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Abstract. Let S = ⊕
n1,...,ns≥0 S(n1,...,ns ) be a finitely generated standard multi-graded algebra over a Noe-

therian local ring A. This paper investigates the positivity of mixed multiplicities of S and characterizes them in
terms of Hilbert-Samuel multiplicities. As an application, we get some results on the mixed multiplicities of ideals
that covers the main results in [Vi] and [TV].

1. Introduction

Let (A,m) be a Noetherian local ring of Krull dimension d = dim A > 0 with maximal
ideal m and infinite residue k = A/m. Let

S =
⊕

n1,...,ns≥0

S(n1,...,ns)

(s > 0) be a finitely generated standard s-graded algebra over A. Let J be an m-primary ideal
of A. Set

DJ (S) =
⊕
n≥0

J nS(n,...,n)

J n+1S(n,...,n)

and � = dim Dm(S). Then

�A

(
J n0S(n1,...,ns )

J n0+1S(n1,...,ns )

)

is a polynomial of total degree �− 1 in n0, n1, . . . , ns for all large n0, n1, . . . , ns (see Section
3). The terms of total degree � − 1 in this polynomial have the form

∑
k0+k1+···+ks=�−1

e(J, k0, k1, . . . , ks, S)
n

k0
0 n

k1
1 · · · nks

s

k0!k1! · · · ks ! .
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Then e(J, k0, k1, . . . , ks, S) are non-negative integers not all zero [HHRT] and called the
mixed multiplicity of S of type (k0, k1, . . . , ks) with respect to J .

In particular, when S = A[I1t1, . . . , Is ts] is a multi-graded Rees algebra of ideals
I1, . . . , Is in A, e(J, k0, k1, . . . , ks , S) is the mixed multiplicity of ideals J, I1, . . . , Is (see
[HHRT]).

Mixed multiplicities of m-primary ideals were introduced by Teissier and Risler in 1973
[Te] and by Rees in 1984 [Re]. In general, mixed multiplicities have been mentioned in
the works of Verma [Ve], Katz and Verma [KV], Swanson [Sw], Trung [Tr], R. Callejas-
Bedregal and V. H. Jorge Prez in 2007 [CJ]. Moreover, the positivity of mixed multiplicities
of multi-graded modules over Artinian local rings was investigated by Kleiman and Thorup
[KT1, KT2] in the geometric context. By using the concept of (FC)-sequences, Viet in 2000
expressed mixed multiplicities of arbitrary ideals in terms of Hilbert-Samuel multiplicities
[Vi]. Trung and Verma in 2007 characterized mixed multiplicities of ideals via superficial se-
quences [TV]. Some another authors have extended mixed multiplicities of ideals to modules,
e.g. Kirby and Rees in [KR1, KR2], Manh and Viet in [MV].

In this paper, we consider mixed multiplicities of multi-graded algebra S over Noetherian
local ring. Our aim is to answer to question when mixed multiplicities of S are positive and
to characterize these mixed multiplicities in terms of Hilbert-Samuel multiplicities (Theorem
3.3, Sect. 3). As an application, we get a version of Theorem 3.3 for mixed multiplicities of
arbitrary ideals in local rings (Theorem 4.3, Sect. 4) that covers the main results in [Vi] and
[TV].

The paper is divided in four sections. In Section 2, we investigate (FC)-sequences of
multi-graded algebras. Section 3 gives some results on expressing mixed multiplicities of
multi-graded algebras in terms of Hilbert-Samuel multiplicity. Section 4 devoted to the dis-
cussion of mixed multiplicities of arbitrary ideals in local rings.

2. Weak-(FC)-sequences of multi-graded algebras

The author in [Vi] built (FC)-sequences of ideals in local rings for calculating mixed
multiplicities of ideals. In order to study mixed multiplicities of multi-graded algebras, this
section introduces weak-(FC)-sequences in multi-graded algebras and gives some important
properties of these sequences.

Set a : b∞ = ⋃∞
n=0(a : bn), and

(M : N)A = {a ∈ A | aN ⊂ M} ;
S+ =

⊕
n1+···+ns>0

S(n1,...,ns ) ;

Si = S(0,..., 1
(i)

,...,0) ;

S+
i = SiS =

⊕
ni>0

S(n1,...,ns)(i = 1, 2, . . . , s) ;
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S++ = S+
1 ∩ · · · ∩ S+

s =
⊕

n1,...,ns>0

S(n1,...,ns ) = S(1,...,1)S .

DEFINITION 2.1. Let S = ⊕
n1,...,ns≥0 S(n1,...,ns ) be a finitely generated standard s-

graded algebra over a Noetherian local ring A such that S++ is non-nilpotent, and let I be an
ideal of A. A homogeneous element x ∈ S is called a weak-(FC)-element of S with respect
to I if there exists i ∈ {1, 2, . . . , s} such that x ∈ Si and

(FC1): xS(n1,...,ni−1,...,ns) ∩ In0S(n1,...,ns ) = xIn0S(n1,...,ni−1,...,ns) for all large
n0, n1, . . . , ns .

(FC2): x is a filter-regular element with respect to S++, i.e., 0 : x ⊆ 0 : S∞++.

Let x1, . . . , xt be a sequence in S. We call that x1, . . . , xt is a weak-(FC)-sequence of S

with respect to I if x̄i+1 is a weak-(FC)-element of S/(x1, . . . , xi)S with respect to I for all
i = 0, 1, . . . , t − 1, where x̄i+1 is the image of xi+1 in S/(x1, . . . , xi)S.

EXAMPLE 2.2. Let R = A[X1,X2, . . . , Xt ] be the ring of polynomial in t indetermi-
nates X1,X2, . . . , Xt with coefficients in A (dim A = d > 0). Then

R =
⊕
m≥0

Rm

is a finitely generated standard graded algebra over A, where Rm is the set of all homogeneous
polynomials of degree m and the zero polynomial. It is well-known that X1,X2, . . . , Xt is
a regular sequence of R. Let I be an ideal of A. It is easy to see that X1Rm−1 ∩ IRm and
IX1Rm−1 are both the set of all homogeneous polynomials of degree m with coefficients in I

and divided by X1. Hence

X1Rm−1 ∩ IRm = IX1Rm−1

for any ideal I of A. Using the results just obtained and the fact that

R/(X1, . . . , Xi)R = A[Xi+1, . . . , Xt ]
for all i < t , we immediately show that X1,X2, . . . , Xt be a weak-(FC)-sequence of R with
respect to I for any ideal I of A.

