A Necessary Condition for Hypoellipticity of Degenerate Elliptic-Parabolic Operators

Kazuo AMANO

Tokyo Metropolitan University
(Communicated by T. Sirao)

Introduction

The aim of this paper is to study hypoellipticity of degenerate elliptic-parabolic operators from the view point of the control theory. Hörmander and Oleinik-Radkevič proved (see [4]) that the degenerate elliptic-parabolic operator

$$(1)$$
 $L = \sum\limits_{i,j=1}^d a_{ij}(x) rac{\partial^2}{\partial x_i \partial x_j} + \sum\limits_{i=1}^d b_i(x) rac{\partial}{\partial x_i} + c(x)$

in an open set M in \mathbb{R}^d with real C^{∞} -smooth coefficients is hypoelliptic if $\dim \mathcal{L}(X_0, X_1, \dots, X_d) \equiv d$ (for the notation, see §1), where

$$egin{aligned} X_{\scriptscriptstyle 0} &= \sum\limits_{i=1}^d \left(b_i - \sum\limits_{j=1}^d rac{\partial a_{ij}}{\partial x_j}
ight) rac{\partial}{\partial x_i} \;, \ X_i &= \sum\limits_{j=1}^d a_{ij} rac{\partial}{\partial x_j} \;, \qquad 1 \leq i \leq d \;, \end{aligned}$$

and conversely, when the coefficients are real analytic, dim $\mathcal{L}(X_0, X_1, \dots, X_d) \equiv d$ if the operator L is hypoelliptic. Chow and Nagano proved (see [7]) that for a set of C^{∞} -smooth vector fields $\{X_0, X_1, \dots, X_d\}$ the system

$$\dot{x} = \sum_{i=0}^{d} \xi_i X_i(x) , \qquad \xi_i \in \mathbf{R}^1$$

is controllable in every subdomain in M if dim $\mathcal{L}(X_0, X_1, \dots, X_d) \equiv d$, and proved that the converse proposition holds when the vector fields are real analytic. Thus we are led naturally to the following problems:

Is the system (3) controllable in every subdomain in M if the operator L is hypoelliptic?; conversely, when the vector fields X_0, X_1, \dots, X_d are real analytic, is the operator L hypoelliptic if the system (3) is controllable in every subdomain in M? We give an affirmative answer for the former problem (Theorem 2). In view of Hörmander-Oleinik-Radkevič's and Nagano's results the latter problem is trivial, so we modify the question: When the vector fields X_0, X_1, \dots, X_d are merely C^{∞} -smooth, does the answer for the latter problem remain affirmative? The answer is negative in general, but we can show that there is a closed set F in M such that $F = \emptyset$, $F \subset \{x \in M; \dim \mathcal{L}(X_0, X_1, \dots, X_d) < d \text{ at } x\}$ and such that L is hypoelliptic in $M \setminus F$ if the system (3) is controllable in every subdomain in M (Theorem 1 and Remark 1).

In Section 1, Theorem 1 is proved. In Section 2, Theorem 2 is reduced to a certain proposition which is proved in Section 4 by using some probabilistic lemmas prepared in Section 3. We can see easily that the whole statement of this paper remains true when M is a C^{∞} -manifold.

NOTATIONS:

 $C^k(V)$ is the set of all C^k functions defined in V.

 $C_0^k(V)$ is the set of all functions in $C^k(V)$ with compact support in V. $\mathscr{D}'(V)$ is the set of all distributions in V.

§ 1. Proof of Theorem 1.

Let M be an open set in R^d and let L be a differential operator in M of the form (1) with real C^{∞} -smooth coefficients. Throughout this paper we assume that $(a_{ij}(x))$ is a nonnegative symmetric $d \times d$ matrix for every x in M, that is, L is the degenerate elliptic-parabolic operator in M. Furthermore we assume that the second order terms and the first order ones of L never vanish simultaneously, i.e.,

$$\sum_{i,j=1}^{d} |a_{ij}(x)| + \sum_{i=1}^{d} |b_{i}(x)| \neq 0$$

for all x in M. X_0, X_1, \dots, X_d will denote the vector fields defined by (2) and $\mathcal{L}(X_0, X_1, \dots, X_d)$ will denote the Lie algebra generated over R by the vector fields X_0, X_1, \dots, X_d .

