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Introduction

Recently, the concept of holomorphic functions was extended to that
of holomorphic functions on infinite dimensional topological vector spaces,
and their properties have been discussed by many authors (see for ex-
ample the references in [16] and the articles in S\’eminaire Pierre Lelong
[17]). Among others, A. Martineau [14] investigated holomorphic func-
tions on the space $p(C^{n})$ of holomorphic functions on $C^{n}$ .

In this paper we will investigate holomorphic functions on the count-
ably infinite dimensional topological vector space $\sum C$ of poIynomials of
one complex variable. It is remarkable that the theory of holomorphic
functions on $\sum C$ is very similar to that on the finite dimensional space
$C^{n}$ . We also treat infinitely differentiable functions on $\sum R$ . We will
give a definition of hyperfunctions on $\sum R$ , which may contribute to
further discussion of the theory of hyperfunctions on topological vector
spaces.

In \S 1, we will introduce the space $\sum C$ as the inductive limit of $C$

and will show that any open subset of $\sum C$ is paracompact (Proposition
1.2). We will recall the properties of pseudo-convex open subsets of $\sum C$.

In \S 2, we investigate the space of holomorphic functions on $\sum C$

and its dual space, which is the space of analytic functionals on $\sum C$.
The problem of supports of analytic functionaIs on $\sum C$ can be reduced
to that on the finite dimensional space $C$“. We can define the Fourier-
Borel transformation for analytic functionals on $\sum C$ as in the finite
dimensional case and prove that the Fourier-Borel transformation induces
a topological isomorphism of the space of analytic functionals on $\sum C$

onto the space of entire functions of exponential type on the dual space
$\prod C$ of $\sum C$ (Corollary 2.17). At the end of \S 2, we will study the spaee
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of infinitely differentiable functions on $\sum R$ and its dual space, which is
the space of distributions with compact supports on $\sum R$ . We can prove
a theorem of Paley-Wiener type (Theorem 2.25).

In \S 3, we will investigate the p-th cohomology group $H^{p}(U, \beta)$ of
an open set $U$ of $\sum C$ with coefficients in the sheaf $p$ of germs of holo-
morphic functions on $\sum C$. We will construct a fine resolution of $p$ and
will prove the vanishing of $H^{p}(U, p)$ for $p\geqq 1$ , when $U$ is pseudo-convex
(Theorem 3.6).

In the final section, we will give definitions of hyperfunctions and
distributions on $\sum R$ .

\S 1. Properties of $\sum C$.
We begin with the definition of $\sum C$.
DEFINITION 1.1. We denote by $\sum C$ (resp. $\sum C^{2}$) the direct sum of

complex planes $C$ (resp. $C^{2}$) endowed with the inductive limit topology
of the sequence of the spaces $\{C’;u:+\iota\}$ (resp. $\{C^{2}$“; $v_{*+1}\}$), where $ u.+1:C^{\prime}\rightarrow$

$c+1$ (resp. $v_{l+1}:C^{2}\rightarrow C^{2(n+1)}$ ) is defined by $u_{+1}((z_{1}, \cdots, z_{*}))=(z_{1}, \cdots, z_{n}, 0)$

(resp. $v_{+1}^{\hslash}((z_{1},$
$\cdots,$ $z_{2},))=(z_{1},$ $\cdots,$ $z_{2},,$ $0,0)$).

We denote by $u$, (resp. $v_{n}$) the canonical injection from $C$“ (resp. $C^{2\prime}$ )

into $\sum C$ (resp. $\sum C^{2}$) and by $p_{n}$ (resp. $p^{\prime}.$) the projection from $\prod C$ (resp.
$\prod C^{2})$ onto C’ (resp. $C^{2}$ ), $\prod C$ (resp. $\prod C^{2}$) being the topological dual of
$\sum C$ (resp. $\sum C^{2}$).

REMARK 1. We can easily see that $\sum C$ and $\sum C^{2}$ are dual Fr\’echet-
Schwartz nuclear spaces.

REMARK 2. One can define $\sum R,$ $\sum R^{2},$ $\prod R$ and $\prod R^{2}$ quite analo-
gously.

