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Abstract. O. Kobayashi [6] in 2007 proved that C 1 -mappings preserving anharmonic ratio are Moebius trans-
formations. We strengthen his theorem and prove that the requirement of differentiability and even of injectivity can
be omitted.

1. Introduction

A concept of Apollonian tetrad in the complex plane C was introduced in the paper ([3],
Def. 1, p.15): any ordered quadruple of distinct points {z;, z2, z3, z4} C C is called an
Apollonian tetrad, if

|22 — z3| - 121 — z4] = |z3 — 21| - |22 — z4] = |21 — 22| - |23 — z4]. (D

It was proved in ([3], Main Theorem, p. 19) that any univalent analytic function in the domain
D C C is linear-fractional iff the image of any Apollonian tetrad in D is also Apollonian
tetrad.

Since that time some articles appeared, in which different generalizations of the men-
tioned property of tetrad to finite sets of points were introduced: Haruki H. and Rassias T.M.
in [4] considered Apollonian triangles and hexagons, Bulut S. and Yilmaz Ozgiir N. in [5]
considered Apollonian set consisting of 2n pairwise different points and proved that the ana-
Iytic univalent function is linear-fractional iff the image of any Apollonian set in D is also an
Apollonian set.

0. Kobayashi [6] noticed that relation (1) is equivalent to the equality [z] : z2 @ z3 :
z4] = (1 £ i\/§)/2, where [z1 : z2 : z3 : z4] is the anharmonic ratio of the quadruple
{z1, z2, z3, za}, and he obtained the following result:

THEOREM 1 ([6], Theorem 2.1,p. 118). Let A € C\ R and U C C be a domain.
Suppose f : U — C is an injective C'- mapping. If for any quadruple of pairwise distinct
points {z1, 22, 23, 24} € U with anharmonic ratio [z1 : z2 : z3 : z4] = A the equality
[f(z1): f(z2): f(z3): f(z4)] = X holds, then f is a Moebius transformation.
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In this paper we show that the theorem is valid for any A € C\ {0, 1} and for any
continuous non-constant mapping f : U — C of the domain U C C without the requirement
of injectivity and differentiability of f.

2. Some definitions and the main result

Let T be set of all ordered quadruples (tetrads) T = {z1, z2, z3, za} in the extended
complex plane C such that do not contain any three coincident elements.

A tetrad with four pairwise different elements is called nonsingular.

For any tetrad we define its anharmonic ratio (see [1], §44) A(T) = [z1:22 :23: 24 ].

If all points in a tetrad T are finite and pairwise different, then

(z1 —z3)(z2 — 24)
(z3—z22)(za —21)

A(T) =

Under these conditions A(T) is different from 0, 1 and oo. For tetrads
s12(T), s13(T), 514(T), obtained from T by permutation of first and second, of first and
third, of first and fourth elements respectively the following equalities hold:

1 A(T)
A T)=———7A T)=—; A T)=1-A(T), 2
(s12(T)) AT) (s13(T)) AT 1 (s14(T)) (T) )
If in the tetrad T = {z1, z2, z3, z4} neither three elements coincide, then there exists a
finite or infinite limit

. wi — w3) (w2 — ws
A(T) = lim ( ) ) .
wi—z1, wr—22, W3—>23, wa—~z4 (W3 — w2)(wa — wi)

where the limit is taken on the set of all nonsingular tetrads {w;, w», w3, wa}. This limit
defines the anharmonic ratio of the tetrad 7' in general case. Particularly, for nonsingular
tetrad T = {z1, z2, z3, oo} we have A(T) = —(z1 — z3)/(z3 — z2). We notice that the tetrad
T € T is nonsingular iff A(T) is different from 0, 1 and oo.

A Moebius transformation p : C — C is defined as a superposition of finite number of
reflections (or inversions) with respect to generalized circles in C (see [1], Def 3.1.1, p. 25)
and its realized either by the linear-fractional function or by its conjugate.

