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Existence and Stability of Almost Periodic Solutions of
Nonlinear Damped Equations of a Suspended String

Hitomi HATTORI and Masaru YAMAGUCHI

Tokai University

Abstract. In this paper we shall show the existence and the stability of almost periodic solutions of the bound-
ary value problem to a nonlinear suspended string equation with a linear damping term and an almost periodic weakly
nonlinear forcing term. We treat both weak solutions and strong solutions. Also we show the existence of time global
solutions of the initial boundary value problem to the equation.

1. Introduction

In recent researches of the behavior of suspended strings the existence of periodic oscil-
lations of a nonlinear suspended string with finite length has been investigated under both the
existence of damping (Hattori [4], Nagai [6] and Yamaguchi-Nagai-Matsukane [14]) and the
nonexistence of damping (Yamaguchi [10, 11, 13]). On the other hand, for the existence of
almost periodic and quasiperiodic oscillations of the suspended string only a few results have
been obtained; it is shown in [10] that when the equation is linear, has a quasiperiodic forcing
term and has no damped term, there exist infinitely many almost periodic and quasiperiodic
oscillations of the suspended string. However there have been no works on the existence of
almost periodic oscillations of the suspended string when the equation is nonlinear.

In this paper we shall be concerned with a suspended string to which almost periodic
nonlinear forces and a linear damping operate. We show

(i) the existence of almost periodic oscillations ;
(ii) the exponential stability of the almost periodic oscillations.
Consider the following equation of the suspended string with a linear damping and

weakly nonlinear forcing terms

∂2
t u(x, t)+ Lmu(x, t)+ ∂tu(x, t)

= h(x, t)+ εf (x, t, u) , (x, t) ∈ (0, a)× R1 ,
(SS)

where Lm is a second order differential operator whose principal part is degenerate at x = 0 :

Lm = −
(

x

m+ 1

∂2

∂x2 + ∂

∂x

)
,
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m is a constant larger than −1, ε is a small parameter and a > 0 is a constant, the length of
the string. For the derivation of the equation of the suspended string, see Koshlyakov-Gliner-
Smirnov [5].

Throughout this paper except Section 4 we suppose that the forcing terms h(x, t) and
f (x, t, u) are almost periodic in t uniformly with respect to other variables. See Section 2.3
for the definition of almost periodic functions.

In the first part of this paper we shall consider the following BVP (the boundary value
problem) to Eq. (SS)


∂2
t u(x, t)+ Lmu(x, t)+ ∂tu(x, t)

= h(x, t)+ εf (x, t, u) , (x, t) ∈ (0, a)× R1 ,

u(a, t) = 0 , t ∈ R1 ,

(P)

and prove the existence of almost periodic solutions under suitable assumptions on m and h,
f (see Section 3, Theorems 3.1 and 3.2). In the periodic cases where h and f are T -periodic

([4, 6, 11, 13, 14]) the time interval is taken as [0, T ] that is compact in R1. Then in the
suitable Lebesgue-type and Sobolev-type spaces with respect to the space-time variables x and
t , the Fourier expansion method with respect to both x and t can be applied, and the periodic
solutions of the linear BVP with ε = 0 are represented by the Fourier series in the spaces.
From this fact, the existence of the periodic solutions of the linear BVP and the fundamental
estimate of the inverse of the linear operator ∂2

t +Lm + ∂t are obtained. Then the contraction
mapping principle, the Schauder fixed point theorem or the fixed point continuation method
is applied to nonlinear BVP (P).

However in the almost periodic problems the time interval naturally is taken as
(−∞,+∞) that is not compact, whence different from the periodic problems, we are not
able to apply the Fourier expansion method with respect to t . In this paper, instead of the
Fourier expansion method in both x, t , we combine the Fourier expansion method with re-
spect to x with the representation formula of the almost periodic solutions of the second order
scalar ODE with almost periodic forcing term (Lemma 3.1). Using this method in some well-
defined function spaces (see below and Section 2), we obtain the existence and uniqueness of
an almost periodic solution of a linear BVP with ε = 0 and the basic energy estimates of the
solution in suitable function spaces of almost periodic functions (see Section 3, Proposition
3.1). Then we apply the Picard iteration method to BVP (P), and show the existence of an
almost periodic solution that is locally unique in the function space. We shall deal with the al-
most periodic solutions with weak regularity (Theorem 3.1) and strong or classical regularity
(Theorem 3.2). In the former case we take m ≥ 0 arbitrarily, while in the latter case we shall
take m = 0 so that the generalized Sobolev-type inequality to the SS operator (see [10]) can
be applied in order to obtain the regularity of the solutions.

In the second part we shall deal with the (local) exponential stability of the above almost
periodic solutions of BVP (P). Let the almost periodic solution obtained in Section 3 be given,
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denoted by u0(x, t). Consider IBVP (initial boundary value problem) to the equation (SS)


∂2
t u(x, t)+ Lmu(x, t)+ ∂tu(x, t)

= h(x, t)+ εf (x, t, u) , (x, t) ∈ (0, a)× R1 ,

u(a, t) = 0 , t ∈ R1 ,

u(x, 0) = φ(x) , ∂tu(x, 0) = ψ(x) , x ∈ (0, a) .

(Q)

It turns out (Theorems 4.1–4.2) that IBVP (Q) has a unique time-global solution u(x, t;φ,ψ)
in suitable function spaces for small ε. Then we show (Theorems 5.1–5.2) that any so-
lution u(x, t;φ,ψ) starting from initial data (φ,ψ) in some neighborhood of the data
(u0(x, 0), ∂tu0(x, 0)) converges to u0(x, t) exponentially as t goes to +∞. The rate of the
exponential decay depends on the value of the max eigenvalue λj satisfying 4λj < 1, where 1,
the right hand side, means the damping constant. This statement will be proved by estimating
the energy of the difference u(x, t;φ,ψ)−u0(x, t) similar to the proofs of Theorems 4.1–4.2.
In IBVP to nonlinear SS equations without a damping term Wongsawasdi-Yamaguchi [7, 8]
and [13] proved the existence of both weak and classical time-global solutions. The solutions

are stable; i.e., the solutions in [7, 13] exist in the bounded stable set in H 1
0 (0, 1; xm) for all

t ∈ R1, and the solutions in [8] are bounded in Hs(0, 1; x0) for all t ∈ R1.
The operator Lm has the principal part that is degenerate at x = 0. In order to deal with

this degeneracy, the Lebesgue and Sobolev type function spaces with power weight at x = 0
were introduced in [10], and the properties of the spaces and inequalities in such function
spaces were studied (see [10, 11, 12, 13, 14]). In this paper, different from the above function
spaces, we introduce function spaces whose elements have finite weighted norm at x = 0 in

x-direction and uniformly bounded in t ∈ R1 with its derivatives (see Section 2). We consider
IBVP (Q) in such function spaces.

As we stated above, the time interval treated in this paper is not compact. Hence we
define other necessary function spaces to deal with almost periodic solutions and functions,
different from the periodic problems ([4, 14] and so on).

This paper is organized as follows. In Section 2 we introduce some necessary function
spaces related to the SS operator. Also we define some function spaces of almost periodic
functions, and state the properties of almost periodic functions, used in this paper. In Section
3 we consider the existence of almost periodic solutions of BVP (P). In Section 4 we show the
existence of global solutions of the IBVP (Q). In Section 5 we prove the exponential stability
of the almost periodic solutions.

2. Function Spaces, Eigenvalue Problem and Almost Periodic Functions

We introduce some function spaces with power weight at x = 0 (cf. [10, 11, 12, 13, 14]).
We also state the definition and properties of almost periodic functions (cf. Amerio-Prouse
[1] and Corduneanu [2]) in these function spaces used in later sections.
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In this paper the constants such asC1, C2, . . . appeared in the proofs of Theorems, Propo-
sitions and so on will be suitably taken independent of x, t and u, if not specified.

2.1. Definitions of Function Spaces. Let O be any open set in Rn. Let Z+ and

R1+ be the set of nonnegative integers and the set of nonnegative real numbers, respectively.

L2(O) and Hs(O) are the usual Lebesgue and Sobolev spaces, respectively. Let m be any
fixed nonnegative number.

Some function spaces below are defined in the above references, but we again write those
spaces for readers.

By L2(0, a; xm) we denote the Lebesgue-type space whose elements f (x) are real-

valued and measurable in (0, a), and satisfy x
m
2 f ∈ L2(0, a) with norm defined by

|f |L2(0,a;xm) =
( ∫ a

0
xmf (x)2dx

) 1
2

.

The space is a Hilbert space with the inner product

(f, g)L2(0,a;xm) =
∫ a

0
xmf (x)g(x)dx .

