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Introduction

The aim of this paper is to study hypoellipticity of degenerate
elliptic-parabolic operators from the view point of the control theory.
Hormander and Oleinik-Radkevié proved (see [4]) that the degenerate
elliptic-parabolic operator
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in an open set M in R? with real C~-smooth coefficients is hypoelliptic
if dim (X, X,, ---, X;)=d (for the notation, see §1), where
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and conversely, when the coefficients are real analytic, dim <~(X,, X,,
-++, Xy)=d if the operator L is hypoelliptic. Chow and Nagano proved
(see [7]) that for a set of C~-smooth vector fields {X,, X,, +--, X,;} the
system

d :
(. 3) &= gg&th(iD) ’ g e R

is controllable in every subdomain in M if dim < (X, X, ---, X,)=d,
and proved that the converse proposition holds when the vector fields
are real analytic. Thus we are led naturally to the following problems:
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Is the system (3) controllable in every subdomain in M if the operator
L is hypoelliptic?; conversely, when the vector fields X, X,, ---, X, are
real analytic, is the operator L hypoelliptic if the system (8) is controllable
in every subdomain in M? We give an affirmative answer for the former
problem (Theorem 2). In view of Hormander-Oleinik-Radkevié’s and
Nagano’s results the latter problem is trivial, so we modify the question:
When the vector fields X,, X, ---, X; are merely C~-smooth, does the
answer for the latter problem remain affirmative? The answer is negative
in general, but we can show that there is a closed set F in M such that
F=@, Fcize M; dim ¥ (X, X;, --+, X;)<d at 2z} and such that L is
hypoelliptic in M\F if the system (3) is controllable in every subdomain
in M (Theorem 1 and Remark 1).

In Section 1, Theorem 1 is proved. In Section 2, Theorem 2 is
reduced to a certain proposition which is proved in Section 4 by using
some probabilistic lemmas prepared in Section 3. We can see easily that
the whole statement of this paper remains true when M is a C*-manifold.

NOTATIONS:
C*(V) is the set of all C* functions defined in V.

Ci(V) is the set of all functions in C*(V) with compact support in V.
2'(V) is the set of all distributions in V.

§1. Proof of Theorem 1.

Let M be an open set in R? and let L be a differential operator in
M of the form (1) with real C~-smooth coefficients. Throughout this
paper we assume that (a,;(x)) is a nonnegative symmetric d xd matrix
for every « in M, that is, L is the degenerate elliptic-parabolic operator
in M. Furthermore we assume that the second order terms and the
first order ones of L never vanish simultaneously, i.e.,

(4) S5 |2u(@) |+ 315, %0

for all x in M. X, X, ---, X, will denote the vector fields defined by
(2) and ¥ (X, X, --+, X;) will denote the Lie algebra generated over
R by the vector fields X,, X, ---, X,.

It is easy to show the following lemma which will be used in the
proof of Theorem 1.

LEMMA 1. If dim A (X,, X, -+, X)) <7 in an open set U in M, then
the set {x e U; dim ¥ (X, X, ---, X;)=7 at x} is open.
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THEOREM 1. If the system (8) is controllable in every subdomain in
M, then the set {x € M; dim ¥ (X, X,, --+, X,)<d at x} i8 closed in M and
has mo interior.

PROOF. The closedness follows immediately from Lemma 1. If there
is an open set U in which dim << (X, X, ---, X,;)<d, then

magc dim < (X, X, ---, Xy)=r<d .
Lemma 1 shows that dim <~ (X,, X,, - -+, X,)=7 in some non-empty domain,
say V, contained in U, so ~¥(X,, X,, ---, X;) is an r-dimensional invo-
lutive distribution in V. By the Frobenius’ theorem, V is able to be
cut into slices of »-dimensional integral manifolds of the distribution
F (X, X, +++, X;). Hence the system (8) is not controllable in V; this
is a contradiction. .

REMARK 1. By combining Theorem 1 with Hormander-Oleinik-
Radkevié’s (see [4]) and Nagano’s results (see [7]) we obtain the following:
If the system (8) is controllable in every subdomain in M, then there
is a closed set F'in M such that F'= @, Fc{xec M; dim (X, X,, -+, X)) <
d at x} and such that the operator L is hypoelliptic in M\F. In particular,
when the coefficients a,; and b, are real analytic, we have F'= @. Itis
generally not possible to show F= ), although Fedii [1] actually proved
this for a certain kind of infinitely degenerate elliptic-parabolic operators.

§2. Proof of Theorem 2 (Part 1).

We summarize Sussmann’s results ([7]) which are necessary in proving
Theorem 2. Let D be the set of vector fields {X,, X, ---, X;} and let 4, be
the distribution spanned by D. For an open set U in M, G,(U) will denote
the group of local C~-diffeomorphisms on U generated by D|, (cf. [7]).
Sussmann’s distribution S,(U) is the smallest G,(U)-invariant distribution
on U which contains 4,|,, that is, the space S,(U)(x) is the linear hull
of all the vectors v € T, U such that v € 4,(x) or v=d®(w), where € G,(U)
and, for some ye U, x=®(y) and w e 4,(y). The distribution S,(U) has
the maximal integral manifolds property in the sense of [7] and further,
the system (3) is controllable in U if and only if dim S,(U)=d.