If u is a linear-fractional mapping, then for any tetrad 7 € T the equality A(u (7)) =
A(T) (the invariance of anharmonic ratio by the linear-fractional mappings) holds. The op-
posite is also true: a bijective mapping n : C — C, which preserves an anharmonic ratio of
all nonsingular tetrads, is realized by linear-fractional function (see [1], §4.4).

For given complex number o ¢ {0, 1, oo}, we denote by T () the set of all tetrads
T € T with A(T) = « (all that tetrads are nonsingular) and by T(«, f) the set of all tetrads
of T(w), for which f(T) € T.

Denote by Bd(U) a boundary of a domain U.
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DEFINITION 1. We say that a mapping f : U — C of a domain U C C satisfies the
condition (), if for any tetrad T € T(w, f) the equality A(f(T)) = « = A(T) holds.

The main result of the paper is the following

THEOREM 2. Ifa ¢ {0, 1, oo}, then any continuous mapping f : U — C of a domain
U C E, which satisfies the condition (&), is either a constant or the Moebius transformation;
and if o is not a real number, then a function f is either a constant or a linear-fractional
function.

3. The injectivity lemma

PROPOSITION 1. If a continuous mapping f : U — C satisfies the condition («),
o ¢ {0, 1, oo}, then it satisfies the condition (), where B is taken from the set

1 1 o o-—1
POl= av_vl_av ) ) .
o l—a a—1 o

PROOF. The proof follows immediately from relations (2) and from the fact that the equality
f(s(T)) = s(f(T)) is preserved by the permutations s of the elements of the tetrad, and
therefore the relations f(7) € T and f(s(T)) € T are equivalent. |

LEMMA 1. Supposea ¢ {0, 1, oo} andlet f : U — C be a continuous mapping of a
domain U C C satisfying the condition (). Then f is either injective in U or f is a constant
map.

PROOF. We assume that f is not injective. Then we can find different points &g, {so €
U, for which f (o) = f({s) = a € C. Take such linear-fractional mappings 4 and v that
1 (¢oso) = v(a) = oo. Evidently oo € u(U) = U’. A continuous mapping g = vo fopu™ ! :
U’ — C satisfies the condition (y) for any constant y € P,; whereas g(00) = g(it(¢o0)) =
0.

Consider the set M = g~ ' ({foo})) NC = {z € C : ¢(z) = o0}.

Since ¢ is continuous, the set M is closed in U’\{oc}. We show that M is an open set.

Let zo be a point in M.

Build an open disc B = B(zg, r) C U’ with radius

r = min{1, dist(zo, BA(U"))}/(2+ |l) . 3)

If g(z) = oo in B, then B C M, and z9 is an interior point of the set M. Consider the
point z; € B, in which ¢g(z1) # oo. The point zo = zo + a(z1 — zo) lies in U’, whereas

||

< dist(zg, BA(U")).
P+l (zo ")

|22 — zol = la| - |21 — zo| < dist(zo, BA(U))
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For T = {z2, z1, z0, 00} C U’ we have A(T) = —(z2 — z0)/(z0 — z1) = . The assumption
that f(T) = {9(z2), g9(z1), oo, oo} € T, contradicts the condition (&), because in this case
A(f(T)) € {0, 1, oo}, thatis f(A) # a.

Therefore the tetrad f(7') has three equal elements. But g(z1) # oo implies that g(z2) =
0o, thatis zp € M.

Since g(z1) # oo and f is continuous in the point zj, take such ¢ > 0 that the disc
B(z1, €) C B and a function g(z) # oo in B(z, ¢). From the inequality ¢ < r and from (3)
it follows that

B<Z0,8 il ) CB. 4)
I+ |of
Putting § = 8%, consider any point z € B (zo, 8). For w = z+a ™! (22 —z) the inequality
holds:
1 1
lw—zil=lz—z1+z1—20+a (20 —2)| < |z — zo0l 1_5 <e,

which means that w € B(zy, ¢) and therefore g(w) # oo. For T’ = {73, w, z, o0} C
U’ we have A(T) = —(zp — 2)/(z — w) = a. The assumption that ¢(T’) = {g(z2) =
00, g(w), g(z), oo} € T, contradicts the condition (), because A(g(T")) € {0, 1, oo}
and therefore A(g(T’)) # a. Then in the tetrad g(T’) there are three equal elements. But
g(w) # oo and therefore g(z) = oco. Thus we see that g(z) = oo in the disc B(zg, §). So
B(zp, 6) C M and zp is an interior point of the set M. Since any point of the set M it is an
interior point, the set M is open.

