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Abstract. We consider random walks on random graphs determined by a some kind of continuum percolation
on R. The vertex set of the random graph is given by the Poisson points conditioned that all points of Z are contained.
The edge set of the random graph is determined by the random radii of the spheres centered at each points. We give
heat kernel estimates for the random walks under the condition on the moment of the random radii. We will also
discuss random walks on continuum percolation clusters in Rd , d ≥ 2.

1. Introduction and Main results

There have been many studies on random walks on random graphs. The heat kernel
estimate for random walks on percolation clusters is one of the topics which have been well
studied. Among them, in [1], the detailed Gaussian heat kernel estimates are shown for the
random walks on the supercritical bond percolation clusters in Zd . For the studies on the
transition densities of the random walks on the critical percolation clusters in trees and other
graphs, see for example [3], [2]. Also, in [7], strongly recurrent random walks on random
media are discussed in some general settings, and as an application, on-diagonal heat kernel
estimates are given for the random walks on the long-range percolation clusters in Z. For the
heat kernel estimates on the long-range percolation clusters, see also [5]. In this paper, we
apply the argument in [7] to random walks on random graphs determined by a some kind of
continuum percolation on R, and give heat kernel estimates.

The continuum percolation (or the Poisson Boolean model) is a stochastic model given
by random points in Rd and spheres with random radii centered at each points. Two points x

and y are adjacent if the sphere centered at x and the sphere centered at y intersect; see Sub-
section 1.1 for more precise definitions. For the basic results on the continuum percolation,
see [8] and references therein. Among the previous works, in [9], the homogenization of the
reflecting Brownian motions in the continuum percolation clusters is shown. Also, in [10],
the type problem for the random walks on the continuum percolation clusters is studied.

Received August 27, 2009; revised February 10, 2010
Key words: Continuum percolation, Random walk, Heat kernel estimate, Effective resistance



2 JUN MISUMI

For the long-range percolation discussed in [7], one can observe a some kind of discon-
tinuity for a given parameter, and such a phenomenon appears if and only if d = 1. On the
other hand, for the continuum percolation, the picture is relatively simple for d = 1. But, it
seems that known results on random walks or diffusions on continuum percolation clusters are
not so many, especially in the case that the radii of the spheres are unbounded. In this sense,
the result of this paper for d = 1 may be a one attempt for further studies on such important
problems. In Section 3, we will also give a brief discussion for random walks on continuum
percolation clusters in Rd , d ≥ 2.

1.1. Random graphs determined by Continuum percolation. First, we define the
random graph Γ = (G,E) in the following way. Let {M = {mn}∞n=1, {rn}∞n=1} be the Poisson
Boolean model in R, arising from an underlying point process M = {mn}∞n=1 and random
radii {rn}∞n=1. Here, M is the Poisson points in R with intensity η ∈ [0,∞), conditioned that
there is a point at x for all x ∈ Z. Note that M = Z for η = 0, and M ⊃ Z for η > 0.
For any disjoint subsets A1, A2, . . . , Am ∈ B(R) satisfying Ai ∩ Z = ∅ and |Ai | < ∞ for
i = 1, 2, . . . ,m, the number of points in A1, . . . , Am are independent, and

P[�(M ∩ Ai) = n] = (η|Ai |)n
n! exp(−η|Ai |)

for 1 ≤ i ≤ m and n = 0, 1, 2, . . .. In the above, |Ai | is a one-dimensional Lebesgue measure
of Ai . Further, {rn}∞n=1 are i.i.d. random variables which take values in [0,∞), and also
independent of the underlying point process. The value of rn stands for the radius of the
sphere centered at mn. We define the vertex set G by G = M , and the edge set E by

E = {〈mi,mj 〉 : i 
= j, ri + rj ≥ |mi − mj |
}

.

Here, | · | stands for the Euclidean metric on R. In other words, two points mi and mj are
connected by a bond if and only if the intersection of two balls

{y ∈ R : |mi − y| ≤ ri} ,

{y ∈ R : |mj − y| ≤ rj }
is not empty. Here, we are considering bonds which are not oriented, and we identify 〈x, y〉
and 〈y, x〉. We denote Ω as the probability space on which Γ is defined, and denote P as
the corresponding probability measure. We denote E as the expectation under P. We write
ω to denote elements of Ω . We denote x ∼ y if 〈x, y〉 ∈ E. Let µxy be a {0, 1}-valued
random variable, which takes 1 if x ∼ y and takes 0 otherwise. We note µxy = µyx and
µxx = 0. Let µx = ∑

y∈G µxy be the number of the bonds which contain x. For A ⊂ G, set

µ(A) = ∑
x∈A µx . In Sections 1 and 2, we always assume the followings.