Now, we give some comments on weak-(FC)-sequences of a finitely generated standard
multi-graded algebra over A by the following remark.

REMARK 2.3.
(i) By Artin-Rees lemma, there exist integers u1, u2, . . . , us such that

(0 : S∞++) ∩ S(n1,...,ns ) = S(n1−u1,...,ns−us)((0 : S∞++) ∩ S(u1,...,us))

⊆ S(n1−u1,...,ns−us)(0 : S∞++)
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for all n1 ≥ u1, . . . , ns ≥ us . Since S(n1−u1,...,ns−us )(0 : S∞++) = 0 for all large
enough n1, . . . , ns , it follows that (0 : S∞++)(n1,...,ns) = (0 : S∞++)

⋂
S(n1,...,ns) = 0

for all large enough n1, . . . , ns .
(ii) Let x ∈ S be a homogeneous element. If x is a filter-regular element with respect

to S++ then 0 : x ⊆ 0 : S∞++. By (i),

(0 : x)(n1,...,ns) ⊆ (0 : S∞++)(n1,...,ns ) = 0

for all large n1, . . . , ns . Conversely, suppose that (0 : x)(n1,...,ns ) = 0 for all large
n1, . . . , ns . Then we have S(n,...,n)(0 : x)(v1,...,vs ) ⊆ (0 : x)(n+v1,...,n+vs) = 0 for
all large n and all v1, . . . , vs . It implies that

(0 : x)(v1,...,vs) ⊆ (0 : Sn++) ⊆ (0 : S∞++)

for all large n and all v1, . . . , vs . Hence (0 : x) ⊆ (0 : S∞++). Therefore x is a
filter-regular element with respect to S++ if and only if (0 : x)(n1,...,ns ) = 0 for all
large n1, . . . , ns .

(iii) Suppose that x ∈ Si is a filter-regular element with respect to S++. Consider

λx : S(n1,...,ni ,...,ns ) −→ xS(n1,...,ni ,...,ns ), y �→ xy.

It is clear that λx is surjective and ker λx = (0 : x) ∩ S(n1,...,ns ) = 0 for all large
n1, . . . , ns . Therefore, S(n1,...,ni ,...,ns )

∼= xS(n1,...,ni ,...,ns ). This follows that

IS(n1,...,ni ,...,ns )
∼= xIS(n1,...,ni ,...,ns )

for all large n1, . . . , ns and for any ideal I of A.
(iv) If S++ is non-nilpotent then S(n,...,n) 
= 0 for all n. Hence, by Nakayama’s lemma,

(Dm(S))n = mnS(n,...,n)

mn+1S(n,...,n)

= 0 for all n. It implies that dim Dm(S) ≥ 1.

The following lemma will play a crucial role for showing the existence of weak-(FC)-
sequences.

LEMMA 2.4 (Generalized Rees’s lemma). Let (A,m) be a Noetherian local ring with
maximal ideal m, infinite residue k = A/m. Let S = ⊕

n1,...,ns≥0 S(n1,...,ns ) be a finitely

generated standard s-graded algebra over A, and let I be an ideal of A. Let Σ be a finite
collection of prime ideals of S not containing S(1,...,1). Then for each i = 1, . . . , s, there exists
an element xi ∈ Si\mSi , xi not contained in any prime ideal in Σ , and a positive integer ki

such that

xiS(n1,...,ni−1,...,ns ) ∩ In0S(n1,...,ns) = xiI
n0S(n1,...,ni−1,...,ns)

for all ni > ki and all non-negative integers n0, n1, . . . , ni−1, ni+1, . . . , ns .

PROOF. In the ring S[t, t−1] (t is an indeterminate), set

S∗ =
⊕
n0∈Z

In0Stn0 =
⊕

n0∈Z;n1,...,ns≥0

In0S(n1,...,ns)t
n0
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where In = A for n ≤ 0. Then S∗ is a Noetherian (s + 1)-graded ring. Since u = t−1 is non-
zero-divisor in S∗, the set of prime associated with unS∗ is independent on n > 0 and so is
finite by the corollary of [Lemma 2.7, Re]. We divide this set into two subsets: S1 consisting
of those containing Si and S2 those that do not (where Si = S(0,..., 1

(i)
,...,0) = S∗

(0,0,..., 1
(i+1)

,...,0)).

Since Si/mSi is a vector space over the infinite field k and the sets Σ,S2 are both finite, we
can choose xi ∈ Si\mSi such that xi is not contained in any prime ideal belonging to Σ ∪S2.
Set

Mn = (unS∗ : xi) ∩ S∗

unS∗ .

Then Mn is a S∗-module for any n > 0. We need must show that there exists a suf-

ficiently large integer N > 0 such that SN
i Mn = 0. Note that if P ∈ AssS∗Mn then

P ∈ AssS∗S∗/unS∗ = S1 ∪ S2, and there exists z ∈ unS∗ : xi such that P = unS∗ : z.
Since xiz ∈ unS∗, xi ∈ P . So P ∈ S1. Hence Si ⊂ P . It follows that Si ⊂ ⋂

P∈AssS∗Mn
P .

Therefore Si ⊂ √
AnnS∗Mn. Since Si is finitely generated, there exists a sufficiently large

integer N > 0 (how large depending on n) such that SN
i Mn = 0. Hence [Mn](n0,n1,...,ns ) = 0

for all ni > N. This means that for each n > 0, we have

(unIn0S(n1,...,ns)t
n0 : xi)

⋂
S∗ = unIn0S(n1,...,ni−1,...,ns )t

n0 (1)

for all large ni and all non-negative integers n0, n1, . . . , ni−1, ni+1, . . . , ns .
Denote by b an ideal of S∗ consisting of all finite sums

∑
cn0 t

n0 with

cn0 ∈ xiS(n1,...,ni−1,...,ns ) ∩ In0S(n1,...,ns ) .

Then b has a finite generating set U = {xibit
n0 }1≤i≤v with bi ∈ S(n1,...,ni−1,...,ns ). Note that

if 0 
= a ∈ ImS and m ≥ n0 then atn0 ∈ S∗, and if n0 < 0 then atn0 ∈ S∗ for all a ∈ S.
Since U is finite, there exists an integer q such that uqbit

n0 = bit
n0−q ∈ S∗ for all 1 ≤ i ≤ v.

Therefore b ⊆ xiS
∗ : uq .