The following proposition plays a fundamental role in this paper.

PROPOSITION 1.2. Any open set $U$ in $\sum C$ is paracompact.

PROOF. Let $\{U_{\alpha}\}$ be an arbitrary open covering of $U$. We shall
construct a locally finite refinement of $\{U_{\alpha}\}$ . We identify $u$.$(C$“ $)$ with $C$“.
We can assume without loss of generality that $U$ contains the origin and
that each $U.=U\cap C$“ is connected in $C$“.

1. First, we choose an exhausting sequence $\{X_{k}\}$ of compact subsets
of $U$ as follows. Let $X_{1}$ be an arbitrary closed disc with radius $r_{1}(<1)$

contained in $U\cap C$. If $X_{k-1}$ has been already chosen, put
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$X_{k}=\{$$zeU\cap C^{k};|z|_{k}\leqq k,\inf_{yep(U\cap C^{k})}|z-y|_{k}\geqq\frac{1}{\gamma_{k}}\}$ ,

where $r_{k}$ satisfies $r_{k}>k$ and $\inf_{x}$ , $X_{k-1},yep(U\cap c^{k})|x-y|_{k}>1/r_{k}(k\geqq 2)$ and . $|_{k}$

denotes the Euclidean norm on $C^{k}$ . $X_{n}$ is a compact subset of $U$ and we
have $U=\bigcup_{*=1}^{\infty}X_{n}$ . Thus, $X_{i}$ is covered by a finite subfamily $\{U_{ij}\}_{1\leqq j\leq n_{i}}$ of
$\{U_{\alpha}\}$ . Therefore $\{U_{ij}\}_{1\leq\dot{J}\leq n_{i},1\leq i}$ is a refinement of $\{U_{\alpha}\}$ .

2. We will construct inductively a locally finite refinement $\{U_{ik}\}$ of
$\{U_{ij}\}$ . Put

$X_{n},,=\{z\in C^{\alpha+1};\inf_{yeX_{l}}|z-y|_{n}\leqq\epsilon\}$ for $\epsilon>0$ .

Since $\{U_{1j}\cap C^{2}\}_{1\leq j\leq n_{1}}$ is an open covering of $X_{1}$ in $C^{2}\cap U$, there exists a re-
finement $\{V_{1j}\}_{1\leq j\leqq n_{1}^{\prime}}$ of $\{U_{1j}\cap C^{2}\}_{1\leq j\lessgtr n_{1}}$ such that $V_{1j}\subset X_{2}$ and $\bigcup_{j=1}1V_{1j}\supset X_{1}’$ . Put
$U_{1j}=p_{2}^{-1}(V_{1j})\cap U_{1q_{1}(j)}$ , where $q_{1}(j)$ denotes an integer $q$ such that $ V_{1j}\subset$

$U_{1q}\cap C^{2}$ . Thus, $\{U_{1\dot{g}}\}_{1\leq j\leqq n_{1}^{\prime}}$ is a refinement of $\{U_{1j}\}$ in $\sum C$ and $U_{1j}^{\prime}\cap C^{2}\subset X_{2}$ .
Suppose that for any $i\leqq k-1$ , we have constructed $\{U_{ij}^{\prime}\}_{1\leqq j\leq n_{i}^{\prime}}$ which satisfy
the following conditions:

a) $U_{ij}^{\prime}\cap C^{i+1}\subset X_{l+1}$ ,
b) there exists $\epsilon_{i-1}>0$ such that $ U_{ij}^{\prime}\cap X_{i-1,*}-1=\emptyset$ ,
c) $\{U_{i\dot{g}}^{\prime}\}_{1\leqq j\leq},i$’ is a refinement of $\{U_{ij}\}_{1\leqq j\leqq n}$,.