ASSUMPTION 1.1. There exists ε > 0 such that

E[rn1+ε] < ∞ , (1.1)
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and

P[rn ≥ 1/2] = 1 . (1.2)

REMARK 1.2. By (1.2), all points of G are in the same connected component since
G ⊃ Z. Moreover, by a direct calculation or by volume estimates which will be given in
Proposition 1.3, we have that µx < ∞ for all x ∈ G. Thus, under Assumption 1.1, Γ is an
infinite, connected, locally finite graph which contains the origin 0, almost surely.

1.2. Random walks on Continuum percolation clusters. Next, we define the ran-
dom walks on the continuum percolation clusters. Fix ω ∈ Ω . Let Γ = (G,E) be the random
graph constructed as in Subsection 1.1. Let X = (Xn, n ∈ Z+, P x, x ∈ G) be the discrete-
time simple random walk on Γ . This is the Markov process in which a particle at the point of
G jumps to one of the points connected by a bond with an equal probability. To define X, we
introduce the second probability space Ω̄ , and define X on the product Ω × Ω̄ . We write ω̄

to denote the element of Ω̄ . In the above, Px is the probability measure for the random walk
starting from x ∈ G. We write Ex as the expectation under Px .

The random walk X has transition probabilities

Px(X1 = y) = µx
−1 , y ∼ x .

For n ≥ 0 and x, y ∈ G, we define the transition density (or discrete-time heat kernel) of X

with respect to the reversible measure µ by

pn(x, y) = µy
−1Px(Xn = y) .

We have pn(x, y) = pn(y, x). Now, let

B(x,R) = {y ∈ G : |x − y| < R}
be the Euclidean ball with center x ∈ G and radius R > 0. We denote BR = B(0, R). We
define

τR = τB(0,R) = min{n ≥ 0 : Xn 
∈ BR} .

Further, let Yn = max0≤k≤n |Xk|, and for Wn = {X0,X1, . . . , Xn}, let Sn = µ(Wn) =∑
x∈Wn

µx . We will give several estimates for the random walk X in Theorem 1.4.

1.3. Main results. In this subsection, we state the main results of this paper. We will
use the notation ci as positive constants which depend on η and the distribution of rn. We note
that the values of ci ’s may change from line to line.

We call

V (x,R) = µ(B(x,R))

the volume of B(x,R). We denote VR = V (0, R). For f, g : G → R, we define a quadratic
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form E by

E(f, g) = 1
2

∑
x,y∈G

(f (x) − f (y))(g(x) − g(y))µxy .

Set H 2 = {f ∈ RG : E(f, f ) < ∞}. Let A, B be disjoint subsets of G. We define the
effective resistance between A and B by

Reff(A,B)−1 = inf{E(f, f ) : f ∈ H 2, f |A = 1, f |B = 0} .

We simply denote Reff(x, y) = Reff({x}, {y}). To obtain the heat kernel estimates, estimates
on the volumes and the effective resistances in the next proposition are essential.

PROPOSITION 1.3. (1) There exist λ0 > 1 and q0, c1 > 0 such that

P(R ∈ J (λ)) ≥ 1 − c1

λq0
for R ≥ 1, λ ≥ λ0 ,

where

J (λ) = {R ∈ [1,∞] : λ−1R ≤ VR ≤ λR,Reff(0, Bc
R) ≥ λ−1R,

Reff(0, y) ≤ λ|y|, ∀y ∈ BR} .

(2) E[Reff(0, Bc
R)VR] ≤ c2R

2.

Then, using Proposition 1.4 and Theorem 1.5 in [7], we have the followings.

THEOREM 1.4. (1) The following estimates hold:
c1R

2 ≤ E(E0
ωτR) ≤ c2R

2 for R ≥ 1 ,

c3n
−1/2 ≤ E(pω

2n(0, 0)) for n ≥ 1 , (1.3)

c4n
1/2 ≤ E(E0

ω|Xn|) for n ≥ 1 .

(2) There exist β1, β2, β3, β4 < ∞, and a subset Ω0 with P(Ω0) = 1 such that the following
statements hold.
(a) For each ω ∈ Ω0 and x ∈ G(ω), there exists Ux(ω) < ∞ such that

(log n)−β1n−1/2 ≤ pω
2n(x, x) ≤ (log n)β1n−1/2 , n ≥ Ux(ω) .

Especially, the random walk is recurrent.
(b) For each ω ∈ Ω0 and x ∈ G(ω), there exists Rx(ω) < ∞ such that

(log R)−β2R2 ≤ Ex
ωτR ≤ (log R)β2R2, R ≥ Rx(ω) .

(c) For each ω ∈ Ω0 and x ∈ G(ω), there exist Ux(ω,ω),Rx(ω,ω) such that Px
ω(Ux <

∞) = Px
ω(Rx < ∞) = 1, and

(log n)−β3n1/2 ≤ Yn(ω,ω) ≤ (log n)β3n1/2 , n ≥ Ux(ω,ω) ,
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(log R)−β4R2 ≤ τR(ω,ω) ≤ (log R)β4R2, R ≥ Rx(ω,ω) .

