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Abstract. O. Kobayashi [6] in 2007 proved that C1-mappings preserving anharmonic ratio are Moebius trans-
formations. We strengthen his theorem and prove that the requirement of differentiability and even of injectivity can
be omitted.

1. Introduction

A concept of Apollonian tetrad in the complex plane C was introduced in the paper ([3],
Def. 1, p.15): any ordered quadruple of distinct points {z1, z2, z3, z4} ⊂ C is called an
Apollonian tetrad, if

|z2 − z3| · |z1 − z4| = |z3 − z1| · |z2 − z4| = |z1 − z2| · |z3 − z4| . (1)

It was proved in ([3], Main Theorem, p. 19) that any univalent analytic function in the domain
D ⊂ C is linear-fractional iff the image of any Apollonian tetrad in D is also Apollonian
tetrad.

Since that time some articles appeared, in which different generalizations of the men-
tioned property of tetrad to finite sets of points were introduced: Haruki H. and Rassias T.M.
in [4] considered Apollonian triangles and hexagons, Bulut S. and Yilmaz Özgür N. in [5]
considered Apollonian set consisting of 2n pairwise different points and proved that the ana-
lytic univalent function is linear-fractional iff the image of any Apollonian set in D is also an
Apollonian set.

O. Kobayashi [6] noticed that relation (1) is equivalent to the equality [z1 : z2 : z3 :
z4] = (1 ± i

√
3)/2, where [z1 : z2 : z3 : z4] is the anharmonic ratio of the quadruple

{z1, z2, z3, z4}, and he obtained the following result:

THEOREM 1 ([6], Theorem 2.1, p. 118). Let λ ∈ C \ R and U ⊂ C be a domain.

Suppose f : U → C is an injective C1- mapping. If for any quadruple of pairwise distinct
points {z1, z2, z3, z4} ∈ U with anharmonic ratio [z1 : z2 : z3 : z4] = λ the equality
[f (z1) : f (z2) : f (z3) : f (z4)] = λ holds, then f is a Moebius transformation.
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In this paper we show that the theorem is valid for any λ ∈ C \ {0, 1} and for any

continuous non-constant mapping f : U → C of the domain U ⊂ C without the requirement
of injectivity and differentiability of f .

2. Some definitions and the main result

Let T be set of all ordered quadruples (tetrads) T = {z1, z2, z3, z4} in the extended

complex plane C such that do not contain any three coincident elements.
A tetrad with four pairwise different elements is called nonsingular.
For any tetrad we define its anharmonic ratio (see [1], §44) A(T ) = [z1 : z2 : z3 : z4 ].
If all points in a tetrad T are finite and pairwise different, then

A(T ) = (z1 − z3)(z2 − z4)

(z3 − z2)(z4 − z1)
.

Under these conditions A(T ) is different from 0, 1 and ∞. For tetrads
s12(T ), s13(T ), s14(T ), obtained from T by permutation of first and second, of first and
third, of first and fourth elements respectively the following equalities hold:

A(s12(T )) = 1

A(T )
; A(s13(T )) = A(T )

A(T ) − 1
; A(s14(T )) = 1 − A(T ) , (2)

If in the tetrad T = {z1, z2, z3, z4} neither three elements coincide, then there exists a
finite or infinite limit

A(T ) = lim
w1→z1, w2→z2, w3→z3, w4→z4

(w1 − w3)(w2 − w4)

(w3 − w2)(w4 − w1)
.

where the limit is taken on the set of all nonsingular tetrads {w1, w2, w3, w4}. This limit
defines the anharmonic ratio of the tetrad T in general case. Particularly, for nonsingular
tetrad T = {z1, z2, z3, ∞} we have A(T ) = −(z1 − z3)/(z3 − z2). We notice that the tetrad
T ∈ T is nonsingular iff A(T ) is different from 0, 1 and ∞.

A Moebius transformation µ : C → C is defined as a superposition of finite number of

reflections (or inversions) with respect to generalized circles in C (see [1], Def 3.1.1, p. 25)
and its realized either by the linear-fractional function or by its conjugate.

If µ is a linear-fractional mapping, then for any tetrad T ∈ T the equality A(µ(T )) =
A(T ) (the invariance of anharmonic ratio by the linear-fractional mappings) holds. The op-
posite is also true: a bijective mapping µ : C → C, which preserves an anharmonic ratio of
all nonsingular tetrads, is realized by linear-fractional function (see [1], §4.4).

