Analytic Continuation of Arithmetic Holomorphic Functions on a Half Plane

Kunio YOSHINO

Sophia University
(Communicated by M. Morimoto)

Introduction

The entire arithmetic functions of one variable have been studied by many mathematicians. For example, see R. Boas [3] and R. Buck [4]. Recently V. Avanissian and R. Gay [1] studied entire arithmetic functions of exponential type of n variables using the theory of analytic functionals. In this paper we consider the arithmetic holomorphic functions on a half plane using the theory of analytic functional with non-compact carrier. We will obtain a sufficient condition for an arithmetic holomorphic function to be entire.

§1. Analytic functionals with non-compact carrier.

In this section we recall the definition of analytic functional with non-compact carrier. Let L be the closed half strip in the complex plane:

$$L = \{z = x + iy; x \ge a, |y| \le k\}$$
 , $i = \sqrt{-1}$.

By L_{ε} we denote the ε -neighborhood of L:

$$L_{\varepsilon} = L + [-\varepsilon, \varepsilon] + i[-\varepsilon, \varepsilon]$$
.

For $\varepsilon > 0$, $\varepsilon' > 0$ and $0 \le k' < 1$, we define the function space $Q_b(L_{\varepsilon}; k' + \varepsilon')$ as follows:

$$Q_b(L_\epsilon;\,k'+arepsilon') = \left\{f \in \mathscr{O}(\mathrm{int}\;L_\epsilon) \cap C(L_\epsilon);\, \sup_{z \in L_\epsilon} |f(z) \, \exp\left((k'+arepsilon')z
ight)| < + \infty
ight\}$$

where $\mathcal{O}(\operatorname{int} L_{\epsilon})$ denotes the space of holomorphic functions on the interior

Received June 24, 1978 Revised July 31, 1978 of L_{ϵ} and $C(L_{\epsilon})$ denotes the space of continuous functions on L_{ϵ} . Now we define the function space Q(L; k') as follows:

$$Q(L; k') = \liminf_{\epsilon \mid 0, \epsilon' \mid 0} Q_b(L_\epsilon; k' + \epsilon')$$
.

Endowed with the natural inductive limit topology, Q(L;k') becomes a DFS space. We denote the dual space of Q(L;k') by Q'(L;k') and an element of Q'(L;k') is called an analytic functional with non-compact carrier in L and of type k'. Next we define the space of holomorphic functions of exponential type on the half plane $(-\infty, -k')+iR$ as follows:

$$egin{aligned} &\operatorname{Exp}\left((-\infty,\,-k')\!+\!iR;\,L
ight) \ &= \left\{f \in \mathscr{O}((-\infty,\,-k')\!+\!iR); \sup_{\operatorname{Re}\,t \leq -k'-\epsilon'} |f(t)\exp\left(-(a\!-\!arepsilon)\operatorname{Re}\,t\!-\!(k\!+\!arepsilon)|\operatorname{Im}\,t|
ight)| \ &< +\infty \ ext{ for every } arepsilon\!>\!0, \ arepsilon'\!>\!0
ight\} \ . \end{aligned}$$

We define the Fourier-Borel transformation of an analytic functional $\mu \in Q'(L; k')$ as follows:

$$\hat{\mu}(t) = \langle \mu_z, \exp(zt) \rangle.$$

Remark that (1.1) is defined for t in the half plane $(-\infty, -k')+iR$. The following theorem of Paley-Wiener type characterizes the Fourier Borel transformation of the space Q'(L; k').

THEOREM 1 (Morimoto [6], [7], [8]). The Fourier-Borel transformation is a topological linear isomorphism of Q'(L;k') onto $\text{Exp}((-\infty,-k')+iR;L)$.

$\S 2$. The Avanissian-Gay transformation.

If $0 \le k' < 1$ and $w \notin \exp(-L)$, then the function of z, $(1-we^z)^{-1}$, belongs to Q(L; k'). Following Avanissian and Gay [1], we define the transformation $G_{\mu}(w)$ of an analytic functional $\mu \in Q'(L; k')$ as follows:

$$G_{\mu}(w) = \langle \mu_z, (1-we^z)^{-1} \rangle$$
.

 $G_{\mu}(w)$ is a function of $w \notin \exp(-L)$ and has the following properties.