(d) For each ω ∈ Ω0 and x ∈ G(ω),

lim
n→∞

log Sn

log n
= 1

2
, P x

ω –a.s. .

REMARK 1.5. We define

Ĵ (λ) = {R ∈ [1,∞] : λ−1R ≤ VR ≤ λR ,Reff(0, Bc
R) ≥ λ−1R ,

Reff(0, y) ≤ |y|, ∀y ∈ BR} .

For η = 0, we can replace J (λ) by Ĵ (λ) in Proposition 1.3, and consequently, by Remark 1.6
(1) in [7], we have also

E(pω
2n(0, 0)) ≤ c5n

−1/2 for n ≥ 1 , (1.4)

which is the opposite side bound of (1.3). For η > 0, we do not have a proof of (1.4).

1.4. Additional remarks. Here, we give some additional comments.

REMARK 1.6. (1) If we consider the Poisson point process in R without the con-
dition that there is a point at x for all x ∈ Z, it is known that the random graph determined
by the one-dimensional continuum percolation is not locally finite if E[rn] = ∞, and that the
random graph has no connected component with infinite size if E[rn] < ∞. So, the condition
that G contains all points of Z is essential in the above discussions.

(2) In Assumption 1.1, the condition (1.1) is a little stronger than E[rn] < ∞. Whether
this condition can be weaken or not is a remaining problem.

EXAMPLE 1.7. Assume that the random variable rn is subject to the Pareto distribu-
tion, that is, its probability density function p(t) is as follows for given s > 0, t0 > 0;

p(t) =
{

0 t < t0 ,
s
t0

(
t0
t
)s+1 t ≥ t0 .

Then, for s > 1, t0 ≥ 1/2, Assumption 1.1 is satisfied and we have the heat kernel estimates.

REMARK 1.8. Let us consider the case η = 0 (i.e. G = Z). In Example 1.7, by a
simple calculation, we have

c1|x − y|−s ≤ P[µxy = 1] ≤ c2|x − y|−s (1.5)

for x, y ∈ Z. Recall that the random variable µxy is determined by the random radii of the
spheres centered at each points. On the other hand, the long-range percolation discussed in
[7] is a model in which the order of the connecting probabilities are as in (1.5), and {µxy} is
determined for each pair of two points x, y ∈ Z independently. In the long-range percolation,
the corresponding heat kernel estimates hold for s > 2. So, we can observe that the critical
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value of s becomes smaller in the continuum percolation because of the dependence of each
bonds.

We will give the proof of main results in Section 2.

2. Proof of Main results

2.1. Estimates on volumes and effective resistances. In this subsection, we state
the proof of Proposition 1.3. Let Γ = (G,E) be the random graph given in Section 1. For
each ω ∈ Ω , we define the random graph Γ1 = (G1, E1) in the following way. For x ∈ Z, let

Lx =



(x − 1, x] x ≥ 1 ,

{0} x = 0 ,

[x, x + 1) x ≤ −1 .

Note that R = ∪x∈ZLx , which is a disjoint union. We denote

Nx = �(G ∩ Lx) .

Note that {Nx}x∈Z are independent random variables, and Nx − 1 is subject to the Poisson
distribution with parameter η for x ∈ Z \ {0}, and N0 ≡ 1. For x ∈ Z, we define

ξx = 1 + sup{ri : mi ∈ Lx} ,

where {mn}∞n=1 and {rn}∞n=1 are the random points and the random radii given in Subsection
1.1.

LEMMA 2.1. Under Assumption 1.1, we have

sup
x∈Z

E[ξx
1+ε] < ∞ ,

where ε > 0 is the constant given in Assumption 1.1.

PROOF. By the definition, E[ξ0
1+ε] < ∞ is obvious. It is enough to show that

E[sup{ri : mi ∈ Lx}1+ε] < ∞
for x 
= 0. We have

E[sup{ri : mi ∈ Lx}1+ε] =
∞∑

k=1

P[Nx = k]E
[
sup{ri : mi ∈ Lx}1+ε|Nx = k

]

=
∞∑

k=1

P[Nx = k]E[sup{r1+ε
i : 1 ≤ i ≤ k}]

≤
∞∑

k=1

P[Nx = k]E
[

k∑
i=1

r1+ε
i

]
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=
∞∑

k=1

P[Nx = k]kE[r1
1+ε] = E[Nx]E[r1

1+ε] < ∞ .

So, the assertion holds. �

For each mn ∈ G, we define m̃n as follows. If mn > 0, let m̃n be the first integer which
is not smaller than mn. If mn ≤ 0, let m̃n be the last integer which is not larger than mn. We
set

r̃n = ξm̃n
.

