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Introduction

The aim of this paper is to study hypoellipticity of degenerate
elliptic-parabolic operators from the view point of the control theory.
Hormander and Oleinik-Radkevi\v{c} proved (see [4]) that the degenerate
elliptic-parabolic operator

(1) $L=\sum_{i.;=1}^{d}a_{ij}(x)\frac{\partial^{2}}{\partial x_{i}\partial x_{j}}+\sum_{i=1}^{d}b_{i}(x)\frac{\partial}{\partial x_{i}}+c(x)$

in an open set $M$ in $R^{d}$ with real $C^{\infty}$-smooth coefficients is hypoelliptic
if $\dim \mathscr{L}(X_{0}, X_{1}, \cdots, X_{d})\equiv d$ (for the notation, see \S 1), where

$X_{0}=\sum_{i=1}^{d}(b_{i}-\sum_{i=\iota}^{d}\frac{\partial a_{ij}}{\partial x_{j}})\frac{\partial}{\partial x_{i}}$ ,
(2)

$X_{i}=\sum_{j=1}^{d}a_{ij^{\frac{\partial}{\partial x_{j}}}}$ , $1\leqq i\leqq d$ ,

and conversely, when the coefficients are real analytic, $\dim \mathscr{G}(X_{0},$ $X_{1}$ ,..., $X_{d}$) $\equiv d$ if the operator $L$ is hypoelliptic. Chow and Nagano proved
(see [7]) that for a set of $C^{\infty}$-smooth vector fields $\{X_{0}, X_{1}, \cdots, X_{d}\}$ the
system

(8) $\dot{x}=\sum_{i=0}^{d}\xi_{i}X_{i}(x)$ , $\xi eR^{1}$

is controllable in every subdomain in $M$ if $\dim \mathscr{L}(X_{0}, X_{1}, \cdots, X_{d})\equiv d$ ,
and proved that the converse proposition holds when the vector fields
are real analytic. Thus we are led naturally to the following problems:
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Is the system (3) controllable in every subdomain in $M$ if the operator
$L$ is hypoelliptic?; conversely, when the vector fields $X_{0},$ $X_{1},$

$\cdots,$
$X_{d}$ are

real analytic, is the operator $L$ hypoelliptic if the system (3) is controllable
in every subdomain in $M$? We give an affirmative answer for the former
problem (Theorem 2). In view of $H\ddot{o}rmander- Oleinik- Radkevi\check{c}’ s$ and
Nagano’s results the latter problem is trivial, so we modify the question:
When the vector fields $X_{0},$ $X_{1},$

$\cdots,$
$X_{d}$ are merely $C^{\infty}$-smooth, does the

answer for the latter problem remain affirmative? The answer is negative
in general, but we can show that there is a closed set $F$ in $M$ such that
$F^{o}=\emptyset,$ $ F\subset$ {$x\in M$; dim.,s24 $(X_{0},$ $X_{1},$

$\cdots,$ $X_{d})<d$ at $x$ } and such that $L$ is
hypoelliptic in $M\backslash F$ if the system (3) is controllable in every subdomain
in $M$ (Theorem 1 and Remark 1).

In Section 1, Theorem 1 is proved. In Section 2, Theorem 2 is
reduced to a certain proposition which is proved in Section 4 by using
some probabilistic lemmas prepared in Section 3. We can see easily that
the whole statement of this paper remains true when $M$ is a $C^{\infty}$-manifold.

$NoTATIONS$ :
$C^{k}(V)$ is the set of all $C^{k}$ functions defined in $V$.
$C_{0}^{k}(V)$ is the set of all functions in $C^{k}(V)$ with compact support in $V$ .
$\mathscr{G}^{\prime}(V)$ is the set of all distributions in $V$.

\S 1. Proof of Theorem 1.