For given complex number α /∈ {0, 1, ∞}, we denote by T(α) the set of all tetrads
T ∈ T with A(T ) = α (all that tetrads are nonsingular) and by T(α, f ) the set of all tetrads
of T(α), for which f (T ) ∈ T.

Denote by Bd(U) a boundary of a domain U .
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DEFINITION 1. We say that a mapping f : U → C of a domain U ⊂ C satisfies the
condition (α), if for any tetrad T ∈ T(α, f ) the equality A(f (T )) = α = A(T ) holds.

The main result of the paper is the following

THEOREM 2. If α /∈ {0, 1, ∞}, then any continuous mapping f : U → C of a domain

U ⊂ C, which satisfies the condition (α), is either a constant or the Moebius transformation;
and if α is not a real number, then a function f is either a constant or a linear-fractional
function.

3. The injectivity lemma

PROPOSITION 1. If a continuous mapping f : U → C satisfies the condition (α),
α /∈ {0, 1, ∞}, then it satisfies the condition (β), where β is taken from the set

Pα =
{
α,

1

α
, 1 − α,

1

1 − α
,

α

α − 1
,
α − 1

α

}
.

PROOF. The proof follows immediately from relations (2) and from the fact that the equality
f (s(T )) = s(f (T )) is preserved by the permutations s of the elements of the tetrad, and
therefore the relations f (T ) ∈ T and f (s(T )) ∈ T are equivalent. �

LEMMA 1. Suppose α /∈ {0, 1, ∞} and let f : U → C be a continuous mapping of a

domain U ⊂ C satisfying the condition (α). Then f is either injective in U or f is a constant
map.

PROOF. We assume that f is not injective. Then we can find different points ζ0, ζ∞ ∈
U , for which f (ζ0) = f (ζ∞) = a ∈ C. Take such linear-fractional mappings µ and ν that

µ(ζ∞) = ν(a) = ∞. Evidently ∞ ∈ µ(U) = U ′. A continuous mapping g = ν ◦ f ◦ µ−1 :
U ′ → C satisfies the condition (γ ) for any constant γ ∈ Pα ; whereas g(∞) = g(µ(ζ∞)) =
∞.

Consider the set M = g−1({∞}) ∩ C = {z ∈ C : g(z) = ∞}.
Since g is continuous, the set M is closed in U ′\{∞}. We show that M is an open set.
Let z0 be a point in M .
Build an open disc B = B(z0, r) ⊂ U ′ with radius

r = min{1, dist(z0, Bd(U ′))}/(2 + |α|) . (3)

If g(z) ≡ ∞ in B, then B ⊂ M , and z0 is an interior point of the set M . Consider the
point z1 ∈ B, in which g(z1) 
= ∞. The point z2 = z0 + α(z1 − z0) lies in U ′, whereas

|z2 − z0| = |α| · |z1 − z0| ≤ dist(z0, Bd(U)′) |α|
2 + |α| < dist(z0, Bd(U ′)) .
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For T = {z2, z1, z0, ∞} ⊂ U ′ we have A(T ) = −(z2 − z0)/(z0 − z1) = α. The assumption
that f (T ) = {g(z2), g(z1), ∞, ∞} ∈ T, contradicts the condition (α), because in this case
A(f (T )) ∈ {0, 1, ∞}, that is f (A) 
= α.

Therefore the tetrad f (T ) has three equal elements. But g(z1) 
= ∞ implies that g(z2) =
∞, that is z2 ∈ M .

Since g(z1) 
= ∞ and f is continuous in the point z1, take such ε > 0 that the disc
B(z1, ε) ⊂ B and a function g(z) 
= ∞ in B(z1, ε). From the inequality ε < r and from (3)
it follows that

B

(
z0, ε

|α|
1 + |α|

)
⊂ B . (4)

Putting δ = ε
|α|

1+|α| , consider any point z ∈ B (z0, δ). For w = z+α−1(z2 −z) the inequality

holds:

|w − z1| = |z − z1 + z1 − z0 + α−1(z0 − z)| < |z − z0|
∣∣∣∣1 − 1

α

∣∣∣∣ < ε ,

which means that w ∈ B(z1, ε) and therefore g(w) 
= ∞. For T ′ = {z2, w, z, ∞} ⊂
U ′ we have A(T ′) = −(z2 − z)/(z − w) = α. The assumption that g(T ′) = {g(z2) =
∞, g(w), g(z), ∞} ∈ T, contradicts the condition (α), because A(g(T ′)) ∈ {0, 1, ∞}
and therefore A(g(T ′)) 
= α. Then in the tetrad g(T ′) there are three equal elements. But
g(w) 
= ∞ and therefore g(z) = ∞. Thus we see that g(z) ≡ ∞ in the disc B(z0, δ). So
B(z0, δ) ⊂ M and z0 is an interior point of the set M . Since any point of the set M it is an
interior point, the set M is open.