Now, suppose that z ∈ xiS(n1,...,ni−1,...,ns ) ∩ In0S(n1,...,ns ). This means ztn0 ∈ b. Since
b ⊆ xiS

∗ : uq , uqztn0 = xiw with w ∈ S∗. Note that z ∈ In0S(n1,...,ns ), it follows that
xiw = uqztn0 ∈ uqIn0S(n1,...,ns )t

n0 . Hence by (1), we can find ki such that

w ∈ (uqIn0S(n1,...,ns )t
n0 : xi) ∩ S∗ = uqIn0S(n1,...,ni−1,...,ns )t

n0

for all ni > ki . Thus uqztn0 = xiw ∈ xiu
qIn0S(n1,...,ni−1,...,ns )t

n0 . Since u and t are non-
zero-divisors in S∗, z ∈ xiI

n0S(n1,...,ni−1,...,ns ). Hence if ni > ki then

xiS(n1,...,ni−1,...,ns ) ∩ In0S(n1,...,ns ) ⊂ xiI
n0S(n1,...,ni−1,...,ns ) .

Consequently, xiS(n1,...,ni−1,...,ns) ∩ In0S(n1,...,ns ) = xiI
n0S(n1,...,ni−1,...,ns ). �

The following proposition will show the existence of weak-(FC)-sequences.

PROPOSITION 2.5. Suppose that S++ is non-nilpotent. Then for any 1 ≤ i ≤ s, there
exists a weak-(FC)-element x ∈ Si of S with respect to I .
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PROOF. Since S++ is non-nilpotent, S/0 : S∞++ 
= 0. Set

Σ = AssS(S/0 : S∞++) = {P ∈ AssS | P � S(1,...,1)} .

Then Σ is finite. By Lemma 2.4, for each i = 1, . . . , s, there exists x ∈ Si \ mSi such that
x /∈ P for all P ∈ Σ and

xS(n1,...,ni−1,...,ns ) ∩ In0S(n1,...,ns ) = xIn0S(n1,...,ni−1,...,ns ) .

Thus x satisfies the condition (FC1). Since x /∈ P for all P ∈ Σ , 0 : x ⊂ 0 : S∞++. Hence x

satisfies the condition (FC2). �

3. Mixed multiplicities of multi-graded algebras

This section first determines mixed multiplicities of multi-graded algebras, next answers
to the question when these mixed multiplicities are positive, and characterizes them in terms
of Hilbert-Samuel multiplicities.

Let S = ⊕
n1,...,ns≥0 S(n1,...,ns ) be a finitely generated standard s-graded algebra over a

Noetherian local ring A such that S++ is non-nilpotent and an m-primary ideal J of A. Since

⊕
n0,n1,...,ns≥0

J n0S(n1,...,ns)

J n0+1S(n1,...,ns )

is a finitely generated standard s-graded algebra over Artinian local ring A/J , by [HHRT,
Theorem 4.1],

�A

(
J n0S(n1,...,ns )

J n0+1S(n1,...,ns )

)

is a polynomial for all large n0, n1, . . . , ns . Denote by P(n0, n1, . . . , ns) this polynomial. Set

DJ (S) =
⊕
n≥0

J nS(n,...,n)

J n+1S(n,...,n)

and � = dim Dm(S). By Remark 2.3(iv), � ≥ 1. Note that dim DJ (S) = dim Dm(S) for any
m-primary ideal J of A and deg P(n0, n1, . . . , ns) = deg P(n, n, . . . , n), and

P(n, n, . . . , n) = �A

(
J nS(n,...,n)

J n+1S(n,...,n)

)
= �A(DJ (S)n)

for all large n, it follows that deg P(n, n, . . . , n) = dim DJ (S) − 1 = � − 1. Hence
deg P(n0, n1, . . . , ns) = � − 1.

If the terms of total degree � − 1 of P(n0, n1, . . . , ns) have the form

∑
k0+k1+···+ks=�−1

e(J, k0, k1, . . . , ks , S)
n

k0
0 n

k1
1 · · ·nks

s

k0!k1! · · · ks ! ,
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then e(J, k0, k1, . . . , ks , S) are non-negative integers not all zero [HHRT] and called the mixed
multiplicity of S of type (k0, k1, . . . , ks) with respect to J .

From now on, the notation eA(J,M) will mean the Hilbert-Samuel multiplicity of A-
module M with respect to an m-primary ideal J of A. We shall begin this section with the
following lemma.

LEMMA 3.1. Let S be a finitely generated standard s-graded algebra over a Noe-
therian local ring A such that S++ is non-nilpotent and an m-primary ideal J of A. Set
� = dim Dm(S). Then e(J, k0, 0, . . . , 0, S) 
= 0 if and only if

dim A/(0 : S∞
(1,...,1))A = �.

In this case, e(J, k0, 0, . . . , 0, S) = eA(J, S(n,...,n)) for all large n.

PROOF. Denote by P(n0, n1, . . . , ns) the polynomial of

�A

(
J n0S(n1,...,ns )

J n0+1S(n1,...,ns )

)
.

Then P is a polynomial of degree � − 1. By taking n1 = n2 = · · · = ns = u, where u is a
sufficiently large integer, we get

e(J, k0, 0, . . . , 0, S) = lim
n0→∞

(� − 1)!P(n0, u, . . . , u)

n�−1
0

.

Since P(n0, u, . . . , u) = �A

(
J n0S(u,...,u)

J n0+1S(u,...,u)

)
, it follows that

deg P(n0, u, . . . , u) = dimA S(u,...,u) − 1

and e(J, k0, 0, . . . , 0, S) 
= 0 if and only if

deg P(n0, u, . . . , u) = dimA S(u,...,u) − 1 = � − 1 .

Since A is Noetherian, (0 : S∞
(1,...,1))A = (0 : Sn

(1,...,1))A = (0 : S(n,...,n))A for all large n.

Hence if u is chosen sufficiently large, we have

dimA S(u,...,u) = dim A/(0 : S(u,...,u))A = dim A/(0 : S∞
(1,...,1))A .

