
TOKYO J. MATH.
VOL. 33, NO. 2, 2010

Moderate Killing Helices of Proper Order Four
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Toshiaki ADACHI

Nagoya Institute of Technology

(Communicated by M. Guest)

Abstract. In this paper we study Killing helices, which are helices generated by Killing vector fields, of order
4 on a complex projective space whose first and third geodesic curvatures coincide. We construct a natural foliation
structure on the set of all congruence classes of these helices. Our study shows that the moduli space of circles is
canonically embedded into the moduli space of Killing helices of proper order 4 on a complex projective space.

1. Introduction

A smooth curve γ parameterized by its arclength on a Riemannian manifold M is said
to be a helix of proper order d if it satisfies the following system of ordinary differential
equations

(1.1) ∇γ̇ Yj = −κj−1Yj−1 + κjYj+1 , 1 � j � d ,

with positive constants κ1, . . . , κd−1 and an orthonormal system {Y1 = γ̇ , Y2, . . . , Yd } of
vector fields along γ . Here we set κ0 = κd = 0 and Y0, Yd+1 to be null vector fields along
γ . These constants κ1, . . . , κd−1 and the frame field {Y1, . . . , Yd} are called the geodesic
curvatures and Frenet frame of γ , respectively. Helices of proper order 1 are geodesics and
helices of proper order 2 are called circles of positive geodesic curvature.

On real space forms, which are standard spheres, Euclidean spaces and real hyperbolic
spaces, it is well-known that all helices are generated by some Killing vector fields on them.
But on non-flat complex space forms, which are complex projective spaces and complex hy-
perbolic spaces, the situation is not the same. Helices on a Kähler manifold (M, J ) with
complex structure J have another important character. For a helix γ of proper order d on
(M, J ), we define its complex torsions by τij = 〈Yi , JYj 〉 for 1 ≤ i < j ≤ d . It is known
that a helix on a complex space form is generated by some Killing vector field if and only if
all its complex torsions are constant (cf. [9]). We shall call such helices Killing. In this paper
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we study a special kind of Killing helices of proper order 4 on a complex projective space
whose first and the third geodesic curvatures coincide.

The reason why we focus on such helices of proper order 4 is our interest in the structure
of the moduli space of Killing helices. Two smooth curves γ1, γ2 on a Riemannian manifold
M parameterized by their arclength are said to be congruent to each other if there exist an
isometry ϕ of M and a constant t0 satisfying γ2(t) = ϕ ◦γ1(t + t0) for all t . The set Kd (M) of
all congruence classes of Killing helices of proper order d on M is called their moduli space.
On a real space form RMn, helices are classified by their geodesic curvatures, and hence the

moduli spaces are K1(RMn) = {0} and Kd(RMn) = (0,∞)d−1, the (d−1)-product of half
lines, for d ≥ 2. We may hence say that they form a “building structure”. On the other hand,
on a non-flat complex space form CMn circles of positive geodesic curvature are classified
by their geodesic curvature and complex torsion, hence their moduli space K2(CMn) is set
theoretically bijective to the band (0,∞)×[0, 1]. But as we see in [2], from the view point
of length spectrum, it is better to consider that it is a disjoint union of the moduli space
EK2(CMn) ∼= (0,∞) of non-geodesic circles of complex torsion ±1 and the moduli space
K2(CMn)\EK2(CMn) ∼= (0,∞)×[0, 1) of other non-geodesic circles. Also, if one carefully
reads [8], one finds that the moduli spaces of Killing helices do not form a “building structure”
in a trivial sense. In section 2, we study the moduli spaces K3(CMn) and K4(CMn) from a
set-theoretical point of view, and make clear the above property.

But if we restrict ourselves to helices on a complex projective or hyperbolic plane CM2,

it seems the moduli spaces EK2(CM2),K3(CM2) and K4(CM2) form a “building structure”.

Therefore it is necessary to interpret the position of K2(CM2) \ EK2(CM2) in this “build-
ing structure”. It is known that circles of complex torsion ±1 induces canonical dynamical
systems on the unit tangent bundle, which are called Kähler magnetic flows (see [1]). In-
spired by this fact, we consider moderate Killing helices of proper order 4 on a complex
projective space. They are helices with complex torsions τ12 = τ13 = τ24 = τ34 = 0 and
τ23 = −τ14 = ±1. Since we are interested in the structure of moduli space of helices from
the viewpoint of the length spectrum, and as the length spectrum on a complex projective
space CPn and that on a complex hyperbolic space CHn are different, we restrict ourselves

to CPn in sections 3 and 4. We construct a canonical embedding of K2(CP 2) \ EK2(CP 2)

into K4(CP 2) whose image is in the moduli space of moderate Killing helices. This gives
an explanation for the structure of moduli spaces of Killing helices on CPn. This also clari-
fies Chen-Maeda’s result on helices of 2-type. In their paper [7], they study curves on CPn

through the first standard minimal embedding of CPn and characterize totally real circles (i.e.
circles with τ12 = 0) and a special kind of helices of proper order 4. The moduli of the latter
is the image of the moduli of the former through our embedding.

The author is grateful to the referee who read this paper very carefully.
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2. Killing helices on a complex space form

We shall start by reviewing Killing helices on a non-flat complex space form CMn, which
is either CPn or CHn. By the equation (1.1), we see that their complex torsions satisfy

τ ′
ij = −κi−1τi−1j + κiτi+1j − κj−1τij−1 + κj τij+1 ,

where we set τ0k = τkk = τkd+1 = 0. Since a helix on CMn is Killing if and only if all its
complex torsions are constant functions ([9]), we find that all circles are Killing but helices of
proper order greater than 2 are not necessarily Killing. Moreover, as we have to choose the
Frenet frame to be orthonormal, the degree of freedom for choosing the initial frame depends
on the complex dimension of the base manifold. According to [8] we have the following
results.

PROPOSITION 1. We consider a helix of proper order 3 on CMn.
(1) When n ≥ 3, it is Killing if and only if its geodesic curvatures and complex torsions

satisfy κ1τ23 = κ2τ12, τ13 = 0, |τ12| ≤ κ1

/√
κ2

1 + κ2
2 .