THEOREM 2. If the operator L is hypoelliptic in M, then the system
(8) is controllable in every subdomain in M.

PrOOF (Part 1). Assume that there is a subdomain U in M such
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that the system (8) is not controllable in U. By the Sussmann’s result
this means that dim S,(U)<d at some point p in U. Since S,(U) has the
maximal integral manifolds property, there passes a maximal integral
manifold of S,(U) through the point ». So it is easy to show, by the
inverse function theorem, that there passes a regular maximal integral
manifold, say N, of S,(U) through ». By (4) and dim S,(U)(p)<d, we
have easily 1<dim N<d.

Since N is regular and since hypoellipticity is a local property, we
may suppose by performing a suitable change of local coordinates that

(5) N={xeR* x,,=+-=2,=0}

in a neighborhood of », where r=dim N; furthermore, by considering
vL instead of L (where 0=+ =<1 is a C”-smooth function in R? such that
+=0 outside a small neighborhood of p and that =1 in a smaller
neighborhood of p) we may suppose that

(6) aeCau(R%, S), beCuuB, R, cecCuuR, RY.

Here a is the d xd matrix (a,;), b is the vector (b, ---, b,) and S, denotes
the class of symmetric nonnegative matrices.

Now it will suffice to show the following: There is an open neigh-
borhood V of the point p and a locally integrable funetion u defined in V'
such that NN Vcsing suppw and Lu=0 in V.

Theorem 2 will be proved completely at the end of Section 4 after
a preliminary study in §3.

§ 3. Probabilistic lemmas.

In this section we assume the conditions (6). o(x)=(0,;(x)) denotes
a symmetric nonnegative d Xxd matrix such that a(x)=(1/2)c*@x). By (6)
each o,;(x) is Lipschitz continuous in R? so for any x in R? there exists
a unique solution, say z°(t), with

(1) dx(t) =o(x(t))dw(t) +b(x(t))dt , z(0)=2 a.s.

in M:[0, T'l, T>0. Here w(t), t=0, is a d-dimensional Brownian motion on
a probability space (2, .#, P) and MZ[0, T] denotes a set of all non-
anticipative functions f(¢) satisfying

& [ 1r@rat|<e .

x(t), t=0, will denote the time-homogeneous diffusion process that is the
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solution of the stochastic differential equation (7).

DeFINITION ([3]). If N is a subset in R? such that P,[x(t) ¢ N for all
t=0]=1 whenever x¢ N, then we say that N is nonattainable by the
process x(t).

LEMMA 2. Let N be closed in R* and monattainable by the process
x(t) and let v e C3(R\N). Then

d['v (x(t)) exp {S:c(x(s))ds}]
— Vo(a(t)) exp {Stc @(s)) ds} o(2(®)dw(t)

+ Lo((t)) exp {g:c(x (s))ds} dt

P,a.s. for all x¢ N.

This is a generalization of Itd’s formula. For the proof we have
only to approximate v by suitable functions in C*(R%) and use Ito’s formula.

Let V be an open set in R? with C~-smooth boundary. The exit
time z of V is defined by

r=inf (t=0; 2(t) ¢ V} .
I' and ¥ are the subsets on the boundary 6V of V ‘deﬁned by
I'={xeoV; P,(r>0)=0}
and
Y={rxedV; ¥, al@w>>0 or <y, X,(x)><0},

where (, ) denotes the inner product in R? and v is the inward normal
vector on 0V. For brevity we set

C=supc(x)VO.

xeV
Then we have the following lemma.
LEMMA 3. Assume that
sup B [(1+17)e’]< oo .

zeV

For given feL>(V) and ge L(I")NC(Y), the function
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w(@)=E.] 9a(0)) exp {| o (@(s))ds
— SO F(@(t)) exp {Sc (@(s)) ds} dt] |

18 a unique solution of the Dirichlet problem

Lu=f in V
(8) {

ess lim u(x)=g(a) , ac’y

zeV

mn L=(V).

Here (8) means that w can be changed on a set of Lebesgue measure
zero so that the following relations may be satisfied;

} SuL*gpdx: g fods, @eCe(V),
llim u(x)=g(a) , acX.

z—a
zeV

Lemma 3 is a generalization of Strook-Varadhan’s theorem ([6]). The
proof is parallel to that of Strook-Varadhan’s theorem but we will have
to use Lemma 2.1 in [5] instead of Lemma 4.1 in [6].

