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Introduction

The entire arithmetic functions of one variable have been studied
by many mathematicians. For example, see R. Boas [3] and R. Buck [4].
Recently V. Avanissian and R. Gay [1] studied entire arithmetic functions
of exponential type of » variables using the theory of analytic func-
tionals. In this paper we consider the arithmetic holomorphic functions
on a half plane using the theory of analytic functional with non-compact
carrier. We will obtain a sufficient condition for an arithmetic holomor-
phic function to be entire.

§1. Analytic functionals with non-compact carrier.

In this section we recall the definition of analytic functional with
non-compact carrier. Let L be the closed half strip in the complex plane:

L={z=x+1iy; z=aq, ly|<k}, i=V—-1.
By L. we denote the e-neighborhood of L:
L.=L+[—¢, e]+i[—¢, €] .

For ¢>0, ¢>0 and 0<k’'<1, we define the function space Q,(L.; k' +¢') as
follows:

QL I +¢&)= { f € & (int L) N C(L; sup |(2) exp (K +€)2)| < + oo}

where ~7(int L,) denotes the space of holomorphic functions on the interior
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of L. and C(L,) denotes the space of continuous functions on L,. Now
we define the function space Q(L; k') as follows:

Q(L; k)=lim ind Q,(L,; k' +¢') .

elo,s’|0

Endowed with the natural inductive limit topology, Q(L: k') becomes a
DFS space. We denote the dual space of Q(L; %) by Q'(L; k') and an
element of Q'(L;k’) is called an analytic functional with non-compact
carrier in L and of type k'. Next we define the space of holomorphic
functions of exponential type on the half plane (— oo, —k"Y+iR as follows:

Exp ((— 0, —k')+iR; L)
={f€ﬁ((—°o, —k’)+iR);Re§Su_pk'_ |f(¢) exp (—(a—¢) Ret—(k+¢)|Im £))|
<+ for every &>0, s'>0} .

We define the Fourier-Borel transformation of an analytic functional
reQ'(L; k) as follows:

(1.1) A@)={p,, exp (2t)) .

Remark that (1.1) is defined for ¢ in the half plane (— o, —K')+1R.
The following theorem of Paley-Wiener type characterizes the Fourier
Borel transformation of the space Q'(L; k').

THEOREM 1 (Morimoto [6], [7], [8]). The Fourier-Borel transforma-
tion is a topological linear isomorphism of Q'(L; k') onto Exp ((— oo, — k') +
wR; L).

§2. The Avanissian-Gay transformation.

If 0=<k'<1 and we¢exp(—L), then the function of ¢z, 1 —we*)™,
belongs to Q(L;k"). Following Avanissian and Gay [1], we define the
transformation G.(w) of an analytic functional pe Q'(L; k') as follows:

Gu(w)= ., 1—we*)™*) .
G.(w) is a function of w ¢ exp (—L) and has the following properties.

PROPOSITION 1 (Morimoto-Yoshino [9]).
(i) Gu(w) is holomorphic in the complement of exp (—L).
(ii) The following Laurent expansion is valid:

Gu(w)=— 3} A(—myw™ (lw|>e™).
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(1) lim)yne Gu(w)=0.
(iv) For every €>0 and ¢'>0, there exists a positive number C
such that

@2.1) Gu(w)| SClw|~ ¥+ (h+e<|arg w]|=7) .
And we have the following inversion formula.

PROPOSITION 2 (Morimoto-Yoshino [9]). If peQ'(L; %), 0<k'<1,
O0=sk<m and h(z)e Q,(L.; k' +¢'), then we have

(2.2) {pty By = (27ci)‘1su Ge=)h(2)dz .

§3. Transfinite diameter of exp (—L).

In this section we estimate the transfinite diameter of exp (—L).
Let F be a compact set in the complex plane. We denote by ¥(F') the
transfinite diameter of F. For the details of transfinite diameters, see
Ahlfors [2] and Zaleman [11]. First we begin with two lemmas.

LEMMA 1 (Zaleman [11]). Suppose F is a compact set in the complex
plane. Then we have the following estimate:

(1) v(FH=s@r) iglf length (C),

where C is a rectifiable curve of winding number 1 for each point of
F.

(ii) If F is a segment, we have the following equality:
(F)=3m(F),

where m(F') denotes the Lebesgue measure of F.

LEMMA 2 (Martineau [5]—§einov‘[10]). Let F be a polynomially convex
compact set in the complex plane. Suppose Y(F') is less than 1 and g(w)
18 a holomorphic function on the complement of F and lim,, .. g(w)=0.
If the Laurent coefficients of g(w) at infinity are all integers, then

g(w)=A(w)B(w)™*

where A(w) and B(w) are polynomials whose coefficients are all integers
and moreover B(w) is monic.

Using Lemma 1, we can estimate the transfinite diameter of exp (—L).
The result is as follows.
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PROPOSITION 3. Suppose L=[a, «<)+i[—k,k]. Then we have the
following estimates: :

(i) v(exp(—L))=(1/4)e" if k=0

(ii) v(exp (—L)=z"'(k+1L)e=* if 0<k=(1/2)

(iii) v(exp (—L)<n'(k-+sinkle if (U2r<k<r.