(2) When n = 2, it is Killing if and only if its geodesic curvatures and complex torsions
satisfy

τ12 = ± κ1√
κ2

1 + κ2
2

, τ13 = 0, τ23 = ± κ2√
κ2

1 + κ2
2

,

where double signs take the same signatures.

It is known that two helices on a complex space form are congruent to each other if
and only if they are of the same proper order, have the same series of geodesic curvatures

and their series of complex torsions τ
(1)
ij , τ

(2)
ij satisfy either τ

(1)
ij (t0) = τ

(2)
ij (0) for all (i, j) or

τ
(1)
ij (t0) = −τ

(2)
ij (0) for all (i, j) at some point t0 (see [9]). Thus the moduli space K3(CMn)

of Killing helices of proper order 3 is bijective to the following sets according to whether
n ≥ 3 or n = 2:

{
(κ1, κ2, τ12) ∈ (0,∞) × (0,∞) × [0, 1)

∣∣∣ τ12 ≤ κ1

/√
κ2

1 + κ2
2

}
, n ≥ 3 ,

(0,∞) × (0,∞), n = 2 .

PROPOSITION 2. We consider a helix of proper order 4 on CMn.
(1) If it is Killing, then its geodesic curvatures and complex torsions satisfy

κ1τ23 + κ3τ14 = κ2τ12, κ1τ14 + κ3τ23 = κ2τ34, τ13 = τ24 = 0.

(2) In particular, when n = 2, it is Killing if and only if its geodesic curvatures and
complex torsions satisfy one of the following:

i) τ12 = τ34 = ± κ1 + κ3√
κ2

2 + (κ1 + κ3)2
, τ23 = τ14 = ± κ2√

κ2
2 + (κ1 + κ3)2

,

τ13 = τ24 = 0,
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ii) τ12 = −τ34 = ± κ1 − κ3√
κ2

2 + (κ1 − κ3)2
, τ23 = −τ14 = ± κ2√

κ2
2 + (κ1 − κ3)2

,

τ13 = τ24 = 0.

In each of the above conditions double signs take the same signatures.

Thus the moduli space K4(CMn) of Killing helices of proper order 4 is a subset of

(0,∞)3 × [−1, 1]2. When n = 2, we can consider this moduli space as K4(CM2) =
(0,∞)2 × (R \ {0}). Here, for a point (x1, x2, x3) ∈ K4(CM2) ⊂ R3 with x3 > 0 it corre-
sponds to the congruence class of Killing helices with geodesic curvatures x1, x2, x3 and com-

plex torsions in the condition (2-i) in Proposition 2, and for a point (x1, x2, x3) ∈ K4(CM2)

with x3 < 0 it corresponds to the congruence class of Killing helices with geodesic curva-
tures x1, x2, x3 and complex torsions in the condition (2-ii) in Proposition 2. Thus from the

set theoretical point of view, these K3(CM2) and K4(CM2) are compatible with each other.
We here consider the moduli space K4(CMn) for the case n ≥ 3. When n ≥ 3, a helix

of proper order 4 is Killing if and only if its complex torsions satisfy τ13 = τ24 = 0,

(2.1)

{
κ1τ23 + κ3τ14 = κ2τ12 ,

κ3τ23 + κ1τ14 = κ2τ34

and

τ 2
12 + τ 2

14 ≤ 1 , τ 2
12 + τ 2

23 ≤ 1 , τ 2
23 + τ 2

34 ≤ 1 , τ 2
14 + τ 2

34 ≤ 1 .

We hence need to solve the simultaneous system of linear equations (2.1) under the conditions
that

(2.2)

|τ23| ≤ min

(√
1 − τ 2

12,

√
1 − τ 2

34

)
, |τ12| ≤ 1 ,

|τ14| ≤ min

(√
1 − τ 2

12,

√
1 − τ 2

34

)
, |τ34| ≤ 1 .

When κ1 = κ3, (2.1) has solutions on τ23 and τ14 satisfying τ23 + τ14 = (κ2/κ1)τ12 if and
only if τ12 = τ34. Considering the conditions (2.2), we find that (2.1) has the desired solutions
if and only if one of the following conditions holds:

i) 0 ≤ τ12 = τ34 < 1 and (κ2/κ1)τ12 −
√

1 − τ 2
12 ≤ τ23, τ14 ≤

√
1 − τ 2

12,

ii) −1 < τ12 = τ34 < 0 and −
√

1 − τ 2
12 ≤ τ23, τ14 ≤ (κ2/κ1)τ12 +

√
1 − τ 2

12.

In particular, we have |τ12| ≤ 2κ1

/√
4κ2

1 + κ2
2 . When κ1 �= κ3, the system of equations (2.1)

on τ23 and τ14 has a unique pair of solutions. By the inequalities (2.2), we have to choose τ12
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and τ34 so that they satisfy

(2.3)

|κ1τ12 − κ3τ34| ≤ |κ2
1 − κ2

3 |
κ2

× min

(√
1 − τ 2

12,

√
1 − τ 2

34

)
, |τ12| < 1 ,

| − κ3τ12 + κ1τ34| ≤ |κ2
1 − κ2

3 |
κ2

× min

(√
1 − τ 2

12,

√
1 − τ 2

34

)
, |τ34| ≤ 1 .