Let s, j ∈ Z+. We define the Sobolev-type Banach space Hs(0, a; xm) whose elements

f and their weighted derivatives x
j
2 ∂
j
x f (0 ≤ j ≤ s) belong to L2(0, a; xm) with norm

defined by

|f |Hs(0,a;xm) =
( s∑
j=0

|x j2 ∂jx f (x)|2L2(0,a;xm)

) 1
2

.

Let H 1
0 (0, a; xm) be a subspace of H 1(0, a; xm) whose elements f satisfy f (a) = 0. We

also define a subspace Ks(0, a; xm) of Hs(0, a; xm) whose elements f satisfy L
j
mf ∈

H 1
0 (0, a; xm) (0 ≤ j ≤ [(s − 1)/2]). Ks(0, a; xm) is a Banach with the norm | · |Hs(0,a;xm).

We setK0(0, a; xm) = L2(0, a; xm). ClearlyK1(0, a; xm) andK2(0, a; xm) are respectively

identified with H 1
0 (0, a; xm) and H 2(0, a; xm) ∩H 1

0 (0, a; xm).
Let I be an interval in R1 and X be a Banach space with norm | · |X. We denote by

Ck(I ;X) a function space whose elements f (t) are k-times continuously differentiable in X.
The norm is defined by

|f |Ck(I ;X) = sup
t∈R1

k∑
j=1

∣∣∣∣djfdtj (t)
∣∣∣∣
X

.

We write C0(I ;X) as C(I ;X).
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Let s and σ be positive integers with s ≥ σ . Define the norm

|f (t)|s,σ,m =
σ∑
k=0

∣∣∣∣dkfdtk (t)
∣∣∣∣
Hs−k(0,a;xm)

for f ∈ ⋂σ
k=0 C

k(R1;Ks−k(0, a; xm)). We denote by Fs,σm the class of functions f ∈⋂σ
k=0 C

k(R1;Ks−k(0, a; xm)) with supt∈R1 |f (t)|s,σ,m < +∞. The norm of Fs,σm is defined
by

|f |F s,σm = sup
t∈R1

|f (t)|s,σ,m .

F
s,σ
m is a Banach space with the norm | · |F s,σm . We define Fs,σm,+ by replacing R1 by R1+ in the

definition of Fs,σm . The norm | · |F s,σm,+of Fs,σm,+ is defined in the same way as | · |F s,σm .

2.2. Eigenvalue Problem for Lm. Consider the eigenvalue problem{
Lmφ(x) = λφ(x) , x ∈ (0, a) ,
φ(a) = 0 .

(2.1)

It is known ([5]) that (2.1) has the eigenvalues λk and the corresponding eigenfunctions φk .
Here λk and φk are given by

λk = µ2
k

4(m+ 1)a
,

φk(x) = x−m
2

a
1
2 Jm+1(µk)

Jm

(
µk

√
x

a

)

for k = 1, 2, . . . , where Jm is the m-order Bessel function, and {µk; k = 1, 2, . . . } is the set
of all positive zero points of Jm with µ1 < µ2 < · · · and limk→+∞ µk = +∞. From this

note that limk→+∞ λk = +∞ holds. The sequence {φk} is the CONS in L2(0, a; xm).
2.3. Almost Periodic Functions. In this subsection, we again write the definitions

and the basic properties of almost periodic functions for readers (see also [1] and [2]). Further-
more we show necessary properties of almost periodic functions for later use and introduce
function spaces of almost periodic functions, fundamental for the study of almost periodic
solutions of this paper.

Let X be a Banach space. Let f ∈ C(R1;X). A function f (t) is called X-almost
periodic or almost periodic inX if for any µ > 0 there exists a relatively dense set APµ(f ) =
{τ }µ such that

|f (t + τ )− f (t)|X < µ
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for any t ∈ R1 and any τ ∈ APµ(f ). Here we call {τ }µ a relatively dense set if for any µ > 0

there exists a constant lµ > 0 such that any interval (t, t + lµ), t ∈ R1, contains at least one
τ ∈ {τ }µ. Each τ ∈ APµ(f ) is called µ-almost period of f . We denote by APX the space
of almost periodic functions in X with the uniform convergence norm supt∈R1 | · |X.

Almost periodic function in R1 is called an almost periodic function in Bohr’s sense or
a numerical almost periodic function that is the most basic almost periodic function.

The following lemma shows the relative compactness of APX (see [1, 2]).

LEMMA 2.1. Let f (t) be continuous in X. Then f (t) belongs to APX if and only
if for any real sequence {αj } there exists a subsequence {βj } of {αj } such that the sequence
{f (t + βj )} converges uniformly in X.

It is well-known ([1, 2]) that the sum and the difference of two X-almost periodic func-
tions are X-almost periodic, and the product of numerical almost periodic function and X-
almost periodic function is X-almost periodic.

LEMMA 2.2. Let {fn(t)} be a sequence of almost periodic functions in X that con-
verges uniformly to f (t). Then f (t) is almost periodic in X.

REMARK 2.1. APX is a Banach space (see [1, 2]).

Let f (t) ∈ APX. Then there exists a sequence of real numbers {λk} so that f (t) is
expanded into the Fourier series

f (t) ∼
∞∑
k=1

fk e
iλkt , fk = lim

T→∞
1

T

∫ T

0
f (t)e−iλkt dt .(2.2)

Here λk and fk ∈ X are called the characteristic exponents and the Fourier coefficients of
f (t), respectively. Conversely, if the Fourier series (2.2) converges uniformly in X, then it is
almost periodic inX. Especially a finite trigonometric series

∑m
k=1 gk eiµkt is almost periodic,

where gk ∈ X and µk ∈ R1.
Let f (t, λ) ∈ C(R1;X), where λ ∈ Λ is a parameter. f (t, λ) is called almost periodic

in X uniformly with respect to λ ∈ Λ if the relatively dense set is independent of λ.

LEMMA 2.3. Let f (t, λ) be almost periodic in X uniformly with respect to λ ∈ Λ,
where Λ is a parameter domain in Rm, and differentiable with respect to (t, λ) up to order s.

Assume that the derivatives ∂αt ∂
β
λ f (t, λ), α + |β| ≤ s, are uniformly continuous in R1 × Λ,

where β = (β1, . . . , βm), |β| = |β1| + · · · + |βm| and ∂βλ = ∂
β1
λ1

· · · ∂βmλm . Then ∂αt ∂
β
λ f (t, λ)

are almost periodic in X uniformly with respect to λ.

The proof of this lemma is done in the similar way to [1].

LEMMA 2.4. Let f (t, λ) be almost periodic in X uniformly with respect to λ ∈ Λ,
whereΛ is a parameter domain in Rm. For any real sequence {αj } there exists a subsequence
{βj } of {αj } independent of λ such that the sequence {f (t + βj )} converges uniformly in X.
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The proof is similar to that of Lemma 2.1 ([1]).

LEMMA 2.5. Let Br(a) be a closed ball in X with radius r centered at a ∈ X. Let
F(t, u) be a mapping of R1 × Br(a) into X. Assume that F(t, u) is uniformly continuous
in u ∈ Br(a) uniformly in t and almost periodic in t uniformly with respect to u ∈ Br(a).
Let v(t) be an almost periodic function in X with {v(t)}t∈R1 ⊂ Br(a). Then the composed
function F(t, v(t)) is almost periodic in X.

PROOF. We apply Lemma 2.1. Let {αj } be any real sequence. Since F(t, u) is almost
periodic in t uniformly with respect to u, the sequence {F(t + αj , u)} is relatively compact in
X. Hence there exists a subsequence {βj } of {αj } independent of u such that the subsequence
{F(t + βj , u)} converges uniformly with respect to u. It means that for any ε > 0 there exists
n1 = n1(ε) ∈ N independent of u such that

|F(t + βj , u)− F(t + βk, u)|X < ε(2.3)

for any j, k ≥ n1 and any u ∈ Br(a). Since F(t, u) is uniformly continuous in u uniformly

with respect to t ∈ R1, there exists δ > 0 such that

|F(t, u)− F(t,w)|X < ε(2.4)

for u, w ∈ Br(a) with |u − w|X < δ uniformly with respect to t . On the other hand, by
the almost-periodicity of v(t) we can choose a subsequence {γj } of {βj } so that for a suitable
n2 = n2(δ) ∈ N the following inequality

|v(t + γj )− v(t + γk)|X < δ(2.5)

holds for j, k ≥ n2. Then we see

|F(t + γj , v(t + γj ))− F(t + γk, v(t + γk))|X
≤ |F(t + γj , v(t + γj ))− F(t + γk, v(t + γj ))|X

+ |F(t + γk, v(t + γj ))− F(t + γk, v(t + γk))|X
It follows from (2.3)–(2.5) that

|F(t + γj , v(t + γj ))− F(t + γk, v(t + γk))|X < 2ε

for any j, k ≥ max(n1, n2). Therefore {F(t + γj , v(t + γj ))} is a Cauchy sequence in X
uniformly with respect to t . This means that the sequence {F(t + αj , v(t + αj )) is relatively
compact. Therefore we conclude from Lemma 2.1 that F(t, v(t)) is almost periodic inX. �

We introduce function spaces APFs,σm of almost periodic functions as follows : f

belongs to APF
s,σ
m if f belongs to F

s,σ
m and each dkf (t)/dtk is almost periodic in

Ks−k(0, a; xm) for 0 ≤ k ≤ σ .
Clearly the following proposition holds.