Therefore e(J, k0, 0, . . . , 0, S) 
= 0 if and only if dim A/(0 : S∞
(1,...,1))A = �. Finally, if

dim A/(0 : S∞
(1,...,1))A = � then dimA S(n,...,n) − 1 = � − 1 for all large n, and hence

eA(J, S(n,...,n)) = lim
n0→∞

(� − 1)!�A

(
J n0S(n,...,n)

J n0+1S(n,...,n)

)
n�−1

0

= lim
n0→∞

(� − 1)!P(n0, n, . . . , n)

n�−1
0

= e(J, k0, 0, . . . , 0, S)

for all large integer n. �
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PROPOSITION 3.2. Let S be a finitely generated standard s-graded algebra over a
Noetherian local ring A such that S++ is non-nilpotent and an m-primary ideal J of A. Set
� = dim Dm(S). Assume that e(J, k0, k1, . . . , ks , S) 
= 0, where k0, k1, . . . , ks are non-
negative integers such that k0 + k1 + · · · + ks = � − 1. Then

(i) If ki > 0 and x ∈ Si is a weak-(FC)-element of S with respect to J then

e(J, k0, k1, . . . , ks , S) = e(J, k0, k1, . . . , ki − 1, . . . , ks , S/xS),

and dim Dm(S/xS) = � − 1.
(ii) There exists a weak-(FC)-sequence of t = k1 + · · · + ks elements of S in

⋃s
i=1 Si

with respect to J consisting of k1 elements of S1, . . . , ks elements of Ss .

PROOF. The proof of (i): Denote by P(n0, n1, . . . , ns) the polynomial of

�A

(
J n0S(n1,...,ns )

J n0+1S(n1,...,ns )

)
.

Then deg P = � − 1. Since x satisfies the condition (FC1), for all large n0, n1, . . . , ns , we
have

�A

(
J n0(S/xS)(n1,...,ns )

J n0+1(S/xS)(n1,...,ns)

)
= �A

(
J n0(S(n1,...,ns )

/
xS(n1,...,ni−1,...,ns ))

J n0+1(S(n1,...,ns )

/
xS(n1,...,ni−1,...,ns ))

)

= �A

(
J n0S(n1,...,ns ) + xS(n1,...,ni−1,...,ns)

J n0+1S(n1,...,ns ) + xS(n1,...,ni−1,...,ns )

)

= �A

(
J n0S(n1,...,ns )

(J n0+1S(n1,...,ns ) + xS(n1,...,ni−1,...,ns )) ∩ J n0S(n1,...,ns )

)

= �A

(
J n0S(n1,...,ns )

J n0+1S(n1,...,ns ) + xS(n1,...,ni−1,...,ns ) ∩ J n0S(n1,...,ns )

)

= �A

(
J n0S(n1,...,ns )

J n0+1S(n1,...,ns ) + xJ n0S(n1,...,ni−1,...,ns )

)

= �A

(
J n0S(n1,...,ns )

J n0+1S(n1,...,ns )

)
− �A

(
J n0+1S(n1,...,ns ) + xJ n0S(n1,...,ni−1,...,ns )

J n0+1S(n1,...,ns )

)

= �A

(
J n0S(n1,...,ns )

J n0+1S(n1,...,ns )

)
− �A

(
xJ n0S(n1,...,ni−1,...,ns )

xJ n0S(n1,...,ni−1,...,ns ) ∩ J n0+1S(n1,...,ns)

)

= �A

(
J n0S(n1,...,ns )

J n0+1S(n1,...,ns )

)
− �A

(
xJ n0S(n1,...,ni−1,...,ns )

xS(n1,...,ni−1,...,ns ) ∩ J n0S(n1,...,ns) ∩ J n0+1S(n1,...,ns )

)

= �A

(
J n0S(n1,...,ns )

J n0+1S(n1,...,ns )

)
− �A

(
xJ n0S(n1,...,ni−1,...,ns )

xS(n1,...,ni−1,...,ns ) ∩ J n0+1S(n1,...,ns )

)

= �A

(
J n0S(n1,...,ns )

J n0+1S(n1,...,ns )

)
− �A

(
xJ n0S(n1,...,ni−1,...,ns)

xJ n0+1S(n1,...,ni−1,...,ns )

)
.
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Since x is a filter-regular element of S,

J n0S(n1,...,ni ,...,ns )
∼= xJ n0S(n1,...,ni ,...,ns )

for all n0 and all large n1, . . . , ns by Remark 2.3(iii). Then we have an isomorphism of
A-modules

xJ n0S(n1,...,ni−1,...,ns )

xJ n0+1S(n1,...,ni−1,...,ns)

∼= J n0S(n1,...,ni−1,...,ns )

J n0+1S(n1,...,ni−1,...,ns )

for all large n0, n1, . . . , ns . From this it follows that

�A

(
xJ n0S(n1,...,ni−1,...,ns )

xJ n0+1S(n1,...,ni−1,...,ns )

)
= �A

(
J n0S(n1,...,ni−1,...,ns )

J n0+1S(n1,...,ni−1,...,ns)

)
.

Hence

�A

(
J n0(S/xS)(n1,...,ns )

J n0+1(S/xS)(n1,...,ns )

)
= �A

(
J n0S(n1,...,ns )

J n0+1S(n1,...,ns)

)
− �A

(
J n0S(n1,...,ni−1,...,ns )

J n0+1S(n1,...,ni−1,...,ns )

)

for all large n0, n1, . . . , ns . Denote by Q(n0, n1, . . . , ns) the polynomial of

�A

(
J n0(S/xS)(n1,...,ns )

J n0+1(S/xS)(n1,...,ns )

)
.

From the above fact, we get

Q(n0, n1, . . . , ns ) = P(n0, n1, . . . , ni , . . . , ns) − P(n0, n1, . . . , ni − 1, . . . , ns) .

Since e(J, k0, k1, . . . , ks, S) 
= 0 and ki > 0, it implies that deg Q = deg P − 1 and

e(J, k0, k1, . . . , ki, . . . , ks , S) = e(J, k0, k1, . . . , ki − 1, . . . , ks , S/xS) .

Note that deg Q = dim Dm(S/xS) − 1. Hence

dim Dm(S/xS) = deg Q + 1 = deg P = � − 1 .

The proof of (ii): The proof is by induction on t = k1 + · · · + ks . For t = 0, the result is
trivial. Assume that t > 0. Since k1 + · · · + ks = t > 0, there exists kj > 0. Since S++ is
non-nilpotent, by Proposition 2.5, there exists a weak-(FC)-element x1 ∈ Sj of S with respect
to J . By (i),

e(J, k0, k1, . . . , kj − 1, . . . , ks , S/x1S) = e(J, k0, k1, . . . , ks , S) 
= 0 .