It is easy to show the following lemma which will be used in the proof of Theorem 1.

LEMMA 1. If dim $\mathcal{L}(X_0, X_1, \dots, X_d) \leq r$ in an open set U in M, then the set $\{x \in U; \dim \mathcal{L}(X_0, X_1, \dots, X_d) = r \text{ at } x\}$ is open.

THEOREM 1. If the system (3) is controllable in every subdomain in M, then the set $\{x \in M; \dim \mathcal{L}(X_0, X_1, \dots, X_d) < d \text{ at } x\}$ is closed in M and has no interior.

PROOF. The closedness follows immediately from Lemma 1. If there is an open set U in which dim $\mathcal{L}(X_0, X_1, \dots, X_d) < d$, then

$$\max_{x \in U} \dim \mathscr{L}(X_0, X_1, \, \cdots, \, X_d) \!=\! r \!<\! d$$
 .

Lemma 1 shows that dim $\mathcal{L}(X_0, X_1, \dots, X_d) \equiv r$ in some non-empty domain, say V, contained in U, so $\mathcal{L}(X_0, X_1, \dots, X_d)$ is an r-dimensional involutive distribution in V. By the Frobenius' theorem, V is able to be cut into slices of r-dimensional integral manifolds of the distribution $\mathcal{L}(X_0, X_1, \dots, X_d)$. Hence the system (3) is not controllable in V; this is a contradiction.

REMARK 1. By combining Theorem 1 with Hörmander-Oleinik-Radkevič's (see [4]) and Nagano's results (see [7]) we obtain the following: If the system (3) is controllable in every subdomain in M, then there is a closed set F in M such that $\mathring{F} = \emptyset$, $F \subset \{x \in M; \dim \mathscr{L}(X_0, X_1, \dots, X_d) < d$ at $x\}$ and such that the operator L is hypoelliptic in $M \setminus F$. In particular, when the coefficients a_{ij} and b_i are real analytic, we have $F = \emptyset$. It is generally not possible to show $F = \emptyset$, although Fedii [1] actually proved this for a certain kind of infinitely degenerate elliptic-parabolic operators.

§ 2. Proof of Theorem 2 (Part 1).

We summarize Sussmann's results ([7]) which are necessary in proving Theorem 2. Let D be the set of vector fields $\{X_0, X_1, \cdots, X_d\}$ and let \mathcal{D}_D be the distribution spanned by D. For an open set U in M, $G_D(U)$ will denote the group of local C^{∞} -diffeomorphisms on U generated by $D|_U$ (cf. [7]). Sussmann's distribution $S_D(U)$ is the smallest $G_D(U)$ -invariant distribution on U which contains $\mathcal{D}_D(U)$, that is, the space $S_D(U)(x)$ is the linear hull of all the vectors $v \in T_xU$ such that $v \in \mathcal{D}_D(x)$ or $v = d\mathcal{P}(w)$, where $\mathcal{P} \in G_D(U)$ and, for some $y \in U$, $x = \mathcal{P}(y)$ and $w \in \mathcal{D}_D(y)$. The distribution $S_D(U)$ has the maximal integral manifolds property in the sense of [7] and further, the system (3) is controllable in U if and only if dim $S_D(U) \equiv d$.

THEOREM 2. If the operator L is hypoelliptic in M, then the system (3) is controllable in every subdomain in M.

PROOF (Part 1). Assume that there is a subdomain U in M such

that the system (3) is not controllable in U. By the Sussmann's result this means that $\dim S_D(U) < d$ at some point p in U. Since $S_D(U)$ has the maximal integral manifolds property, there passes a maximal integral manifold of $S_D(U)$ through the point p. So it is easy to show, by the inverse function theorem, that there passes a regular maximal integral manifold, say N, of $S_D(U)$ through p. By (4) and $\dim S_D(U)(p) < d$, we have easily $1 \le \dim N < d$.

