjl - Killdivel?, o = (s (6, @) + o) njl3 5 o

Since |h-nj| < 1, the right hand side of (4.4) is bounded. Thus {div #} is bounded in L3(2),
{curln;} is bounded in L?(£2,R% and n j = eogon 082. It follows from Dautray and Lions
[4] (or Girault and Raviart [8], Temam [15]) that {n;} is bounded in Wl*z(Q, R3). Passing to
a subsequence, we may assume that n; — n weakly in Wh2(2,R3), strongly in L?(£2, R?)

and a.e. in £2. Thus we have [7i] = 1 a.e. in £2 and 7 = eg on 382, son € W12(£2, S?, eg).
On the other hand, we see from (4.4) that {V4,;¥;} is bounded in L2(£2,C3) and {¥j}is

bounded in L*($2, C). Since
IV ||L2(Q,(c3) = ”anj wj”LZ(Q,(C»?) + ||f1”j1ﬂj||L2(Q,(C3) )

we see that {1;} is bounded in W12(£2, C). After passing to a subsequence, we may assume
that ¢; — g’ﬁ\ weakly in W!2(£2, C) and strongly in L*(£2, C). Thus we have

4.5) Iy, @l + Fa] — Killdivel s g,
= liminf{GLyyj, nj] + Flnj] - Kildiveljq))
= X HI (e, IRl

If we can show that & - 71 # 0 in £2, we see that H,(k, q) is achieved.
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Step 5. Assume that b -7 = 0 in £2. Then it follows from (4.5) and the hypothesis
(H.1) that 7 = e in £2. Moreover, V{f — iqefp\ =0, |1Z| = 1. Then we can write fﬁ = cel1¥
for some ¢ € C with |c| = 1 where ¢ is as in (1.2). For brevity, we assume that ¢ = 1.

Since h - n; # 0, we have n; # e. We write

(4.6) nj=e+ejw;, ¥;=e%1+iqejg;)

such that ¢; = |n; — ellyi2oryy > 0, w; € WOI’Z(Q,R3) and w; satisfies that
lwjllwi2e rsy = 1. Using the Poincaré inequality and the formula |e - curl w? + |e x

curl w|? = |curl w|?, we have

47 Flnjl— Flel = &7 F (e)[w,]
= 83/ {K1|diij|2 + K»le - curle|2 + K3le x curlelz}dx
2
> 3 min{K1, Ko, K3}/Q{|div w; %+ [curl w;|*}dx
= Cejmin{K1, K2, 1(3}/Q |Vw, |[*dx

> Cé‘? min{K1, K>, K3} .

Thus we have

1
2 1— Flel) =
IS Cmin(Ky, Ko, Ky} o il Fleb = o)

as j — 00. Since [|w;|ly1.2(o r3) = 1, after passing to a subsequence, we may assume that
w; — w weakly in wh2(2,R3) and strongly in L*(£2, R3). Since

l=n;>=le+ejw;>=1+2¢je-w; —l—s?lelz,

we havee - w; = —%|wj|2 — 0 strongly in L2(£2),s0 e - w = 0 a.e. in £2. Since
Vn; Wil =€V — (1 +igejgpw;|*,
W17 =1+ qe;(=23(g)) + q¢jl9;1*)
using (4.4), we have

48)  ((H (k@) +o(W)lh-wjl7s g,

1
5 OCH W, @)+ o)l 17
J

1 1 .
= 0.1+ 5 (Flnjl = Kildivel 2 )
J J
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2.2
. K~q ~
=/ {qzw — (1 +igejgpw;l + ——(=23(g)) +qej|g,~|2)2}dx
Q
+ F(e)[w;].
Thus we have
/ IVg; — je ' 9%w; > dx =/ IVg; — (1 +igejgj)w;|?dx < Cy.
o} Q
Therefore,
IVgilliace.co < IVg; — Ve %w;ll 20 03 + Vw2005
=C+vjilwizeolwillyizgery < Cr.
Puty; = gj — bj where b; = ﬁ [o gjdx. Since [, §;dx = 0, it follows from the Poincaré
inequality that ”E]”LZ(Q,(C) < C(Q)”Vg]||L2(.Q,C3) < C, SO ||§]||W12(.Q,C) < C. By the
Sobolev lemma,
||§j||L4(Q,C) = C||§j||wl,2(9,(c) <Ci.
Hence,
1Gjwill2e.c3 < 19illLs@.ollwillwizgry < C.