Since these inequalities are symmetric with respect to τ12 and τ34, we only treat the case
|τ12| ≥ |τ34|. In this case the inequalities (2.3) turn to

κ3

κ1
τ12 − |κ2

1 − κ2
3 |

κ1κ2

√
1 − τ 2

12 ≤ τ34 ≤ κ3

κ1
τ12 + |κ2

1 − κ2
3 |

κ1κ2

√
1 − τ 2

12 ,

κ1

κ3
τ12 − |κ2

1 − κ2
3 |

κ2κ3

√
1 − τ 2

12 ≤ τ34 ≤ κ1

κ3
τ12 + |κ2

1 − κ2
3 |

κ2κ3

√
1 − τ 2

12 ,

Comparing both left and right sides of these inequalities with ±τ12, we obtain the following.
1) When κ1 > κ3,

i) if |τ12| ≤ (κ1−κ3)
/√

(κ1−κ3)2 + κ2
2 , then |τ34| ≤ |τ12|,

ii) if (κ1 −κ3)
/√

(κ1−κ3)2 + κ2
2 < τ12 ≤ (κ1 +κ3)

/√
(κ1+κ3)2 + κ2

2 , then

(κ1/κ3)τ12 −
(

(κ2
1 −κ2

3 )

√
1 − τ 2

12

)/
(κ2κ3) ≤ τ34 ≤ τ12,

iii) if −(κ1+κ3)
/√

(κ1+κ3)2 + κ2
2 ≤ τ12 < −(κ1−κ3)

/√
(κ1−κ3)2 + κ2

2 , then

τ12 ≤ τ34 ≤ (κ1/κ3)τ12 +
(

(κ2
1 −κ2

3 )

√
1 − τ 2

12

)/
(κ2κ3),

iv) if |τ12| ≥ (κ1+κ3)
/√

(κ1+κ3)2 + κ2
2 , then no τ34 satisfies (2.3).

2) When κ1 < κ3,

i) if |τ12| ≤ (κ3−κ1)
/√

(κ1−κ3)2 + κ2
2 , then |τ34| ≤ |τ12|,

ii) if (κ3 −κ1)
/√

(κ1−κ3)2 + κ2
2 < τ12 ≤ (κ1 +κ3)

/√
(κ1+κ3)2 + κ2

2 , then

(κ3/κ1)τ12 −
(

(κ2
3 −κ2

1 )

√
1 − τ 2

12

)/
(κ2κ3) ≤ τ34 ≤ τ12,

iii) if −(κ1+κ3)
/√

(κ1+κ3)2 + κ2
2 ≤ τ12 < −(κ3−κ1)

/√
(κ1−κ3)2 + κ2

2 , then

τ12 ≤ τ34 ≤ (κ3/κ1)τ12 +
(

(κ2
3 −κ2

1 )

√
1 − τ 2

12

)/
(κ2κ3),

iv) if |τ12| ≥ (κ1+κ3)
/√

(κ1+κ3)2 + κ2
2 , then no τ34 satisfies (2.3).

We have to note one more thing: If {τij } satisfy the desired conditions, then so do {−τij }.
Thus we can conclude the following:
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PROPOSITION 3. When n ≥ 3, the moduli space K4(CMn) is set theoretically bijec-
tive to the set

⋃
K∈(0,∞)3{K} × DK , where the set DK(⊂ [−1, 1]2) for K = (κ1, κ2, κ3) ∈

(0,∞)3 is given as follows:
i) When κ1 > κ3,

DK =
{
(τ12, τ34)

∣∣∣∣ |τ34| ≤ τ12, 0 ≤ τ12 ≤ κ1−κ3√
(κ1−κ3)2+κ2

2

}

⋃
(τ12, τ34)

∣∣∣∣∣∣∣∣∣
κ1

κ3
τ12 − κ2

1 −κ2
3

κ2κ3

√
1 − τ 2

12 ≤ τ34 ≤ τ12

κ1−κ3√
(κ1−κ3)2+κ2

2

≤ τ12 ≤ κ1+κ3√
(κ1+κ3)2+κ2

2


⋃{

(τ12, τ34)

∣∣∣∣ |τ12| ≤ τ34, 0 ≤ τ34 ≤ κ1−κ3√
(κ1−κ3)2+κ2

2

}

⋃
(τ12, τ34)

∣∣∣∣∣∣∣∣∣
κ1

κ3
τ34 − κ2

1 −κ2
3

κ2κ3

√
1 − τ 2

34 ≤ τ12 ≤ τ34

κ1−κ3√
(κ1−κ3)2+κ2

2

≤ τ34 ≤ κ1+κ3√
(κ1+κ3)2+κ2

2

 ,

ii) when κ1 < κ3

DK =
{
(τ12, τ34)

∣∣∣∣ |τ34| ≤ τ12, 0 ≤ τ12 ≤ κ3−κ1√
(κ1−κ3)2+κ2

2

}

⋃
(τ12, τ34)

∣∣∣∣∣∣∣∣∣
κ3

κ1
τ12 − κ2

3 −κ2
1

κ2κ3

√
1 − τ 2

12 ≤ τ34 ≤ τ12

κ3−κ1√
(κ1−κ3)2+κ2

2

≤ τ12 ≤ κ1+κ3√
(κ1+κ3)2+κ2

2


⋃{

(τ12, τ34)

∣∣∣∣ |τ12| ≤ τ34, 0 ≤ τ34 ≤ κ3−κ1√
(κ1−κ3)2+κ2

2

}

⋃
(τ12, τ34)

∣∣∣∣∣∣∣∣∣
κ3

κ1
τ34 − κ2

3 −κ2
1

κ1κ2

√
1 − τ 2

34 ≤ τ12 ≤ τ34

κ3−κ1√
(κ1−κ3)2+κ2

2

≤ τ34 ≤ κ1+κ3√
(κ1+κ3)2+κ2

2

 ,
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FIGURE 1. DK in the cases i), ii) FIGURE 2. DK in the case iii)

iii) when κ1 = κ3,

DK =

(τ12, τ23)

∣∣∣∣∣∣∣∣
−τ12 ≤ τ23 ≤ κ2

κ1
τ12 +

√
1 − τ 2

12 ,

0 > τ12 ≥ − 2κ1√
4κ2

1 + κ2
2


⋃(τ12, τ23)

∣∣∣∣∣∣∣∣
−τ12 ≤ τ23 ≤

√
1 − τ 2

12 ,

0 ≤ τ12 ≤ κ1√
(κ1+κ2)2+κ2

1


⋃(τ12, τ23)

∣∣∣∣∣∣∣∣
κ2

κ1
τ12 +

√
1 − τ 2

12 ≤ τ23 ≤
√

1 − τ 2
12 ,

κ1√
(κ1+κ2)2+κ2

1

≤ τ12 ≤ 2κ1√
4κ2

1 + κ2
2

 .