Let $M$ be an open set in $R^{d}$ and let $L$ be a differential operator in
$M$ of the form (1) with real $C^{\infty}$-smooth coefficients. Throughout this
paper we assume that $(a_{ij}(x))$ is a nonnegative symmetric $d\times d$ matrix
for every $x$ in $M$, that is, $L$ is the degenerate elliptic-parabolic operator
in $M$. Furthermore we assume that the second order terms and the
first order ones of $L$ never vanish simultaneously, i.e.,

(4) $\sum_{i.j=1}^{d}|a_{ij}(x)|+\sum_{i=1}^{d}|b_{i}(x)|\neq 0$

for all $x$ in M. $X_{0},$ $X_{1},$
$\cdots,$

$X_{d}$ will denote the vector fields defined by
(2) and $Z(X_{0}, X_{1}, \cdots, X_{d})$ will denote the Lie algebra generated over
$R$ by the vector fields $X_{0},$ $X_{1},$

$\cdots,$
$X_{d}$ .

It is easy to show the following lemma which will be used in the
proof of Theorem 1.

LEMMA 1. If $\dim Z(X_{0}, X_{\iota}, \cdots, X_{d})\leqq r$ in an open set $UinM$, then
the set {$x\in U;\dim\Leftrightarrow \mathscr{G}(X_{0},$ $X_{1},$

$\cdots,$ $X_{d})=r$ at $x$} is open.
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THEOREM 1. If the system (3) is controllable in every subdomain in
$M$, then the set {$x\in M;\dim \mathscr{L}(X_{0},$ $X_{1},$ $\cdots,$ $X_{d})<d$ at $x$ } is closed in Mand
has no interior.

PROOF. The closedness follows immediately from Lemma 1. If there
is an open set $U$ in which $\dim_{-}\mathscr{G}(X_{0}, X_{1}, \cdots, X_{d})<d$ , then

$\max_{xeU}\dim_{\subset}\mathscr{G}(X_{0}, X_{1}, \cdots, X_{d})=r<d$ .

Lemma 1 shows that $\dim \mathscr{L}(X_{0}, X_{1}, \cdots, X_{d})\equiv r$ in some non-empty domain,
say $V$ , contained in $U$, so $\mathscr{L}(X_{0}, X_{1}, \cdots, X_{d})$ is an r-dimensional invo-
lutive distribution in $V$ . By the Frobenius’ theorem, $V$ is able to be
cut into slices of r-dimensional integral manifolds of the distribution
$Z(X_{0}, X_{1}, \cdots, X_{d})$ . Hence the system (3) is not controllable in $V$ ; this
is a contradiction.

REMABK 1. By combining Theorem 1 with Hormander-Oleinik-
$Radkevi\check{c}’ s$ (see [4]) and Nagano’s results (see [7]) we obtain the following:
If the system (3) is controllable in every subdomain in $M$, then there
is a closed set $F$ in $M$ such that $F^{o}=\emptyset,$ $F\subset\{x\in M;\dim Z(X_{0}, X_{1}, \cdots, X_{d})<$

$d$ at $x$ } and such that the operator $L$ is hypoelliptic in $M\backslash F$. In particular,
when the coefficients $a_{tj}$ and $b_{i}$ are real analytic, we have $ F=\emptyset$ . It is
generally not possible to show $ F=\emptyset$ , although Fedii [1] actually proved
this for a certain kind of infinitely degenerate elliptic-parabolic operators.

\S 2. Proof of Theorem 2 (Part 1).

We summarize Sussmann’s results ([7]) which are necessary in proving
Theorem 2. Let $D$ be the set of vector fields $\{X_{0}, X_{1}, \cdots, X_{d}\}$ and let $\Delta_{D}$ be
the distribution spanned by $D$ . For an open set $U$ in $M,$ $G_{D}(U)$ will denote
the group of local $C^{\infty}$-diffeomorphisms on $U$ generated by $D|_{U}$ (cf. [7]).

Sussmann’s distribution $S_{D}(U)$ is the smallest $G_{D}(U)$-invariant distribution
on $U$ which contains $\Delta_{D}|_{U}$ , that is, the space $S_{D}(U)(x)$ is the linear hull
of all the vectors $v\in T.$ $U$ such that $v\in\Delta_{D}(x)$ or $v=d\varphi(w)$ , where $\varphi\in G_{D}(U)$

and, for some $y\in U,$ $x=\varphi(y)$ and $w\in\Delta_{D}(y)$ . The distribution $S_{D}(U)$ has
the maximal integral manifolds property in the sense of [7] and further,
the system (3) is controllable in $U$ if and only if $\dim S_{D}(U)\equiv d$ .