Now we estimate b;.
Since

v =e(1 +iqejg)) =V +iqe;gje'?
and ¢; — ¥ in L*(2, C), we have g ;g; — 0in L*(£2, C). Thus e;b; = &, g;—&;7; = o(1).
On the other hand, we have
=[IVg; — (1 +igejbjw; —igejgiwll 2o o3
> Vg — (L +igejbjwill 2. o3y — Ojlgiw;llL2e.c3)
= ||V§j -+ iqubj)ijLz(Q,@) - 0(8j) .
Putu; =7;/(14+iqe;b;), then

IV — (I +igejbpwilliag s = 11 +iqebiPIVuj — wjll7s g ps) -

Therefore, we have [Vuj —wjll 20 c3) < C,s0 [Vujll2(o.c3) < Ci. Since f_Q ujdx =0,
it follows from the Poincar€ inequality that {u;} is bounded in W12(£2,C). Passing to a

subsequence, we may assume that u ; — & weakly in W12(£2, C) and strongly in L?(£2, C).
From (4.8), it follows that

(CH (. q) + o) 1 - w175 o)
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2.2
K
= /Q{qz(l +0(1)[Vij = > + S (=23(g)) + qgj|9j|2)2}dx
+F(e)[w;].
This implies that
49 @lIVuj —wil7a g s + F@OW;1 < (XH] (6, ) + o)A w172 g
Letting j — oo, we get

(4.10) @*IVE = B2 o3y + F@IB] < ) H (, Pllk - B3 -

We note that we may take % to be a real valued function.

Step 6. We show that & - w # 0 in £2.

Assume that b - W = 0 in 2. Since w; — ® strongly in L?(£2, R%), we have ||k -
Wil 2 — 0. Since F(e)[w;] — 0 from (4.8), we see that divw; — 0 in L2(£2) and
curlw; — 0in L2(£2,R3). Since diviw = 0, curlw = 0, Vi = W and W = 0 on 952 from
(4.10), we see that Auw = 0 in £ and Vi = 0 on 3£2. Applying the maximum principal, we
see that  is a constant in 2, so w = 0. Thus w; — 0 strongly in L2(.Q, R3). Therefore, it
follows from [4] that

”w] ||W1’2(.Q,R3) < C(”dlv w] ”Lz(ﬂ) + ||Cur1 w] ||L2(.Q,R3) + ”w] ||L2(.Q,R3)) — 0

as j — oo. This contradicts the fact that |w; ||y 12 g3y = 1.
Thus from (4.10),
@ IVE = B35 gy + F(@)[B]

=12

xHX(k,q) > > xH2(q) .

Hence we get Hy(x, q) = Hgj(g). This contradicts our hypothesis. Thus we get b -7 # 0 in
£2. By Step 4, we see that Hy(k, g) is achieved. Therefore (ii) holds, so (i) also holds.

Proof of (iii). Assume that H,(q) < Hsn(q).

Step 7. Let {(uj,nj)} € W'2(2) x WI2(2,S%, e9) with h - n; # 0 in 2 be a
minimizing sequence of H,(g). Then we have