Then, since $\{U_{kj}\cap C^{k+1}\}_{1\leq\dot{g}\leqq n_{k}}$ is an open covering of $X_{k}-\bigcup_{i=1}^{k-1}\bigcup_{j=1}^{n}(U_{ij}\cap C^{t})$

in $C^{k+1}\cap U$, there exists a refinement $\{V_{kj}\}_{1\leq j\leqq n_{k}^{\prime}}$ of $\{U_{kj}\cap C^{k+1}\}_{1\leq j\leq n_{k}}$ in
$C^{k+1}\cap U$, which satisfy the following condition:
$(+)$ There exists $\epsilon_{k-1}>0$ such that $ V_{kj}\cap X_{k-1,e_{k-1}}=\emptyset$

and $V_{kj}\subset X_{k+1}$ .
Put $U_{kj}=p_{k+1}^{-1}(V_{kj})\cap U_{kq_{k}(j)}$ , where $q_{k}(j)$ denotes an integer $q$ such that
$V_{kj}\subset U_{kq}\cap C^{k+1}$ . Hence, $\{U_{kj}^{\prime}\}_{1\leq j\leqq\iota_{k}^{\prime}}$ is a refinement of $\{U_{k\dot{g}}\}_{1\leqq j\leqq n_{k}}$ such that
$U_{kj}^{\prime}\cap C^{k+1}\subset X_{k+1}$ and $ U_{kj}^{\prime}\cap X_{k-1,\epsilon_{k-1}}=\emptyset$ . Therefore, by induction, we have
constructed an open covering $\{U_{i\dot{g}}^{\prime}\}_{1\leq j\leqq n_{i}^{\prime},1\leq i}$ which satisfies the above con-
ditions a), b) and c). Thus, $\{U_{ij}^{\prime}\}_{\iota\leq j\leq n_{i}^{\prime},1\leqq}$ is a refinement of $\{U_{ij}\}_{I\xi j\leq 1\leqq i}i$.

3. It only remains to show that the above covering is locally finite.
Let $x$ be an arbitrary point of $U$. The symbol $m_{0}$ denotes the minimum
integer in $\{m\in N;x\in X_{n}\}$ . Then, there exist $U_{i_{0^{\dot{f}}0}}$ such that $x\in U_{i_{0}\dot{g}_{0}}$

$(i_{0}\leqq m_{0},1\leqq j_{0}\leqq n_{i_{0}}^{\prime})$ and an open neighborhood $W_{m_{0}}$ of $x$ in $C^{m_{0+1}}$ con-
tained in $ U_{i_{0^{\dot{f}}0}}\cap C^{n_{0+1}}\cap X_{m_{0^{8}m_{0}}},\cdot$ We can choose an open neighborhood
$W_{m_{0}+1}$ of $x$ in $C^{m_{0+2}}$ contained in $p_{n_{0}+1}^{-1}(W_{m_{0}})\cap(U_{i_{0}\dot{g}_{0}}^{\prime}\cap C^{m_{0+2}})\cap X_{n_{0}+1,m+1}$ such
that $W_{n_{0}+\iota}\cap C^{n_{0+1}}=W_{m_{0}}$ . Suppose that we have constructed $\{W_{n_{0}+q}^{0}\}_{q\leq k-1}$

such that $W_{m_{0}+q}$ is an open neighborhood of $x$ in $C^{m_{0}+q+1}$ and that
$W_{n_{0}+q}\cap C^{m_{0}+q}=W_{n_{0}+q-1}$ . Then, there exists an open set $W_{m_{0}+k}$ in $C^{n_{0}+k+1}$
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contained in $p_{*+g}^{-1}(W,)\cap(U_{i_{0^{\dot{f}}0}}^{\prime}\cap C^{\prime*}0+k+1)\cap X_{\eta+k.*n_{0}+b}$ such that $ W_{0+k}\cap$

$C^{*}0+k=W_{\eta+k-1}$ . Therefore, by induction, we have constructed $\{W_{n}\}_{n\geq\eta}$ .
Put $W=\bigcup_{n=\eta}^{\infty}W_{n}$ , then $W$ is an open set of $U$. The construction of
$\{W_{n}\}$ shows that $W$ does not intersect with $\{U_{i\dot{g}}\}.0^{+1\leqq i,1\leq j\leqq}i$ Thus, we
have proved that the covering $\{U_{\dot{f}}^{\prime}\}$ is locally finite. Q.E.D.

REMARK. Changing $\sum C$ by $\sum C^{2},$ $\sum R$ or $\sum R^{2}$ , this proposition still
holds.

