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SUMMARY. The generalized Fourier-Stieltjes transform of order k is
defined by

0=, (o E U omdlte

for some constant ¢>0 up to a polynomial of degree at most k—1, where
F(x) is supposed to be of bounded variation in every finite interval and

to satisfy the condition Sf |AF@) |/(L+ |z |F) < co.

An analogue of Khinchine’s “unimodal theorem” for generalized
Fourier-Stieltjes transforms is proved, and it is applied to obtain the
representation

FO=(it) 2 log £(t) +log 7(t) |
where &(t) and 7(t) are “infinitely divisible Fourier-Stieltjes transforms”.
Introduction

Bochner [2] introduced the integral transform ¢(t) of @(x) defined by

_ —uo__ e (—itx)!\ O(x) —ita D(%)
2”¢(t)_§|x|§1<e = )(_ix)kdx+slx[>le i

up to a polynomial of degree at most k—1, where @(x) is a funetion with
Sw |@(@)|/(L+|x|*)de <. The function 4(t) is called the k-transform of
o(z).

In connection with the consideration of the Lévy canonical repre-

sentation of an infinitely divisible characteristic function, we define a
slightly more general transform of Fourier-Stieltjes type.
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Let k be a nonnegative integer and write

we 'St (WX Lo ...
E(t, w)={e Jg‘" it T ’

A k=0.

The generalized Fourier-Stieltjes transform f(t) of F(x) of order k& is
defined by

0.1 ro=\

x

Bt 2D 1| o tE@ i p, ),
=c x fzl>e X

where F(x) is a given function on (— c, ) which is of bounded variation
in every finite interval and satisfies the condition

* |dF@)| _
0.2) S_wm< ,

in which ¢>0 is an arbitrary but fixed continuity point of F(x) and P,_,(-)
denotes an arbitrary polynomial with real coefficients of degree at most
k—1 when k=1 and p_,(-) denotes the zero function. Furthermore the
integrand E.(t, x)/x* is assumed to be continuous at x=0, i.e.,

E@, x| _ @)
¢ la=o k]

Following Bochner, we write equation (0.1) as

tz dF(x)
ei 7— .

(0.3) o B, 2 |

X lz]>¢

That is, the symbol =~ means that the difference of the both sides of it
is equal to some polynomial P,_,(#t).

In this paper, we shall simply call the generalized Fourier-Stieltjes
transform f(¢) defined by (0.1) or (0.3) the k-transform of F'(x).

The class of all left continuous functions of bounded variation in
every finite interval, satisfying the condition (0.2) is denoted by V, and
the subclass of V, consisting of all nondecreasing functions is denoted by
D,. Moreover let V, and D, be the totalities of k-transforms of functions
belonging to V, and belonging to D,, respectively.

In Section 1, we prove an analogue (Theorem 1) of the well known
“unimodal theorem” of Khinchine. This implies as a particular case a
recent result of Alf and O’Connor [1] on the unimodality of the Lévy
spectral function in the Lévy canonical representation of an infinitely
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divisible characteristic function. In Section 2, we state our main theorem
(Theorem 2) and prove some lemmas needed for the proof of the main
theorem. One of the lemmas (Lemma 1) gives the relationship between
the classes D, and f),,_z. The main theorem deals with the representation
of any 'f(t)eﬁ,,(k;2) as

F(@®)EZ(i8)* log £() +log 7(¢)

where £(t) and 7(t) are certain “infinitely divisible Fourier-Stieltjes trans-
forms”. When k=2, this relation tells us that the 2-transform is the
logarithm of an infinitely divisible Fourier-Stieltjes tranform, which is
of course an implication of the Lévy formula. Actually the 2-transform
relates to the logarithm of an infinitely divisible characteristic function
in the following way.

Write f(t)e D, as

0.9  so=| e -1-in2f@

lz]Se lz]>e

0@ | japip .
A

This can also be written as

i i O, e 1 WX
(0.5) O~ f O =iat—2t +Sm>o(e 1 1+m2>dM(x),

where @ real, 02>0 and M(x) is a nondecreasing function over each of
(— oo, 0) and (0, =) vanishing at Foo, with S 2’dM(x)<< - for every

lz|<e
¢>0. (Just the Lévy formula.) The relationship between (M(x), «, o*)
in (0.5) and (F(x), @, b) in (0, 4) is given by

ij—yZdM(y) +0*, x>0
o+

F(x)= -
|—{"vama), <o

_ x® _ x »
a_a+glm[§cl+x2dM(m) §|z|>c 1+x2dM(x)

anb b is an arbitrary real number. From the above we may claim that

a function ¢(t) is an imfinitely divisible characteristic function if and

only if there exists a 2-tramnsform f(t) ef)z with log ¢(t)= f({)— f(0).
Section 3 is devoted to the proof of Theorem 2.