Proposition 1 (Morimoto-Yoshino [9]).

- (i) $G_{\mu}(w)$ is holomorphic in the complement of $\exp(-L)$.
- (ii) The following Laurent expansion is valid:

$$G_{\mu}(w) = -\sum_{n=1}^{\infty} \hat{\mu}(-n)w^{-n} \quad (|w| > e^{-a})$$
 .

- (iii) $\lim_{|w|\to\infty} G_{\mu}(w) = 0$.
- (iv) For every $\varepsilon > 0$ and $\varepsilon' > 0$, there exists a positive number C such that

$$|G_{\mu}(w)| \leq C|w|^{-(k'+\epsilon')} \quad (k+\epsilon \leq |\arg w| \leq \pi).$$

And we have the following inversion formula.

PROPOSITION 2 (Morimoto-Yoshino [9]). If $\mu \in Q'(L; k')$, $0 \le k' < 1$, $0 \le k < \pi$ and $h(z) \in Q_b(L_\epsilon; k' + \epsilon')$, then we have

(2.2)
$$\langle \mu, h \rangle = (2\pi i)^{-1} \int_{\partial L_{\varepsilon}} G_{\mu}(e^{-z}) h(z) dz.$$

§3. Transfinite diameter of $\exp(-L)$.

In this section we estimate the transfinite diameter of $\exp{(-L)}$. Let F be a compact set in the complex plane. We denote by $\gamma(F)$ the transfinite diameter of F. For the details of transfinite diameters, see Ahlfors [2] and Zalcman [11]. First we begin with two lemmas.

LEMMA 1 (Zalcman [11]). Suppose F is a compact set in the complex plane. Then we have the following estimate:

(i) $\gamma(F) \leq (2\pi)^{-1} \inf_{\Gamma} length(C)$,

where C is a rectifiable curve of winding number 1 for each point of F.

(ii) If F is a segment, we have the following equality:

$$\gamma(F) = \frac{1}{4}m(F)$$
,

where m(F) denotes the Lebesgue measure of F.

LEMMA 2 (Martineau [5]-Šeinov [10]). Let F be a polynomially convex compact set in the complex plane. Suppose $\gamma(F)$ is less than 1 and g(w) is a holomorphic function on the complement of F and $\lim_{|w|\to\infty} g(w)=0$. If the Laurent coefficients of g(w) at infinity are all integers, then

$$g(w) = A(w)B(w)^{-1}$$

where A(w) and B(w) are polynomials whose coefficients are all integers and moreover B(w) is monic.

Using Lemma 1, we can estimate the transfinite diameter of $\exp(-L)$. The result is as follows.

PROPOSITION 3. Suppose $L=[a, \infty)+i[-k, k]$. Then we have the following estimates:

- (i) $\gamma(\exp(-L)) = (1/4)e^{-a}$ if k=0
- $(ii) \quad \gamma(\exp{(-L)}) \leq \pi^{-1}(k+1)e^{-a} \qquad if \quad 0 < k \leq (1/2)\pi$
- (iii) $\gamma(\exp(-L)) \leq \pi^{-1}(k+\sin k)e^{-a}$ if $(1/2)\pi \leq k < \pi$.

PROOF. (i) In this case $\exp(-L)$ is the segment, whose Lebesgue measure is e^{-a} . Hence we have the above estimate.

- (ii) In this case the length of boundary of $\exp(-L)$ is $2(k+1)e^{-a}$. Hence we obtain the above result by Lemma 1.
- (iii) In this case $\exp(-L)$ is surrounded by the curve whose length is $2(k+\sin k)e^{-a}$. See Figure 1. q.e.d.

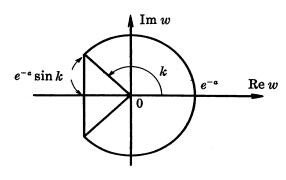


FIGURE 1

From Proposition 3, we obtain the following corollary.

COROLLARY. If the pair (a, k) satisfies one of the following three conditions:

(3.1)
$$k=0 \text{ and } a>-2 \log 2$$
,

(3.2)
$$0 < k \le \frac{\pi}{2} \quad and \quad a > \log \pi^{-1}(k+1)$$
,

$$(3.3) \qquad \frac{\pi}{2} \leq k < \pi \quad and \quad a > \log \pi^{-1}(k + \sin k) ,$$

then $\gamma(\exp(-L))$ is less than 1.