Now, we shall discuss other properties of subsets of $\sum C$. For the
definitions of a holomorphically convex open set, a pseudo-convex open
set, a polynomially convex open (compact) set, etc., see for example [16].
For an open set $U$ in $\sum C$, the following properties are equivalent (see
for example [5], [6], [16]):

(1.1) $\left\{\begin{array}{ll}1) & U is a domain of existence of a holomorphic function,\\2) & U is a domain of holomorphy,\\3) & U is a pseudo- convex open set,\\4) & U is a holomorphically convex open set.\end{array}\right.$

Similar to the case of finite dimensions, we obtain the following proposi-
tion in the case of $\sum C$.

PROPOSITION 1.3. Any polynomially convex compact subset of $\sum C$ has
a fundamental system of neighborhoods consisting of polynomially convex
open subsets.

PROOF. Let $K$ be an arbitrary polynomially convex $\infty mpact$ set and
let $U$ be an arbitrary open neighborhood of $K$ in $\sum C$.

1. Since $K$ is compact, there exists a positive integer $n$ such that
$K\subset C^{n}$ and that $K$ is a polynomially convex compact set in $C$“. Thus,
there exists a polynomially convex open set $V$ in $C$“ such that $ K\subset V\subset$

$U\cap C^{n}$ by the welI-known fact.
2. Let us put $L=\{z\in C;|z|<\gamma\}$ . Since VcC $n+1\cap U$, we have $ V\times I_{f}\subset$

$C^{\iota+1}\cap U$ for sufficiently small $r>0$ . Picking up one of such $r$ , say, $\gamma_{1}$

we write $I_{1}=L_{1}$ . It is easy to see that $V\times I_{1}$ is a polynomially convex
open set in $C^{n+1}$ .

3. Suppose that a polynomially convex open set $ V\times I_{1}\times\cdots\times I.\subset$

$C^{n+m}\cap U$ has been constructed for $m=k-1$ , where $I_{\dot{f}}=L_{j}$ for some $r_{j}>0$.
Then, for sufficiently small $r>0$ we have $V\times I_{1}\times\cdots\times I_{k-1}\times L\subset c\cdot+k\cap U$.
Picking up one of such $r$ , say, $r_{k},$ $V\times I_{1}\times\cdots\times I_{k}$ is a polynomially convex
open set in $C^{\pi+k}$ , where $I_{k}=I_{rg}$ . By induction we have constructed
$\{V\times I_{1}\times\cdots\times I_{k}\}$ . Put $W=U_{k=1}^{\infty}V\times I_{1}\times\cdots\times I_{k}$ . Since $W$ is a finiteIy
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polynomially eonvex open subset of $\sum C,$ $W$ is a polynomially convex
open set (see for the detaits $I16]$). The construetion shows that
$KcW\subset U$. Q.E.D.

By the same method we can easily prove the following

PROPOSITiON 1.4. Every compact set in $\sum R$ is a polynomially con-
vex compact subset of $\sum C$.

\S 2. Properties of $\theta(U),$ $g(U)$ and their dual spaces.

In this section we consider the spaces of holomorphie functions and
infinitely differentiable functions on $\sum C$ or $\prod C$. For the definition of
a holomorphic function on a topological vector space, see for example
[2] and [3].

DEFINITION 2.1. Let $U$ be an arbitrary open set in $\sum C$ or $\prod C$.
We denote by $P(U)$ the topological vector space of all holomorph$ic$ func-
tions on $U$ endowed with the topology of the uniform convergence on
each compact set in $U$.

Hereafter, we denote by $p$ the sheaf of germs of holomorphic
functions on $C^{n}$ and we write $U_{*}=U\cap C^{\prime*}$ for an open set $U$ in $\sum C$.

PROPOSETION 2.2. Let $U$ be an arbitrary open set in $\sum C$. Then,
we have the isomorphism $\theta(U)\rightarrow\sim\lim P_{n}\langle U_{n}$)

$\leftarrow n$

as topological vector spaces.