§1. A basic property of the k-transform.

It is well known (Khinchine) that a distribution function G(x) is
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unimodal with vertex at the origin, i.e., G(z) is convex over (—co, 0) and
is concave over (0, «) if and only if its characteristic function g(z) can
be written in the form

1 _
?goﬂum_m ,

where f(u) is a characteristic function (see [3], p. 92). Alf and O’Connor
[1] obtained a similar result for canonical representation of infinitely
divisible characteristic functions. Theorem 1 below is a generalization
of these two results. Actually, Khinchine’s result is the particular case
of the theorem with =0 and n=m=1, and the result of Alf and 0’Connor
is the case with #=2 and w=m=1. The theorem also plays an important
role in the theory of the k-transforms.

TEEOREM 1. Let =0, n=1 and m(l<m=<n) be integers. Then 1)
for every F(x)e D,, there exists a G(x) €D, which satisfies

1 dF(x) dF(x)
ngzzscE"M'm(t 2 d’fg’)" Slzb wn(ls ) dffﬁ’)"

Jor any ¢>0, provided that tc are continuity points of F(z). G(x) has
the properties that (a):

——&:’M x>0

yk-i-n-m !
D(x)=
(x) Sz de) , 2<0

- [y [Feom

18 m—1 times differentiable except at the origin, and its j-th derivatives
O9)x), 5=0,1,2, «-+, m—1, vanish at Teo and are absolutely continuous
over every finile closed interval contained in either (—oo,0) or (0, co).
(b): & (x) is nondecreasing and convex over (— oo, 0) and (=)t @im—(g)
18 nondecreasing and concave over (0, oo).

(1) Conversely, if G(x) <€D, has the properties (a) and (b), then there
extsts a F(x)e D, satisfying (L.1) for some ¢>0.

PROOF. (i) Since F'(u) belongs to D,, we can define ona =Y
for n=zm by

?Z’(y)=—m X (u—y@FW g

k+'n
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As is easily seen, ¥(y) is nondecreasing and m—1 times differentiable
over (0, =), and its j-th derivative ¥ (y), 7=0,1, 2, ---, m—1, is given by

v = — 0| st y>0.
We have
D)= —(-pe| LWy
and
D™ (y)= —(— 1)"“°° dF,:?ﬁ) ,  ¥>0.

v

We then see

T (y)= — Smwu“’(u)du ) y>0

for 7=0,1,2, -+, m—1, where ¥ (y) denotes either Dt¥™ " (y) or
D-¥™=9(y). From now on, just for definiteness we take
(1.2) r'(y)=D"¥""y), y>0.

Thus ¥ (y), 7=0, 1, 2, ---, m—1, vanish at - and are absolutely continuous
over every finite closed interval contained in (0, «), and (—1)™"'¥T "1 (y)
is nondecreasing and concave over (0, o).

Obviously, we have for sufficiently small ¥ >0 and j=1,2, ---, m,

dF(u)

yk+”_m+j§y (u— y)m—j%%lé So+ Hﬂ(u)dF(u) +ytrr §1+ u*

where H,(u)=0 (0<u<y), H,(u)=(y/w)* " (y<u=1). The first integral
of the right hand side tends to 0 as ¥ — 0+ by the bounded convergence
theorem and the second summand clearly converges to zero. Also we
have that

y”“’“*"sy(u—y)’”"" dqf,:g@:)ésy dis,u)'—’() as y——roo .