§4. Analytic continuation of arithmetic holomorphic functions of exponential type on a half plane.

Let f(t) be a holomorphic function defined in the half plane:

 $(-\infty, -k')+iR$, where $0 \le k' < 1$. We call f(t) arithmetic if f(-n) are all integer for $n=1, 2, 3, \cdots$.

THEOREM 2. Suppose f(t) belongs to $\text{Exp}((-\infty, -k') + iR; L)$ and that f(t) is arithmetic. If the pair (a, k) satisfies one of the three conditions (3.1), (3.2), (3.3), then f(t) is an entire function. Moreover, f(t) has following form:

$$f(t) = \sum_{i=1}^{l} P_i(t) \exp(\beta_i t)$$

where $P_i(t)$ are polynomials and $\operatorname{Re} \beta_i \geq a$, $|\operatorname{Im} \beta_i| \leq k$ and $\exp(-\beta_i)$ are algebraic integers.

PROOF. By Theorem 1, there exists $\mu \in Q'(L; k')$ such that

$$f(t) = \langle \mu_z, \exp(zt) \rangle = \hat{\mu}(t)$$
.

By Proposition 1, we have

$$G_{\mu}(w) = -\sum_{n=1}^{\infty} \hat{\mu}(-n)w^{-n} = -\sum_{n=1}^{\infty} f(-n)w^{-n}$$

and

$$\lim_{\omega \to 0} G_{\mu}(w) = 0$$
.

By the assumption and Proposition 3, $\gamma(\exp{(-L)})$ is less than 1 and f(-n) are all integers. Therefore by Lemma 2, we can find polynomials A(w) and B(w) such that

(4.0)
$$G_{\mu}(w) = A(w)B(w)^{-1}$$
.

From Proposition 1 (iv), we must have $B(0) \neq 0$ and $G_{\mu}(w)$ is holomorphic at w=0. Therefore there exists a positive number R such that $G_{\mu}(e^{-z})$ is holomorphic for Re z > R. From the inversion formula (2.2), we have

(4.1)
$$f(t) = (2\pi i)^{-1} \int_{\partial L_s} G_{\mu}(e^{-z}) \exp{(zt)} dz \quad (\text{Re } t < -k') .$$

Now we consider the integral of the right hand side of (4.1). Put

$$L_+ = \{z \in L_\varepsilon; \text{ Re } z \geqq R\}$$
 , $L_- = \{z \in L_\varepsilon; \text{ Re } z \leqq R\}$

and we have

$$L_{\varepsilon} = L_{+} + L_{-}$$
 .

We divide path of integration ∂L_{ϵ} into the following two parts:

$$\partial L_{\varepsilon} = \partial L_{+} + \partial L_{-}$$
.

See Figure 2.

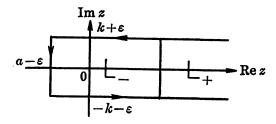


FIGURE 2

Since $\lim_{s\to\infty}\sup_{\mathrm{Re}\,z=s}|G_{\mu}(e^{-z})\exp{(zt)}|=0$, we obtain

$$\int_{\partial L_+} G_{\mu}(e^{-z}) \exp{(zt)} dz = 0$$

by Cauchy's theorem. Hence we have

(4.2)
$$f(t) = (2\pi i)^{-1} \int_{\partial L} G_{\mu}(e^{-z}) \exp(zt) dz.$$

Since the right hand side of (4.2) is an integration over a compact set, f(t) is an entire function of t. As B(w) is, by the Lemma 2, a monic polynomial with integer coefficients, we have

$$B(w) = \prod_{i=1}^{l} (w - b_i)^{n_i}$$

where b_i are algebraic integers and we obtain from (4.0),

(4.3)
$$G_{\mu}(e^{-z}) = A(e^{-z}) \prod_{i=1}^{l} (e^{-z} - b_i)^{-n_i}.$$

By Proposition 1-(i), $G_{\mu}(w)$ belongs to $\mathcal{O}(C \setminus \exp(-L))$, so b_i are in $\operatorname{Exp}(-L)$. Since every b_i belongs to $\exp(-L)$, there exists a unique point β_i of L such that

$$b_i = \exp(-\beta_i)$$
 where $\operatorname{Re} \beta_i \geq a$, $|\operatorname{Im} \beta_i| \leq k$.