Since the set U’\{oo} is connected, the open-and-closed set M is an empty set or
U\{oc}. Since u(Zy) € M, we conclude that M # &. Therefore M = U’\{c0}, and it
means that g(z) = oo in U’. Thus f(¢) =ain U. [ |

4. Proof of Theorem 2
We prove Theorem 2 in several steps arranging them as independent propositions.

PROPOSITION 2. Suppose the domain U C C contains oo, and a continuous injective
mapping f : U — C with f(c0) = oo, satisfies the condition () for a ¢ {0, 1, oo}. Then
forany zo € U and ag = zo + wo, bo = zo — wo, where |wg| < dist(zg, BA(U)), the equality
holds:
f(ao) + £ (bo)
—

PROOF. Leta € {2, 1/2, —1}. Then by Proposition 1 the mapping f satisfies the
condition (&) with @« = 2. For T = {ag, bg, z0, 00} we obtain

_ Jflao) — f(bo)
fbo) = f(zo0)’

f(zo) = &)

2=A(T) = [f(ao) : f(zo0) : f(bo) : 00] =



TRANSFORMATIONS THAT PRESERVE FIXED ANHARMONIC RATIO 369

from which the desired equation (5) immediately follows.

Suppose now « ¢ {0, 1, oo, 2, 1/2, —1}.

If ja| > 1 we take 8 = «; in otherwise we take 8 = 1/a. Then f satisfies the condition
(B), B ¢ 10, 1, oo, 1/2} (see Proposition 1). For 8’ = (1—B)/(1—28) we have the equation
(1-28)/(1—28")=—1.AsB ¢ B(1/2, 1/2),then |8 — 1/2| > 1/2, thatis |1 — 28| > 1.
Therefore |1 — 28| =g < 1.

Put R = dist(zg, Bd(U)) and wy = 28’ — l)kwo, k=1, 2,...

As |wi| = g¥|lwg| < R, then all points a;y = zo + wy and by = zo — wy lie in the disc
B(zo, R) C U. We show that forany k =0, 1, 2, ... the follow equality holds:

Sflar) + f(be) = f(ao) + f(bo) . (6)

For k = 0 condition (6) is trivial. We suggest that it holds for some k and show that f (ar+1)+
[ (br+1) = f(ao) + f(bo).

For the tetrad T1 = {by, ak+1, br+1, 00} we have

b —biy1 _ wirr—wi o -1

A(Ty) = — = = =
biy1 — ak —2Wg+1 28" —1

B.
The equality

_ SO = S _
J(brt1) — flart1)

follows from the condition (8). For T = {ak, bx+1, ax+1, 0o} we have

A(Ty) =

A(Ty) = — I S S o 8.
ag+1 — by 2wi41
Therefore
A(T) = flap) — flag+1)

T fla) — foirD)
Thus we come to the equality
fur)) = fb)  _ fla) = flak+)
fis1) = flat)  fbrgr) = flaksn)
from which it follows that f(bg+1) — f(bx) = f(ar) — f(ar+1).
Then by induction we obtain
Saks1) + fbkt1) = flak) + f(bk) = f(ao) + f(bo) .

Thus we have proved (6) forallk =0, 1, 2,....
Since w; — 0 as k — oo, we have a; — zg and by — 2.
From (6) we obtain the desired relation (5). |
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PROPOSITION 3. Suppose a domain U C C contains oo, and a continuous mapping
f U — Cwith f(c0) = oo satisfies the condition (a), a ¢ {0, 1, oo}. Then the mapping
f moves any linear segment L C U\{oo} to a linear segment; any ray P C U\{oo} to some
ray; any line Q C U\{oo} to some line.