In view of these results, it seems that in the case n ≥ 3 the moduli space K3(CMn) is not
compatible with K4(CMn) even from set theoretical point of view. We shall hence classify
Killing helices on CMn.

We shall call a helix of proper order 2d − 1 or 2d on CMn essential if it lies on some
totally geodesic CMd . A circle γ is essential if and only if its complex torsion is ±1. Such
a circle is interpreted as a trajectory for a Kähler magnetic field (cf. [1]). If we denote by
EKd(CMn) the moduli space of essential Killing helices of proper order d , we see

EK1(CMn) ∼= {0} , EK2(CMn) ∼= (0,∞) ,

EK3(CMn) ∼= (0,∞)2 , EK4(CMn) ∼= (0,∞)2 × (R \ {0}) .

and we may say that they form a “building structure”. As we may consider the moduli spaces
of essential Killing helices form “frames” of the moduli spaces of Killing helices, we are
interested in non-essential parts, especially on K2(CMn) \ EK2(CMn) ∼= (0,∞) × [0, 1).
For this sake we need to investigate some geometric properties of essential Killing helices.
Since it is not easy to treat all of them, it is better to restrict ourselves within some special
kind of Killing helices of proper order 4. In view of Proposition 2 we find that complex
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torsions of essential Killing helices of proper order 4 take extremum value when κ1 = κ3

under the condition (2-ii) in Proposition 2; τ12 = τ34 = 0 and τ23 = −τ14 = ±1. In this
case their Frenet frames satisfy Y3 = ∓JY2, Y4 = ±J γ̇ . Inspired by trajectories for Kähler
magnetic fields, we shall consider these helices. We shall call such helices of proper order 4
moderate. In the following sections we focus on moderate Killing helices of proper order 4.

3. Moderate Killing helices of proper order four

From now on we restrict ourselves on helices to a complex projective space CPn. In this
section we study when moderate Killing helices on CPn are closed. We call a smooth curve
γ parameterized by its arc-length closed if there is a positive tc with γ (t + tc) = γ (t) for
all t . The minimum positive tc with this property is called the length of γ and is denoted by
length(γ ). When γ is not closed, we say it is open and set length(γ ) = ∞. We denote by
CPn(c) a complex projective space of constant holomorphic sectional curvature c. Since we
treat lengths of closed helices, we need to study CPn(c). But for the sake of simplicity, we
study the case c = 4 first.

THEOREM 1. On CPn(4), a moderate Killing helix of proper order 4 with geodesic
curvatures κ1, κ2, κ1 satisfies the following properties.

(1) If 9κ2
1 + 2κ2

2 = 18, then it is closed and has length 2
√

2π
/√

8 − κ2
1 .

(2) If 9κ2
1 + 2κ2

2 �= 18, then it is closed if and only if

κ2|9κ2
1 + 2κ2

2 − 18|
2(3κ2

1 + κ2
2 + 3)3/2

= q(9p2 − q2)

(3p2 + q2)3/2

for some relatively prime integers p, q with p > q > 0. In this case its length

is given as πδ(p, q)

√
(3p2 + q2)/(3κ2

1 + κ2
2 + 3), where δ(p, q) = 1 when the

product pq is odd and δ(p, q) = 2 when the product pq is even.

Since Frenet frame of a moderate Killing helix γ of proper order 4 satisfies Y3 =
±JY2, Y4 = ∓J γ̇ , its system of ordinary differential equations is reduced to

(3.1)

{ ∇γ̇ γ̇ = κ1Y2 ,

∇γ̇ Y2 = −κ1γ̇ ± κ2JY2 .

In order to study Killing helices, it is a basic idea to use a Hopf fibration � : S2n+1(1) →
CPn(4). We take a horizontal lift γ̂ on S2n+1(1) of a moderate Killing helix γ on CPn(4)

and regard it as a curve in Cn+1. The Riemannian connections ∇ on CPn(4) and ∇ on Cn+1

are related by the formula

(3.2) ∇XY = ∇XY + 〈X, JY 〉JN − 〈X,Y 〉N
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for vector fields X,Y on CPn(4), which are identified with horizontal vector fields on
S2n+1(1). Here N denotes the outward unit normal of S2n+1 in Cn+1 and J also denotes
the complex structure on Cn+1. Therefore the equations (3.1) turn to ∇ ˙̂γ ˙̂γ = κ1Y2 − N ,

∇ ˙̂γ Y2 = −κ1
˙̂γ ± κ2JY2 ,

which is equivalent to

(3.3)
d3γ̂

dt3 ∓ √−1 κ2
d2γ̂

dt2 + (κ2
1 + 1)

dγ̂

dt
∓ √−1 κ2γ̂ = 0 ,

where the double signs take the same signature.
In order to prove Theorem 1, we need to recall our study on circles on CPn(4) in [5]. Let

σ be a circle on CPn(4) of geodesic curvature 1/
√

2 and complex torsion τ (0 ≤ |τ | < 1). By

use of (3.2) we find a horizontal lift σ̂ of σ with respect to a Hopf fibration � : S2n+1(1) →
CPn(4) satisfies σ̂ ′′′ + (3/2) σ̂ ′ − √−1 (τ/

√
2) σ̂ = 0 as a curve in Cn+1. Its characteristic

equation λ3 + (3/2)λ − √−1τ/
√

2 = 0 should have three distinct pure imaginary solutions.

By putting λ = √−1 θ , we denote by aτ , bτ and dτ the solutions of

(3.4) θ3 − (3/2) θ + (τ/
√

2) = 0

satisfying aτ < bτ < dτ .

PROPOSITION 4 ([5]). Let σ be a circle on CPn(4) of geodesic curvature 1/
√

2 and
complex torsion τ (0 ≤ |τ | < 1).

(1) If τ = 0, then it is closed and has length 2
√

6π/3.
(2) If one of (hence all of) the ratios aτ/bτ , bτ /dτ , dτ /aτ is (are) rational, it is closed

and has length 2π×L.C.M.{(bτ −aτ )
−1, (dτ −aτ )

−1}, where L.C.M(α, β) denotes
the least common multiple of α and β.