Consequently
(1.3) T (y)=o(y~**» ") as y—0+
1.4) Ti@y)=o(y " "") as y— oo
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for j=1,2, «--,m
Using now integration by parts, we obtain for 0<a<e¢

1 kt+n—m
(ot n—m)] S W)

-1 _ (=1 k+n—m+ i (5 c
T (k+n)! Sad (1/)+’Z,I +n— m+y)7‘y A ()M

and for 0<<e<b

1 ﬂ m
WS a¥(y)

bdF(y) (=1) n—m+irs b
=2, P e it AL

Let a >0+ and b— . Then it follows from the relations (1.3) and (1.4)
that §+y"+"“"'d¢'(y) and S y*"d¥(y) are finite for ¢>0.
0 ']
Hence

(1.5) C‘;(x)=§’ P ATY), >0
0+
belongs to D, on the positive axis. Applymg integration by parts to

(i6)" | Brrnon t, 2)(@G@)fa***~=) and to (u,)ms (&, 2) @O ) we
easily see that

(@9 Burnntt, 2252

k+n—m

= | Buralt, L8 S5 (— )W) (it) Bt )
and
@ity Bu_att, 2) d,fffi?.
=\ But, 92D+ S~ 1T QG B astty 0 -
Hence
o @] Frnn, 9D 1 ("5, @)
={! Bevntt, 02D 1 ("5 ¢, 2D+ 5 ity
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for any continuity point ¢>0 of ¥ (x), and hence for continuity point
c>0 of F(x). Here all the coefficients \; are real.
Similar results are obtained on the negative axis for

W(y)=%giw(y—u)”%u£lg,),—, y<0

G@)y== lylrmvw),  a<o.

Now define
~ (b+n—m)! _ :
G G(x)+—————-—(k+n)! (FO0+)—F(0)) , x>0
Y=, 2=0
G) , 2<0 .

Then G(x) belongs to D, and satisfies (1.1). Moreover &(x)=¥(x), x+0,
holds, so that G(x) has the asserted properties.

(ii) Since @™ (0)=0 and (—1)"'@™Y(y) is nondecreasing, concave
and absolutely continuous over any finite closed interval contained in
(0, o), @™Y(y) is represented as

PV (y) = — Sw@(’”’(’u,)du , y>0,
v

where @™ (y) is such that (—1)"®™(w) is nonpositive and nondecreasing
over (0, «). This fact and the assumption (a) imply that @Y (y), 5=
1,2, ..., m, are either nonnegative or nonpositive over (0, ) and that
|09 (y)|, =1, 2, -+, m, are nonincreasing over (0, ). Hence we have,
for y>0

YrEmI | G (2y) ]gyk“—m“‘iswl D (w) | du
RN
and similarly
YrmH | QW (2y) | S YT @YY (2y) — @YV () |

Consider first the case j=1. We then have

yk+n—m+1‘@(1)(2y)1§yk+n—mgzyM§82de(u)——'ﬁO as y—0+

v uk+‘n—m

. 2y 2y
yn—m+.ll @(1)(22/) l éyn—m Sv XISS'L_LZL é Sy di(ku)

——0 as y—— o .
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In general we can conclude by the mathematical induction that
1.7) 29 (y)=o(y ") as y— 0+

(1.8) | P (Y)=o0(y~"™*") as Yy— oo

for j=1,2,---, m. Again by integration by parts and the relations a.m
and (1.8) we can see that writing

Fla)=(— 1)"5 YO (y), >0,

F(x) is a function of D, on the positive axis. Note that

k+n !

D™ (y—)=—(— 1)»;5 dF(’“r) y>0
G@)=| v mdow)+60+), =>0.
These are the relations same as the equations (1.2) and (1.5), if F(u),G (z)

and &(y) are replaced by F(u), G(z), and ¥ (y), respectively. Hence, from
the équation (1.6)

@] || Buvrntt, 098D ("E, e, 23 |

k+n —m xk+n—m

~( Brnt, 0D ("B, 0, DS iry
For the function
F@=—{ lyFrdom@), =<0,

a similar argument is applied, where &' (y), ¥<0, is the function deter-
mined by

@(m~1>(y)=§” o™ (wydu, y<O0.
Therefore

& (k+mn)! _
F(x)+ (k+n~_m)!(G(0+) G)) , x>0
F(x)=

O » x=0
Fa), <0
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is the function with the desired properties. This completes the proof.

§2. The main theorem and some lemmas.
THEOREM 2. Every k-transform ft)e D, (k=2) is represented as
(2.1) F@)=2(i8) " log &(2) +log 7(?) ,

where &(t) and 7(t) are such that for every positive integer n

(2-2) [¢@®)]"* e D,
and
(2.8) [0®)]V" € D, (k: even) and [p®)]"* € V, (k: odd) .

In order to prove the theorem, we need some lemmas, and we give

in this section the proof of them. The proof of Theorem 2 will be given
in the following Section 3.