PROOF. We can easily check the conditions of Lemma 1 of 5.5 in
Chapter XI in Kantrovich-Akilov [10], which ensure that the canonical
map $P(U)\rightarrow\lim_{\leftarrow}P_{\iota}(U_{n})$ is an algebraic isomorphism. Obviosuly, the family
of seminorms on $P(U)$ defining the topology of $P(U)$ coincides with that
of $\lim_{\leftarrow}P_{n}(U_{*})$ . Q.E.D.

$n$

COROLLARY 2.3. $P(U)\dot{x}s$ a Fr\’echet-Sehwartz nuclear space.

PROOF. @ince $P(U)$ is the projective limit of $\{P_{n}(U_{n})\}$ and since
each $P_{n}(U,.)$ is a Fr\’echet-Schwartz nuclear space, the general theory
shows that $P(U)$ is also a Fr\’echet-Schwartz nuclear space. Q.E.D.

REMARK. It was shown in Noverraz [15] that $9(U)$ is a Fr\’echet
space.

The presheaf $\{P(U)\}$ defines a sheaf over $\sum C$, which i8 denoted
by $p$ .



276 YOSHIHISA FUJIMOTO

The maximum principle and the principle of analytic continuation
hold not only for holomorphic functions on $\sum C$, but also for those on
more general topological vector spaces; see for example [3] and [16].

Since a G\^ateaux-analytic function is an analytic function (see [4]),
the proposition similar to Hartogs’ theorem of holomorphy holds obviously
in the case of $\sum C$. We have the following proposition in the case of
$\sum C$.

PROPOSITION 2.4. Let $U$ be a connected open subset of $\sum C$ and let
$K$ be a compact subset of U. Then, for any $f\in P(U\backslash K)$ , there exists a
unique function $g\in P(U)$ such that $f=g$ on $U\backslash K$.

PROOF. For a sufficiently large positive integer $n,$ $K$ is a compact
subset of $U\cap C^{n}$ and $(U\backslash K)\cap C$“ is connected in $U\cap C$“. By Hartogs’
theorem, there exi8ts a unique $g.\in d(U\cap C‘‘)$ such that $g_{n}=f|_{c}$ on
$(U\backslash K)\cap C$“, where $f|_{c^{n}}eP((U\backslash K)\cap C‘‘)$ . On the other hand, $g_{+1}|_{C},$ $-g.=0$

on $(U\backslash K)\cap C^{*}$ . Thus, by the principle of analytic continuation, $g_{+1}|_{c’*}=g_{*}$

on $U\cap C$“. In view of Proposition 2.2, there exists a unique function
$g\in\rho(U)$ such that $g|_{c^{n}}=g_{n}$ and $g=f$ on $U\backslash K$. Q.E.D.

We consider holomorphic functions on $\prod C$.
PROPOSITION 2.5. Let $U$ be an arbitrary open set in $\prod C$. Then,

we have the isomorphism $\lim_{\rightarrow}P,$
$(U’)\rightarrow\sim p(U)$ as topological vector spaces,

where $U‘‘=p(U)$ for $n>0^{n}$

PROOF. First, we shall check the conditions of Lemma 2 of 5.5 in
Chapter XI in Kantrovich-Akilov [10] to show the canonical map
$\lim\rho(U^{n})\rightarrow p(U)$ is an algebraic isomorphism. We define the map $\Omega_{\hslash}$