PROPOSITION 2.1. APF
s,σ
m is a Banach space with norm | · |F s,σm .
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From the Sobolev lemma the differentiability of functions of Fs,σm , hence functions of
APF

s,σ
m , is shown. Thus we obtain the following propositions. Note that σ ≤ s is assumed

(cf. Definition of Fs,σm ).

PROPOSITION 2.2. Let σ ≥ 1. Then any f ∈ Fs,σm belongs to C(R1;Cs−1(0, a)).

COROLLARY 2.1. Let s ≥ 3 and σ ≥ 2. Then f ∈ Fs,σm is of C2 in (0, a)× R1.

REMARK 2.2. It is necessary to state the relation between an almost periodic function
inAPFs,σm and a numerically almost periodic function that is the most basic and simple almost
periodic function. See Assumption (B2) on the nonlinear function f . Clearly, if f (x, t) is
numerically almost periodic uniformly with respect to x, f belongs to APLr(0, a; xm) for
any r ≥ 0 and m ≥ 0. Similarly, if f (x, t) with its derivatives ∂αx f (x, t) (0 ≤ α ≤ s) is
numerically almost periodic uniformly with respect to x, then f belongs to APHs(0, a; xm)
for any r ≥ 0 and m ≥ 0. Conversely if f belongs to APHs(0, a; xm) and m, s satisfy

s ≥ m + 2, f (x, t) and its derivatives ∂ [s−(m+2)]
x f (x, t) are almost periodic uniformly with

respect to x. This is shown by Proposition 4.2 in [11].

3. Almost Periodic Solutions of BVP (P)

In this section it is shown that BVP (P) has an almost periodic solution for small ε that
is locally unique in suitable function space. To this end the Picard iteration method will be
applied to BVP (P). It is necessary to show the existence of an almost periodic solution of a

linear BVP and to derive the energy estimate of the solution in Fs+1,2
m .

From now on through this paper, we call a solution in F 1,1
m the weak solution, and a

solution in Fs+1,2
m (s ≥ 1) the strong solution. Also if the strong solution satisfies BVP or

IBVP in the classical sense, i.e., the solution is two-times differentiable with respect to (x, t),
the solution is called the classical solution.

From now on we denote the operator ∂2
t + Lm + ∂t by Am for brevity.

3.1. The Existence of Almost Periodic Solutions of Linear BVP. Consider the fol-
lowing linear BVP {

Am w(x, t) = g(x, t) , (x, t) ∈ (0, a)× R1 ,

w(a, t) = 0 , t ∈ R1 .
(LP)

We assume the following condition on a forcing term g .
(A) g(·, t) is almost periodic in Ks(0, a; xm).

REMARK 3.1. Let g ∈ C(R1;Ks(0, a; xm)). Assume that g(x, t) is numerically al-

most periodic uniformly with respect to x and the derivatives ∂jx g(x, t) (0 ≤ j ≤ s) are
uniformly continuous in [0, a]×R1. Then it follows from Lemma 2.3 that g satisfies (A). See
also Remark 2.2.
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PROPOSITION 3.1. Assume (A). Let s ≥ 1. Then BVP (LP) has an almost periodic

solution w unique in APFs+1,2
m satisfying

|w|
F
s+1,2
m

≤ C sup
t∈R1

|g(·, t)|Hs(0,a;xm) .(3.1)

Moreover if s = 0, the statement holds by replacing APFs+1,2
m and Fs+1,2

m by APF 1,1
m

and F 1,1
m , respectively.

To show this proposition we prepare the representation formula of almost periodic solu-
tion of the second order ODE.

LEMMA 3.1. Let λj be any eigenvalue defined in Subsection 2.2. Consider the follow-
ing scalar second order ODE

y ′′(t)+ λj y(t)+ y ′(t) = g(t) ,(3.2)

where g(t) is almost periodic in R1. Then there exists a unique almost periodic solution y(t)
of (3.2) represented by

y(t) = 1

2aj

∫ ∞

0
g(t − τ )(e

ν+
j τ − e

ν−
j τ )dτ ,(3.3)

where ν±
j are the solutions of the corresponding characteristic equation of the second degree

c2 + c + λj = 0 ,

given by

ν+
j = −1

2
+ aj , ν−

j = −1

2
− aj , aj = (1 − 4λj )

1
2

2
.(3.4)

For the proof of this lemma, see [3, 9].
Let j0 be the maximum of integers j so as to satisfy 1 − 4λj > 0. If there exists no such

number j0, we take j0 = 0. In what follows, we define a decay exponent by

γ =
{

1/2 (j0 = 0)

1/2 − a1 (j0 ≥ 1) .
(3.5)

Then it follows that

|eν±
j t | ≤ e−γ t(3.6)

for any j ∈ N and any t ≥ 0.

PROOF OF PROPOSITION 3.1. We expand g(x, t) into the Fourier series in

L2(0, a; xm)

g(·, t) =
∞∑
j=1

gj (t)φj .(3.7)
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We look for the almost periodic solution w(x, t) as the Fourier series in L2(0, a; xm):

w(·, t) =
∞∑
j=1

wj (t)φj .(3.8)

Substitute (3.7)–(3.8) into (LP) and compare the Fourier coefficients. Then we obtain the
following system of second order ODEs

w′′
j (t)+ λjwj (t)+w′

j (t) = gj (t), j = 1, 2, . . . .(3.9)

Clearly gj (t) = (g(·, t), φj )L2(0,a;xm) is numerically almost periodic. It follows from Lemma
3.1 that (3.9) has a unique almost periodic solution of the form

wj(t) = 1

2aj

∫ ∞

0
gj (t − τ )(e

ν+
j τ − e

ν−
j τ ) dτ ,(3.10)

where ν±
j and aj are defined by (3.4). Differentiating (3.10), we have

w′
j (t) = 1

2aj

∫ ∞

0
gj (t − τ )(ν+

j e
ν+
j τ − ν−

j e
ν−
j τ ) dτ .(3.11)

We show that (3.8) converges in Fs+1,2
m , whence w is the solution of BVP (LP). It is enough

to show that the series
∑∞
j=1(λ

s+1
j wj (t)

2 + λsjw
′
j (t)

2) converges uniformly with respect to

t ∈ R1. For, if the series converges, this is equivalent to |w(t)|2
Hs+1(0,a;xm)+|∂tw(t)|2Hs(0,a;xm)

([10]). We show that this quantity is estimated by supt∈R1 |g(·, t)|2Hs(0,a;xm). By this estimate

it follows from Lemma 2.2 that w(·, t) and ∂tw(·, t) are almost periodic in Ks+1(0, a; xm)
and Ks(0, a; xm), respectively. The almost-periodicity of ∂2

t w(·, t) follows from (LP).

First we estimate J ≡ ∑∞
j=1 λ

s+1
j wj (t)

2. Using (3.10), (3.6) and λj ≤ c |aj |2, we

calculate

J ≤
∞∑
j=1

λs+1
j

(
1

2|aj |
∫ ∞

0
|gj (t − τ )||eν+

j τ − e
ν−
j τ |dτ

)2

≤ C

∞∑
j=1

(
λ
s/2
j

∫ ∞

0
|gj (t − τ )|e−γ τ dτ

)2

.

By applying the Minkowski inequality to the right hand side, we have

J ≤ C

[∫ ∞

0

{ ∞∑
j=1

(
λsj |gj (t − τ )|2e−2γ τ )} 1

2

dτ

]2

≤ C sup
t∈R1

∞∑
j=1

λsj gj (t)2 .