Since the set U ′\{∞} is connected, the open-and-closed set M is an empty set or
U ′\{∞}. Since µ(ζ0) ∈ M , we conclude that M 
= ∅. Therefore M = U ′\{∞}, and it
means that g(z) ≡ ∞ in U ′. Thus f (ζ ) ≡ a in U . �

4. Proof of Theorem 2

We prove Theorem 2 in several steps arranging them as independent propositions.

PROPOSITION 2. Suppose the domain U ⊂ C contains ∞, and a continuous injective

mapping f : U → C with f (∞) = ∞, satisfies the condition (α) for α /∈ {0, 1, ∞}. Then
for any z0 ∈ U and a0 = z0 +w0, b0 = z0 −w0, where |w0| < dist(z0, Bd(U)), the equality
holds:

f (z0) = f (a0) + f (b0)

2
. (5)

PROOF. Let α ∈ {2, 1/2, −1}. Then by Proposition 1 the mapping f satisfies the
condition (α) with α = 2. For T = {a0, b0, z0, ∞} we obtain

2 = A(T ) = [f (a0) : f (z0) : f (b0) : ∞] = −f (a0) − f (b0)

f (b0) − f (z0)
,
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from which the desired equation (5) immediately follows.
Suppose now α /∈ {0, 1, ∞, 2, 1/2, −1}.
If |α| > 1 we take β = α; in otherwise we take β = 1/α. Then f satisfies the condition

(β), β /∈ {0, 1, ∞, 1/2} (see Proposition 1). For β ′ = (1−β)/(1−2β) we have the equation

(1 − 2β)/(1 − 2β ′) = −1. As β /∈ B(1/2, 1/2), then |β − 1/2| > 1/2, that is |1 − 2β| > 1.
Therefore |1 − 2β ′| = q < 1.

Put R = dist(z0, Bd(U)) and wk = (2β ′ − 1)
k
w0, k = 1, 2, . . .

As |wk| = qk|w0| < R, then all points ak = z0 + wk and bk = z0 − wk lie in the disc
B(z0, R) ⊂ U . We show that for any k = 0, 1, 2, . . . the follow equality holds:

f (ak) + f (bk) = f (a0) + f (b0) . (6)

For k = 0 condition (6) is trivial. We suggest that it holds for some k and show that f (ak+1)+
f (bk+1) = f (a0) + f (b0).

For the tetrad T1 = {bk, ak+1, bk+1, ∞} we have

A(T1) = − bk − bk+1

bk+1 − ak+1
= −wk+1 − wk

−2wk+1
= β ′ − 1

2β ′ − 1
= β .

The equality

A(T1) = − f (bk) − f (bk+1)

f (bk+1) − f (ak+1)
= β

follows from the condition (β). For T2 = {ak, bk+1, ak+1, ∞} we have

A(T2) = − ak − ak+1

ak+1 − bk+1
= −wk − wk+1

2wk+1
= β .

Therefore

A(T2) = − f (ak) − f (ak+1)

f (ak+1) − f (bk+1)
= β .

Thus we come to the equality

f (bk+1) − f (bk)

f (bk+1) − f (ak+1)
= f (ak) − f (ak+1)

f (bk+1) − f (ak+1)
,

from which it follows that f (bk+1) − f (bk) = f (ak) − f (ak+1).
Then by induction we obtain

f (ak+1) + f (bk+1) = f (ak) + f (bk) = f (a0) + f (b0) .

Thus we have proved (6) for all k = 0, 1, 2, . . . .

Since wk → 0 as k → ∞, we have ak → z0 and bk → z0.
From (6) we obtain the desired relation (5). �
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PROPOSITION 3. Suppose a domain U ⊂ C contains ∞, and a continuous mapping

f : U → C with f (∞) = ∞ satisfies the condition (α), α /∈ {0, 1, ∞}. Then the mapping
f moves any linear segment L ⊂ U\{∞} to a linear segment; any ray P ⊂ U\{∞} to some
ray; any line Q ⊂ U\{∞} to some line.