Since N is regular and since hypoellipticity is a local property, we may suppose by performing a suitable change of local coordinates that

(5)
$$N = \{x \in \mathbb{R}^d; x_{r+1} = \cdots = x_d = 0\}$$

in a neighborhood of p, where $r=\dim N$; furthermore, by considering ψL instead of L (where $0 \le \psi \le 1$ is a C^{∞} -smooth function in R^d such that $\psi \equiv 0$ outside a small neighborhood of p and that $\psi \equiv 1$ in a smaller neighborhood of p) we may suppose that

$$(6) a \in C^{\infty}_{bdd}(R^d, S_d), b \in C^{\infty}_{bdd}(R^d, R^d), c \in C^{\infty}_{bdd}(R^d, R^l).$$

Here a is the $d \times d$ matrix (a_{ij}) , b is the vector (b_1, \dots, b_d) and S_d denotes the class of symmetric nonnegative matrices.

Now it will suffice to show the following: There is an open neighborhood V of the point p and a locally integrable function u defined in V such that $N \cap V \subset \text{sing supp } u$ and Lu = 0 in V.

Theorem 2 will be proved completely at the end of Section 4 after a preliminary study in §3.

§ 3. Probabilistic lemmas.

In this section we assume the conditions (6). $\sigma(x) = (\sigma_{ij}(x))$ denotes a symmetric nonnegative $d \times d$ matrix such that $a(x) = (1/2)\sigma^2(x)$. By (6) each $\sigma_{ij}(x)$ is Lipschitz continuous in R^d , so for any x in R^d there exists a unique solution, say $x^x(t)$, with

(7)
$$dx(t) = \sigma(x(t))dw(t) + b(x(t))dt$$
, $x(0) = x$ a.s.

in $M_w^2[0, T]$, T>0. Here w(t), $t\geq 0$, is a d-dimensional Brownian motion on a probability space (Ω, \mathcal{F}, P) and $M_w^2[0, T]$ denotes a set of all non-anticipative functions f(t) satisfying

$$E\!\!\left[\int_0^T\!|f(t)|^2\!dt\right]\!\!<\!\infty$$
 .

x(t), $t \ge 0$, will denote the time-homogeneous diffusion process that is the

solution of the stochastic differential equation (7).

DEFINITION ([3]). If N is a subset in R^d such that $P_x[x(t) \notin N$ for all $t \ge 0$]=1 whenever $x \notin N$, then we say that N is nonattainable by the process x(t).

LEMMA 2. Let N be closed in R^d and nonattainable by the process x(t) and let $v \in C^2(R^d \setminus N)$. Then

$$egin{aligned} digg[v(x(t))\expigg\{\int_0^t c(x(s))dsigg\}igg] \ = &
abla v(x(t))\expigg\{\int_0^t c(x(s))dsigg\}\sigma(x(t))dw(t) \ + Lv(x(t))\expigg\{\int_0^t c(x(s))dsigg\}dt \end{aligned}$$

 P_x -a.s. for all $x \notin N$.

This is a generalization of Itô's formula. For the proof we have only to approximate v by suitable functions in $C^2(\mathbb{R}^d)$ and use Ito's formula.

Let V be an open set in R^d with C^{∞} -smooth boundary. The exit time τ of \bar{V} is defined by

$$\tau\!=\!\inf\left\{t\!\geq\!0;\,x(t)\notinar{V}\right\}$$
 .

 Γ and Σ are the subsets on the boundary ∂V of V defined by

$$\Gamma = \{x \in \partial V; P_x(\tau > 0) = 0\}$$

and

$$\Sigma = \{x \in \partial V; \langle \nu, a(x) \nu \rangle > 0 \quad \text{or} \quad \langle \nu, X_{\scriptscriptstyle 0}(x) \rangle < 0 \}$$
 ,

where \langle , \rangle denotes the inner product in R^d and ν is the inward normal vector on ∂V . For brevity we set

$$C = \sup_{x \in V} c(x) \vee 0$$
.

Then we have the following lemma.