PROOF. (i) In this case exp(—L) is the segment, whose Lebesgue
measure is ¢ *. Hence we have the above estimate.

(ii) In this case the length of boundary of exp (—L) is 2(k+1)e°.
Hence we obtain the above result by Lemma 1.

(iii) In this case exp (—L) is surrounded by the curve whose length
is 2(k+sin k)e *. See Figure 1. g.e.d.
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FIGURE 1

From Proposition 3, we obtain the following corollary.

COROLLARY. If the pair (a, k) satisfies one of the following three
conditions:

3.1) k=0 and a>—2log2,
(3.2) o<k§12‘_ and a>logw'(k+1),
3.3) %§k<n and a>logw ' (k+sink),

then v(exp (—L)) is less than 1.

§4. Analytic continuation of arithmetic holomorphic functions of
exponential type on a half plane.

Let f(t) be a holomorphic function defined in the half plane:
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(—co, —k")+iR, where 0=<Kk'<1l. We call f(¢) arithmetic if f(—n) are
all integer for n=1,2 3, ---

THEOREM 2. Suppose f(t) belongs to Exp ((—o, —k)+iR; L) and
that f(t) is arithmetic. If the pair (a, k) satisfies one of the three con-
ditions (3.1), (3.2), (3.3), then f(t) is an entz're Sunction. Moreover, f(t)
has followm,g Jorm:

RO=3, PO ex (8 |

where P,(t) are polynomials and Re ,Biga,; Im B,|<k and exp (—p,) are
algebraic integers.
PROOF. By Theorem 1, there exists p#eQ'(L; k') such that
\ f&)={tt., exp (at)) =[(2) .

By Proposition 1, we have
Gulw)=— 3, f(—myw ™= — 3 f(—mw™*

and

lim G.(w)=0 .

w—co

By the assumption and Proposition 3, v(exp (—L)) is less than 1 and
S(—mn) are all integers. Therefore by Lemma 2, we can find polynomials
A(w) and B(w) such that

(4.0) Gu(w)=A(w)B(w)™* .

From Proposition 1 (iv), we must have B(0)#0 and G.(w) is holomorphic
at w=0. Therefore there exists a positive number R such that G.(e™?)
is holomorphic for Re z>R. From the inversion formula (2.2), we have

(4.1) £(6) = (@mi)~ S Gule") exp (zt)dz (Ret< —K') .

Now we consider the integral of the right hand side of (4.1). Put
L,={zeL;Rez=R}, L_={z¢cL,Rez<R}
and we have

L=L,+L_
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We divide path of integration 4L, into the following two parts:

3L, = aL+ + aL— .
See Figure 2.
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FiGure 2
Since lim, .., Supg..-, |Gu(e~*) exp (2t)| =0, we obtain
S Gule™) exp (28)dz=0
9L 4
by Cauchy’s theorem. Hence we have
(4.2) f&=@mi) | Gule) exp (at)dz .
Since the right hand side of (4.2) is an integration over a compact set,

f(t) is an entire function of ¢. As B(w) is, by the Lemma 2, a monic
polynomial with integer coefficients, we have

B(w)=11 (w—b)~
where b; are algebraic integers and we obtain from 4.0),
4.3) Gule ) =A™ I (e~ .
By Proposition 1-(i), G.(w) belongs to < (C\exp(—L)), so b, are in

Exp (—L). Since every b, belongs to exp (—L), there exists a unique
point B, of L such that

b,=exp (—B;) where Repg,=za, |[Img|=k.

From (4.3), we obtain

(4.4) Gule™)=A(e) I (L—exp (z—B.) ™ exp () -
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Inserting (4.4) into (4.2), we have the desired result by the residue
theorem:

F&)=3} Pt) exp (8) .
q.e.d.

§5. Some examples and remarks.

(i) f(®)=2"*is arithmetic and belongs to Exp ((— o, k') +iR; L) with
a=—log 2, k=0.

(ii) f(t)=sin (7/2)t is arithmetic and belongs to Exp ((— o, k') +iR; L)
with a=0, k=n/2.

(iii) f(t)=2 cos (2/3)xt is arithmetic and belongs to Exp ((—c, —k')+
+R; L) with a=0, k=(2/3)~x.

(iv) If f(t) is arithmetic and belongs to Exp ((— o, k") +iR; L) with
a>0, then f(t) vanishes identically. In fact, as we have lim,_. f(—n)=0
and f(—n) are all integers, there exists a positive integer N such that

S(—n)=0 for n>N.

By Carlson theorem (Boas [3], Morimoto-Yoshino [9]), we have

f£)=0.

(v) Let I'(t) be the Gamma function, then I'(t)~* is arithmetic.
But I'(t)™* does not belong to Exp ((— oo, ¥')+iR; L). In fact, if I"(t)™
belongs to Exp ((— oo, k)+iR; L), then I'(t)™* vanishes identically by
Carlson’s theorem. This is impossible.
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