$from\rightarrow P$,$(U$“
$)$ to $P(U)$ by $\Omega,(f)=f\circ p$, for $feP,(U$“

$)$ . The other con-
ditions being obviously satisfied, it only remains to show that df $(U)c$
$\bigcup_{=1}^{\infty}\Omega_{*}(d(U))$ . Since $feP(U)$ is continuous on $U$, for any $x\in U$ and
any $\epsilon>0$ there exists an open neighborhood $Vae=D_{x}\times\prod_{i=q+1}^{\infty}C_{i}$ of $x$ such
that $|f(z)-f(x)|<\epsilon$ holds for $z=(z)\in V_{g}$ , where $D_{x}$ is an open neighbor-
hood of $p_{q}(x)$ in $C^{q}$ for some positive integer $q$ and $C$ denotes the i-th
coordinate axis of $\prod C$. In fact, every open set $W$ in $\prod C$ has a form
$W=W^{\prime}\times\prod_{i=r+1}^{\infty}C$ , where $W^{\prime}$ is an open set in $C^{f}$ for some positive integer
$r$ . Thus, if we regard $f$ as a function of only one variable $z_{n}$ for suf-
ficiently large positive integer $m$ (the other variables being fixed), then
$f$ is bounded. Since $f$ is an entire function of one complex variable $z_{n}$ ,
$f$ does not depend on $z_{m}$ . Hence, $\rho(U)\subset\bigcup_{n=1}^{\infty}\Omega(\rho_{*}(U‘‘))$ . We have
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obtained the algebraic isomorphism $\lim_{\rightarrow}\rho_{n}(U^{n})\sim\rightarrow\rho(U)$ . The topology of
$\lim\rho$ $(U$“ $)$ is defined by all the seminorms $\{p\}$ for which $ p\circ\Omega$ is con-
$tinuous\rightarrow$

on $P,$.$(U$“
$)$ for any $n>0$ . On the other hand, let $U=W_{n}\times\prod_{=n+1}^{\infty}C_{i}$ .

Then the family of compact sets $\{K\times\prod_{i=m+1}^{\infty}K\}$ is a basis of compact
subsets of $U$, where $K$ runs over compact sets in $U$ and $K_{i}$ runs over
compact sets in $C_{i}$ . In view of the above facts, it is easy to see that
the topologies of $\rho(U)$ and

$\lim_{n}\rho_{n}(U\rightarrow ‘‘)$
are equivalent. Q.E.D.

COROLLARY 2.6. Let $U$ be an open set in $\prod C$. Then, $P(U)$ is a
strict inductive limit of Fr\’echet-Schwartz spaces.

PROOF. We define $\omega,$ : $P_{n}(U^{\prime\iota})\rightarrow p+1(U^{n+1})$ by $\omega(f)=f\circ p^{n+1}$ for
$f\in P$ $(U$“

$)$ , where $p^{n+1}$ is the projection from $C^{n+1}$ to $C$“. Since $\omega_{n}$ is
an isomorphism from df $(U^{n})$ onto $\omega(p_{\iota}(U^{n}))$ , the result follows from
Proposition 2.5. Q.E.D.

Now, we introduce a subspace of $\rho(\prod C)$ .
DEFINITION 2.7. We denote by $Exp(\prod C)$ the space of all functions

of $p(\prod C)$ that satisfy the following inequality:

$|F(\zeta)|\leqq C\exp(r_{1}|\zeta_{1}|+\cdots+r_{n}|\zeta_{n}|)$ $(\zeta=(\zeta_{i})\in\prod C)$

for some constant $C>0$ , some positive integer $n$ and some ($r_{1},$ $\cdots,$
$ r,\rangle$

$(r_{i}>0, i=1, \cdots, n)$ . We call an element of $Exp(\prod C)$ an entire function
of exponential type on $\prod C$.

We also denote by $Exp(C^{*})$ the space of all entire functions of ex-
ponential type on $C$ .

Put $H_{K}(\zeta)=\sup\{{\rm Re}\langle z, \zeta\rangle;z\in K\}$ for any convex compact set $K$ in
$\sum C$. Set $Exp^{b}(\prod C, K)=\{FeExp(\prod C);||F||_{K}<\infty\}$ , where $||F||_{K}=$

$sup\{|F(\zeta)|\exp(-H_{K}(\zeta));\zeta\in\prod C\}$ . Obviously, $Exp^{b}(\prod C, K)$ is a Banach
space with the norm $||\cdot||_{K}$ . We define the topology of $Exp(\prod C)$ by
$\lim_{K}Exp^{b}(\prod C, K)\rightarrow$ ’ where $K$ runs over all compact subsets of $\sum C$. This

topology is a dual Fr\’echet-Schwartz topology. In view of the above
discussion, we have the following

PROPOSITION 2.8. We have the isomorphism
$\lim_{*}Exp(C^{\prime})\sim\rightarrow Exp(\prod C\rangle\rightarrow$

as topological vector spaces.