Then, we define the graph Γ1 = (G1, E1) by G1 = G and

E1 = {〈mi,mj 〉 : i 
= j, r̃i + r̃j ≥ |m̃i − m̃j |
}
.

By the definition, Γ is a subgraph of Γ1.
Now, we consider the estimates on the volumes. The lower bound for VR is obvious,

because VR ≥ 2R − 1 for each ω. We show the upper bound for VR in the next lemma.

LEMMA 2.2. We have

P[VR ≤ λR] ≥ 1 − c1

λ
.

PROOF. Since P[VR ≥ λR] ≤ 1
λR

E[VR], it is enough to show that

E[VR] ≤ c2R . (2.1)

We denote ṼR for the volume corresponding to Γ1. Then, VR(ω) ≤ ṼR(ω) for each ω, and

ṼR ≤
R∑

x=−R

N2
x +

R∑
x=−R

Nx

∑
y∈Z\{x}

Ny1{〈x,y〉∈E1} .

Furthermore,

E

[
R∑

x=−R

N2
x

]
=

R∑
x=−R

E[N2
x ] ≤ c3R ,

and

E


 R∑

x=−R

Nx

∑
y∈Z\{x}

Ny1{〈x,y〉∈E1}


 =

R∑
x=−R

∑
y∈Z\{x}

E[NxNy1{〈x,y〉∈E1}]

≤
R∑

x=−R

∑
y∈Z\{x}

E[Np
x N

p
y ]1/p

P[〈x, y〉 ∈ E1]1/q
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=
R∑

x=−R

∑
y∈Z\{x}

c4P[〈x, y〉 ∈ E1]1/q .

We have used the Hölder inequality for p, q , such that 1 < q < 1 + ε, 1
p

+ 1
q

= 1, where

ε > 0 is the constant given in Assumption 1.1. By Lemma 2.1, note that

P[〈x, y〉 ∈ E1] = P[ξx + ξy ≥ |x − y|]

≤ P
[
ξx ≥ |x − y|

2

]
+ P

[
ξy ≥ |x − y|

2

]

≤ 21+ε

|x − y|1+ε
(E[ξx

1+ε] + E[ξy
1+ε])

≤ c5|x − y|−(1+ε) .

So,

R∑
x=−R

∑
y∈Z\{x}

c4P[〈x, y〉 ∈ E1]1/q ≤
R∑

x=−R

∑
y∈Z\{x}

c6|x − y|−(1+ε)/q ≤ c7R .

From these, (2.1) holds. �

Next, we would like to prove the lower bound for the effective resistance. Before this,
we prepare some technical tools.

LEMMA 2.3. There exists sufficiently small α > 0, such that

sup
x∈Z

E


( [γ ξx ]∑

k=1

NxNx−kk

)α


 < ∞,

for all γ ≥ 1. Here, [·] stands for the integer part.

PROOF. We prove the estimate for γ = 1. The general case can be proved by the same
way. For suitable α ∈ (0, 1], we have

E


( [ξx ]∑

k=1

NxNx−kk

)α


 ≤ E


(

sup{NxNx−k : 1 ≤ k ≤ [ξx]}
[ξx ]∑
k=1

k

)α




≤ E


( [ξx ]∑

k=1

NxNx−kc1ξ
2
x

)α



≤ c2E

[( ∞∑
k=1

1{ξx≥k}NxNx−k

)α

ξ2α
x

]
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≤ c2E

[ ∞∑
k=1

1{ξx≥k}(NxNx−k)
αξ2α

x

]

= c2

∞∑
k=1

E
[
1{ξx≥k}(NxNx−k)

αξ2α
x

]

≤ c2

∞∑
k=1

P[ξx ≥ k]1/uE[(NxNx−k)
αvξ2αv

x ]1/v

≤ c2

∞∑
k=1

(k−(1+ε)E[ξ1+ε
x ])1/uE[(NxNx−k)

αvξ2αv
x ]1/v ≡ I .

We have used the Hölder inequality for u, v, such that 1 < u < 1 + ε, 1 < v ≤ 1+ε
4α

,
1
u

+ 1
v

= 1. We can find such u, v, if we choose α satisfying 0 < α < ε/4. Furthermore,

(k−(1+ε)E[ξ1+ε
x ])1/u ≤ c3k

−(1+ε)/u ,

and

E[(NxNx−k)
αvξ2αv

x ] ≤ E[(NxNx−k)
2αv]1/2

E[ξ4αv
x ]1/2

≤ c4E[Nx
2αv]1/2E[Nx−k

2αv]1/2 ≤ c5 .

So, we have

I ≤ c6

∞∑
k=1

k−(1+ε)/u < ∞ .