This follows that

J n0(S/x1S)(n1,...,ns )

J n0+1(S/x1S)(n1,...,ns )


= 0

and so (S/x1S)(n1,...,ns ) 
= 0 for all large n1, . . . , ns . Hence (S/x1S)++ is non-nilpotent.
Since k1 + · · · + (kj − 1) + · · · + ks = t − 1, by the inductive assumption, there exist
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t − 1 elements x2, . . . , xt consisting of k1 elements of S1, . . . , kj − 1 elements of Sj , . . . , ks

elements of Ss such that x̄2, . . . , x̄t is a weak-(FC)-sequence of S/x1S with respect to J (x̄i is
initial form of xi in S/x1S, i = 2, . . . , t). Remember that x1 ∈ Sj is a weak-(FC)-element of
S with respect to J, x1, . . . , xt is a weak-(FC)-sequence of S with respect to J consisting of
k1 elements of S1, . . . , ks elements of Ss . �

Now, we will give the criteria for the positivity of mixed multiplicities and characterize
them in terms of Hilbert-Samuel multiplicity by the following theorem.

THEOREM 3.3. Let S be a finitely generated standard s-graded algebra over a Noe-
therian local ring A such that S++ is non-nilpotent. Let J be an m-primary ideal of A. Set
� = dim Dm(S). Then the following statements hold.

(i) e(J, k0, k1, . . . , ks, S) 
= 0 if and only if there exists a weak-(FC)-sequence
x1, . . . , xt (t = k1 + · · · + ks) of S with respect to J consisting of k1 elements
of S1, . . . , ks elements of Ss and

dim Dm(S/(x1, . . . , xt )S) = dim A/((x1, . . . , xt )S : S∞
(1,...,1))A = � − t .

(ii) Suppose that e(J, k0, k1, . . . , ks , S) 
= 0 and x1, . . . , xt (t = k1 + · · · + ks) is a
weak-(FC)-sequence of S with respect to J consisting of k1 elements of S1, . . . ,
ks elements of Ss . Set S̄ = S/(x1, . . . , xt )S. Then

e(J, k0, k1, . . . , ks , S) = eA(J, S̄(n,...,n))

for all large n.

PROOF. The proof of (i): First, we prove the necessary condition. By Proposition
3.2(ii), there exists a weak-(FC)-sequence x1, . . . , xt of S with respect to J consisting of k1

elements of S1, . . . , ks elements of Ss . Set S̄ = S/(x1, . . . , xt )S. Applying Proposition 3.2(i)
by induction on t , we get dim Dm(S̄) = � − t and

0 
= e(J, k0, k1, . . . , ks, S) = e(J, k0, 0, . . . , 0, S̄) .

Hence by Lemma 3.1, dim A/(0 : S̄∞
(1,...,1))A = � − t . Since

dim A/(0 : S̄∞
(1,...,1))A = dim A/((x1, . . . , xt )S : S∞

(1,...,1))A ,

it follows that

dim Dm(S/(x1, . . . , xt )S) = dim A/((x1, . . . , xt )S : S∞
(1,...,1))A = � − t .

Now, we prove the sufficiently condition. We assume that x1 ∈ Si . Denote by
P(n0, n1, . . . , ns) and Q(n0, n1, . . . , ns) the polynomials of

�A

(
J n0S(n1,...,ns)

J n0+1S(n1,...,ns )

)
and �A

(
J n0(S/x1S)(n1,...,ns )

J n0+1(S/x1S)(n1,...,ns )

)
,
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respectively. Then by the proof of Proposition 3.2(i) we have

Q(n0, n1, . . . , ns ) = P(n0, n1, . . . , ni , . . . , ns) − P(n0, n1, . . . , ni − 1, . . . , ns) .

This implies that deg Q ≤ deg P − 1. Recall that deg Q = dim Dm(S/x1S) − 1 and deg P =
dim Dm(S) − 1. So dim Dm(S/x1S) ≤ dim Dm(S) − 1. Similarly, we have

� − t = dim Dm(S/(x1, . . . , xt )S) ≤ dim Dm(S/(x1, . . . , xt−1)S) − 1

≤ · · · ≤ dim Dm(S/x1S) − (t − 1) ≤ dim Dm(S) − t = � − t .

This fact follows that dim Dm(S/x1S) = dim Dm(S) − 1. Thus deg Q = deg P − 1. Hence

e(J, k0, k1, . . . , ks, S) = e(J, k0, k1, . . . , ki − 1, . . . , ks, S/x1S) .

By induction we have e(J, k0, k1, . . . , ks, S) = e(J, k0, 0, . . . , 0, S̄). Since

dim A/(0 : S̄∞
(1,...,1))A = dim A/((x1, . . . , xt )S : S∞

(1,...,1))A = � − t = dim Dm(S̄) ,

e(J, k0, 0, . . . , 0, S̄) 
= 0 by Lemma 3.1. Hence

e(J, k0, k1, . . . , ks, S) 
= 0 .

The proof of (ii): Applying Proposition 3.2(i), by induction on t , we obtain

0 
= e(J, k0, k1, . . . , ks, S) = e(J, k0, 0, . . . , 0, S̄) .

On the other hand by Lemma 3.1, e(J, k0, 0, . . . , 0, S̄) = eA(J, S̄(n,...,n)) for all large integer
n. Hence

e(J, k0, k1, . . . , ks , S) = eA(J, S̄(n,...,n))

for all large n. �

REMARK 3.4. From the proof of Theorem 3.3 we get the following comments.
(i) If x1, . . . , xt is a weak-(FC)-sequence in

⋃s
i=1 Si of S with respect to J satisfying

the condition dim Dm(S/(x1, . . . , xt )S) = dim Dm(S) − t, then
dim Dm(S/(x1, . . . , xi)S) = dim Dm(S) − i for all 1 ≤ i ≤ t .

(ii) If ki > 0 and x ∈ Si is a weak-(FC)-element of S with respect to J such that
dim Dm(S/xS) = dim Dm(S) − 1 then

e(J, k0, k1, . . . , ki, . . . , ks, S) = e(J, k0, k1, . . . , ki − 1, . . . , ks, S/xS) .

(iii) If e(J, k0, k1, . . . , ks, S) 
= 0 then for every weak-(FC)-sequence x1, . . . , xt (t =
k1+· · ·+ks) of S with respect to J consisting of k1 elements of S1, . . . , ks elements
of Ss we always have

dim Dm(S/(x1, . . . , xt )S) = dim A/((x1, . . . , xt )S : S∞
(1,...,1))A = � − t .
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(iv) Suppose that x1, . . . , xt is a weak-(FC)-sequence in
⋃s

i=1 Si of S with respect to
J . Then dim Dm(S/x1S) ≤ dim Dm(S) − 1. And by induction we have

dim Dm(S/(x1, . . . , xt )S) ≤ dim Dm(S) − t = � − t .

From this it follows that � − t ≥ 0 or t ≤ �. Hence the length of any weak-(FC)-
sequence in

⋃s
i=1 Si of S with respect to J is not greater than �.