Next, we go on to the dual space of $P(U)$ .
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DEFINITiON 2.9. Let $U$ be an open set in $\sum$ C. $P^{\prime}(U)$ denotes the
topological dual space of $P(U)$ . An element of $P^{\prime}(U)$ is called an analy-
tic functional on $U$.

$P^{\prime}(U)$ is a dual Fr\’echet-Sehwartz nuclear space.

LEMMA 2.10. Let $U$ be a pseudo-eonvex open set in $c+1$ Then, the
$r\ell\epsilon triction$ ma$p$ from $\rho_{+1}(U)$ to $P(U^{\prime})$ is $\epsilon urjeciive$ , where $U^{\prime}=U\cap C$“.

PROOF. Consider the following exact sequence of sheaves on $C^{n+1}$ ,
$0\rightarrow \mathcal{J}\rightarrow P_{\iota+1}\rightarrow u_{*+1^{*}}\rho_{\alpha}\rightarrow 0$ ,

where $\mathcal{J}$ is the sheaf of ideals of $C$ “ and $ u_{n+1}^{n}.\rho$ denotes the direct
image of $p_{n}$ . Because the sheaf $ u_{\hslash+\iota}.\rho$ is a coherent sheaf of $p_{+1^{-}}$

modules by Theorem 3 of \S 3 in Chapter I in Grauert and Remmert [8],
$t\ovalbox{\tt\small REJECT}$ is a ooherent sheaf of $p_{+1}$-moduM. Therefore, $H^{1}(U, \mathcal{J})=0$ holds.
Thus, we obtain the result. Q.E.D.

PROPOSITION 2.11. Let $U$ be a pseudo-convex open set in $\sum$ C. Then,
we have the isomorphism $\lim_{\rightarrow}\rho’(U,.)\sim\rightarrow\rho^{\prime}(U)$ as topological vector spaces.

$PmoF$ . By Propo8ition 2.2 and Lemma 2.10, the restriction map
from $P(U)$ to $P(U_{n})$ is surjective. The restriction map from $P_{+1}(U_{+1})$

to $\rho(U,)$ maps a bounded set to a relatively compact set. Therefore,
the result follows from Theorem 5.13 in Komatsu [12]. Q.E.D.

We treat the problem of supports of analytic functionals on $\sum C$.
DEFINITION 2.12. Let $U$ be an arbitrary open set in $\sum C$.
i) We say that TG $\rho’(U)$ is carried by an open set $W\subset U$ if $ T\in$

${}^{t}f(\rho’(W))$ , where $f$ is the restriction map from 4 $(U)$ to $p(W)$ and ${}^{t}f$ is
the transpase of $f$ .

ii) We say that $T\in P’(U)$ is carried by a ccmpact set $K$ if $T$ is
’earried by any open set $W$ sueh that $U\supset W\supset K$.

Put $\delta(x)=@_{\dot{g}=1}\delta\langle x_{;}$) $(n\leqq\infty)$ . Let $U$ be a domain of holomorphy in
$\sum C$ and let $T$ be an analytic functional other than $\delta(x)$ on $U$. Then,
owing to Proposition 2.18, there exists the smallest positive integer $n$

such that $T=T’\Phi_{\dot{s}=’+1}^{\infty}\delta(x_{j})$ , where $T’\in P_{*}(U_{\sim})$ is not the $\delta$-function on
$U$ . We have the following

PROPOSITION 2.13. Assume $T=T^{\prime}\Phi_{\dot{s}=+1}^{\infty}\delta(x_{\dot{f}})$ as above. Let $K$ be a
compact subset of $U$ such that $KcC’$ . In the case $m\leqq n,$ $T$ is earried
by Kif and only if $T$’ is carried by K. In the case $m>n,$ $T$ is carried
by $K$ if and only if $T’@_{\dot{g}=’\cdot+1}^{n}\delta(x_{\dot{f}})i\epsilon ae\alpha rr\dot{w}d$ by $K$.
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LEMMA 2.14. $T\in P^{\prime}(U)$ is enrribe$d$ by a compact set $K(cC^{M})$ if and
only if for any compact set $L$ such that $KcL\subset U_{m}$ , there exists a con-
stant $C_{L}>0$ such that

$|T(f)|\leqq C_{L}\sup_{zeL}|f(z)|$ for any $f\in\rho(U)$ .
PROOF. Suppose that there exists a compact set $L$ such that for any

constant $C>0$ there exists a function $f_{c}\in P(U)$ for which

$|T(f_{c})|>C\sup_{zeL}|f_{c}(z)|$ .