Thus we obtain
∞∑
j=1

λs+1
j wj (t)

2 ≤ C sup
t∈R1

∞∑
j=1

λsj gj (t)2 .(3.12)
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Note that the following inequalities holds ([10], Proposition 3.4)

δ1 |f |2Hs(0,a;xm) ≤
∞∑
j=1

λsj f
2
j ≤ δ2 |f |2Hs(0,a;xm)(3.13)

for f ∈ Ks(0, a; xm), where δi > 0 are constants and f = ∑
fjφj . Conversely,

if f ∈ L2(0, a; xm) satisfies (3.13), f belongs to Ks(0, a; xm). Hence, from g ∈
C(R1;Ks(0, a; xm)) we obtain

|w(·, t)|Hs+1(0,a;xm) ≤ C sup
t∈R1

|g(·, t)|Hs(0,a;xm) .(3.14)

This means w ∈ C(R1;Ks+1(0, a; xm)).
In the similar way, using (3.11), we obtain

∞∑
j=1

λsj w
′
j (t)

2 ≤ C sup
t∈R1

∞∑
j=1

λsj gj (t)2 .(3.15)

From this and (3.13) we see ∂tw ∈ C(R1;Ks(0, a; xm)) and obtain the estimate

|∂tw(·, t)|Hs(0,a;xm) ≤ C sup
t∈R1

|g(·, t)|Hs(0,a;xm) .(3.16)

Using Eq. (3.9), we have
∞∑
j=1

λs−1
j w′′

j (t)
2 ≤ C

∞∑
j=1

(λs+1
j wj (t)

2 + λs−1
j w′

j (t)
2 + λs−1

j gj (t)2) .(3.17)

By (3.12), (3.15) and (3.13) we have ∂2
t w ∈ C(R1;Ks−1(0, a; xm)) and

|∂2
t w(x, t)|Hs−1(0,a;xm) ≤ C sup

t∈R1
|g(t)|Hs(0,a;xm) .(3.18)

Therefore by (3.14), (3.16) and (3.18) we obtain w ∈ Fs+1,2
m and the estimate (3.1).

Finally we show that the solution w(·, t) is almost periodic, more precisely w belongs

to APFs+1,2
m . Since g(·, t) is almost periodic in Ks(0, a; xm), it follows that for any ε > 0

there exists a relatively dense set {τ }ε such that

|g(·, t + τ )− g(·, t)|Hs(0,a;xm) < ε

for t ∈ R1. Since v(x, t) = w(·, t + τ )−w(·, t) is a solution of BVP{
Amv = g(x, t + τ )− g(x, t) , (x, t) ∈ (0, a)× R1 ,

v(a, t) = 0 , t ∈ R1 ,

it follows from (3.1) that

sup
t∈R1

|v(·, t)|s+1,2,m ≤ C sup
t∈R1

|g(·, t + τ )− g(·, t)|Hs(0,a;xm) ≤ C ε .
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This means w ∈ APFs+1,2
m with Cε-almost periods. The uniqueness is clear from (3.1).

From the above proof the case s = 0 is clear. �

3.2. The Existence of Almost Periodic Solutions of Nonlinear BVP. In this sub-
section we consider BVP (P){

Amu(x, t) = h(x, t)+ εf (x, t, u) , (x, t) ∈ (0, a)× R1 ,

u(a, t) = 0 , t ∈ R1 ,
(P)

and show that under several conditions on h and f BVP (P) has locally unique almost periodic

solutions in APF 1,1
m (weak solutions) and APFs+1,2

m (strong or classical solutions).

3.2.1. The Existence of Almost Periodic Weak Solutions of BVP (P). First we
show the existence of almost periodic weak solutions of BVP (P).

We assume the following conditions on h and f .

(A1) h(·, t) is almost periodic in L2(0, a; xm).
(A2) (i) f (x, t, λ) is continuous in [0, a] × R1 × R1. f (x, t, λ) is locally Lipschitz

continuous in λ ∈ R1 : For any r > 0 there exists a constant ρ0(r) > 0 such that

|f (x, t, λ1)− f (x, t, λ2)| ≤ ρ0(r)|λ1 − λ2|(3.19)

for λ1, λ2 ∈ (−r, r) and (x, t) ∈ [0, a] × R1.
(ii) f (·, t, φ) is almost periodic in L2(0, a; xm) uniformly with respect to any bounded

function φ(x).

REMARK 3.2. Instead of (A1), assume that h(x, t) is numerically almost periodic
uniformly with respect to x (Remark 2.2). Then clearly h satisfies (A1). Also instead of
(A2)(ii), assume that f (x, t, λ) is numerically almost periodic uniformly with respect to

(x, λ) ∈ [0, a] × R1. Then f satisfies (A2)(ii).

EXAMPLE 3.1. As typical examples of f (x, t, λ) satisfying (A2), we can take

(1) f (x, t, λ) = α(x, t) |λ|ρ−1λ ,

(2) f (x, t, λ) = α(x, t) |λ|ρ ,
(3) f (x, t, λ) = α(x, t) λρ for ρ ∈ Z+ ,

(4) f (x, t, λ) = α(x, t) sin λ ,

where α(x, t) is continuous in (x, t) ∈ [0, a] × R1 and numerically almost periodic in t
uniformly with respect to x ∈ [0, a] and ρ ≥ 1 is a constant.

THEOREM 3.1. Assume (A1)–(A2). Then there exists ε0 > 0 such that BVP (P) has

an almost periodic solution u ∈ APF 1,1
m for any ε, |ε| ≤ ε0. The solution u is locally unique

in APF 1,1
m .
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PROOF. We prove this theorem by the Picard iteration method. We define a successive
approximation sequence {un} by the following scheme:{

Amu0 = h(x, t) , (x, t) ∈ (0, a)× R1 ,

u0(a, t) = 0 , t ∈ R1 ,
(3.20)

and {
Amun+1 = h(x, t)+ εf (x, t, un) , (x, t) ∈ (0, a)× R1 ,

un+1(a, t) = 0 , t ∈ R1
(3.21)

for n = 0, 1, 2, . . . . We first show that the sequence {un} is well-defined in APF 1,1
m . In fact,

as (A1) holds, u0 ∈ APF
1,1
m by Proposition 3.1. Assuming that un belongs to APF 1,1

m , we

show that un+1 belongs to APF 1,1
m . We have only to show that f (x, t, un) fulfills the condi-

tion (A) with s = 0 i.e., the composed function f (x, t, un) is almost periodic in L2(0, a; xm).
To this end first we show that f (·, t, un(·, t)) is continuous in L2(0, a; xm). We calculate

|f (·, t, un(·, t)) − f (·, t0, un(·, t0))|L2(0,a;xm)
≤ |f (·, t, un(·, t))− f (·, t, un(·, t0))|L2(0,a;xm)

+ |f (·, t, un(·, t0))− f (·, t0, un(·, t0))|L2(0,a;xm) .

Since un belongs to F 1,1
m , un(x, t) is bounded in (0, a] × R1 by the Sobolev-type inequality.

By the local Lipschitzness of f with respect to λ and the continuity of un(·, t) in L2(0, a; xm)
the first term tends to 0 as t → t0. Since f (x, t, λ) is continuous in [0, a]×R1×R1, the second
term in the right hand side tends to 0 as t → t0. Hence f (·, t, un(·, t)) ∈ C(R1;L2(0, a; xm)).
Also by the local Lipschitzness of f in (A2) f (·, t, φ(·)) is a continuous mapping of R1 ×
H 1

0 (0, a; xm) into L2(0.a; xm). By (A2)(ii) f (·, t, φ(·)) is almost periodic in L2(0, a; xm)
for φ ∈ H 1

0 (0, a; xm), since H 1
0 (0, a; xm) is continuously embedded in C([0, a]). Hence by

applying Lemma 2.5 to f (·, t, φ), the composed function f (·, t, un(·, t)) is almost periodic

in L2(0, a; xm). Therefore f (·, t, un(·, t)) fulfills (A).
Let C be the same constant as in (3.1) in Proposition 3.1. We prove the following : For

any R > 2C supt∈R1 |h(·, t)|L2(0,a;xm) there exists ε0 > 0 such that for any ε, |ε| ≤ ε0 the
sequence {un} satisfies

(i) |un|F 1,1
m

≤ R for n = 0, 1, . . . ,

(ii) |un+1 − un|F 1,1
m

≤ κ |un − un−1|F 1,1
m

for n = 1, 2, . . . ,

where κ is a constant in (0, 1). We show (i) and (ii) by induction. First applying Proposi-

tion 3.1 to BVP (3.20), we obtain u0 ∈ F
1,1
m and |u0|F 1,1

m
≤ R. This shows that (i) holds for

n = 0. Assume that uj ∈ F
1,1
m with |uj |F 1,1

m
≤ R for j = 1, 2, . . . , n. Then the sequence

{un(x, t)} is uniformly bounded in (0, a)× R1. In fact, applying the Sobolev-type inequality
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([11]) to the middle term below, we have

|un(x, t)| ≤ sup
t∈R1

|un(x, t)| ≤ C1 sup
t∈R1

|un(·, t)|H 1(0,a;xm) ≤ C1|un|F 1,1
m

≤ C1R .