(4.11) Q*IVuj = njl7a g ps) + Flnjl = Killdivel7, o)
= (XH; (@) + o)k 11725

Since |h - nj| < 1, the right hand side of (4.11) is bounded. Thus we see that {divn} is
bounded in L2(£2), {curln;} is bounded in L2(£2,RY), nj] = 1ae. in§2andn; = e on
052. Therefore, it follows from [4] that {r;} is bounded in W2(£2,R?). After passing to a
subsequence, we may assume that n; — 7 weakly in W22, R3), strongly in L2(£2, R?)
and a.e. in £2. As in (ii), we get 7 € W'2(£2, S?, eg). When ¢ > 0, it follows from (4.11)
that {Vu ;} is bounded in L%(2,R%). Put uj=uj—djwhered; = ﬁ Jo ujdx. Applying
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the Poincaré inequality, we see that {’IZJ} is bounded in Wl*z(Q). Passing to a subsequence,

we may assume that 7; — u weakly in W12(£2) and strongly in L*(£2). Letting j — oo in
(4.11), we have

@12 @PIVE =775 g sy + FlH] = Killdivell?s o)
P 2o 2 o2
= lin_l)géf{q ||VM] - nj ||L2(.Q,R3) + f[n]] - Kl ||lee||L2(Q)}

= xHy (@) 1h 7175 g -

If we show that k -7 # 0in £2, we see that H,,(q) is achieved. When g = 0, if we show that
h -7 # 0, by the definition of H,(0), we also see that H,(0) is achieved.
Step 8. Assume thath -7 = 0 in £2.

Then from (4.12), F[n] < K ||dive||iz(9). Thus we have # = e and Vi = 71 = e if
g > 0. Hence if we writen; = e+ejw;,uj =u+ejg;, wheree; = [[nj—elly12.o g3y > 0,

then w; € Wé’z(.Q, R3) and lwjllwi2e r3) = 1. According to Lemma 3.1, we have

]-'[nj]—f[e]:e?{]—"(e)[wj]—l(lfg|Ve|2|wj|2dx}

2 2
> ng”wj”Wl,z(Q,Rzy

As the proof of (ii) we get 8? = o(l) as j — oo. Since [|w; |12 g3y = 1, after passing
to a subsequence, we may assume that w; — w weakly in Wol’z(.Q, R3) and strongly in

L*($2,R3). Since e - w; = —%|wj|2 — 0 strongly in L2(£2), we see thate - W = 0 a.e. in
2. Since Vi, = Vi +¢;Vg; = e+¢;Vg;, we have

(4.13) CHZ @) + o)1k w; 1720,

1
= ;(XHf(q) +o(k-njl7sq,
J

1 N .
= @7 IVE) =1l g sy + Flnjl = Killdivelp: o))
J

L,
= —a?IvE, —n,~||iz(9,R3)+f<e>[w,~]—K1/9|Ve|2|wj|2dx
J

G2V g = w122 o, + F@w)1 — Ky fg Vel w; Pdx.

Since f_Q gjdx = 0, l1gjllL22) < ClIIVgjliL2e r3) < C1. After passing to a subsequence,
we may assume that g; — g weakly in W12(£2) and strongly in L*(£2). By (4.13),

@14 @IV = W71 g ps) + FlOW] - K /Q |Vel*|®|*dx
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< liminflq2V g — w; 2 o g, + F@Ow;] - K / Vel w; dx)
J—>00 ’ 2

= XHy @)k B35 g -

Step 9. We shall show that & - W # 0 in £2.

Assume that b - W = 0 in 2. Since w; — ® strongly in L?(£2, R%), we have ||k -
w;ll 22 — 0. Since F(e)[w;] — 0 from (4.13), we see that divw; — 0 in L2(£2) and
curlw; — 0 in L*(£2,R?). Thusdivid = 0, curl®w = 0, V§ = W in £2 and @ = O on
9£2. Therefore, Ag = 0in £2 and Vg = 0 on £2. By the maximum principle, we see that
g is a constant and so w = 0 in £2. Thus w; — O strongly in L%(£2,R%). According to [4],
lwjllwi2e g3 — 0. This is a contradiction. Hence we have

2 =112 = 2|4 12
PIVG = B2, o, g, + F@OIB] — Ky [ [Vel?|w|dx
XH3 (@) < e < xHX@).
” . w”LZ(_Q)
This completes the proof. O

5. Instabilities in pure nematic states

In this section we examine the local minimality as well as global minimality of the pure
nematic states. Let v = 0 and n = n, where n, is a global minimizer of Fp:

Fonlnsl = inf Fonln]
neWl2(2,52,e9)

and F,p[n] = Fln] — )(02||h -n ||iz(9). We note that (0, r) is a critical point of £ if and only

if n is a critical point of Fj. Define

C(o) =C(o,k,K1,K>, K3, h, ep) = inf Fonln]
neWl2(2,52,e)

and
M(o) = Mo, k, K1, K2, K3, h, ep)

={nec W'(2,S? eo); Fonlnl = C(0)}.