THEOREM 2. If the operator $L$ is hypoelliptic in $M$, then the system
(3) is $cont\gamma ollable$ in every subdomain in $M$.

PROOF (Part 1). Assume that there is a subdomain $U$ in $M$ such
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that the system (3) is not controllable in $U$. By the Sussmann’s result
this means that $\dim S_{D}(U)<d$ at some point $p$ in $U$. Since $S_{D}(U)$ has the
maximal integral manifolds property, there passes a maximal integral
manifold of $S_{D}(U)$ through the point $p$ . So it is easy to show, by the
inverse function theorem, that there passes a regular maximal integral
manifold, say $N$, of $S_{D}(U)$ through $p$ . By (4) and $\dim S_{D}(U)(p)<d$ , we
have easily $1\leqq\dim N<d$ .

Since $N$ is regular and since hypoellipticity is a local property, we
may suppose by performing a suitable change of local coordinates that

(5) $N=\{x\in R^{d};x_{f+\iota}=\cdots=x_{d}=0\}$

in a neighborhood of $p$ , where $r=\dim N$; furthermore, by considering
$\psi L$ instead of $L$ (where $0\leqq\psi\leqq 1$ is a $C^{\infty}$-smooth function in $R^{d}$ such that
$\psi\equiv 0$ outside a small neighborhood of $p$ and that $\psi\equiv 1$ in a smaller
neighborhood of p) we may suppose that

(6) $a\in C_{bdd}^{\infty}(R^{\delta}, S_{d})$ , $b\in C_{bdd}^{\infty}(R^{d}, R^{d})$ , $c\in C_{bdd}^{\infty}(R^{d}, R^{1})$ .
Here $a$ is the $d\times d$ matrix $(a_{tj}),$ $b$ is the $v^{-}ector(b_{1}, \cdots, b_{d})$ and $S_{d}$ denotes
the class of symmetric nonnegative matrices.

Now it will suffice to show the following: There is an open neigh-
borhood $V$ of the point $p$ and a locally integrable function $u$ defined in $V$

such that $N\cap V\subset singsuppu$ and $Lu=0$ in $V$.
Theorem 2 will be proved completely at the end of Section 4 after

a preliminary study in \S 3.

\S 3. Probabilistic lemmas.

In this section we assume the conditions (6). $\sigma(x)=(\sigma_{i;}(x))$ denotes
a symmetric nonnegative $d\times d$ matrix such that $a(x)=(1/2)\sigma^{8}(x)$ . By (6)
each $\sigma_{ij}(x)$ is Lipschitz continuous in $R^{\delta}$ , so for any $x$ in $R^{\delta}$ there exists
a unique solution, say $x^{r}(t)$ , with

(7) $dx(t)=\sigma(x(t))dw(t)+b(x(t))dt$ , $x(O)=x$ a.s.
in $M_{w}^{2}[0, T],$ $T>0$ . Here $w(t),$ $t\geqq 0$ , is a d-dimensional Brownian motion on
a probability space $(\Omega, FP)$ and $M_{w}^{2}[0, T]$ denotes a set of all non-
anticipative functions $f(t)$ satisfying

$ E[\int_{0}^{r}|f(t)|dt]<\infty$ .
$x(t),$ $t\geqq 0$ , will denote the time-homogeneous diffusion process that is the
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solution of the stochastic differential equation (7).

DEFINITION ([3]). If $N$ is a subset in $R^{\delta}$ such that $P_{x}[x(t)\not\in N$ for all
$t\geqq 0]=1$ whenever $x\not\in N$, then we say that $N$ is nonatta’inable by the
process $x(t)$ .