LEMMA 4. Let V, be an open neighborhood of a fixed point p in R?,
with diameter V,=p, and let T, be the exit time of V,. If the condition
(4) is satisfied at the poimt p, then we obtain

lim sup E, [e°*r] < o
plo ze Vp
and
lim sup E,[(z,e°"*)*]=0
Plo ze I’p

Jor any constant C=0 and any k=1,2, ---.

PROOF. According to Freidlin [2] there are small positive constants
¢ and ¢ independent of all sufficiently small 0>0 such that

Pl <t
for all ze V,. The Markov property gives

Pa[r,, > n—‘;—] < (L—erry»
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for all xe V, and all n=0,1,2, ---; so we have
E [e°]

= EoEz[an/dgfp<(n+1)P/6eCfp]

S i eC(n+1)p/6P l:z. Znﬁ:l

T a=0 . i 5

ée(/‘p/b i {eCpM(l . sp/ﬁ)}'rl .
n=0

Similarly we have
E,[(zoe )]
O _coss & kf,kCo/3(1 __ ap/3\1n
S(?e" JPACERIW @—e).

- 7n=0
This completes the proof.

REMARK 2. It follows immediately from Lemmas 8 and 4 that if
the condition (4) is satisfied at a point » in M, then the equation Lu=f
is locally solvable at p, i.e., there is an open neighborhood V' of p such
that

L=2'(V)oCs(V) .

It is to be noted that the leading symbol of L does not always admit
an expression in the form of a sum of squares of symbols of principal

type.
LEMMA 5. Let © be a stopping time such that 0<7<o a.s. and let

f (@) belong to M:[0, T] for each T>0. Then

B sup | (' r@dw | |<4B] [ |7 @)rds |-

0sSt=rt

ProOF. For any T>0 we easily have

E[ sup

O0St<tAT

| r@due|]
| r@due)| ]

0

[ r@aue)| ]

0

=E|: sup

0St<tAT

| gE[sup

0StsT

<48[ [ 76 rds |
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by the martingale inequality. Letting T o, the desired inequality
follows.

§4. Proof of Theorem 2 (Part 2).

PROOF OF THEOREM 2 (Part 2). Let us take a sufficiently small open
neighborhood V' of the point p, with C~-smooth boundary. Then one of
the desired functions in Part 1 will be given by

u@)=E.| 9(0(c)) exp {{ c((eNds} |,

where g(x)=log(Cii-,., 2} *. Here x(t) is the time-homogeneous diffusion
process constructed from the solutions of the stochastic differential equation
(7) and 7 is the exit time of V.

Since the vector fields X, 0<i<d, are all tangential to N at each
point on N, N is nonattainable by the process x(t) (see [3, Section 9.4]).
(L—c)g(x) and vg(x)a(x) are bounded functions in V\N. In fact, by (5)
and (6), a,;@)=0i- 2D, b(®)=0 i, .. 2 and 0,;(x)=0C L, ., 2}
as d(xz, N)—0 for »+1=<1, j<d.

We first show that e L{*°(V) and u(x)—> ~ as d(x, N)—0,i.e., NN
V Csing supp w. Since

VoG ®) exp {| e @)ds} @ ®)) € Mz[0, T]
for any T>0 if re V\N, Lemma 2 gives
w(@)= B 0(0(c)) exp{| e(a()ds} |
=9(@)+B, | (L—a)o((®) exp{[ cta(e)as} dt

+ E,U:c(x(t))g(x(t)) exp {Sc (o(s)) ds} dt]
=g®)+1,+1,
for all z€ V\N and clearly
|L|=C.E,[re’ ],
|LI=CE[ e g@@nat],

where C=sup,., ¢(x)V0 ahd C.,=sup,cp\v|(L—c)g(x)|. Furthermore, by
Lemma 2,
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CEJ e | gtwitnat |
=CE,[ e[ {g@)+ | vaaeno@e)dun

n S:(L —e) g(x(s))ds} dt]
< CE,[re"]g(@)+ C(E.[(ze®) )"

X (E[ sup S:Vg(w (8))o (x(8))dw(s) lz])m

0StsT
+CC,E,,[%TZeCr]

and, by Lemma 5,
= CE,[7e’" 1g(x) +4CC,(E,[(ze’)*])*(E.[])*+ CClEz[—;—T’eC’] ’
where C,=sup,.,~|Vg&@)o(x)|, and so

<CE,[re”19(x) +2C(C,+ C){E,[re” ] + E,[(ze*" )]} .

Therefore, it will suffice to take diameter V' so small that Csup, .7 E,[re’]<1
and sup,.7 E.[(ze°))]< . Here we have used Lemma 4.
We next show that Lu=0 in V. Set

wa(o)= B 9.0 exp {{ ctaeds} |

where g,(x)=g@)An and n=1, 2,---. Let us take diameter V sufficiently
small so that we L’(V) and sup,.r E,[1+7)e’]<c. Then Lemma 3
shows

[uLrede=0, peCr(v);
this easily gives, by letting n— <,
SuL*ngxzo . peCaV).

The proof of Theorem 2 is now complete.
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