If n € M(o), then (0, n) is a critical point of £. When n is a minimizer of F,j,, we look for
the Euler-Lagrange equation for r. For any v € WO1 ’2(9, R3), we compute

d
dt

{]:ah[" + tv] —/ A(ln + tvI2 — l)dx} =0
t=0 2
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where A is the Lagrange multiplier which depends on x. By the standard arguments, we get
the Euler-Lagrange equation for n:

—K1V(divn) + K>{(n - curl n)curl n 4 curl ((n . curln)n)}

+K3{|curln|®n — (n - curl n)curl n + curl 2n

(5.1) —curl ((n ~cur1n)n)}
—x0%(h-n)h —n =0 in 2,
n=eo on 052.

We can compute the Lagrange multiplier A:
A =A(x)=n-[-KV(dive) + K2{(n - curln)curln
+ curl ((n . curln)n)} + K3{|curln|2n — (n - curln)curln
+ curl?n — curl ((n - curlm)n)} — xo*(h - n)h]
In the particular case where K1 = K> = K3 = K, we use the formulas: curl2n = —An +

Vdivn and —An - n = |Vn|? which follows from n - n = 1. In this case, we have

(5.2)

—KAn=K|Vn’n + xo*((h-n)h — (h-n)’n) in 2,
n=eq on 052.

Since h - e = 0, e is a critical point of F,, for any o. Recall that
2 1. 2,12
H;,(0) = —inf { F(e)[w] — K, |Ve|”|w|“dx;
X Q2
we W, (2,R%), wx) - e(x) =0in 2, [lh - w20 = 1} ,

2
f[n] - Kl ”dlve”L2(9) .
|- n|?

1
H2(0) = —inf{ neWh2(82,5% ey, h-n#0in 9}
X L2(2)
and 0 < H,(0) < H,;(0) from Theorem 4.5 (i).
We give a simple criterion for n = e to be a global minimizer.

LEMMA 5.1. (i) If0 <o < H,(0), then n = e is the only global minimizer of Fypn
in Wh2(£2, S2, eq).
@) If H,(0) < Hg,(0) and H,(0) < o < Hgp(0), then n = e is not a global
minimizer of Fyp in Wbh2(2,S?, eq), but it is weakly stable (a local minimizer).
(iii) Ifo > Hgp(0), n = e is not weakly stable.

2
L2(2)’

Fonlnl < Fonlel = Killdivel3, . If b -n =0, then Fn] = Fonln] < Foule] =

PROOF. First note that F,p[e] = K||dive] so if n is a global minimizer, then
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K ||dive||iz(m. Hence n = e. Therefore, a global minimizer n with n # e satisfies h-n # 0
in £2.

(i) WhenO < o < H,(0), if F,, has a global minimizer n which is note, then z-n # 0
in £2. Thus
Killdivel7s ) = Fonlel = Fonlnl = Finl — xo? | - nll7s g, -
This implies
Fln] — K ||divel|?

1 L2(2)
2
X ”h 'n”LZ(Q)

2

o’ > > H;(0)

which is a contradiction. Hence only the global minimizer is e.
When o > H,(0), choose 7# € W1-2(£2, S?, eg) such that & - 7@ % 0 in £2 and

| Flnl — Ky ||dive]?

L2(£2)

< H}0)+68 <o?.

Then for some § > 0
Fonlil = Flit] = xo | -7ll75 g
< FIR] = x(H(0) + )l -7l
< Killdivel}s o) = Fonle].
Thus we see that

inf{Fyplnl;n e Wh2(2,5?, e0)} < Fonlel.