From this f (x, t, un) is uniformly bounded in (x, t) ∈ (0, a)× R1 by some constant K > 0
independent of n. Then again applying Proposition 3.1 with s = 0 to (3.21), we have

|un+1|F 1,1
m

≤ C (sup
t

|h(·, t)|L2(0,a;xm) + |ε| sup
t

|f (x, t, un)|L2(0,a;xm))

≤ R

2
+ |ε|C2K ,

where C2 depends only on a. Therefore by taking ε0 > 0 so as to satisfy ε0 ≤ R/(2C2K),
un+1 satisfies (i).

Next we show that (ii) holds. vn = un+1 − un satisfies{
Amvn = ε(f (x, t, un)− f (x, t, un−1)) , (x, t) ∈ (0, a)× R1 ,

vn(a, t) = 0 , t ∈ R1 .

Applying Proposition 3.1 to the above BVP and using (A2)(i), we have

|vn|F 1,1
m

≤ C |ε| sup
t∈R1

|f (x, t, un)− f (x, t, un−1)|L2(0,a;xm)

≤ C3 |ε| sup
t∈R1

|vn−1(·, t)|L2(0,a;xm)

≤ C3 |ε| |vn−1|F 1,1
m
,

where C3 = C ρ(C1R). Therefore again taking ε0 > 0 such that C3 |ε0| = κ < 1, we obtain

|un+1 − un|F 1,1
m

≤ κ |un − un−1|F 1,1
m

(3.22)

for any ε, |ε| ≤ ε0. Hence {un} is the Cauchy sequence in APF 1,1
m . By the completeness of

APF
1,1
m , {un} converges to some u ∈ APF 1,1

m . Take n → +∞ in

un+1 = A−1
m (h+ εf (un)) .(3.23)

Then u is the solution of the integral equation u = A−1
m (h+ εf (u)). This means that u is the

solution of BVP (P) in F 1,1
m .

The local uniqueness of the solution is proved in the similar way to the above argument
to show (3.22). �

From Theorem 3.1 and Remark 3.2 we obtain the following:

COROLLARY 3.1. Assume that h(x, t) is numerically almost periodic uniformly with
respect to x and f (x, t, λ) satisfies (A2)(i) and is numerically almost periodic uniformly with
respect to (x, λ). Then the same conclusion as Theorem 3.1 holds. Moreover the solution is
numerically almost periodic.
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3.2.2. The Existence of Almost Periodic Strong and Classical Solutions of BVP (P).
In this part we show the existence of the almost periodic strong and classical solutions of BVP

(P). More precisely, the almost periodic solutions belong to APFs+1,2
0 .

Throughout this part we assume that m is equal to 0 and s is any fixed positive integer
≥ 2.

We assume the following conditions on h and f .

(B1) h(·, t) is almost periodic in Ks(0, a; x0).

(B2) (i) f (x, t, λ) is of Cs -class in [0, a] × R1 × R1, and its derivatives up to order s
are uniformly continuous in [0, a] × R1 × I , where I is any finite interval in R1.

(ii) For u ∈ Ks+1(0, a; x0), f (·, t, u) belongs to C(R1;Ks(0, a; x0)).
(iii) f (x, t, λ) is numerically almost periodic uniformly with respect to (x, λ) ∈ [0, a]×

I , where I is a finite interval in R1.

LEMMA 3.2. Assume (B2) (i) (iii). Then f (·, t, λ) is almost periodic in Hs(0, a; x0)

uniformly with respect to λ.

PROOF. As (B2) (i), (iii) holds, we apply Lemma 2.3 withX = R1 to f (x, t, λ) so that
the derivatives (∂αx f )(x, t, λ) (α ≤ s) are numerically almost periodic uniformly with respect

to (x, λ). Let {αj } be any sequence in R1. From the above fact and Remark 3.2 we have

|f (·, t + αj , λ)− f (·, t + αk, λ)|2Hs(0,a;x0)

=
s∑
l=0

|xl/2{(∂lxf )(·, t + αj , λ)− (∂lxf )(·, t + αk, λ))}|2L2(0,a;x0)

≤ C

s∑
l=0

sup
x,λ

|(∂lxf )(x, t + αj , λ)− (∂lxf )(x, t + αk, λ))|2 .

Hence from Lemma 2.4 we can choose a subsequence {βk} of {αk} independent of λ so that
each term in the right hand side tends to 0 as j, k → ∞. Therefore the conclusion holds from
Lemma 2.1. �

Let Br(0) be a ball with radius r and center 0 in Ks(0, a; x0).

LEMMA 3.3. Let r > 0 be any constant. Assume that (B2) holds. Then f (·, t, φ(·)) is

almost periodic in Ks(0, a; x0) uniformly with respect to φ ∈ Br(0).
PROOF. Let {αj } be any real sequence. Then by Lemma 3.2 there exists a subsequence

{βj } independent of λ such that the sequence {f (·, t + βj , λ)} converges in Hs(0, a; x0)

uniformly with respect to λ ∈ R1. We calculate

|f (·, t + βj , φ(·))− f (·, t + βk, φ(·))|2Hs(0,a;x0)

=
s∑
l=0

|xl/2{∂lx(f (·, t + βj , φ)− f (·, t + βk, φ)}|2L2(0,a;x0)
.

(3.24)
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By using the chain rule

∂lxf (x, t, φ) =
∑

Cαβγ (∂
β
x ∂

γ
λ f )(x, t, φ)(∂

1
xφ)

α1 · · · (∂lxφ)αl ,(3.25)

where the summation is taken for α1 + · · · + αl = γ and β + α1 + 2α2 + · · · + lαl = l, each
term in the summation in (3.24) is estimated:

|xl/2{∂lx(f (·, t + βj , φ)− f (·, t + βk, φ))}|2L2(0,a;x0)

=
∣∣∣∣xl/2 ∑

Cαβγ {(∂βx ∂γλ f )(x, t + βj , φ)− (∂βx ∂
γ
λ f )(x, t + βk, φ)}

× (∂1
xφ)

α1 · · · (∂lxφ)αl
∣∣∣∣
2

L2(0,a;x0)

≤ C
∑

sup
x

|(∂βx ∂γλ f )(x, t + βj , φ)− (∂βx ∂
γ
λ f )(x, t + βk, φ)|2

×
∣∣∣∣(x1/2∂1

xφ)
α1 · · · (xl/2∂lxφ)αl

∣∣∣∣
2

L2(0,a;x0)

.

The last term is estimated in the same way as in the proof of Proposition 4.2 in [14] :∣∣∣∣(x1/2∂1
xφ)

α1 · · · (xl/2∂lxφ)αl
∣∣∣∣
2

L2(0,a;x0)

≤ c
(
1 + |φ|2s

Hs(0,a;x0)

)
.

Since (∂βx ∂
γ
λ f )(x, t, φ) is numerically almost periodic in t uniformly with respect to (x, φ),

we can choose a subsequence {rk} of {βk} such that {(∂βx ∂γλ f )(x, t+rj , φ)} converges. There-
fore it follows from (3.24) and the above calculations that {f (·, t + rj , φ(·))} converges in

Ks(0, a; x0) uniformly in φ ∈ Br(0). Hence the conclusion follows. �

LEMMA 3.4. Assume that (B2) holds. Then for u ∈ APF
s+1,2
0 f (·, t, u(·, t)) is

almost periodic in Ks(0, a; x0).

PROOF. We apply Lemma 2.5. Take F(t, u) = f (·, t, u) and X = B∞(0) =
Ks(0, a; x0). From (B)(ii) F is a mapping of R1 × X into X. From the Moser-type in-
equality f (·, t, φ) is Lipschitz continuous in φ ∈ Br(0) uniformly with respect to t for any

r > 0. From Lemma 3.3 f (·, t, φ) is almost periodic in Ks(0, a; x0) uniformly with re-

spect to φ ∈ Br(0). Let u ∈ APF
s+1,2
0 . Then u(·, t) is continuous in Ks(0, a; x0), i.e.,

u ∈ C(R1;Ks(0, a; x0)). Let t0 ∈ R1 be fixed. By the triangle inequality we have

|f (·, t, u(·, t))− f (·, t0, u(·, t0))|Hs(0,a;x0)

≤ |f (·, t, u(·, t)) − f (·, t, u(·, t0))|Hs(0,a;x0)

+ |f (·, t, u(·, t0))− f (·, t0, u(·, t0))|Hs(0,a;x0) .
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Since by (B2) (i) the Moser-type inequality ([14]) holds, the first term is estimated by
C |u(·, t) − u(·, t0)|Hs(0,a;x0) that tends to 0 as t → t0. By (B2)(ii) the second term tends

to 0 as t → t0. Hence f (x, t, u(x, t)) belongs to C(R1;Ks(0, a; x0)). By applying Lemma

2.5 to f , it follows that f (·, t, u(·, t)) is almost periodic inKs(0, a; x0). Hence the conclusion
holds. �

The following example of f (x, t, λ) is a typical one that satisfies (B2).