LEMMA 2. Let $N$ be elosed in $R^{d}$ and nonattainable by the process
$x(t)$ and let $v\in C^{Z}(R^{d}\backslash N)$ . Then

$d[v(x(t))\exp\{\int_{0}^{t}c(x(\epsilon))d\epsilon\}]$

$=\nabla v(x(t))\exp\{\int_{0}^{t}c(x(\epsilon))ds\}\sigma(x(t))dw(t)$

$+Lv(x(t))\exp\{\int_{0}^{t}c(x(\epsilon))ds\}dt$

$P_{x}- a.s$ . for all $x\not\in N$.
This is a generalization of It\^o’s formula. For the proof we have

only to approximate $v$ by suitable functions in $C^{2}(R^{\delta})$ and use Ito’s formula.
Let $V$ be an open set in $R^{d}$ with $C^{\infty}$-smooth boundary. The exit

time $\tau$ of $\overline{V}$ is defined by

$\tau=\inf\{t\geqq 0;x(t)\not\in\overline{V}\}$ .
$\Gamma$ and $\Sigma$ are the subsets on the boundary $\partial V$ of $V$ defined by

$\Gamma=\{x\in\partial V;P_{x}(\tau>0)=0\}$

and

$\Sigma=$ {$X\in\partial V;\langle\nu,$ $a(x)\nu\rangle>0$ or $\langle\nu,$ $X_{0}(x)\rangle<0$} ,

where $\langle, \rangle$ denotes the inner product in $R^{d}$ and $\nu$ is the inward normal
vector on $\partial V$ . For brevity we set

$C=s^{upc(x)}$ VO.

Then we have the following lemma.

LEMMA 3. Assume that

$\sup_{xe\overline{V}}E_{x}[(1+\tau)e^{C\tau}]<\infty$ .

For given $f\in L^{\infty}(V)$ and $g\in L^{\infty}(\Gamma)\cap C(\Sigma)$ , the function
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$u(x)=E_{x}[g(x(\tau))\exp\{\int_{0}^{\tau}c(x(s))ds\}$

$-\int_{0}^{\tau}f(x(t))\exp\{\int_{0}^{t}c(x(s))ds\}dt]$

is a unique solution of the Dirichlet problem

(8) $\left\{\begin{array}{ll}Lu=f & in V\\ess\lim_{x\rightarrow a,xeV} & (x)=g(a),\end{array}\right.$

$ a\in\Sigma$

in $L^{\infty}(V)$ .
Here (8) means that $u$ can be changed on a set of Lebesgue measure

zero so that the following relations may be satisfied;

$\int\int uL^{*}\varphi dx=\int fqdx$ , $\varphi\in C_{0}^{\infty}(V)$ ,

$|_{xeV}^{\lim_{x\rightarrow a}u(x)=g(a)}$
, $ a\in\Sigma$ .

Lemma 3 is a generalization of Strook-Varadhan’s theorem ([6]). The
proof is parallel to that of Strook-Varadhan’s theorem but we will have
to use Lemma 2.1 in [5] instead of Lemma 4.1 in [6].

LEMMA 4. Let $V_{\rho}$ be an open neighborhood of a fixed point $p$ in $R^{d}$ ,
with diameter $ V_{\rho}=\rho$ , and let $\tau_{\rho}$ be the exit time of $V_{\rho}$ . If the condition
(4) is satisfied at the point $p$ , then we obtain

$\varlimsup_{\rho\downarrow 0}\sup_{xe\overline{\gamma}_{\rho}}E_{x}[e^{Ce_{\rho}}]<\infty$

and

$\lim_{\rho\downarrow 0}\sup_{xe\overline{\gamma}_{\rho}}E_{x}[(\tau_{\rho}e^{C\tau_{\rho}})^{k}]=0$

for any constant $C\geqq 0$ and any $k=1,2,$ $\cdots$ .
PROOF. According to Freidlin [2] there are small positive constants

$\epsilon$ and $\delta$ independent of all sufficiently small $\rho>0$ such that

$P_{x}[\tau_{\rho}<\frac{\rho}{\delta}]>\epsilon^{\rho/\delta}$

for all $xe\overline{V}_{\rho}$ . The Markov property gives

$P_{g}[\tau_{\rho}\geqq n\frac{\rho}{\delta}]\leqq(1-\epsilon^{\rho/\delta})^{\iota}$
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for all $x\in\overline{V}_{\rho}$ and all $n=0,1,2,$ $\cdots$ ; so we have
$E_{x}[e^{C\tau_{\rho}}]$