�

Let Γ1 = (G1, E1) be the graph constructed as the above. For each ω ∈ Ω , we construct
the new weighted graph Γ2 = (G2, E2), by shorting all bonds of Γ1 which connect the points
in G1 ∩ Lx for each x ∈ Z. More precisely, we define G2 = Z,

E2 = {〈x, y〉 : x, y ∈ Z, x 
= y , ξx + ξy ≥ |x − y|} ,

and we set that each 〈x, y〉 ∈ E2 has a weight NxNy .
We have the following lemma.

LEMMA 2.4. For i ∈ Z, we define

Ai = {〈u, v〉 ∈ E2 : u, v ∈ Z, u < v, [u, v] ⊃ [i − 1, i]} .

Then, there exists sufficiently small β > 0 such that

sup
i∈Z

E


( ∑

〈u,v〉∈Ai

NuNv |u − v|
)β


 < ∞ .
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PROOF. For suitable β ∈ (0, 1], we have

E


( ∑

〈u,v〉∈Ai

NuNv |u − v|
)β




= E

[( i−1∑
u=−∞

∞∑
v=i

1{ξu+ξv≥|u−v|}NuNv |u − v|
)β

]

≤ E

[{ i−1∑
u=−∞

∞∑
v=i

(1{2ξu≥|u−v|} + 1{2ξv≥|u−v|})NuNv |u − v|
}β

]

≤ E


( ∞∑

x=i

1{2ξx≥x−i+1}
i−1∑

j=[x−2ξx ]
NxNj |x − j |

+
i−1∑

x=−∞
1{2ξx≥i−x}

[x+2ξx]∑
j=i

NxNj |x − j |
)β




≤ E


( ∞∑

x=i

1{2ξx≥x−i+1}
i−1∑

j=[x−2ξx ]
NxNj |x − j |

)β



+E


( i−1∑

x=−∞
1{2ξx≥i−x}

[x+2ξx]∑
j=i

NxNj |x − j |
)β




≡ J1 + J2

for each i ∈ Z. Then,

J1 ≤ E


 ∞∑

x=i

1{2ξx≥x−i+1}
( i−1∑

j=[x−2ξx]
NxNj |x − j |

)β




=
∞∑
x=i

E


1{2ξx≥x−i+1}

( i−1∑
j=[x−2ξx]

NxNj |x − j |
)β




≤
∞∑
x=i

E


1{2ξx≥x−i+1}

( [2ξx+1]∑
k=x−i+1

NxNx−kk

)β



≤
∞∑
x=i

P[2ξx ≥ x − i + 1]1/u′
E


( [2ξx+1]∑

k=x−i+1

NxNx−kk

)βv′



1/v′

≡ J3 .

We have used the Hölder inequality for u′, v′, such that 1 < u′ < 1 + ε, v′ = α
β

, 1
u′ + 1

v′ = 1,
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where α > 0 is the constant given in Lemma 2.3. We can find such u′, v′, if we choose β

satisfying 0 < β < αε
1+ε

. Then,

P[2ξx ≥ x − i + 1] ≤
(

2

x − i + 1

)1+ε

E[ξ1+ε
x ] ≤ c1(x − i + 1)−(1+ε) ,

and by Lemma 2.3,

E


( [2ξx+1]∑

k=x−i+1

NxNx−kk

)βv′

 ≤ E


( [2ξx+1]∑

k=1

NxNx−kk

)βv′

 ≤ c2 < ∞ .

So, J3 ≤ ∑∞
x=i c3(x − i + 1)−(1+ε)/u′ ≤ c4 < ∞. We can check J2 ≤ c5 < ∞ similarly. �

Now, we show the lower bound for the effective resistance.

PROPOSITION 2.5. There exist q > 0 and c1 > 0, such that

P[Reff(0, Bc
R) ≥ λ−1R] ≥ 1 − c1λ

−q ,

for all R ≥ 1.

PROOF. Let Γ2 = (G2, E2) be the weighted graph constructed as the above. Further,
for each ω ∈ Ω , we construct another weighted graph Γ3 = (G3, E3) from Γ2 = (G2, E2) in
the following way.

(1) If a bond 〈x, y〉 ∈ E2 such that x, y ∈ Z, x + 2 ≤ y exists, then, divide 〈x, y〉 into
y − x short bonds with weight NxNy(y − x).

(2) For each i = 1, . . . , y −x, replace the ith short bond by a bond which has x + i −1
and x + i as its endpoints and has a weight NxNy(y − x).

(3) Repeat (1), (2) for all bonds of E2 except nearest-neighbor bonds. We denote R̃eff

for the effective resistance corresponding to Γ3. By the way of construction, we can see that

R̃eff(0, R) =
R∑

i=1

( ∑
〈u,v〉∈Ai

NuNv |u − v|
)−1

.