EXAMPLE 3.2. We take

f (x, t, λ) = α(x, t)λr ,

where α(x, t) is of Cs -class in [0, a] × R1 and numerically almost periodic uniformly with
respect to x, and r is any integer ≥ s.

THEOREM 3.2. Assume (B1)–(B2). Then there exists ε̄0 > 0 such that BVP (P) has an

almost periodic solution u ∈ APFs+1,2
0 for any ε, |ε| ≤ ε̄0. The solution u is locally unique

in APFs+1,2
0 .

PROOF. To prove the theorem we again apply the Picard iteration method. We define
the successive approximation sequence {un} by (3.20)–(3.21).

In the proof we need to derive the higher order energy estimates of the solutions so
that the differentiability of the solutions and so the almost-periodicity of the higher order
derivatives of the solutions are obtained. For that main point is to estimate the higher order
derivatives of the nonlinear term f (x, t, un).

First we show by induction that {un} is well defined in APFs+1,2
0 . By (B1) Proposition

3.1 assures u0 ∈ APFs+1,2
0 . Assume that un belongs toAPFs+1,2

0 . We have only to show that

f (·, t, un) is almost periodic in Ks(0, a; x0). Then we obtain un+1 ∈ APF
s+1,2
0 by Propo-

sition 3.1. By (B2) (ii) f (·, t, un) belongs to C(R1;Ks(0, a; x0)). By (B2) (i) (iii) it follows

from Lemma 2.3 that ∂kt ∂
l
λf (x, t, λ), k+l ≤ s are numerically almost periodic uniformly with

respect to x, λ. Hence f (·, t, λ) is almost periodic in Ks(0, a; x0) uniformly with respect to
λ. It follows from Lemma 3.4 that f (·, t, un(·, t)) is almost periodic in Ks(0, a; x0).

By Proposition 3.1 we have

|un+1|F s+1,2
0

≤ C |ε| sup
t∈R1

|f (x, t, un)|Hs(0,a;x0) .

Let |un|F s+1,2
0

≤ M̃. Then from Proposition 2.2 it follows that

|un(x, t)| ≤ C |un|F s+1,2
0

≤ CM̃(3.26)

for any (x, t) ∈ [0, a] × R1. Then using the Moser-type inequality (see [14]), we see

sup
t∈R1

|f (·, t, un)|Hs(0,a;x0) ≤ C1( sup
t∈R1

|un|sHs(0,a;x0)
+ 1) ≤ C1(M̃

s + 1) .
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Hence we obtain

|un+1|F s+1,2
0

≤ C2 |ε|(M̃s + 1).

Therefore taking ε1 > 0 so as to satisfy ε1 ≤ M̃/{C2 (M̃
s + 1)}, we obtain

|un+1|F s+1,2
0

≤ M̃

for any ε, |ε| ≤ ε1.

We show the convergence of {un} in Fs+1,2
0 . Applying the Moser-type inequality to the

difference of BVP (LP) for n+ 1 and n, and using Proposition 3.1, we have

|un+1 − un|F s+1,2
0

≤ C1 |ε| sup
t∈R1

|f (x, t, un(t))− f (x, t, un−1(t))|Hs(0,a;x0)

≤ C2 |ε| sup
t∈R1

|un − un−1|Hs(0,a;x0) .

Hence we have

|un+1 − un|F s+1,2
0

≤ C2 |ε||un − un−1|F s+1,2
0

.

Therefore again taking ε1 > 0 so as to satisfy C2 |ε1| ≤ κ for some constant κ ∈ (0, 1), we
obtain

|un+1 − un|F s+1,2
0

≤ κ |un − un−1|F s+1,2
0

.

for any ε, |ε| ≤ ε1. Hence {un} is the Cauchy sequence in Fs+1,2
0 , which leads to the conver-

gence of {un} to some u ∈ Fs+1,2
0 satisfying |u|

F
s+1,2
0

≤ M̃ . u satisfies BVP (P) if n → ∞ in

(3.23).
From Lemma 2.2 we see the almost periodicity of u.
The local uniqueness is shown in the similar way to the above iteration convergent argu-

ment. �

4. Global Solutions of Nonlinear IBVP

Before showing the stability of almost periodic solutions obtained in the previous sec-
tion, in this section we shall assure that IBVP (Q) has a unique global solution. We show the
existence of time-global solutions of IBVP (LQ) and IBVP (Q) under more general condi-
tions (see (C1)–(C2) and (D1)–(D3), respectively, below) than the conditions that the external
forces h and f are almost periodic functions.
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4.1. The Existence of a Solution of Linear IBVP. We consider a linear IBVP to a
nonhomogeneous SS Eq.


Amw(x, t) = g(x, t) , (x, t) ∈ (0, a)× R1+ ,

w(a, t) = 0 , t ∈ R1+ ,

w(x, 0) = φ(x) , ∂tw(x, 0) = ψ(x) , x ∈ (0, a) .
(LQ)

We assume the following conditions on a forcing term g and initial data φ, ψ .

(C1) g belongs to Fs,0m,+.

(C2) φ and ψ belong to Ks+1(0, a; xm) andKs(0, a; xm), respectively.
The following proposition shows the existence and the uniqueness of a solution of the

linear IBVP (LQ) and the energy estimate of the solutions and the higher order derivatives.
The proposition plays an essential role in showing the exponential stability of the almost
periodic solutions obtained in Section 3.

PROPOSITION 4.1. Assume (C1)–(C2). Let s ≥ 1. Then IBVP (LQ) has a unique

global solution w in Fs+1,2
m,+ satisfying

|w(·, t)|s+1,1,m ≤ C

{
e−γ t

(|φ|Hs+1(0,a;xm) + |ψ|Hs(0,a;xm)
)

+
∫ t

0
e−γ τ |g(·, t − τ )|Hs(0,a;xm)dτ

}(4.1)

for t ∈ R1+, where γ is the constant defined by (3.5) and C is independent of φ, ψ, g .

Moreover if s = 0, the statement holds by replacing Fs+1,2
m,+ by F 1,1

m,+, respectively.

It follows from the above proposition that for any initial data φ and ψ satisfying (C2)

there exists a unique solution u = Bmg ∈ F
s+1,2
m,+ of IBVP (LQ) for g ∈ F

s,0
m,+, where

Bm = Bm(φ,ψ) is a linear integral operator.

PROOF. We again use the Fourier method in the x-direction. Consider the Fourier
series of g, φ and ψ

g(·, t) =
∞∑
j=1

gj (t) φj , φ =
∞∑
j=1

pj φj , ψ =
∞∑
j=1

qj φj .(4.2)

From (C1)–(C2) the above Fourier series of φ, ψ and g converge in Ks+1(0, a; xm),
Ks(0, a; xm) and C(R1;Ks(0, a; xm)), respectively. We expand w(·, t) into the formal
Fourier series

w(·, t) =
∞∑
j=1

wj (t) φj .(4.3)
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Substitute (4.2)–(4.3) into (LQ) and comparing the Fourier coefficients, we obtain{
w′′
j (t)+ λjwj (t)+w′

j (t) = gj (t) ,

wj (0) = pj , w′
j (0) = qj , j = 1, 2 , . . .

(4.4)

Using the representation formula of the solutions of (4.4), we have

wj(t) = bj e
ν−
j t − cj e

ν+
j t + 1

2aj

∫ t

0
gj (t − τ )(e

ν+
j τ − e

ν−
j τ )dτ ,(4.5)

where aj and ν±
j are defined by (3.4) and

bj = ν+
j pj − qj

2aj
, cj = ν−

j pj − qj

2aj
.

Also we have

w′
j (t) = ν−

j bj e
ν−
j t − ν+

j cj e
ν+
j t

+ 1

2aj

∫ t

0
gj (t − τ )(ν+

j e
ν+
j τ − ν−

j e
ν−
j τ )dτ .