(3) It is closed if and only if τ = ±q(9p2 − q2)(3p2 + q2)−3/2 with some relatively
prime integers p, q satisfying p > q > 0. In this case its length is given as

(
√

2/3)πδ(p, q)
√

3p2 + q2 by use of δ(p, q) given in Theorem 1.

We are now in a position to prove Theorem 1. The characteristic equation for (3.3) is

λ3 ∓ √−1 κ2λ
2 + (κ2

1 + 1)λ ∓ √−1 κ2 = 0 ,

which should have three distinct pure imaginary solutions. If we put λ = √−1(Λ ± (κ2/3)),
it becomes

(3.5) Λ3 − 1

3
(3κ2

1 + κ2
2 + 3) Λ ∓ κ2

27
(9κ2

1 + 2κ2
2 − 18) = 0 .



444 TOSHIAKI ADACHI

We denote by a(κ1,κ2), b(κ1,κ2), d(κ1,κ2) the solutions of this cubic equation satisfying
a(κ1,κ2) < b(κ1,κ2) < d(κ1,κ2). We then have

γ̂ (t) = e±√−1 κ2t/3{Aexp(
√−1 a(κ1,κ2)t) + Bexp(

√−1 b(κ1,κ2)t)

+ Dexp(
√−1 d(κ1,κ2)t)

}
with some A,B,D ∈ Cn+1. This guarantees that γ is closed if and only if one of (hence all
of) the ratios a(κ1,κ2)/b(κ1,κ2), b(κ1,κ2)/d(κ1,κ2), d(κ1,κ2)/a(κ1,κ2) is (are) rational, and its length
in this case is

2π × L.C.M{(b(κ1,κ2) − a(κ1,κ2))
−1 , (d(κ1,κ2) − a(κ1,κ2))

−1} .

We now compare two characteristic cubic equations (3.4), (3.5) for circles and for mod-

erate Killing helices. If we put Θ = (
3
/√

2(3κ2
1 + κ2

2 + 3)
)
Λ, then the equation (3.5)

becomes

(3.6) Θ3 − 3

2
Θ − κ2(9κ2

1 + 2κ2
2 − 18)

2
√

2(3κ2
1 + κ2

2 + 3)3/2
= 0 .

Since the function fκ2(κ1) = κ2
2 (9κ2

1 +2κ2
2 −18)2 −4(3κ2

1 +κ2
2 +3)3 is monotone decreasing

when κ1 > 0 and fκ2(0) = −108(κ2
2 − 1)2 for each positive κ2, we see that

τ(κ1,κ2) = κ2(9κ2
1 + 2κ2

2 − 18)

2(3κ2
1 + κ2

2 + 3)3/2

satisfies |τ(κ1,κ2)| < 1. Thus a moderate Killing helix γ of proper order 4 with geodesic

curvatures κ1, κ2, κ1 has quite similar properties to a circle σ of geodesic curvature 1/
√

2 and
of complex torsion τ(κ1,κ2). The helix γ is closed if and only if σ is closed. When it is closed,

as we have a(κ1,κ2) = (√
2(3κ2

1 + κ2
2 + 3)

/
3
)
aτ(κ1,κ2)

and so on for b(κ1,κ2), d(κ1,κ2), we find

that the lengths of γ and σ satisfy

length(γ ) = 3√
2(3κ2

1 + κ2
2 + 3)

× length(σ ) .

With the aid of Proposition 4, this demonstrates the following properties for moderate Killing

helices on CPn(4). When 9κ2
1 + 2κ2

2 = 18, then τ(κ1,κ2) = 0, hence a moderate Killing

helix of geodesic curvatures κ1, κ2, κ1 is closed and has length 2
√

3π
/√

3κ2
1 + κ2

2 + 3 =
2
√

2π
/√

8 − κ2
1 . When 9κ2

1 + 2κ2
2 �= 18, then it is closed if and only if τ(κ1,κ2) = ±q(9p2 −

q2)(3p2 + q2)−3/2 with some relatively prime integers p, q satisfying p > q > 0. In this
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case its length is given as πδ(p, q)

√
(3p2 + q2)/(3κ2

1 + κ2
2 + 3). These complete the proof

of Theorem 1.
We here consider the influence of a homothetic change of metrics. We take a helix γ

of geodesic curvatures κi (i = 1, . . . , d) on a Riemannian manifold (M, g). If we change

the metric g on M homothetically to g̃ = λ2g with a positive λ, then sectional curvatures

of (M, g̃) are λ−2-times of those of (M, g). Under this operation on metrics, the curve
γ̃ (t) = γ (t/λ) becomes a helix of geodesic curvatures κi/λ (i = 1, . . . , d) on (M, g̃), and
hence length(γ̃ ) = λ × length(γ ) when γ is closed. When (CPn, g) has constant holomor-
phic sectional curvature c, we consider the metric g̃ = (c/4)g . Then (CPn, g̃) has constant
holomorphic sectional curvature 4. Thus we obtain the following:

THEOREM 1’. On CPn(c), a moderate Killing helix of proper order 4 with geodesic
curvatures κ1, κ2, κ1 satisfies the following properties.

(1) If 18κ2
1 + 4κ2

2 = 9c, then it is closed and has length 2
√

2π
/√

2c − κ2
1 .

(2) If 18κ2
1 + 4κ2

2 �= 9c, then it is closed if and only if

2κ2|18κ2
1 + 4κ2

2 − 9c|
(12κ2

1 + 4κ2
2 + 3c)3/2

= q(9p2 − q2)

(3p2 + q2)3/2

for some relatively prime integers p, q with p > q > 0. In this case its length

is given as 2πδ(p, q)

√
(3p2 + q2)/(12κ2

1 + 4κ2
2 + 3c), where δ(p, q) is given in

Theorem 1.