LEMMA 3. Assume that

$$\sup_{x \in \overline{Y}} E_x[(1+ au)e^{c au}] < \infty$$
 .

For given $f \in L^{\infty}(V)$ and $g \in L^{\infty}(\Gamma) \cap C(\Sigma)$, the function

$$egin{aligned} u(x) = & E_x igg[g(x(au)) \, \exp \, \left\{ \int_0^ au c \, (x(s)) ds
ight\} \ & - \int_0^ au f(x(t)) \, \exp \, \left\{ \int_0^t c \, (x(s)) \, ds
ight\} dt \, igg] \end{aligned}$$

is a unique solution of the Dirichlet problem

$$\begin{cases} Lu = f & in \quad V \\ \text{ess} \lim_{x \to a \\ x \in V} u(x) = g(a) , \quad a \in \Sigma \end{cases}$$

in $L^{\infty}(V)$.

Here (8) means that u can be changed on a set of Lebesgue measure zero so that the following relations may be satisfied;

Lemma 3 is a generalization of Strook-Varadhan's theorem ([6]). The proof is parallel to that of Strook-Varadhan's theorem but we will have to use Lemma 2.1 in [5] instead of Lemma 4.1 in [6].

LEMMA 4. Let V_{ρ} be an open neighborhood of a fixed point p in \mathbb{R}^{d} , with diameter $V_{\rho} = \rho$, and let τ_{ρ} be the exit time of \overline{V}_{ρ} . If the condition (4) is satisfied at the point p, then we obtain

$$\varlimsup_{
ho\downarrow 0} \sup_{x\,\in\,\overline{V}_{
ho}} E_x[e^{C au_{
ho}}] < \infty$$

and

$$\lim_{
ho\downarrow0}\sup_{x\in\overline{V}_{
ho}}E_{x}[(au_{
ho}e^{ au au_{
ho}})^{k}]\!=\!0$$

for any constant $C \ge 0$ and any $k=1, 2, \cdots$.

PROOF. According to Freidlin [2] there are small positive constants ε and δ independent of all sufficiently small $\rho > 0$ such that

$$P_x\!\!\left[\, au_{
ho}\!<\!rac{
ho}{\delta}\,
ight]\!\!>\!\!arepsilon^{
ho/\delta}$$

for all $x \in \overline{V}_{\rho}$. The Markov property gives

$$P_{\mathbf{z}} \left[\tau_{\rho} \geq n \frac{\rho}{\delta} \right] \leq (1 - \varepsilon^{\rho/\delta})^n$$

for all $x \in \overline{V}_{\rho}$ and all $n = 0, 1, 2, \dots$; so we have

$$egin{aligned} E_x[e^{C au_
ho}] \ &= \sum_{n=0}^\infty E_x[\chi_{n
ho/\delta \leq au_
ho < (n+1)
ho/\delta} e^{C au_
ho}] \ &\leq \sum_{n=0}^\infty e^{C(n+1)
ho/\delta} P_x igg[au_
ho \geq nrac{
ho}{\delta}igg] \ &\leq e^{C
ho/\delta} \sum_{n=0}^\infty \{e^{C
ho/\delta}(1-arepsilon^{
ho/\delta})\}^n \;. \end{aligned}$$

Similarly we have

$$egin{aligned} E_x[(au_
ho e^{ au au_
ho})^k] \ & \leq \left(rac{
ho}{\delta}e^{ au_
ho/\delta}
ight)^k\sum_{n=0}^\infty (n+1)^k\{e^{k au_
ho/\delta}(1-arepsilon^{
ho/\delta})\}^n \;. \end{aligned}$$

This completes the proof.

REMARK 2. It follows immediately from Lemmas 3 and 4 that if the condition (4) is satisfied at a point p in M, then the equation Lu=f is locally solvable at p, i.e., there is an open neighborhood V of p such that

$$L\mathscr{D}'(V)\supset C_0^\infty(V)$$
.

It is to be noted that the leading symbol of L does not always admit an expression in the form of a sum of squares of symbols of principal type.