$=\sum_{n=0}^{\infty}E_{x}[\chi_{n\rho/\delta\leqq\tau_{\rho}<tn+1)\rho/\delta}e^{C\tau_{\rho}}]$

$\leqq\sum_{n=0}^{\infty}e^{C(n+1)\rho/\delta}P_{x}[\tau_{\rho}\geqq n\frac{\rho}{\delta}]$

$\leqq e^{C\rho/\delta}\sum_{n=0}^{\infty}\{e^{C\rho/\delta}(1-\epsilon^{\rho/\delta})\}^{n}$ .
Similarly we have

$E_{x}[(\tau_{\rho}e^{C\tau_{\rho}})^{k}]$

$\leqq(\frac{\rho}{\delta}e^{C\rho/\delta})\sum_{n=0}^{k\infty}(n+1)^{k}\{e^{kC\rho/\delta}(1-\epsilon^{\rho/\delta})\}^{n}$ .

This completes the proof.

REMARK 2. It follows immediately from Lemmas 3 and 4 that if
the condition (4) is satisfied at a point $p$ in $M$, then the equation $Lu=f$
is locally solvable at $p$, i.e., there is an open neighborhood $V$ of $p$ such
that

$L\mathscr{G}^{\prime}(V)\supset C_{0}^{\infty}(V)$ .
It is to be noted that the leading symbol of $L$ does not always admit
an expression in the form of a sum of squares of symbols of principal
type.

LEMMA 5. Let $\tau$ be a stopping time such that $ 0\leqq\tau<\infty$ a.s. and let
$f(t)$ belong to Mdi $[0, T]$ for each $T>0$ . Then

$E[\sup_{0\leqq t\leqq\tau}|\int_{0}^{t}f(s)dw(s)|^{2}]\leqq 4E[\int_{0}^{\tau}|f(s)|^{2}ds]$ .
PROOF. For any $T>0$ we easily have

$E[\sup_{0\leqq t\leqq\tau\wedge T}|\int_{0}^{t}f(s)dw(s)|^{2}]$

$=E[\sup_{0\leq\iota\leqq\tau\Lambda T}|\int_{\triangleleft}^{\tau\wedge l}f(s)dw(s)|^{2}]$

$\leqq E[\sup_{0\leqq t\leqq T}|\int_{0}^{\tau\wedge t}f(s)dw(s)|^{2}]$

$\leqq 4E[\int_{0}^{r\wedge T}|f(s)|^{2}ds]$
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by the martingale inequality. Letting $ T\rightarrow\infty$ , the desired inequality
follows.

\S 4. Proof of Theorem 2 (Part 2).

PROOF OF THEOREM 2 (Part 2). Let us take a sufficiently small open
neighborhood $V$ of the point $p$ , with $C^{\infty}$-smooth boundary. Then one of
the desired functions in Part 1 will be given by

$u(x)=E_{x}[g(x(\tau))\exp\{\int_{0}^{\tau}c(x(\epsilon))d\epsilon\}]$ ,

where $g(x)=\log(\sum_{i=r+1}^{d}x^{2})^{-1/2}$ . Here $x(t)$ is the time-homogeneous diffusion
process constructed from the solutions of the stochastic differential equation
(7) and $\tau$ is the exit time of $\overline{V}$.

Since the vector fields $X_{i},$ $0\leqq i\leqq d$ , are all tangential to $N$ at each
point on $N,$ $N$ is nonattainable by the process $x(t)$ (see [3, Section 9.4]).
$(L-c)g(x)$ and $\nabla g(x)\sigma(x)$ are bounded functions in $V\backslash N$. In fact, by (5)
and (6), $a_{ij}(x)=O(\sum^{d}=’+1x^{2}),$ $b(x)=O(\sum_{=\prime+1}^{d}x_{l}^{2})^{1/2}$ and $\sigma_{:j}(x)=O(\sum_{i=}^{d}x^{2})^{1/2}$

as $d(x, N)\rightarrow 0$ for $r+1\leqq i,$ $j\leqq d$ .
We first show that $u\in L_{1}^{1oc}(V)$ and $ u(x)\rightarrow\infty$ as $d(x, N)\rightarrow 0$, i.e., $ N\cap$