COROLLARY 1. On CPn(c), a moderate Killing helix of proper order 4 with geodesic

curvatures (
√

2c, κ2) is closed if and only if κ2 = √
c q(9p2 − q2)/{2p(p2 − q2)} with some

pair of relatively prime positive integers p, q satisfying p > q . In this case its length is

2πδ(p, q)p(p2 − q2)/{√c (3p2 + q2)}.
For moderate Killing helices on CPn(c) whose geodesic curvatures satisfy 18κ2

1 +4κ2
2 =

9c, Chen-Maeda[7] also study them from the viewpoint of type numbers. Generally, a Rie-
mannian submanifold M of Rm is said to be of k-type if the isometric immersion ϕ : M → Rm

regarding it as a position vector has the spectral decomposition ϕ = ϕ0 + ∑k
i=1 ϕi , where ϕ0

is constant and ϕi satisfies ∆ϕi = λiϕi for i = 1, 2, . . . , k with the Laplacian ∆ and mutually
different eigenvalues λ1, . . . , λk (see [6] for details). In [7], they studied helices on CPn(4)

through the embedding F given by the composition of the minimal embedding CPn(4) →
Sn(n+2)−1(2(n+ 1)/n) and a totally geodesic embedding Sn(n+2)−1(2(n+ 1)/n) → Rn(n+2).
In this paper we say a helix γ is of k-type if the curve F(γ ) is of k-type. As was pointed

out in [7], moderate Killing helices whose geodesic curvatures satisfy 18κ2
1 + 4κ2

2 = 9c are
helices of 2-type because b(κ1, κ2) = 0 and a(κ1, κ2) = −d(κ1, κ2). They gave a characterization
of these helices and circles with null structure torsion, which are also of 2-type.
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4. Embeddings of the moduli space of non-essential circles

On the moduli space K(CPn) = ⋃∞
d=1 Kd (CPn) of Killing helices on CPn, we define

the length spectrum L : K(CPn) → (0,∞) ∪ {∞} of Killing helices by L([γ ]) = length(γ ),
where [γ ] ∈ K(CPn) denotes the congruence class containing a Killing helix γ . We also
denote by L the restriction of L onto each stage Kd (CPn). In this section we construct an
injection of K2(CPn) \ EK2(CPn) into the moduli space MK4(CPn) (⊂ EK4(CPn) ) of
moderate Killing helices which is compatible with the length spectrum.

It is well known that the length spectrum of circles on a real space form RMn(c) of
constant sectional curvature c is given as

K2(RMn(c)) ∼= (0,∞) � κ �→ 2π
/√

κ2 + c ∈ (0,∞] ,

where we regard 2π/
√

κ2 + c as infinity when κ2 +c ≤ 0. It is hence continuous with respect
to the canonical Euclidean topology on K2(RMn(c)) ∼= (0,∞). For the length spectrum of
circles on a complex space form, the situation is quite different from this. In the preceding
paper [2] we studied the length spectrum of circles. The moduli space K2(CPn) admits a
natural lamination structure

{Fµ

}
µ∈[0,1]. If we induce the canonical Euclidean topology and

the differential structure on K2(CPn(c)) ∼= (0,∞) × [0, 1], we see

i) the length spectrum L : K2(CPn(c)) → (0,∞] of circles is smooth on each leaf,
ii) each leaf is set-theoretically maximal with respect to this property.

More precisely, leaves are given in the following manner:

Fµ =


{[γκ,0]

∣∣ κ > 0
}
, if µ = 0 ,{[γκ,τ ]

∣∣ 3
√

3cκτ(4κ2 + c)−3/2 = µ
}
, if 0 < µ < 1 ,{[γκ,1]

∣∣ κ > 0
}
, if µ = 1,

where [γκ,τ ] ∈ K2(CPn) denotes the congruence class of circles of geodesic curvature κ and

of complex torsion τ (≥ 0) on CPn(c). When µ = q(9p2 −q2)(3p2 +q2)−3/2 with a pair of
relatively prime positive integers p, q satisfying p > q , each point [γκ,τ ] ∈ Fµ is a congru-

ence class of closed circles whose lengths are given as 2δ(p, q)π
√

(3p2 + q2)/{3(4κ2 + c)},
and in other cases all points on Fµ corresponds to open circles. Since F1 = EK2(CPn) and
the topological closure of Fµ with 0 < µ < 1 have common two points (see Fig. 3), we find
that EK2(CPn) is quite different from other part of K2(CPn).

In view of the proof of Theorem 1 we find that the moduli space MK4(CPn) ad-
mits a natural foliation structure {Gµ}µ∈(−1,1). We should note that MK4(CPn) is a part

of plane {(κ1, κ2,−κ1)|κ1, κ2 > 0} in (0,∞)2 × (R \ {0}) ∼= EK4(CPn). We induce on

MK4(CPn) ∼= (0,∞)2 the Euclidean topology and the differential structure. Let [γ(κ1,κ2)]
denote the congruence class containing a moderate Killing helix with geodesic curvatures
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FIGURE 3. Lamination on K2(CPn)

κ1, κ2, κ1 on CPn(c). We define leaves Gµ (−1 < µ < 1) on MK4(CPn(c)) by

Gµ =
{
[γ(κ1,κ2)]

∣∣∣ 2κ2(18κ2
1 + 4κ2

2 − 9c)

(12κ2
1 + 4κ2

2 + 3c)3/2
= µ

}
.

We should note that when µ ≤ 0 the leaf Gµ contains [γ(κ0
1 ,

√
c/2)] for some κ0

1 with 0 < κ0
1 ≤

2
√

c/3 and when µ > 0 the leaf Gµ contains [γ(
√

2c, κ0
2 )] for some κ0

2 . In the latter case we

see µ = 2κ0
2 (4(κ0

2 )2 + 27c)−1/2.