EXAMPLE 3.5. Let R = A[X,Y ] be a polynomial rings of indeterminates X,Y and
dim A = d > 2. Then R is a finitely generated standard 2-graded algebra over A with deg X =
(1, 0), deg Y = (0, 1) and

dim Dm(R) = dim

[
⊕n≥0

mn(XY )n

mn+1(XY )n

]
= dim

(
⊕n≥0

mn

mn+1

)
= dim A .

It can be verified that X,Y is a weak-(FC)-sequence of R with respect to m. Since
dim Dm(R/(X)) = dim(A/m) = 0 and d > 2, dim Dm(R/(X)) < dim Dm(R) − 1.

REMARK 3.6. Example 3.5 showed that for any weak-(FC)-sequence x1, . . . , xt of S

with respect to J, one can get

dim Dm(S/(x1, . . . , xt )) < dim Dm(S) − t .

In the case that s = 1, we get the following result for a graded algebra S = ⊕
n≥0 Sn.

COROLLARY 3.7. Let S = ⊕
n≥0 Sn be a finitely generated standard graded alge-

bra over A such that S+ = ⊕
n>0 Sn is non-nilpotent, and let J be an m-primary ideal

of A. Set DJ (S) = ⊕
n≥0 J nSn/J

n+1Sn and dim Dm(S) = �. Suppose that x1, . . . , xq

is a maximal weak-(FC)-sequence in S1 of S with respect to J satisfying the condition
dim Dm(S/(x1, . . . , xq)S) = � − q . Then

(i) e(J, � − i − 1, i, S) 
= 0 if and only if i ≤ q and dim A/((x1, . . . , xi)S : S∞
1 )A =

� − i.
(ii) If e(J, � − i − 1, i, S) 
= 0 then e(J, � − i − 1, i, S) = eA(J, Sn/(x1, . . . , xi)Sn−1)

for all large n.

PROOF. By Theorem 3.3(ii) we immediately get (ii). Now let us to prove the part (i).
The "if" part. Assume that e(J, � − i − 1, i, S) 
= 0. First, we show that i ≤ q . Assume the
contrary that i > q . Since x1, . . . , xq is a weak-(FC)-sequence in S1 of S with respect to J ,
applying Proposition 3.2(i) by induction on q ,

0 
= e(J, � − i − 1, i, S) = e(J, � − i − 1, i − q, S̄) ,

where S̄ = S/(x1, . . . , xq)S. Since e(J, � − i − 1, i − q, S̄) 
= 0 and i − q > 0, there

exists an element x ∈ S1 such that x̄ (the image of x in S̄) is a weak-(FC)-element of S̄ with

respect to J by Proposition 3.2(ii). By Proposition 3.2(i), dim Dm(S̄/xS̄) = �−q −1. Hence
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x1, . . . , xq, x is a weak-(FC)-sequence in S1 of S with respect to J satisfying the condition

dim Dm(S/(x1, . . . , xq, x)S) = � − q − 1 .

We thus arrive at a contradiction. Hence i ≤ q . Since e(J, � − i − 1, i, S) 
= 0,
dim A/((x1, . . . , xi)S : S∞

1 )A = � − i by Remark 3.4(iii). We turn to the proof of suffi-
ciency. Suppose that i ≤ q and

dim A/((x1, . . . , xi)S : S∞
1 )A = � − i .

Since dim Dm(S/(x1, . . . , xq)S) = � − q , dim Dm(S/(x1, . . . , xi)S) = � − i for all i ≤ q

by Remark 3.4(i). Since x1, . . . , xi is a weak-(FC)-sequence of S with respect to J satisfying
the condition

dim Dm(S/(x1, . . . , xi)S) = dim A/((x1, . . . , xi)S : S∞
1 )A = � − i ,

e(J, � − i − 1, i, S) 
= 0 by Theorem 3.3(i). �

EXAMPLE 3.8. Let R = A[X1,X2, . . . , Xt ] be the ring of polynomial in t indetermi-
nates X1,X2, . . . , Xt with coefficients in A (dim A = d > 0). Then R = ⊕

m≥0 Rm is a
finitely generated standard graded algebra over A (see Example 2.2). Let J is an m-primary
ideal of A. By Example 2.2, X1, . . . , Xt ∈ R1 is a weak-(FC)-sequence of R with respect to

J . Denote by P(n,m) the polynomial of �A

(
J nRm

Jn+1Rm

)
. We have

Dm(R) =
⊕
T ≥0

mT RT

mT +1RT

= A[mX1, . . . ,mXt ]
mA[mX1, . . . ,mXt ] .

Since htm > 0, dim Dm(R) = dim A + t − 1 = d + t − 1. Hence deg P(n,m) = d + t − 2.
It is clear that R/(X1, . . . , Xi)R = A[Xi+1, . . . , Xt ] for all i ≤ t . Hence

dim Dm(R/(X1, . . . , Xi)R) = dim Dm(R) − i

for all i ≤ t − 1. Let us calculate e(J, k0, k1, R) with k0 + k1 = d + t − 1. First, we consider
the case k1 ≥ t . Since X1, . . . , Xt−1 is a weak-(FC)-sequence of R with respect to J and
dim Dm(R/(X1, . . . , Xi)R) = dim Dm(R) − i for all i ≤ t − 1, by Remark 3.4(ii),

e(J, k0, k1, R) = e(J, k0, k1 − (t − 1), R/(X1, . . . , Xt−1)R) = e(J, k0, k1 − t + 1, A[Xt ]) .

Denote by Q(m, n) the polynomial of �A

( J nXm
t A

J n+1Xm
t A

)
. Since Xt is regular element, J nXm

t A ∼=
J nA. Thus, for all large n,m,

Q(n,m) = �A

(
J nXm

t A

J n+1Xm
t A

)
= �A

(
J nA

Jn+1A

)
.

Hence Q(n,m) is independent on m. Note that e(J, k0, k1 − t + 1, A[Xt ]) is the coefficient

of 1
k0!(k1−t+1)!n

k0mk1−t+1 in Q(n,m). Since k1 − t + 1 > 0, it follows that

e(J, k0, k1, R) = e(J, k0, k1 − t + 1, A[Xt ]) = 0 .
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In the case k1 < t , since dim Dm(R/(X1, . . . , Xk1)R) = dim Dm(R) − k1, by Corollary
3.7(i), e(J, k0, k1, R) 
= 0 if and only if

dim A/((X1, . . . , Xk1)R : R∞
1 )A = d + t − 1 − k1 .