We may consider under the case that BR is defined as a closed ball. Then, by the cutting law,
the effective resistance does not increase when we construct Γ1 from Γ . Moreover, by the
shorting law, the effective resistance does not increase when we construct Γ2 from Γ1 and
construct Γ3 from Γ2. Thus, for suitable q ∈ (0, 1],

E[Reff(0, Bc
R)

−q ] ≤ E[R̃eff(0, Bc
R)

−q ]
= E[{R̃eff(0, R)

−1 + R̃eff(0,−R)
−1}q ]

≤ E[R̃eff(0, R)
−q + R̃eff(0,−R)

−q ] = 2E[R̃eff(0, R)
−q ] .
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Furthermore,

E[R̃eff(0, R)
−q ] = E


{ R∑

i=1

( ∑
〈u,v〉∈Ai

NuNv |u − v|
)−1}−q




≤ R−q−1
R∑

i=1

E


( ∑

〈u,v〉∈Ai

NuNv |u − v|
)q


 ≤ c2R

−q .

We have used the Hölder inequality in the first inequality and Lemma 2.4 in the second in-
equality. We have taken q = β, where β > 0 is the constant given in Lemma 2.4. Hence,

P[Reff(0, Bc
R) ≤ λ−1R] ≤ λ−qRqE[Reff(0, Bc

R)
−q ] ≤ c3λ

−q ,

which completes the proof. �

Next, we see the upper bound for the effective resistance. For η = 0, it is obvious that
Reff(0, y) ≤ |y|, ∀y ∈ BR for each ω ∈ Ω . We consider the case η > 0.

LEMMA 2.6. For η > 0, we have

P[Reff(0, y) ≤ λ|y|, ∀y ∈ BR] ≥ 1 − c1

λ
.

PROOF. It is obvious that Reff(0, y) ≤ |y| + 1 for y ∈ BR ∩ (−1, 1)c. Also,

P[Reff(0, y) > λ|y|, ∃y ∈ BR ∩ (−1, 1)] ≤ P[1 > λ|y|, ∃y ∈ G ∩ (−1, 1) \ {0}]
≤ P

[
G ∩

(
− 1

λ
,

1

λ

)
\ {0} 
= ∅

]

= 1 − e−2η/λ ≤ 2η/λ .

So, the assertion holds. �

From Lemma 2.2, Proposition 2.5 and Lemma 2.6, we obtain Proposition 1.3 (1). More-
over, Proposition 1.3 (2) follows by (2.1) and the trivial bound Reff(0, Bc

R) ≤ R/2 which
holds for each ω ∈ Ω . We have proved Proposition 1.3.

2.2. Heat kernel estimates.

PROOF OF THEOREM 1.4. For the continuum percolation clusters in R, we have
shown suitable estimates on the volumes and the effective resistances in Proposition 1.3. So,
by using Proposition 1.4 and Theorem 1.5 in [7] (see also Proposition 3.5 and Theorem 3.6
in Appendix, which explain the corresponding assertions) with D = α = 1, we obtain the
desired results. Here, RD stands for the order of the volume VR , and Rα stands for the order
of the effective resistance Reff(0, Bc

R). �
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3. Discussion in High dimensional case

In Sections 1 and 2, we have considered random walks on continuum percolation clusters

in R. In this section, we discuss corresponding problems in Rd , d ≥ 2. We consider the
Poisson points M = {mn}∞n=1 with intensity η ∈ (0,∞), and i.i.d. random variables {rn}∞n=1
which take values in [0,∞) and also independent of the underlying point process. The value
of rn stands for the radius of the sphere centered at mn. Note that, unlike the case d = 1, we
do not need the condition that M contains all points of Zd . Then, we define the random graph
Γ = (G,E) as follows. Let the vertex set G = M , and the edge set

E = {〈mi,mj 〉 : i 
= j, ri + rj ≥ |mi − mj |Rd } .

The graph is locally finite when E[rnd ] < ∞. When Γ is locally finite and there exists an
∞-cluster, say, a connected subgraph of Γ which has infinitely many points, we will consider
the simple random walk on it. It is known that, almost surely, there is at most one ∞-cluster;
see Theorem 3.6 in [8]. Among the important problems, let us discuss the type problem
in the followings. For d = 1, we have shown in Theorem 1.4 that, under some technical
assumptions, the random walk is recurrent. For d ≥ 3, by analogy with the result of the bond
percolation, it seems natural that the random walk may be transient, though we need to check
carefully. The case d = 2 is most interesting. By using a result in [4], we obtain a partial
result as follows.

THEOREM 3.1. Let d = 2. Assume that there exists ε > 0 such that E[rn4+ε] < ∞.
We also assume that, almost surely, there exists an ∞-cluster under the Poisson Boolean
model. Then, almost surely, the random walk on the ∞-cluster is recurrent.