Hence e is not a global minimizer.
In order to examine weak stability (local minimality), for any v € WO1 "2([2, R3 N
L®(£2,R?), if we put Yo = ¢ = 0, ng = e in (2.1), we have
fah["t] - fah[e]

= z2{f(e>[m] - K / Vel?|n1*dx — xo ||k -nluiz(m} +0()
2
wheren; =v — (v-e)e. Since h - e =0, if
F@lv=(w-e0el = K1 [ [VePlo = (v-erePds = ol vl g > 0.

(0, e) is weakly stable. If 0 > Hj;,(0), there exists w € WOI’Z(Q, R3) such that w(x)-e(x) = 0
in Q, ||h . W||L2(Q) = l and

F(e)[w] — K1/ Ve’ |w|’dx < xo2.
2
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If we take v = w,
Fonln — Foplel = tz{f(e)[uﬂ — Ki / |Vel*|lw|*dx — xaz} +0@%).
2

Since F(e)[n]— K1 [, [Vel*|w|?dx — xo? < 0,n = e is not weakly stable. Thus (iii) holds.
When H,(0) < o < Hy(0), forany v € Wy * (2, R N L®(2, R?),

fgh[n,]—fah[e]=r2{f<e)[v—<v-e)e]—m/ |Vel*|v
2

— (v-e)el*dx — xo*|h-(v—(v- e)e)||iz(m} +0@Y).

If o < Hgp(0),

Xcrz/ (h-(v—(v- e)e)zdx
2
< F(e)[v— (v-e)e] — K, f |Vel*lv — (v - e)e|?dx .
2

Thus (0, e) is weakly stable. This completes the proof. O

Next, we consider a question: When n, € M(o, «, K1, K2, K3, h, eg) is a global mini-
mizer of F,p, is (0, ny) a global minimizer of £ ?
Let u© = u(gn) be the lowest eigenvalue of the magnetic Neumann problem

{—qunqh =u¢ in 2,

5.3
(5-3) Vin¢-v=0 on 352.

That is to say,

||vqn¢||iZ(Q’C3)

ulgn) = 1n
029eW122.0) 116117, ¢,
Define
H*(C], U) ZH*(CLU, KI’KZ’ K3’h’e0) = lnf M(qn)

neM(o,k,K1,K2,K3,h,e)

LEMMA 5.2. (i) If (¥, n) is a global minimizer of £ which is not a pure nematic
state, then u(gn) < 2.

(i) If us(q, o) < k2, then pure nematic states are not global minimizers of £.

PROOF. (i) Let (¢, n) be a global minimizer of £. If ¥ = 0, n € M(o). Hence

(0, n) is a pure nematic state. Therefore, if (¥, n) is not a pure nematic state, then v # 0.
Choose n, € M(o). Then since

Gy, n] + Fonlnl < G0, no 1 + Fonlnsl,
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2
/Q{wqmz — Ky + %W}dx < Fonlnol — Fopln] < 0.

Thus
K2
f {IVgnvr)? — i1y }dx < ——f ly|*dx <0.
2 2 Q

This implies that u(gn) < K2,
(i) For a pure nematic state (0, ny),

K2
g[oa n;| = 7|~Q| +-7:Uh[no] .

If uy(g,0) < K2, there exists n € M (o) such that u(gn) < K2 Let ¢ be an eigenfunction
of (5.3) associated with (gn). Then

2
Eli.n] = fg{rzuvqnmz 1P+ 91 dx + 121+ Fouln].
Since Fypln]l = Fyplns] = C(o), therefore, we have
Eltg, n] — E[0, ny] = t*(u(gn) — k%) / |p1%dx + 14 / lp*dx <0
2 2

for small t > 0. Thus (0, n,) is not a global minimizer of £. O

ProOPOSITION 5.3. If0 <o < H,(0) andk > 0,0rc > H,(0) and n«(q,0) < /<2,
then the pure nematic states are not global minimizer of £.