Since X1, . . . , Xt are independent indeterminates,

((X1, . . . , Xk1)R : R∞
1 )A ⊂ ((X1, . . . , Xk1)R : ((Xk1+1, . . . , Xt )A)∞)A = 0 .

Hence dim A/((X1, . . . , Xk1)R : R∞
1 )A = dim A = d . Therefore, e(J, k0, k1, R) 
= 0 if and

only if k1 = t − 1. For k1 = t − 1 (then k0 = d − 1), by Corollary 3.7(ii), we have

e(J, d − 1, t − 1, R) = eA(J,Ru/(X1, . . . , Xt−1)Ru−1)

for all large u. Note that Ru = (X1, . . . , Xt )
uA and Ru/(X1, . . . , Xt−1)Ru−1 = Xu

t A.
Thus e(J,Ru/(X1, . . . , Xt−1)Ru−1) = eA(J,Xu

t A). Since Xu
t is regular element in A[Xt ],

Xu
t A ∼= A. Hence e(J, d − 1, t − 1, R) = eA(J,Xu

t A) = eA(J,A). From the above facts we
get

e(J, k0, k1, R) =
{

0 if k1 
= t − 1

eA(J,A) if k1 = t − 1
.

Therefore

P(n,m) = e(J,A)

(d − 1)!(t − 1)!n
d−1mt−1 + {terms of lower degree} .

4. Applications

As an application of Theorem 3.3, this section devoted to the discussion of mixed multi-
plicities of arbitrary ideals in local rings.

Let J be an m-primary ideal and I1, . . . , Is ideals of A such that I = I1 · · · Is is non-
nilpotent. Set S = A[I1t1, . . . , Is ts]. Then

DJ (S) =
⊕
n≥0

(J I)n

J (J I)n
and

�A

(
J n0S(n1,...,ns )

J n0+1S(n1,...,ns )

)
= �A

(
J n0I

n1
1 · · · Ins

s

J n0+1I
n1
1 · · · Ins

s

)

is a polynomial of total degree dim DJ (S) − 1 for all large n0, n1, . . . , ns . By Proposition 3.1
in [Vi], the degree of this polynomial is dim A/0 : I∞ − 1. Hence dim DJ (S) = dim A/0 :
I∞. Set dim A/0 : I∞ = �. In this case, e(J, k0, k1, . . . , ks , S) for k0 + k1 + · · ·+ ks = �− 1
is called the mixed multiplicity of ideals (J, I1, . . . , Is ) of type (k0, k1, . . . , ks) and one put

e(J, k0, k1, . . . , ks , S) = e(J [k0+1], I [k1]
1 , . . . , I [ks ]

s , A)

(see [Ve2] or [HHRT]). By using the concept of (FC)-sequences of ideals, one expressed
mixed multiplicities of arbitrary ideals in terms of Hilbert-Samuel multiplicities [Vi].
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DEFINITION 4.1 (see Definition Vi). Let I1, . . . , Is be ideals such that I = I1 · · · Is

is a non nilpotent ideal. A element x ∈ A is called an (FC)-element of A with respect to
(I1, . . . , Is) if there exists i ∈ {1, 2, . . . , s} such that x ∈ Ii and

(FC1): (x) ∩ I
n1
1 · · · Ini

i · · · Ins
s = xI

n1
1 · · · Ini−1

i · · · Ins
s for all large n1, . . . , ns .

(FC2): x is a filter-regular element with respect to I, i.e., 0 : x ⊆ 0 : I∞.

(FC3): dim A/[(x) : I∞] = dim A/0 : I∞ − 1.

We call x a weak-(FC)-element with respect to (I1, . . . , Is) if x satisfies conditions
(FC1) and (FC2).

Let x1, . . . , xt be a sequence in A. For each i = 0, 1, . . . , t − 1, set Ai =
A/(x1, . . . , xi)S, Īj = Ij [A/(x1, . . . , xi)], x̄i+1 the image of xi+1 in Ai . Then

x1, . . . , xt is called a weak-(FC)-sequence of A with respect to (I1, . . . , Is ) if x̄i+1 is a

weak-(FC)-element of Ai with respect to (Ī1, . . . , Īs ) for all i = 0, 1, . . . , t − 1.
x1, . . . , xt is called an (FC)-sequence of A with respect to (I1, . . . , Is) if x̄i+1 is an (FC)-

element of Ai with respect to (Ī1, . . . , Īs ) for all i = 0, 1, . . . , t − 1.
A weak-(FC)-sequence x1, . . . , xt is called a maximal weak-(FC)-sequence if IAt−1 is

a non-nilpotent ideal of At−1 and IAt is a nilpotent ideal of At .

REMARK 4.2.
(i) The condition (FC1) in Definition 4.1 is a weaker condition than the condition

(FC1) of definition of (FC)-element in [Vi].
(ii) If x ∈ Ii is a weak-(FC)-element with respect to (J, I1, . . . , Is ), then it can be

verified that xti is a weak-(FC)-element of S with respect to J as in Definition 2.1.
(iii) If x1, . . . , xt is an (FC)-sequence with respect to (J, I1, . . . , Is), then from the

condition (FC3) we follow that dim A/((x1, . . . , xt )S : S∞
(1,...,1))A = � − t . Hence

dim DJ (S/(x1, . . . , xt )S) = dim A/((x1, . . . , xt )S : S∞
(1,...,1))A = � − t

that as in the state of Theorem 3.3(i).
(iv) By Lemma 3.1, e(J, k0, 0, . . . , 0, S) 
= 0 if and only if dim A/(0 : S∞

(1,...,1))A = �.

In this case, e(J, k0, 0, . . . , 0, S) = eA(J, S(n,...,n)) for all large n. But since
dim A/(0 : S∞

(1,...,1))A = dim A/0 : I∞, dim A/(0 : S∞
(1,...,1))A = �. Hence

e(J, k0, 0, . . . , 0, S) = eA(J, S(n,...,n)) for all large n. It is a plain fact that
eA(J, S(n,...,n)) = eA(J, In). On the other hand by the proof of Lemma 3.2 [Vi],
eA(J, In) = eA(J,A/0 : I∞) for all large n. Hence e(J, k0, 0, . . . , 0, S) =
eA(J,A/0 : I∞).

Then as an immediate consequence of Theorem 3.3, we obtained an improvement for the
main result in [Theorem 3.4, Vi](see Remark 4.2 (i)) as follows.