PROOF. We show that for any point c ∈ U\{∞} the mapping f is linear on any linear
segment L ⊂ B(c, r), where r = dist(c, Bd(U))/3. Let a, b be the endpoints of the segment
L. For any point z ∈ L, max{|z−a|, |z−b|} ≤ 2r < dist(z, Bd(U)). That is, we may apply
Proposition 2 to any point z ∈ L and any w such that |w| < max{|z − a|, |z − b|}. Therefore
for any pair of points t1, t2 ∈ L we have f ((t1 + t2)/2) = (f (t1) + f (t2))/2. We conclude
that the function f is linear on a dense subset of the segment L and so, by continuity of f , it
is linear on L.

Thus the mapping f is locally linear on any connected subset S ⊂ U\{∞}, which lies
on a straight line. Therefore by connectedness of S, f is linear on all of S. Particularly, an
image of any segment is some segment, the image of any ray is some ray, the image of any
line is some line. �

Next we use a criterion of Moebiusness for mappings of n-dimensional domains, pro-
posed by Y. B. Zelinsky (we take this theorem for case n = 2).

THEOREM 3 ([2], Th. 8, p. 35). Suppose a continuous mapping f : D → C of a do-

main D ⊂ C moves any set P ⊂ D, which lies on a generalized circle to a set on a generalized
circle. If f (D) does not lie on a generalized circle, then f is a Moebius transformation.

LEMMA 2. Any continuous injective mapping f : U → C of a domain U ⊂ C, which
satisfies the condition (α), α /∈ {0, 1, ∞}, is a Moebius transformation.

PROOF. Take any open disc D ⊂ U such that D ⊂ U and a set P ⊂ D lies on a

generalized circle S ⊂ C. Then S ∩ D is a connected subset of a generalized circle S.
The situation 1.
Suppose S ∩ Bd(D) 
= ∅ and a ∈ S ∩ Bd(D). We build linear-fractional mappings

µ : C → C and η : C → C such that µ(a) = ∞, η(f (a)) = ∞ and consider the

mapping g = η ◦ f ◦ µ−1 : µ(U) → C. This mapping satisfies the condition (α) and

∞ ∈ µ(U), g(∞) = ∞. The set L′ = µ((S ∩D)\{a}) ⊂ µ(U)\{∞} is either a ray or a line.

By Proposition 3 the set g(L′) is also either some ray or a line. Therefore f = η−1 ◦ g ◦ µ

maps a set S ∩ D (and any subset P also) to a subset of a generalized circle.
The situation 2.
Take S ⊂ D and a ∈ S. We build linear-fractional mappings µ and η by analogy with

the situation 1 and consider the mapping g = η ◦ f ◦ µ−1. By Proposition 3 the mapping g
moves the line L′ = µ((S\{a} ⊂ µ(U)\{∞} to some line. Therefore g(L′) is a generalized

circle and f moves the generalized circle S = µ−1(L′) to a generalized circle, and any subset
P ⊂ S to a subset of a generalized circle. Thus f satisfies the conditions of Theorem 3 in
the disc D and is injective. Therefore f is a Moebius transformation on the disc D. Since
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our choice of the disc D ⊂ U is arbitrary, the mapping f is locally Moebius on a domain U .
Moebius transformations are explicitly defined by their values on some quadruple, that does
not lie on a generalized circle. From local Moebiusness of f it follows that f is Moebius on
a domain U . �

LEMMA 3. Any continuous injective mapping f : U → C of a domain U ⊂ C, which
satisfies the condition (α), α ∈ C\R, is a linear-fractional function.

PROOF. By Lemma 2 the mapping f is a Moebius transformation, so f is either a linear-
fractional function or its conjugate. We show that if α = a + ib and b 
= 0, then the second

is impossible. Let f (z) = µ(z), where µ(z) is a linear-fractional function. Take any tetrad
T = {z1, z2, z3, z4} ⊂ U with anharmonic ratio A(T ) = α = a + ib. Then A(µ(T )) =
A(T ) = a + ib and A(f (T )) = A(µ(T )) = A(µ(T )) = a − ib 
= α. This contradicts the
condition (α). Therefore f is a linear-fractional function. �

The proof of Theorem 2 follows immediately from Lemma 1, Lemma 2 and Lemma 3.
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