PROOF. When 0 < o < H,(0), it follows from Lemma 5.1 (i) that M (o) = {e}.
When o = H,(0),

Fln] — K1 ||divel?

1 L2(2)

025

forany n € WI’Z(Q, S?, eo) with k2 - n # 0 in £2. Therefore,

(5.4) Flnl — Ki|divel7, o — xo* Ik -nl7, o >0.

(£2) (£2)

This inequality holds even in the case o - n = 0. Therefore, (5.4) hold for any n €

W12(82,S?, ep). This implies that C(¢) > K ||dive||iz(9).

On the other hand, C(0) < Fyple] = K1||dive||i2(9). Therefore, we have C(o) =
K| ||dive||i2(9) = Fonlel, so e € M(c). If we put ¢ = €'9%, then Ve = 0. So pu(ge) =

0. Thus we have

(g, o) < u(ge) =0 < k2
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for any k¥ > 0. Therefore, from Lemma 5.2 (ii), we see that pure nematic states are not global
minimizers of £. If ¢ > H,(0) and u+(q, o) < k2, it suffices to apply Lemma 5.2 (ii). O

Now define
0x(k, q) = inf{o > 0; jt.(q, o) > K%},
Q. (k, q) = inflg > 0; pus(q, 0) > K%}

Let o > H,(0). Summing up the above, the pure nematic states are not global minimizers in
the following cases.

(1) 0<o0 <ok, q).

) pilg.0) <K’

(3) 0<g < 0«(g,0).

The following theorem indicates the difference between liquid crystals and superconduc-
tors under strong external field.

THEOREM 5.4. Let q,k, K1, K2, K3, h,eq with K1 = Ky = K3 = K be given.
Assume that (H.1), (H.2) and (H.3) hold. Then if o is sufficiently large, the pure nematic
states are not global minimizers.

In order to prove the theorem, we need a lemma.

LEMMA 5.5. (i) Forlargeo,C(0) < —x0?|2|+ C10 where C1 > 0 depends only
on K,Ky, K3, h,eyand S2.
(ii) Let ny be a global minimizer of Fyp. Then |h - ny| — 1in L2(£2) as o — +o0.
(iii) Assume that K| = K» = K3 . Then h - ny, — 1 or —1 in L*(2) as 0 — +00.
PROOF. After rotating the coordinate system, we may assume that h = e3. Define
k(x) = hxe(x). Then (e(x), k(x), h) is a orthonormal basis in R>. Forn € W!2(£2, S?, e¢),
we can write

n =nee+nik + nph, n%—}—n,zfl—ni =lae.in 2.

‘We see that
Fonlnl = Fln) —X02/ (h -n)*dx
2
= Fln] — XUZ/ nidx
2
=]-'[n]—xa2/ (1 —n2 —n})dx
2
= Folnl — xo?|82|
where

Foln)l = Fln] + XO'Z/ (ng + n,zc)dx.
2
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Proof of (i). Choose a test field
n=(cos¢p)e + (sinp)h
= (cosp)ej(x)e] + (cosp)er(x)ey + (sin p)es

where e(x) = e1(x)e1 + ex(x)er. Then since

divrn = —(sin¢)(91¢)e; + (cos ¢)(d1e1) — (sin@)(d2¢)e2
+ (cos ¢)(d2e2) + (cos ) (33¢)

and e € C?(22, R?), we see that |[divr|?> < C(|V¢|*> + 1). Similarly we have
In-curln|> + |n x curln)® < C{(|Vo|> + 1).
Thus if we write Fo[n] = [ fo.n(¢)dx, we have
| fo.n(@)] < Cmax{K1, K2, K3}(IVo|* + 1) + xo (cos ¢)*.
For any ¢ > 0, define 2, = {x € 2;d(x,082) <¢e}and 2° = {x € 2;d(x.02) > ¢}, and
decompose F[n] as follows: Fs[n] = Fq, 1[n] + Fs 2[n] where

Forln] = / Fon@)dx.  Foaln] = / Fon(@)dx .
2 Q¢

Choose ¢ such that

in 2°¢,

on 952,
C .