THEOREM 4.3 (see Theorem 3.4, Vi). Let (A,m) denote a Noetherian local ring with
maximal ideal m, infinite residue k = A/m, and an m-primary ideal J , and I1, . . . , Is ideals
of A such that I = I1 · · · Is is non nilpotent. Then the following statements hold.
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(i) e(J [k0+1], I [k1]
1 , . . . , I

[ks ]
s , A) 
= 0 if and only if there exists a weak-(FC)-sequence

x1, . . . , xt with respect to (J, I1, . . . , Is ) consisting of k1 elements of I1, . . . , ks

elements of Is and dim A/(x1, . . . , xt ) : I∞ = dim A/0 : I∞ − t .

(ii) Suppose that e(J [k0+1], I [k1]
1 , . . . , I

[ks ]
s , A) 
= 0 and x1, . . . , xt is a weak-(FC)-

sequence with respect to (J, I1, . . . , Is ) consisting of k1 elements of I1, . . . , ks

elements of Is . Set Ā = A/(x1, . . . , xt ) : I∞. Then

e(J [k0+1], I [k1]
1 , . . . , I [ks ]

s , A) = eA(J, Ā) .

Recently, Trung and Verma in 2007 characterize also mixed multiplicities of ideals, in
terms of superficial sequences [TV]. Now we prove that [Theorem 1.4, TV] is a consequence
of Theorem 4.3.

Set T = ⊕
n1,...,ns�0

I
n1
1 ···Ins

s

I
n1+1
1 ···Ins+1

s

. Let ε be an index with 1 � ε � s. An element

x ∈ A is an ε-superficial element for I1, . . . , Is if x ∈ Iε and the image x∗ of x in

Iε/I1 · · · Iε−1I
2
ε Iε+1 · · · Is is a filter-regular element in T, i.e., (0 :T x∗)(n1,...,ns ) = 0 for

n1, . . . , ns � 0. Let ε1, . . . , εm be a non-decreasing sequence of indices with 1 � εi � s.

A sequence x1, . . . , xm is an (ε1, . . . , εm)-superficial sequence for I1, . . . , Is if for i =
1, . . . ,m, x̄i is an εi-superficial element for Ī1, . . . , Īs , where x̄i , Ī1, . . . , Īs are the images
of xi, I1, . . . , Is in A/(x1, . . . , xi−1) [TV].

Then the relationship between (ε1, . . . , εm)-superficial sequences and weak-(FC)-
sequences is given by the following proposition.

PROPOSITION 4.4 (Proposition 4.3, DV). Let I1, . . . , Is be ideals in A. Let x ∈ A

be an ε-superficial element for I1, . . . , Is . Then x is a weak-(FC)-element with respect to
(I1, . . . , Is).

PROOF. Assume that x is an ε-superficial element for I1, . . . , Is . Without loss of gen-
erality, we may assume that ε = 1. Then(

I
n1+2
1 I

n2+1
2 · · · Ins+1

s : x
) ∩ I

n1
1 · · · Ins

s = I
n1+1
1 I

n2+1
2 · · · Ins+1

s (2)

for n1, . . . , ns � 0. (2) implies(
I

n1+2
1 I

n2+1
2 · · · Ins+1

s : x
) ∩ I

n1
1 I

n2+1
2 · · · Ins+1

s = I
n1+1
1 I

n2+1
2 · · · Ins+1

s (3)

for n1, . . . , ns � 0. We prove by induction on k � 2 that(
I

n1+k
1 I

n2+1
2 · · · Ins+1

s : x
) ∩ I

n1
1 I

n2+1
2 · · · Ins+1

s = I
n1+k−1
1 I

n2+1
2 · · · Ins+1

s (4)

for n1, . . . , ns � 0. The case k = 2 follows from (3). Assume now that(
I

n1+k
1 I

n2+1
2 · · · Ins+1

s : x
) ∩ I

n1
1 I

n2+1
2 · · · Ins+1

s = I
n1+k−1
1 I

n2+1
2 · · · Ins+1

s
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for n1, . . . , ns � 0. Then(
I

n1+k+1
1 I

n2+1
2 · · · Ins+1

s : x
) ∩ I

n1
1 I

n2+1
2 · · · Ins+1

s

= (
I

n1+k+1
1 I

n2+1
2 · · · Ins+1

s : x
) ∩ (

I
n1+k
1 I

n2+1
2 · · · Ins+1

s : x
) ∩ I

n1
1 I

n2+1
2 · · · Ins+1

s

= (
I

n1+k+1
1 I

n2+1
2 · · · Ins+1

s : x
) ∩ I

n1+k−1
1 I

n2+1
2 · · · Ins+1

s

= I
n1+k
1 I

n2+1
2 · · · Ins+1

s

for n1, . . . , ns � 0. The last equality is derived from (3). Hence the induction is complete
and we get (4). It follows that for n1, . . . , ns � 0,

(0 : x) ∩ I
n1
1 I

n2+1
2 · · · Ins+1

s

=
( ⋂

k�2

I
n1+k
1 I

n2+1
2 · · · Ins+1

s : x

)
∩ I

n1
1 I

n2+1
2 · · · Ins+1

s

=
( ⋂

k�2

(
I

n1+k
1 I

n2+1
2 · · · Ins+1

s : x
)) ∩ I

n1
1 I

n2+1
2 · · · Ins+1

s

=
⋂
k�2

((
I

n1+k
1 I

n2+1
2 · · · Ins+1

s : x
) ∩ I

n1
1 I

n2+1
2 · · · Ins+1

s

)

=
⋂
k�2

I
n1+k−1
1 I

n2+1
2 · · · Ins+1

s = 0 ,

that is, (0 : x) ∩ In = 0 for n � 0, here I = I1 · · · Is . Hence 0 : x ⊆ 0 : I∞. So x is

satisfies condition (FC2). Now we need to prove that I
n1
1 · · · Ins

s ∩ (x) = xI
n1−1
1 I

n2
2 · · · Ins

s

for n1, . . . , ns � 0. But this has from the proof of [Lemma 1.3, TV]. Hence x is a weak-
(FC)-element with respect to (I1, . . . , Is). �

REMARK 4.5. Assume that Q = (x1, . . . , xm), where x1, . . . , xm is an (ε1, . . . , εm)-
superficial sequence for J, I1, . . . , Is . Then x1, . . . , xm is a weak-(FC)-sequence with respect
to (J, I1, . . . , Is ) by Proposition 4.4. This fact proved that Theorem 4.3 covers a main result
of Trung and Verma [Theorem 1.4, TV]. Hence our main result covers the main results in [Vi]
and [TV].
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