REMARK 3.2. In the bond percolation, it is shown that the random walk is transient if
and only if d ≥ 3 ([6]). In the long range percolation, it is shown that, for d = 1, the random
walk is transient if 1 < s < 2 and recurrent if s = 2, and for d = 2, the random walk is
transient if 2 < s < 4 and recurrent if s ≥ 4 ([4]). Here, the long range percolation is the
model in which each pair of distinct points x, y ∈ Zd is connected by a bond with probability
p(x, y) ∼ |x − y|Zd

−s , independently of other pairs. Let us return to the continuum percola-

tion. For d = 2, the case E[rn2] < ∞ and E[rn4+ε] = ∞ is still open. Is there any possibility
that the random walk becomes transient? Is the random walk always recurrent? It seems to be
an interesting problem.

PROOF OF THEOREM 3.1. For each x = (x1, x2) ∈ Z2, we define Lx = [x1, x1 +1)×
[x2, x2 + 1), and Nx = �{G ∩ Lx}. Note that {Nx}x∈Z2 are i.i.d. random variables subject to

the Poisson distribution with parameter η. Also, let ξx = √
2 + sup{ri : mi ∈ Lx}. If there

is no Poisson point in Lx , we set sup{ri : mi ∈ Lx} = 0. In the same way as the proof of

Lemma 2.1, E[rn4+ε] < ∞ implies E[ξx
4+ε] < ∞.

Now, we define a new graph Γ1 = (G1, E1). Let the vertex set G1 = Z2, and the edge
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set

E1 = {〈x, y〉 : x, y ∈ Z2, x 
= y, ξx + ξy ≥ |x − y|R2} .

For each 〈x, y〉 ∈ E1, we give a weight NxNy . In the same way as the calculation in the proof
of Lemma 2.2, we have

P[〈x, y〉 ∈ E1] ≤ c1|x − y|−(4+ε)

Z2 .

Next, we construct another graph Γ2 = (G2, E2) from Γ1 as follows. Let G2 = Z2. We
project the bonds of E1 to nearest-neighbor bonds of Z2 in the following way.

(1) If a bond 〈x, y〉 ∈ E1 such that x = (x1, x2), y = (y1, y2) ∈ Z2, |x − y|Z2 =
|x1 − y1| + |x2 − y2| ≥ 2 exists, then, erase the bond, and to each nearest-neighbor bond in
[(x1, x2), (x1, y2)] ∪ [(x1, y2), (x2, y2)] increase the weight by NxNy |x − y|Z2 .

(2) Repeat (1) for all bonds of E1 except nearest-neighbor bonds.
By the shorting law, the effective resistance does not increase in the procedures. Hence,

it is enough to show the recurrence of Γ2. In this way, we have reduced the original model to

the random conductance model in Z2.
Let µ0,1 be the weight of 〈0, 1〉 in Γ2. We have

E[µ0,1] = E

[∑
x,y

1{〈x,y〉∈E1}NxNy |x − y|Z2

]

=
∑
x,y

|x − y|Z2E[1{〈x,y〉∈E1}NxNy]

≤
∑
x,y

|x − y|Z2P[〈x, y〉 ∈ E1]1/pE[(NxNy)q ]1/q

≤ c2

∑
x,y

|x − y|1−(4+ε)/p

Z2 ≤ c3

∞∑
n=1

n3−(4+ε)/p < ∞.

In the above, the summation is taken over all x = (x1, x2), y = (y1, y2) ∈ Z2 satisfying
〈0, 1〉 ∈ [(x1, y2), (y1, y2)]. We have used the Hölder inequality for p, q , such that 1 < p <

1 + ε
4 , 1

p
+ 1

q
= 1. Thus, µ0,1 has the Cauchy tail. In other words, there exists c4 > 0, such

that P[µ0,1 > c4n] ≤ 1
n

holds for all n ∈ N. Also, we note that the weights of the bonds in
Γ2 are identically distributed and stationary. So, by Theorem 3.9 in [4], we have that Γ2 is
recurrent, and the result follows. �

Appendix: Heat kernel estimates for strongly recurrent random walks on random
graphs

In this appendix, we overview some of the results in [7] for strongly recurrent random
walks on general random graphs. We consider a probability space (Ω,F , P) carrying a family
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of random graphs Γ (ω) = (G(ω),E(ω), ω ∈ Ω). Here, G is the vertex set and E is the edge
set. Assume that the graph is infinite, locally finite, connected, and contains a marked vertex
0 ∈ G. For x ∈ G, let µx be the number of bonds that contain x. We extend µ to a measure
on G. Let d(·, ·) be a metric on G. We write B(x,R) for the ball with center x ∈ G and
radius R > 0 under the metric d . Let V (x,R) = µ(B(x,R)) be the volume of the ball. We
denote BR = B(0, R), VR = V (0, R). Further, we write X = (Xn, n ≥ 0, P x, x ∈ G)

for the discrete-time simple random walk on Γ . For n ≥ 0 and x, y ∈ G, we define the

transition density of X with respect to µ by pn(x, y) = µy
−1Px(Xn = y). We also define

τR = min{n ≥ 0 : Xn 
∈ BR}. To define X, we introduce a second measure space (Ω,F),

and define X on the product Ω × Ω . We write ω to denote elements of Ω . Let Reff(A,B) be
the effective resistance between A and B, which are disjoint subsets of G.