LEMMA 5. Let τ be a stopping time such that $0 \le \tau < \infty$ a.s. and let f(t) belong to $M_w^2[0, T]$ for each T > 0. Then

$$E \left[\sup_{0 \le t \le \tau} \left| \int_0^t f(s) dw(s) \right|^2 \right] \le 4E \left[\int_0^\tau |f(s)|^2 ds \right].$$

PROOF. For any T>0 we easily have

$$egin{aligned} Eigg[\sup_{0 \leq t \leq au \wedge T} igg| \int_0^t f(s) dw(s) igg|^2 igg] \ &= Eigg[\sup_{0 \leq t \leq au \wedge T} igg| \int_0^{ au \wedge t} f(s) dw(s) igg|^2 igg] \ &\leq Eigg[\sup_{0 \leq t \leq T} igg| \int_0^{ au \wedge t} f(s) dw(s) igg|^2 igg] \ &\leq 4 Eigg[\int_0^{ au \wedge T} igg| f(s) igg|^2 ds igg] \end{aligned}$$

by the martingale inequality. Letting $T \rightarrow \infty$, the desired inequality follows.

§ 4. Proof of Theorem 2 (Part 2).

PROOF OF THEOREM 2 (Part 2). Let us take a sufficiently small open neighborhood V of the point p, with C^{∞} -smooth boundary. Then one of the desired functions in Part 1 will be given by

$$u(x) = E_x \left[g(x(\tau)) \exp \left\{ \int_0^{\tau} c(x(s)) ds \right\} \right]$$
,

where $g(x) = \log(\sum_{i=r+1}^{d} x_i^2)^{-1/2}$. Here x(t) is the time-homogeneous diffusion process constructed from the solutions of the stochastic differential equation (7) and τ is the exit time of \overline{V} .

Since the vector fields X_i , $0 \le i \le d$, are all tangential to N at each point on N, N is nonattainable by the process x(t) (see [3, Section 9.4]). (L-c)g(x) and $\nabla g(x)\sigma(x)$ are bounded functions in $V \setminus N$. In fact, by (5) and (6), $a_{ij}(x) = O(\sum_{i=r+1}^d x_i^2)$, $b_i(x) = O(\sum_{i=r+1}^d x_i^2)^{1/2}$ and $\sigma_{ij}(x) = O(\sum_{i=r+1}^d x_i^2)^{1/2}$ as $d(x, N) \to 0$ for $r+1 \le i$, $j \le d$.

We first show that $u \in L^{\text{loc}}_{\mathbf{i}}(V)$ and $u(x) \to \infty$ as $d(x, N) \to 0$, i.e., $N \cap V \subset \text{sing supp } u$. Since

$$\nabla g(x^x(t)) \exp \left\{ \int_0^t c(x^x(x))ds \right\} \sigma(x^x(t)) \in M_w^2[0, T]$$

for any T>0 if $x \in V \setminus N$, Lemma 2 gives

$$egin{aligned} u(x) &= E_x igg[g(x(au)) \exp \left\{ \int_0^t c(x(s)) ds
ight\} igg] \ &= g(x) + E_x igg[\int_0^t (L-c)g(x(t)) \exp \left\{ \int_0^t c(x(s)) ds
ight\} dt igg] \ &+ E_x igg[\int_0^t c(x(t))g(x(t)) \exp \left\{ \int_0^t c(x(s)) ds
ight\} dt igg] \ &= g(x) + I_1 + I_2 \end{aligned}$$

for all $x \in V \setminus N$ and clearly

$$|I_1| \leq C_1 E_x [au e^{C au}]$$
 , $|I_2| \leq C E_x \Big[e^{C au} \int_0^ au g\left(x\left(t
ight)
ight) dt \Big]$,

where $C = \sup_{x \in V} c(x) \vee 0$ and $C_1 = \sup_{x \in V \setminus N} |(L - c)g(x)|$. Furthermore, by Lemma 2,