From (4.3), we obtain

(4.4)
$$G_{\mu}(e^{-z}) = A(e^{-z}) \prod_{i=1}^{l} (1 - \exp(z - \beta_i))^{-n_i} \exp\left(\sum_{i=1}^{l} n_i z\right)$$
.

Inserting (4.4) into (4.2), we have the desired result by the residue theorem:

$$f(t) = \sum_{i=1}^{l} P_i(t) \exp(\beta_i t) .$$

q.e.d.

- §5. Some examples and remarks.
- (i) $f(t)=2^{-t}$ is arithmetic and belongs to $\text{Exp}((-\infty, k')+iR; L)$ with $a=-\log 2$, k=0.
- (ii) $f(t) = \sin(\pi/2)t$ is arithmetic and belongs to Exp $((-\infty, k') + iR; L)$ with a = 0, $k = \pi/2$.
- (iii) $f(t)=2\cos(2/3)\pi t$ is arithmetic and belongs to $\text{Exp}((-\infty, -k')+iR; L)$ with a=0, $k=(2/3)\pi$.
- (iv) If f(t) is arithmetic and belongs to $\text{Exp}((-\infty, k') + iR; L)$ with a > 0, then f(t) vanishes identically. In fact, as we have $\lim_{n \to \infty} f(-n) = 0$ and f(-n) are all integers, there exists a positive integer N such that

$$f(-n)=0$$
 for $n>N$.

By Carlson theorem (Boas [3], Morimoto-Yoshino [9]), we have

$$f(t)=0$$
.

(v) Let $\Gamma(t)$ be the Gamma function, then $\Gamma(t)^{-1}$ is arithmetic. But $\Gamma(t)^{-1}$ does not belong to $\operatorname{Exp}((-\infty,k')+iR;L)$. In fact, if $\Gamma(t)^{-1}$ belongs to $\operatorname{Exp}((-\infty,k')+iR;L)$, then $\Gamma(t)^{-1}$ vanishes identically by Carlson's theorem. This is impossible.

References

- [1] V. AVANISSIAN and R. GAY, Sur une transformation des fonctionnelles analytiques et ses applications aux fonctions entières de plusieurs variables, Bull. Soc. Math. France, 103 (1975), 341-384.
- [2] R. Ahlfors, Conformal Invariants, Topics in Geometric Function Theory, McGraw-Hill, New York, 1973.
- [3] R. Boas, Entire Functions, Academic Press, New York, 1954.
- [4] C. R. Buck, Integral valued entire functions, Duke Math. J., 15 (1948), 879-891.
- [5] A. MARTINEAU, Extension en *n* variables d'un théorème de Pólya-Carlson concernant les séries de puissances à coefficients entières, C. R. Acad. Sci. Paris Ser. A, 273 (1971), 1127-1128.
- [6] M. Morimoto, On the Fourier ultra-hyperfunctions 1, Sûrikaiseki Kenkyûjo Kôkyûroku, 192 (1973), 10-34.
- [7] M. Morimoto, Fourier transformation and distribution, Jôchi Daigaku Sûgaku Kôkyûroku, 2 (1978), 1-177 (in Japanese).

- [8] M. Morimoto, Analytic functionals with non-compact carrier, Tokyo. J. Math., 1 (1978).
- [9] M. Morimoto and K. Yoshino, A uniqueness theorem for holomorphic functions of exponential type, Hokkaido Math. J., 7 (1978), to appear.
- [10] A. Šeinov, Transfinite diameter and some theorem of Pólya in the case of several complex variables, Siberian Math. J., 12 (1972), 1382-1389.
- [11] L. ZALCMAN, Analytic capacity and rational approximation, Lecture Notes in Math., 50, Springer, Berlin 1968.

Present Address:
DEPARTMENT OF MATHEMATICS
SOPHIA UNIVERSITY
KIOICHO, CHIYODA-KU, TOKYO 102