FIGURE 4. Foliation on MK4(CPn)

By the equation (3.6), we obtain the following:

THEOREM 2. There exists a unique foliation structure
{Gµ

}
µ∈(−1,1)

on the mod-

uli space MK4(CPn) of moderate Killing helices on CPn which satisfies the following
properties:

i) the length spectrum L : MK4(CPn) → (0,∞] of moderate Killing helices is
smooth on each leaf,

ii) each leaf is set-theoretically maximal with respect to this property.
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We now define an injection Φ : K2(CPn(c)) \ EK2(CPn(c)) → MK4(CPn(c)). Let
K : (0,∞) → (0, 3) be a smooth function satisfying

i) K(1/
√

2) = 1,

ii) K(κ) < 1 if 0 < κ < 1/
√

2 and K(κ) > 1 if κ > 1/
√

2,

iii) 2K(κ)(9 − K(κ)2)(K(κ)2 + 3)−3/2 = 3
√

3κ(κ2 + 1)−3/2.
This function K is monotone increasing and satisfies limκ→∞ K(κ) = 3 and limκ↓0 K(κ) =
0. We set Φ([γκ,τ ]) = [γ(κ1,κ2)], where κ2 = κ2(κ) is given as κ2 = (

√
c/2) K(2κ/

√
c) and

κ1 = κ1(κ, τ ) satisfies 18κ2
1 + 4κ2

2 ≤ 9c and

2κ2(9c − 18κ2
1 − 4κ2

2 )

(12κ2
1 + 4κ2

2 + 3c)3/2
= 3

√
3 cκτ

(4κ2 + c)3/2
.

If we represent MK4(CPn(c)) as (0,∞)2, the image of Φ is {(κ1, κ2)|18κ2
1 +4κ2

2 ≤ 9c}. As
we see the function fκ2 in the previous section is monotone decreasing for each κ2, we find
that this map Φ is an embedding with respect to the induced smooth structures.

THEOREM 3. The embedding

Φ : K2(CPn(c)) \ EK2(CPn(c)) → MK4(CPn(c)) (⊂ EK4(CPn(c)))

maps each leaf Fµ (0 ≤ µ < 1) onto a leaf G−µ, and satisfies

L ◦ Φ([γκ,τ ]) =
√

3(4κ2 + c)

12κ2
1 (κ, τ ) + 4κ2

2 (κ) + 3c
× L([γκ,τ ]) .

PROOF. The foliation structure {Fµ}µ∈[0,1) on K2(CPn(c)) \ EK2(CPn(c)) is con-
structed by use of canonical maps of normalization which are given by

[γκ,τ ] �→ [
γ√

2c/4, 3
√

3 cκτ(4κ2+c)−3/2

]
for each κ . By this we see

L([γκ,τ ]) =
√

3c

2(4κ2 + c)
× L([

γ√
2c/4, 3

√
3 cκτ(4κ2+c)−3/2

])
.

hence we get the conclusion. �

REMARK 1. Through this embedding Φ, the moduli space F0 = {[γκ,0]|κ > 0} of

totally real circles is mapped onto the moduli space G0 = {[γ(κ1,κ2)]|18κ2
1 + 4κ2

2 = 9c} of
Killing helices of proper order 4 and of 2-type. Moreover, this embedding Φ maps congruence
classes of circles of 3-type to congruence classes of Killing helices of 3-type.

Here we study a bit more on length spectrum on the image of Φ. When µ = −q(9p2 −
q2)(3p2 + q2)−3/2, each point [γ(κ1, κ2)] ∈ Gµ is a congruence class of closed helices. At an
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end point of this leaf we see

lim
(κ1,κ2)→(0,

√
c q/(2p))

L([γ(κ1, κ2)]) = 2πδ(p, q)p/
√

c ,

where [γ(κ1, κ2)] runs on the leaf Gµ. This value is δ(p, q)p times of the length of a geodesic.
Also on the leaf [γ(κ1, κ2)] ∈ G0, we see

lim
(κ1,κ2)→(

√
c/2, 0)

L([γ(κ1, κ2)]) = 4π/
√

3c ,

lim
(κ1,κ2)→(0, 3

√
c/2)

L([γ(κ1, κ2)]) = 2π/
√

c ,

which are the length of a circle with geodesic curvature
√

c/2 and null complex torsion and
the length of a geodesic.

There is another embedding Ψ of

K∗
2(CPn(c)) := K2(CPn(c)) \ (EK2(CPn(c)) ∪ {[γκ,0] ∈ K2(CPn(c))

∣∣ κ > 0
})

of the moduli space of circles of positive geodesic curvature and of complex torsion 0 < |τ | <

1 into MK4(CPn(c)) which preserves the foliation structure. Let K̂ : (0,∞) → (0,∞) be
a smooth function satisfying

i) K̂(1/
√

2) = 2
√

2,

ii) K̂(κ) < 2
√

2 if 0 < κ < 1/
√

2 and K̂(κ) > 2
√

2 if κ > 1/
√

2,
iii) 2K̂(κ)2(K̂(κ)2 + 4)−3/2 = κ(κ2 + 1)−3/2.

This function K̂ is monotone increasing and satisfies limκ→∞ K̂(κ) = ∞ and limκ↓0 K̂(κ) =
0. We set Ψ ([γκ,τ ]) = [γ(κ1,κ2)], where κ1 = (

√
c/2) K̂(2κ/

√
c) and κ2 = κ2(κ, τ ) satisfies

18κ2
1 + 4κ2

2 > 9c and

2κ2(18κ2
1 + 4κ2

2 − 9c)

(12κ2
1 + 4κ2

2 + 3c)3/2
= 3

√
3 cκτ

(4κ2 + c)3/2 .

The image of Ψ is {[γ(κ1,κ2)] ∈ MK4(CPn(c))|18κ2
1 + 4κ2

2 > 9c}. One can easily see that it
is an embedding.

PROPOSITION 5. The embedding Ψ : K∗
2(CPn(c)) → MK4(CPn(c)) maps each

leaf Fµ (0 < µ < 1) onto a leaf Gµ, and satisfies

L ◦ Ψ ([γκ,τ ]) =
√

3(4κ2 + c)

12κ2
1 (κ) + 4κ2

2 (κ, τ ) + 3c
× L([γκ,τ ]) .