(4.6)

We estimate
∑∞
j=1(λ

s+1
j wj (t)

2 + λsjw
′
j (t)

2). This is done in the similar way in the proof of

Proposition 3.1. We have, from (4.5)–(4.6)
∞∑
j=1

(λs+1
j wj (t)

2 + λsjw
′
j (t)

2) ≤
∞∑
j=1

λs+1
j

{
(|bj |2 + |cj |2)e−2γ t

+ 1

4|aj |2
∣∣∣∣
∫ t

0
gj (t − τ )(e

ν+
j τ − e

ν−
j τ )dτ

∣∣∣∣
2}

By the use of the inequality λj (|bj |2 + |cj |2) ≤ c(λj |pj |2 + |qj |2) and the Minkowski
inequality, it follows that

∞∑
j=1

(λs+1
j wj (t)

2 + λsjw
′
j (t)

2) ≤ c e−2γ t
∞∑
j=1

(λs+1
j |pj |2 + λs |qj |2)

+
∫ t

0
e−2γ τ

{ ∞∑
j=1

λsj |gj (t − τ )|2
}1/2

dτ .

Using the equivalence relation (3.13), we have

|w(·, t)|Hs+1(0,a;xm) + |∂tw(·, t)|Hs(0,a;xm)

≤C1

{
e−γ t (|φ|Hs+1(0,a;xm) + |ψ|Hs(0,a;xm))+

∫ t

0
e−γ τ |g(·, t − τ )|Hs(0,a;xm)dτ

}
.
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This shows that the energy inequality (4.1) holds and w belongs to Fs+1,1
m,+ . Using the

equation in (LQ), we have
∞∑
j=1

λs−1
j w′′

j (t)
2 ≤ C

∞∑
j=1

{
λs+1
j wj (t)

2 + λs−1
j w′

j (t)
2 + λs−1

j gj (t)2
}
.

The right hand side converges uniformly in t . Hence by (3.13) we have ∂2
t w ∈

C(R1;Ks−1(0, a; xm)). Therefore w belongs to Fs+1,2
m,+ . The uniqueness of the solution

of IBVP (LQ) is clear. �

The following energy estimate will be used to show the existence of a unique global
solution of the nonlinear IBVP (Q).

COROLLARY 4.1. Under the same assumptions as Proposition 4.1 the solution w of
IBVP (LQ) satisfies

|w|
F
s+1,1
m,+

≤ C

(
|φ|Hs+1(0,a;xm) + |ψ|Hs(0,a;xm) + sup

t∈R1+
|g(·, t)|Hs(0,a;xm)

)
.(4.7)

4.2. The Existence of a Global Solution of Nonlinear IBVP. We consider IBVP
(Q) 


Amu(x, t) = h(x, t)+ εf (x, t, u) , (x, t) ∈ (0, a)× R1+ ,

u(a, t) = 0 , t ∈ R1+ ,

u(x, 0) = φ(x) , ∂tu(x, 0) = ψ(x) , x ∈ (0, a) .
(Q)

4.2.1. Global Weak Solutions. First we deal with weak solutions of IBVP (Q). We
assume the following conditions on h, f and φ, ψ .

(D1) h belongs to C(R1+;L2(0, a; xm)) with supt∈R1+ |h(·, t)|L2(0,a;xm) < +∞.

(D2) (i) f (x, t, λ) is continuous in [0, a] × R1 × R1.
(ii) f (x, t, λ) is locally Lipschitz continuous in λ ∈ R1 uniformly with respect to

(x, t) ∈ [0, a] × R1 : For any r > 0 there exists a constant ρ0(r) > 0 such that

|f (x, t, λ1)− f (x, t, λ2)| ≤ ρ0(r)|λ1 − λ2|(4.8)

for λ1, λ2 ∈ (−r, r) and (x, t) ∈ [0, a] × R1.
(iii) f (x, t, λ) is locally bounded in λ ∈ R1 uniformly with respect to (x, t) ∈ [0, a] ×

R1 : For any r > 0 there exists a constant ρ1(r) > 0 such that

|f (x, t, λ)| ≤ ρ1(r)(4.9)

for λ ∈ (−r, r) and (x, t) ∈ [0, a] × R1.
(D3) φ and ψ belong to K1(0, a; xm) and L2(0, a; xm) respectively.

REMARK 4.1. The condition (A1) implies (D1), and the condition (A2) implies (D2).
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EXAMPLE 4.1. The functions in Example 3.1; f (x, t, λ) = α(x, t)|λ|ρ−1λ,
f (x, t, λ) = α(x, t)|λ|ρ , f (x, t, λ) = α(x, t)λρ (ρ ∈ Z+) and f (x, t, λ) = α(x, t) sin λ
satisfy (D2), where α(x, t) is continuous and bounded in (x, t) ∈ [0, a] × R1+.

The following theorem shows the existence of a time-global weak solution of IBVP (Q).

THEOREM 4.1. Assume (D1)–(D3). Let R > 0 be any constant. Take φ and ψ so as
to satisfy |φ|H 1(0,a;xm) + |ψ|L2(0,a;xm) ≤ R. Then there exists ε1 > 0 dependent on R such

that IBVP (Q) for any ε, |ε| ≤ ε1 has a global unique solution u in F 1,1
m,+.

PROOF. Let X = F
1,1
m,+ and Y = F

0,0
m,+ for simplicity. Consider IBVP (LQ). By

Proposition 4.1, for any initial data φ and ψ satisfying (D3) there exists a unique solution
u = Bmg ∈ X of IBVP (LQ) for g ∈ Y .

Now let us deal with IBVP (Q). We define a nonlinear operator Fε(u) by Bm ◦ (h(·, t)+
εf (·, t, u)) for u ∈ X, where ◦ means the composition of operators. Set r = |h|Y . We show
that there exists ε1 > 0 dependent on R and r such that Fε for ε, |ε| ≤ ε1 is a contracting
mapping of a domain B2C(R+r) = {u ∈ X; |u|X ≤ 2C(R+ r)} into itself. Here C is the same
constant as in (4.7) in Corollary 4.1. First we show that f (x, t, u) belongs to Y for u ∈ X.

Since u belongs to X, u(x, t) is bounded in [0, a] × R1 ; |u(x, t)| ≤ M for some M > 0. In
fact, applying the Sobolev-type inequality [11] to the left hand side below, we have

|u(x, t)| ≤ M0|u(·, t)|H 1(0,a;xm) ≤ M0 sup
t∈R1+

|u(·, t)|H 1(0,a;xm) ≤ M0|u|X.

Hence by (D2) (iii) we have |f (x, t, u)| ≤ ρ1(M0 |u|X). Therefore

|f (·, t, u)|Y ≤ C1 ρ1(M0 |u|X)
for u ∈ X. Let |u|X ≤ 2C(R + r). Then we have, by Corollary 4.1

|Fε(u)|X ≤ C {R + r + |ε|C1 ρ1(2M0C(R + r))} .
Take ε1 > 0 so as to satisfy ε1 < (R + r)/{C1 ρ1(2M0C(R + r))}. Then it follows that Fε
maps B2C(R+r) into B2C(R+r) for any ε with |ε| < ε1.

Next we show that Fε is a contraction mapping inX for any ε with |ε| ≤ ε1 for a replaced
constant ε1. Then by the contraction mapping principle we obtain a unique fixed point u in
B2C(R+r) that is the desired solution. Using Corollary 4.1 and (D2)(ii) in order, we have, for
u, v ∈ B2C(R+r)

|Fε(u)− Fε(v)|X ≤ C |ε| sup
t∈R1+

|f (·, t, u)− f (·, t, v)|L2(0,a;xm)

≤ C |ε| ρ0(2C(R + r)) sup
t∈R1+

|u(·, t)− v(·, t)|L2(0,a;xm)

≤ C |ε| ρ0(2C(R + r)) |u− v|X .
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Take further ε1 > 0 so as to satisfy ε1 < 1/{C ρ0(2C(R + r))}. Then Fε is contracting in
B2C(R+r) for any ε with |ε| ≤ ε1. Therefore the conclusion follows. �

4.2.2. Global Strong and Classical Solutions. In this part we deal with the existence
of strong and classical solutions of IBVP (Q). To this end some smoothness assumptions on
the data are required. Also in this subsection we take m = 0 to obtain the regularity of the
solutions, since we use the Sobolev-type inequality to derive the energy inequality. Through
this subsection we assume s ≥ 1.

(E1) h belongs to Fs,00,+.

(E2) (i) f (x, t, λ) is of Cs -class in [0, a] × R1+ × R1, and its derivatives up to order s

are bounded in [0, a] × R1+ × I , where I is a finite interval in R1.

(ii) For u ∈ C(R1+;Ks+1(0, a; x0) f (·, t, u) belongs to C(R1+;Ks(0, a; x0)).

(E3) φ and ψ belong to Ks+1(0, a; x0) andKs(0, a; x0), respectively.

REMARK 4.2. The condition (B2) implies the condition (E2).

The following theorem shows the existence of a global unique strong solution of IBVP
(Q).