Let v, r : N → [0,∞) be strictly increasing functions with v(1) = r(1) = 1 which
satisfy

C−1
1

( R

R′
)d1 ≤ v(R)

v(R′)
≤ C1

( R

R′
)d2

, C−1
2

( R

R′
)α1 ≤ r(R)

r(R′)
≤ C2

( R

R′
)α2

(3.1)

for all 0 < R′ ≤ R < ∞, where C1, C2 ≥ 1, 1 ≤ d1 ≤ d2 and 0 < α1 ≤ α2 ≤ 1. For
convenience, set v(0) = r(0) = 0, v(∞) = r(∞) = ∞ and extend them to v, r : [0,∞] →
[0,∞] such that v, r are continuous, strictly increasing, and satisfy (3.1).

DEFINITION 3.3. Let Γ = (G,E) be as above. For λ > 1, define

J (λ) = {R ∈ [1,∞] : λ−1v(R) ≤ VR ≤ λv(R) ,Reff(0, Bc
R) ≥ λ−1r(R) ,

Reff(0, y) ≤ λr(d(0, y)), ∀y ∈ BR} .

As we see, v(·) gives the volume growth order, and r(·) gives the resistance growth order.
We now make the following assumptions concerning the graphs (Γ (ω)).

ASSUMPTION 3.4. (1) There exist λ0 > 1 and p(λ) which goes to 0 as λ → ∞
such that

P(R ∈ J (λ)) ≥ 1 − p(λ) for R ≥ 1 , λ ≥ λ0 .

(2) E[Reff(0, Bc
R)VR] ≤ c1v(R)r(R).

(3) There exist q0, c2 > 0 such that

p(λ) ≤ c2

λq0
.

We have the following consequences of Assumption 3.4 for random graphs. Let I(·) be
the inverse function of (v · r)(·).

PROPOSITION 3.5. Suppose that Assumption 3.4(1) and (2) hold. Then,

c1v(R)r(R) ≤ E(E0
ωτR) ≤ c2v(R)r(R) for R ≥ 1 ,

c3

v(I(n))
≤ E(pω

2n(0, 0)) for n ≥ 1 ,



16 JUN MISUMI

c4I(n) ≤ E(E0
ωd(0,Xn)) for n ≥ 1 .

THEOREM 3.6. Suppose that Assumption 3.4(1) and (3) hold. Then, there exist
β1, β2, β3, β4 < ∞, and a subset Ω0 with P(Ω0) = 1 such that the following statements
hold.
(a) For each ω ∈ Ω0 and x ∈ G(ω), there exists Nx(ω) < ∞ such that

(log n)−β1

v(I(n))
≤ pω

2n(x, x) ≤ (log n)β1

v(I(n))
, n ≥ Nx(ω) .

(b) For each ω ∈ Ω0 and x ∈ G(ω), there exists Rx(ω) < ∞ such that

(log R)−β2v(R)r(R) ≤ Ex
ωτR ≤ (log R)β2v(R)r(R), R ≥ Rx(ω) .

(c) Let Yn = max0≤k≤n d(0,Xk). For each ω ∈ Ω0 and x ∈ G(ω), there exist
Nx(ω,ω),Rx(ω,ω) such that Px

ω (Nx < ∞) = Px
ω(Rx < ∞) = 1, and

(log n)−β3I(n) ≤ Yn(ω,ω) ≤ (log n)β3I(n) , n ≥ Nx(ω,ω) ,

(log R)−β4v(R)r(R) ≤ τR(ω,ω) ≤ (log R)β4v(R)r(R), R ≥ Rx(ω,ω) .

Suppose further that v, r satisfy the followings in addition to (3.1);
C−1

3 RD(log R)−m1 ≤ v(R) ≤ C3R
D(log R)m1 ,

C−1
4 Rα(log R)−m2 ≤ r(R) ≤ C4R

α(log R)m2 ,

where C3, C4 ≥ 1, D ≥ 1, 0 < α ≤ 1 and m1,m2 > 0. Then, the following statements hold.

(a) ds(G) := −2 limn→∞
log pω

2n(x,x)

log n
= 2D

D+α
, P–a.s., and the random walk is recur-

rent.

(b) limR→∞ log Ex
ωτR

log R
= D + α.

(c) Let Wn = {X0,X1, . . . , Xn} and let Sn = µ(Wn) = ∑
x∈Wn

µx . For each ω ∈ Ω0

and x ∈ G(ω),

lim
n→∞

log Sn

log n
= D

D + α
, P x

ω –a.s. .
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