PROOF. We show that for any point ¢ € U\{oo} the mapping f is linear on any linear
segment L C B(c, r), where r = dist(c, Bd(U))/3. Leta, b be the endpoints of the segment
L. For any point z € L, max{|z —a]|, |z—b|} < 2r < dist(z, Bd(U)). That is, we may apply
Proposition 2 to any point z € L and any w such that |w| < max{|z — a|, |z — b|}. Therefore
for any pair of points 71, ©» € L we have f((t1 + t)/2) = (f(t1) + f(£2))/2. We conclude
that the function f is linear on a dense subset of the segment L and so, by continuity of f, it
is linear on L.

Thus the mapping f is locally linear on any connected subset S C U\{oo}, which lies
on a straight line. Therefore by connectedness of S, f is linear on all of S. Particularly, an
image of any segment is some segment, the image of any ray is some ray, the image of any
line is some line. ]

Next we use a criterion of Moebiusness for mappings of n-dimensional domains, pro-
posed by Y. B. Zelinsky (we take this theorem for case n = 2).

THEOREM 3 ([2], Th. 8, p. 35). Suppose a continuous mapping f : D — C of a do-
main D C C moves any set P C D, which lies on a generalized circle to a set on a generalized
circle. If f(D) does not lie on a generalized circle, then f is a Moebius transformation.

LEMMA 2. Any continuous injective mapping f : U — C of a domain U C C, which
satisfies the condition (), o ¢ {0, 1, 0o}, is a Moebius transformation.

PROOF. Take any open disc D C U such that D C U and a set P C D lies on a
generalized circle S C C. Then S N D is a connected subset of a generalized circle S.

The situation 1.

Suppose S N Bd(D) # @ anda € S N Bd(D). We build linear-fractional mappings
uwo: C —» C and n : C — C such that u(a) = oo, n(f(a)) = oo and consider the
mapping g = no fou!
oo € n(U), g(oo) =oo. Theset L' = p((SN'D)\{a}) C u(U)\{oo} is either a ray or a line.
By Proposition 3 the set g(L’) is also either some ray or a line. Therefore f =y~ o go
maps a set S N D (and any subset P also) to a subset of a generalized circle.

The situation 2.

Take S C D and a € §. We build linear-fractional mappings © and n by analogy with

: w(U) — C. This mapping satisfies the condition («) and

the situation 1 and consider the mapping ¢ = o f o u~!. By Proposition 3 the mapping g
moves the line L' = u((S\{a} C w(U)\{oo} to some line. Therefore g(L’) is a generalized
circle and f moves the generalized circle S = ! (L’) to a generalized circle, and any subset
P C S to a subset of a generalized circle. Thus f satisfies the conditions of Theorem 3 in
the disc D and is injective. Therefore f is a Moebius transformation on the disc D. Since
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our choice of the disc D C U is arbitrary, the mapping f is locally Moebius on a domain U.
Moebius transformations are explicitly defined by their values on some quadruple, that does
not lie on a generalized circle. From local Moebiusness of f it follows that f is Moebius on
a domain U. ]

LEMMA 3. Any continuous injective mapping f : U — C of a domain U C C, which
satisfies the condition («), @ € C\R, is a linear-fractional function.

PROOF. By Lemma 2 the mapping f is a Moebius transformation, so f is either a linear-
fractional function or its conjugate. We show that if « = a + ib and b # 0, then the second
is impossible. Let f(z) = u(z), where 1(z) is a linear-fractional function. Take any tetrad
T = {z1, z2, 73, z4} C U with anharmonic ratio A(T) = @« = a + ib. Then A(u(T)) =
A(T) =a+iband A(f(T)) = A(u(T)) = A(u(T)) = a — ib # «. This contradicts the
condition («). Therefore f is a linear-fractional function. |
The proof of Theorem 2 follows immediately from Lemma 1, Lemma 2 and Lemma 3.
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