LEMMA 1. FoA'r an arbitrary integer k=2 and for every f(t)ef),,,
there exist f,(t)e D,_, (n=1, 2, --+) such that

2.4) FO=lim | £,(8)+ Gty it — Lo+ 8.)]

where &,, B, (n=1, 2, ++-+) and 0*=0 are real numbers.

PrROOF. For a F'(x)e D, and for real numbers ¢, and ¢,, we write

2.5) f(t)kg.s __EG, w)dF @) Lm e AF (x)—}—cl(@t)" O
= g(&)+h@)+c, (1t) 1 + ey (it)* 2, say .

Define G,(x)e D,_,, n=1,2, ---, by

Sx_m ’ x>1/n
1/n yz

G,.(x)=<0 , —1l/n<x=1l/n
_S‘””_‘Zlfi@l < —1/n .
v T

z

Then we have
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(2.6)  g(t)+c, (i)t e(it)k?

. dF(x) (2t)*1 S dF'(x)
— A — =\
o E'ig. Sl/nélzlSc Ek—Z(t, v wk (’c— 1)! t/nslzise @

__(ag)=2 dF(x)
(k—z)!SI/nSIzISc ]

+£ (O+;2'— FO) iyt + o, (181 + oty

2
= lim [ 9.0+ @) (it~ Zt+8,) |

where

&,=0C— 1 S xdGn (x)’ Bn= C:— ‘;S wszﬂ(x)
lzl<e lzl<e

h—1)1 e—2)1
o _F(0+)— F(0) 3 dG,.(x)
2O FO g w={, Bt T2
Hence we have
2.7) F(@)=2 lim [g,,(t) + (it)""(ia,,t— "?2::24— 3,,)]+h(t) ,

where h(t) is Sl . e'** (dF'(x)/«*) which is identical W1th§ e”"(dG,,(x)/x""")
for all large =, and hence (2.4) is shown to hold with f,,(t) 20.(&) +h(t).

LEMMA 2. Suppose that f(t) 18 the Fourier-Stieltjes tramsform of
F(x) with finite total variation K on (— oo, ) and that A(z) is an
analytic function in |z|<M, where K<M=<o. Then A(f(t)) is also
the Fourier-Stieltjes tramnsform of a function G(x) of bounded variation.
If F(x) 18 a bounded mondecreasing function and the coefficients of the
Taylar expansion of A(z) are all nonnegative, them G(x) 18 a bounded
nondecreasing function.

This is well known (cf. [3], pp. 318-319), so that we omit the proof
here.

LEMMA 8. For every integer n=0 and for every F(x)e D, there
exists a G(x)e D, such that

o) Bt 208 =" oaG()

PrROOF. Although this is the special case of Theorem 1 with k=0
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and m=n, we give a proof which is independent of that theorem. From
Theorem 12.1.1 in [3] and the relationship

e |l GG (), o
(ita)e 1
k!

for k=1, it follows that E,(¢, x)/(itx)" € D, for each x. Therefore again
from Theorem 12.1.1, we have S (E.(t, x)/(itx)")d F(x) € D,.

§3. The proof of the main theorem.
Now we go back to the proof of Theorem 2.

PROOF OF THEOREM 2. We shall use the notations in the proof of
Lemma 1. By (2.5) f(t) is rewritten as

F= (G it )+

while we know from (2.7)

£ty 211m( 9n®) 4 G g 2?t2+ ,8,,)+h(t) ,

( )k 2
where g(t)/(it)*~*and g,(t)/(it)** are defined for t=0 by continuity. That is
9 | _ 9.0 | .
(,it)k—z =0 ’ (’bt)k -2 |40 =0~ B -

Recall that g¢,.(t) is of the form S| l E,_(t, 2)(dG,(x)/x*"?). It follows from
Lemma 3 and Lemma 2 that o '

exp (-(-%%) eD,.

Hence

&.(t)=exp ( (g ")(: )2 +ie,t — 22t2+ ,B,L>

belong to f)o for all n. Furthermore it follows from (2.6) that ¢&,(¢)
converges to the continuous function
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_ g@®) . . ‘
&(t)=exp (_(—1,# +wlt+cg)
for all ¢t. Therefore by the continuity theorem, &(¢) e D,.
On the other hand, h(f) is thought of as a Fourier-Stieltjes trans-
form, and then by Lemma 2

7(t) =exp (h(t))

belongs to D, or V, according as the case when k is an even or an odd
integer. Thus the equation (2.1) is proved.

The properties (2.2) and (2.3) are verified by repeating the same
argument for the k-transform f(t)/n.
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