V| < %+ in 2.

[ =INTE]

¢):

Then F, 2[n] < C max{Ki, K2, K3} and

Forln] < / (Cmax(K1. Kz, K3}(VS[2 + 1) + xo2(cos $)*Jdx
¢

C3 )
< [C max{K}, K3, K3} 8—2+1 +x07]182] .

Since 952 is smooth, there exists Cp > 0 depending only on 92 such that |£2,| < Cpe for any
small ¢ > 0. For large o, choose ¢ > 0 so that

. {ﬁcz\/maX{Kl, K>, K3} }
£ = min 1.
o X
Then we have F5, 1[rn] < C3 + C40. Therefore, we have
C(0) < Fouln] < —x0?*|R2|+ C40 + Cs .

Thus (i) holds.
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Proof of (ii). From (i), we see that
Folnsl = Flns] + XO’2 /Q(ng + n,zc)dx <Cio.
This implies that
/ (n%—}—ni)dx < & -0
Q X0

as 0 — —+oo. Thus f_Q(l — Ing,h|2)dx — 0 as o — 4o00. Since |nyp| < 1, for any
1 <p<+oo,

/ (1 | pl)Pdx < 27~ / (1 |y p)dx — 0.
2 2

Since k - ny, = ngy p, we see that |h - ny| — 1in L?(2)aso — 400.

Proof of (iii). When K1 = K; = K3 = K, we shall show that n, has the following
property: nep > 0in 2 ornep <0in 2 orngp = 01in £2.

In fact, n, satisfies the Euler-Lagrange equation (5.2). That is to say, if we write n, = n
for brevity,

—An = |Vn|*n + b?0?[nyh —nin] in £2,
n=eo on 052

(5.5) {

where b2 = x /K. Since nj, € W1-2(£2), it is well known that |n;,| € W12(£2) and |V|np|| =
|Vny| a.e. in 2. This fact implies that if we define u = nee + nxk + uph where uy, = |ny|,
u is also a minimizer of F,,. In fact, we can write

C(o) = Foplnl =/ |Vn|?dx + C(eg) — X(;Z/ (n-h)*dx
2 2

where C(eg) is a constant depending only on eg (cf. [3]). Therefore, u satisfies (5.5). We
rewrite the equation (5.5) for uy = |ny| into the form
(5.6) Aup = —|Vn|Pup — b*0? (up(1 — u3)) < 0in £2,

np=00nds2.

By the weak Harnack inequality for non-negative superharmonic function (cf. Gilbarg and
Trudinger [6, Theorem 9.22]), for any Bor(y) C £2,

1 I/p
( ude) < C essinfuy
[BROD)| JBr(y) Br(»)

for some p > 0. This implies that if uj, # 0 in £2, then uj, > 0 in £2.
End of proof of (iii)
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By (ii), ny p # 0in §2 for large o. Therefore, n, p > 01in §2 or nyp < 01in £2. Assume

that n,j, > 0in £2. By (ii), ngp — 1in L?(2) as 0 — oco. Hence (n2 + n3)!/? — 0in

L%(£2). Thus we have n, — h in L?(£2, R3), that is to say, k - n, — 11in L?(£2). 0

PROOF OF THEOREM 5.4.

Let n, be a global minimizer of F,j. We shall estimate 1 (gn,) for large 0. By Lemma
5.5, we may assume that n, — h strongly in L2(£2,R?). If we define ¢ (x) = €'4"* then
Vyne® = iq(h — ny)e'4"*. Therefore, we have

/W%%m%x=f/ﬁw~m%xeo
Q Q
as 0 — +o00. Hence

2
”Vql’lad)”LZ(_Q’CS)

ulgng) <
1817 2.0.¢)
IR = ol g )
12|

as 0 — +oo. Thus for any k > 0, u(gns) < «2 for large o. Thus from Lemma 5.2 (ii), we
see that pure nematic states are not global minimizers of £.
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