REMARK 2. If we consider [γ(κ1,0)] to be the congruence class of circles with geodesic

curvature κ1 and null complex torsion for κ1 �
√

c/2, we find the map Ψ extends continu-
ously to K2(CPn(c))\EK2(CPn(c)) which satisfies the length spectrum relation. The image

of this extended map is {[γ(κ1,κ2)]|18κ2
1 + 4κ2

2 ≥ 9c}.
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With the aid of these maps Φ and Ψ we may say that we can describe the structure of
the moduli space K1(CPn) ∪ K2(CPn) ∪ EK3(CPn) ∪ EK4(CPn) of helices of low order.

Finally, we mention some properties of the length spectrum of moderate Killing helices

on CPn. For a positive number �, we call the cardinality of the set L−1(�) the multiplicity of
L at �.

PROPOSITION 6. The length spectrum L : MK4(CPn(c)) → (0,∞] of moderate
Killing helices of proper order 4 is surjective and its multiplicity is infinite at each point in
(0,∞). Even if we consider a restriction L|Gµ

on each leaf Gµ with µ ∈ (0, 1/8) which

consists of congruence classes of closed helices, it is not injective.

PROOF. By Theorem 1’, the image of L is the set{
2
√

2π√
2c − κ2

1

∣∣∣∣ 0 < κ1 <
√

2c

}

⋃
2πδ(p, q)

√
3p2 + q2

12κ2
1 + 4κ2

2 + 3c

∣∣∣∣∣∣∣∣∣
p > q > 0 and p, q are relatively prime,
positive κ1, κ2 satisfy

2κ2|18κ2
1 + 4κ2

2 − 9c|
(12κ2

1 + 4κ2
2 + 3c)3/2

= q(9p2 − q2)

(3p2 + q2)3/2

⋃{∞ }
.

We first show L is surjective. We take an arbitrary positive number α. We choose a pair

of relatively prime odd integers (p0, q0) satisfying p0 > q0 > 0 and 3p2
0 + q2

0 − q
2/3
0 (9p2

0 −
q2

0 )2/3 > 12cα−2. For these α, p0, q0, we consider the following simultaneous equations

(4.1)

{
12κ2

1 + 4κ2
2 + 3c = α2(3p2

0 + q2
0 ) ,

4κ2
2 (18κ2

1 + 4κ2
2 − 9c)2 = α6q2

0 (9p2
0 − q2

0 )2 ,

on κ1 and κ2. If a pair (κ1, κ2) satisfies these equations, then a moderate Killing helix of ge-
odesic curvatures κ1, κ2, κ1 is closed and is of length 2π/α. Substituting the former equation
in (4.1) into the latter we have

16κ6
2 − 24

{
α2(3p2

0 + q2
0 ) − 9c

}
κ4

2

+ 9
{
α2(3p2

0 + q2
0 ) − 9c

}2
κ2

2 − α6q2
0 (9p2

0 − q2
0 )2 = 0 .

We denote the left hand side of the above by h(κ2
2 ) = hp0,q0,α(κ2

2 ) and consider the cubic
equation h(x) = 0. Since h(0) < 0 and

h({α2(3p2
0 + q2

0 ) − 3c}/4)

= (α2(3p2
0 + q2

0 ) − 3c)(α2(3p2
0 + q2

0 ) − 12c)2 − α6q2
0 (9p2

0 − q2
0 )2 > 0
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by the assumption on (p0, q0), we see the cubic equation h(x) = 0 has a solution in the

interval (0, {α2(3p2
0 + q2

0 ) − 3c}/4). Thus we find (4.1) has a solution. This shows that L
takes the value 2π/α. We deduce that L is surjective.

The above proof also shows that the multiplicity is infinite at each point. For a positive
integer α there are infinitely many odd integers p (> 1) satisfying 3p2 − (9p2 − 1)2/3 >

12cα−2 − 1. For each pair (p, 1) we have a solution (κ1(p), κ2(p)) for (4.1) correspond-
ing to this pair. This show L(γ(κ1(p),κ2(p))) = 2π/α. By the first equality in (4.1) we see
(κ1(p), κ2(p)) �= (κ1(p

′), κ2(p
′)) if p �= p′, hence the multiplicity of L at 2π/α is infinite.

We next show that L|Gµ
is not injective. We suppose µ = q0(9p2

0 − q2
0 )(3p2

0 + q2
0 )−3/2

with a pair of relatively prime integers (p0, q0) with p0 > q0 > 0. Since 0 < µ < 1/8 we

have (3p2
0 + q2

0 )3 > 26q2
0 (9p2

0 − q2
0 )2, hence we can choose a positive number α satisfying

{3p2
0 + q2

0 − q
2/3
0 (9p2

0 − q2
0 )2/3}/9 > cα−2 > (3p2

0 + q2
0 )/12. For this α, the cubic function

h(x) takes its maximum at x = {α2(3p2
0 + q2

0 ) − 9c}/4 and its minimum at x = 3{α2(3p2
0 +

q2
0 ) − 9c}/4 because α2(3p2

0 + q2
0 ) > 9c. Since h(0) < 0 and

h({α2(3p2
0 + q2

0 ) − 9c}/4) = {α2(3p2
0 + q2

0 ) − 9c}3 − α6q2
0 (9p2

0 − q2
0 )2 > 0 ,

h(3{α2(3p2
0 + q2

0 ) − 9c}/4) = −α6q2
0 (9p2

0 − q2
0 )2 < 0 ,

the cubic equation h(x) = 0 has solutions s1, s2, s3 satisfying

0 < s1 < {α2(3p2
0 + q2

0 ) − 9c}/4 < s2 < 3{α2(3p2
0 + q2

0 ) − 9c}/4 < s3 .

As we have α2(3p2
0 + q2

0 ) − 3c − 4s2 > 24c − 2α2(3p2
0 + q2

0 ) > 0, we find (4.1) has two
pairs of positive solutions. Moreover, for these pairs (κ1, κ2) we have

18κ2
1 + 4κ2

2 − 9c = 3

2
{α2(3p2

0 + q2
0 ) − 9c} − 2κ2 > 0 .

Hence L|Gµ
is not injective. �
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