$$\begin{split} CE_x & \left[e^{c\tau} \! \int_0^\tau \! g(x(t)) dt \right] \\ &= CE_x \left[e^{c\tau} \! \int_0^\tau \! \left\{ g(x) \! + \! \int_0^t \! \nabla g(x(s)) \sigma(x(s)) dw(s) \right. \\ & \left. + \int_0^t \! (L \! - \! c) g(x(s)) ds \right\} dt \right] \\ &\leq CE_x [\tau e^{c\tau}] g(x) + C(E_x [(\tau e^{c\tau})^2])^{1/2} \\ & \times \left(E_x \bigg[\sup_{0 \leq t \leq \tau} \left| \int_0^t \! \nabla g(x(s)) \sigma(x(s)) dw(s) \right|^2 \right] \right)^{1/2} \\ & + CC_1 E_x \bigg[\frac{1}{2} \tau^2 e^{c\tau} \bigg] \end{split}$$

and, by Lemma 5,

$$\leq \! C E_x [au e^{\scriptscriptstyle C au}] g(x) + 4 C C_2 (E_x [(au e^{\scriptscriptstyle C au})^2])^{\scriptscriptstyle 1/2} (E_x [au])^{\scriptscriptstyle 1/2} + C C_1 E_x \! \Big[rac{1}{2} au^2 e^{\scriptscriptstyle C au} \, \Big]$$
 ,

where $C_2 = \sup_{x \in V \setminus N} |\nabla g(x)\sigma(x)|$, and so

$$\leq CE_x[\tau e^{C\tau}]g(x) + 2C(C_1 + C_2)\{E_x[\tau e^{C\tau}] + E_x[(\tau e^{C\tau})^2]\}$$
.

Therefore, it will suffice to take diameter V so small that $C \sup_{x \in \overline{V}} E_x[\tau e^{C\tau}] < 1$ and $\sup_{x \in \overline{V}} E_x[(\tau e^{C\tau})^2] < \infty$. Here we have used Lemma 4.

We next show that Lu=0 in V. Set

$$u_n(x) = E_x \left[g_n(x(\tau)) \exp \left\{ \int_0^{\tau} c(x(s)) ds \right\} \right],$$

where $g_n(x)=g(x)\wedge n$ and $n=1, 2, \cdots$. Let us take diameter V sufficiently small so that $u\in L_1^{\mathrm{loc}}(V)$ and $\sup_{x\in \overline{V}} E_x[(1+\tau)e^{C\tau}]<\infty$. Then Lemma 3 shows

$$\int \!\! u_n L^* arphi dx \! = \! 0$$
 , $arphi \in C_0^\infty(V)$;

this easily gives, by letting $n \rightarrow \infty$,

$$\int\!\! u L^* arphi dx \! = \! 0$$
 , $arphi \in C_{\scriptscriptstyle 0}^{\scriptscriptstyle \infty}(V)$.

The proof of Theorem 2 is now complete.

ACKNOWLEDGMENT. The author would like to express his gratitude to Mr. K. Nishioka and Mr. H. Nagai for their patient instruction in probability theory.

References

- [1] V. S. Fedi, On a criterion for hypoellipticity, Math. USSR-Sb., 14 (1971), 15-45.
- [2] M. I. Freidlin, Itô's stochastic equations and degenerate elliptic equations, Izv. Akad. Nauk SSSR Ser. Mat., 26 (1962), 653-676 (in Russian).
- [3] A. FRIEDMAN, Stochastic Differential Equations and Applications I, II, Academic Press, New York, 1975, 1976.
- [4] O. A. OLEÏNIK and E. V. RADKEVIČ, Second Order Equations with Nonnegative Characteristic Form, Amer. Math. Soc., Providence, 1973.
- [5] D. W. STROOK and S. R. S. VARADHAN, Diffusion processes with boundary conditions, Comm. Pure Appl. Math., 24 (1971), 147-225.
- [6] D. W. STROOK and S. R. S. VARADHAN, On degenerate elliptic-parabolic operators of second order and their associated diffusions, Comm. Pure Appl. Math., 25 (1972), 651-713.
- [7] H. J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc., 180 (1973), 171-188.

Present Address:
DEPARTMENT OF MATHEMATICS
TOKYO METROPOLITAN UNIVERSITY
SETAGAYA-KU, TOKYO 158