$V\subset sIngsuppu$ . Since

$vg(x^{x}(t))\exp\{\int_{0}^{t}c(x^{r}(x))d\epsilon\}\sigma(x^{x}(t))\in M_{w}^{s}[0, T]$

for any $T>0$ if $x\in V\backslash N$, Lemma 2 gives

$u(x)=E_{x}[g(x(\tau))\exp\dagger\int_{0}^{\tau}c(x(\epsilon))d\epsilon\}]$

$=g(x)+E_{x}[\int_{0}^{\tau}(L-c)g(x(t))\exp\dagger\int_{0}^{t}c(x(\epsilon))d\epsilon\}dt]$

$+E_{l}[\int_{0}^{f}c(x(t))g(x(t))\exp\{\int_{0}c(x(\epsilon))d\epsilon\}dt]$

$=g(x)+I_{1}+I_{a}$

for all $xeV\backslash N$ and clearly

$|I_{1}|\leqq C_{\iota}E_{r}[\tau e^{C\tau}]$ ,

$|I_{1}|\leqq CE_{x}[e^{C\tau}\int_{0}^{f}g(x(t))dt]$ ,

where $C=8up_{xe\gamma}c(x)$ VO and $C_{1}=\sup_{xeV|N}|(L-c)g(x)|$ . Furthermore, by
Lemma 2,



DEGENERATE ELLIPTIC-PARABOLIC OPERATORS 119

$CE_{x}[e^{C\tau}\int_{0}^{\tau}g(x(t))dt]$

$=CE_{x}[e^{C\tau}\int_{0}^{\tau}\{g(x)+\int_{0}^{t}\nabla g(x(s))\sigma(x(s))dw(\epsilon)$

$+\int_{0}^{t}(L-c)g(x(\epsilon))d\epsilon\}dt]$

$\leqq CE_{x}[\tau e^{C\tau}]g(x)+C(E_{x}[(\tau e^{C\tau})^{2}])^{1/2}$

$\times(E_{x}[\sup_{0\leq t\leq\tau}|\int_{0}^{t}\nabla g(x(s))\sigma(x(\epsilon))dw(s)|^{2}])^{1/2}$

$+CC_{1}E_{r}[\frac{1}{2}\tau^{2}e^{C\tau}]$

and, by Lemma 5,

$\leqq CE_{x}[\tau e^{C\tau}]g(x)+4CC_{l}(E_{x}[(\tau e^{C\tau})^{2}])^{1/2}(E_{x}[\tau])^{1/2}+CC_{1}E_{x}[\frac{1}{2}\tau^{8}e^{C\tau}]$ ,

where $C_{2}=\sup_{xe\gamma\backslash N}|\nabla g(x)\sigma(x)|$ , and so
$\leqq CE_{x}[\tau e^{C\tau}]g(x)+2C(C_{1}+C_{2})\{E_{x}[\tau e^{C\tau}]+E_{x}[(\tau e^{C\tau})^{a}]\}$ .

Therefore, it will suffice to take diameter $V$ so small that $C\sup_{xe\overline{V}}E_{x}[\tau e^{C\tau}]<1$

and $\sup_{xe\overline{V}}E_{x}[(\tau e^{C\tau})^{2}]<\infty$ . Here we have used Lemma 4.
We next show that $Lu=0$ in $V$. Set

$u_{n}(x)=E_{x}[g_{n}(x(\tau))\exp\{\int_{0}^{\tau}c(x(\epsilon))ds\}]$ ,

where $g,$ $(x)=g(x)$ An and $n=1,2,$ $\cdots$ . Let us take diameter $V$ sufficiently
small so that $u\in L_{1}^{1oc}(V)$ and sup. $e\overline{r}E_{x}[(1+\tau)e^{C\tau}]<\infty$ . Then Lemma 3
shows

$\int u_{n}L^{*}\varphi dx=0$ , $\varphi\in C_{0}^{\infty}(V)$ ;

this easily gives, by letting $ n\rightarrow\infty$ ,

$\int uL^{*}qdx=0$ , $\varphi\in C_{0}^{\infty}(V)$ .

The proof of Theorem 2 is now complete.
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