THEOREM 4.2. Assume (E1)–(E3). Take m = 0. Let R > 0 be any constant. Take φ
and ψ so as to satisfy |φ|Hs+1(0,a;x0)+|ψ|Hs(0,a;x0) ≤ R. Then there exists ε̄1 > 0 dependent

on R such that IBVP (Q) for any ε, |ε| ≤ ε̄1 has a global unique solution u in Fs+1,2
0,+ .

PROOF. The method of the proof is similar to the proof of Theorem 4.1 based on the
contraction mapping principle. So we briefly describe the proof. In the proof the essential part
is to use the higher order estimate of the nonlinear term to obtain the higher differentiability
of the solutions.

Again take Fε(u) = B0 ◦ (h + εf (·, t, u)). Let X = F
s+1,1
0,+ , Y = F

s,0
0,+ and Bc = {u ∈

X; |u|X ≤ c}. Set r = |h|Y . It follows from the Moser-type inequality ([14]) that f (x, t, u)
belongs to Y for u ∈ X. Let u ∈ B2C(R+r). Applying Corollary 4.1 and the Moser-type
inequality ([14]) to Fε in order, we estimate Fε

|Fε(u)|X ≤ C (R + r + |ε| sup
t∈R1+

|f (·, t, u)|Y )

≤ C {R + r + c1|ε|(1 + |u|sX)}
≤ C [R + r + c1|ε|{1 + (2C(R + r))s}] .

By taking ε̄1 > 0 so as to satisfy ε̄1 ≤ (R + r)/[c1{1 + (2C(R + r))s}], |Fε|X ≤ 2C(R + r)

holds for any ε with |ε| ≤ ε̄1 i.e., Fε maps B2C(R+r) into B2C(R+r). Similarly applying
Corollary 4.1 and the Moser-type inequality to the difference Fε(u) − Fε(v), we show the
Lipschitzness of Fε in B2C(R+r) as follows: For u, v ∈ B2C(R+r)

|Fε(u)− Fε(v)|X ≤ C |ε| sup
t

|f (·, t, u)− f (·, t, v)|Hs(0,a;x0)
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≤ C |ε|(|u|s−1
X + |v|s−1

X )|u− v|X
≤ 2C |ε|{2C(R + r)}s−1|u− v|X .

Take again ε̄1 > 0 so as to satisfy ε̄0 < 1/[2C {2C(R + r)}s−1]. Then Fε is contract-
ing in B2C(R+r) for ε with |ε| ≤ ε̄1. Hence by the contraction mapping principle Fε has a
unique fixed point u in B2C(R+r) that is the solution of IBVP (Q). Since f (x, t, u) belongs to

C(R1+;Ks(0, a; x0)), we obtain u ∈ Fs+1,2
0 . �

From Theorem 4.2 and Corollary 2.1 we obtain a classical solution of IBVP (Q) for
s ≥ 2.

COROLLARY 4.2. Let s ≥ 2. Then the solution u of IBVP (Q) in Theorem 4.2 is of

C2-class in (x, t) ∈ (0, a] × R1.

5. Stability of Almost Periodic Solutions of BVP (P)

In this section we consider the stability of the almost periodic solutions obtained in Sec-
tion 3. More precisely, we show that the solutions are locally exponentially stable. Main tool
to show the stability is the energy estimate obtained in Proposition 4.1. We show the stability
of both weak and strong almost periodic solutions of BVP (P).

From now on we always take ε such that the almost periodic solutions of BVP (P) in
Theorems 3.1–3.2 exist respectively.

Let u0 be the almost periodic solution of BVP (P) in Theorems 3.1–3.2. Let φ0(x) =
u0(x, 0) and ψ0(x) = ∂tu0(x, 0). It follows from Theorems 3.1–3.2 that (φ0, ψ0) belong to

K1(0, a; xm)×L2(0, a; xm) andKs+1(0, a; x0)×Ks(0, a; x0), respectively according as u0

belongs to F 1,1
m,+ and Fs+1,2

m,+ .
We have the following result on the stability of the almost periodic weak solutions in

Theorem 3.1.

THEOREM 5.1. Assume (A1)–(A2) and (D3). Let u0 be the almost periodic solution
in Theorem 3.1. For any fixed constant R > 0, let φ and ψ satisfy

|φ − φ0|H 1(0,a;xm) + |ψ − ψ0|L2(0,a;xm) ≤ R .

Then there exists ε̄ > 0 dependent on R such that IBVP (Q) for ε with |ε| ≤ ε̄ has a unique

solution u in F 1,1
m,+ satisfying the following asymptotic property

|u(·, t)− u0(·, t)|H 1(0,a;xm) + |∂t (u(·, t) − u0(·, t))|L2(0,a;xm)
≤ C e(−γ+ν |ε|)t , t ∈ R1+ ,

(5.1)

where ν > 0 is a constant.
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PROOF. Note that the conditions (A1)–(A2) and (D3) imply the conditions (D1)–(D3).
Consider the following IBVP


Amv(x, t) = ε (f (x, t, v + u0)− f (x, t, u0)) , (x, t) ∈ (0, a)× R1+ ,

v(x, 0) = φ(x)− φ0(x) , ∂tv(x, 0) = ψ(x)− ψ0(x) , x ∈ (0, a) ,
v(a, t) = 0 , t ∈ R1+ .

(5.2)

The nonlinear term ε (f (x, t, v + u0)− f (x, t, u0)) satisfies (D2), and the initial data satisfy
(D3). Therefore by Theorem 4.1 there exists ε̄ > 0 dependent on R such that IBVP (5.2) for

ε with |ε| ≤ ε̄ has a solution v in F 1,1
m,+. Take u = v + u0. Then u is a unique solution of

IBVP (Q) in F 1,1
m,+. Also by Proposition 4.1 we have

eγ t(|∂tv(·, t)|L2(0,a;xm) + |v(·, t)|H 1(0,a;xm))

≤ C1

(
L+ |ε|

∫ t

0
e−γ τ |f (x, τ, v + u0)− f (x, τ, u0)|L2(0,a;xm)dτ

)
.

Here we set L = |φ − φ0|H 1(0,a;xm) + |ψ − ψ0|L2(0,a;xm). Using (A2) (ii), we see

eγ t(|∂tv(·, t)|L2(0,a;xm) + |v(·, t)|H 1(0,a;xm))

≤ C1

(
L+ c|ε|

∫ t

0
eγ τ |v(·, τ )|L2(0,a;xm)dτ

)
.

Set α(t) = eγ t (|∂tv(·, t)|L2(0,a;xm) + |v(·, t)|H 1(0,a;xm)). Then we have the inequality

α(t) ≤ C2(L+ c|ε|
∫ t

0
α(τ)dτ) .

Therefore it follows from the Gronwall inequality that

α(t) ≤ C2Le
C2c|ε|t .(5.3)

Hence we obtain (5.1) with ν = C2c. �

Next we state the stability result of the strong and classical almost periodic solutions of
BVP (P).

THEOREM 5.2. Assume (B1)–(B2) and (E3). Let u0 be the almost periodic solution
in Theorem 3.2. Let R > 0 be any constant. Let φ and ψ satisfy

|φ − φ0|Hs+1(0,a;x0) + |ψ − ψ0|Hs(0,a;x0) ≤ R .

Then there exists ε̃ > 0 such that IBVP (Q) for ε with |ε| ≤ ε̃ has a solution u in Fs+1,2
0,+

satisfying the following asymptotic property

|u(·, t)− u0(·, t)|Hs+1(0,a;x0) + |∂t (u(·, t) − u0(·, t))|Hs(0,a;x0)

≤ C e(−γ+ν̃ |ε|)t , t ∈ R1+ ,
(5.4)
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where ν̃ > 0 is a constant.

PROOF. The strategy of the proof is similar to that of the proof of Theorem 5.1 by
using the energy estimate (Proposition 4.1). So we describe only the outline of the proof. In
order to deal with the regularity of the solutions, we use the Moser-type inequality ([14]). The
existence of the global solutions is shown, using Theorem 4.2.

Consider IBVP (5.2) and apply Proposition 4.1 and the Moser-type inequality to the
IBVP. Then we have

eγ t (|∂tv(·, t)|Hs(0,a;x0) + |v(·, t)|Hs+1(0,a;x0))

≤ C1

(
L1 + |ε|

∫ t

0
eγ τ |f (x, τ, u)− f (x, τ, u0)|Hs(0,a;x0)dτ

)

≤ C1

(
L1 + c1 |ε|

∫ t

0
eγ τ |u(·, τ )− u0(·, τ )|Hs(0,a;x0)dτ

)
.

Here we set L1 = |φ−φ0|Hs+1(0,a;x0)+|ψ−ψ0|Hs(0,a;x0). Applying the Gronwall inequality
to this inequality, we obtain (5.4). �
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