Since $f_{c}(z)$ is continuous on $U$, there exists an open neighborhood $\omega$ of
$L$ in $U$ such that

$|T(f_{c})|>C\sup_{ze\omega}|f_{c}(z)|$ .
This inequality implies that

$T\not\in {}^{t}r(\beta^{\prime}(\omega))$

where $\gamma$ is the restriction map from $\beta(U)$ to $\beta(\omega)$ . It contradicts the
assumptiun that $T$ is carried by $K$.

Conversely, let $W$ be an open neighborhood of $K$. For a compact
set $L$ 8uch that $W\supset L\Supset K$, there exists a constant $C_{L}>0$ such that

$|T(f)|\leqq C_{L}$ $sup|f(z)|$ for any $f\in P(U)$ .
This implies that $e(P^{\prime}(W))\ni T$, where $f$ is the restriction map from $P(U)$

to $\rho(W)$ . Q.E.D.

Using this lemma we will prove Proposition 2.13.

PROOF OF PROPOSITION 2.13. Since the proof in the ca8e of $m\leqq n$ is
almost game as that in the case of $m>n$, we will prove only the case
of $m>n$ . Suppose that $T$ is carried by $K$. Owing to Lemma 2.14, if
$K\subset C^{m}$ , for any compact set $L$ such that $KcL\subset U_{m}$ , there exi8ts a con-
stant $C_{L}>0$ such that

$|T(f)|\leqq C_{z}$ $sup|f(z)|$ for any $f\in\rho_{n}(U_{n})$ .
Since $T=T$‘

$\Phi_{j=n+1}^{\infty}\delta(x_{\dot{f}})$ ,

$|(T^{\prime}\bigotimes_{j=n+1}^{M}\delta(x_{j}))(f)|\leqq C_{L}\sup_{zeL}|f(z)|$ for any $f\in P(U)|_{c^{m}}=p_{*}(U_{m})$ .
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This implies that $\tau’\Phi_{j=+1}^{n}\delta(x_{f})$ is carried by $K$.
Conversely, suppose that $\tau’\Phi_{J=\cdot+1}^{n}\delta(x_{j})$ is carried by $K$. Then, for

any compact set $L$ in $C$“ such that KcLcC“, there exists a constant
$C_{L}>0$ such that

$|(T^{\prime}\Phi\delta(x_{j}))(f)|\leqq C_{L}\sup_{ej=\cdot+1eL}n|f(z)|$ for any $f\in P_{*}.(U_{n})$ .

Since $T=T’\Phi_{j=+1}^{\infty}\delta(x_{j})$ , we get

$|T(f)|\leqq C_{L}\sup_{e}|f(z)|$ for any $fe\rho(U)$ .
For any compact subset $M$ of $C$“ such that $LcM$ and $KcMcU_{n}$ , we
get obviously,

$|T(f)|\leqq C_{L}$ $sup|f(z)|$ for any $feP(U)$ .
In view of Lemma 2.14, this implies that $T$ is carried by $K$. Q.E.D.

Summing up, the problem of supports of $T\in P’(U)$ is reduced to
that of $T’ Gd.(U.)$ .

Now, we consider the Fourier-Borel transformation for analytic func-
tionals on $\sum C$. . See [9] and [13] for the Fourier-Borel transformation in
finite dimensional spaces.

DEFINITION 2.15. We call the function $\tilde{T}(\zeta)=T_{*}(e^{\langle x.\zeta\rangle})(ze\sum C, \zeta\in\prod C)$

on $\prod C$ the Fourier-Borel transform of $T\in\rho’(\sum C)$ .
THEOREM 2.16. If $Tep^{\prime}(\sum C)$ is carried by a compact set $K(cC‘‘)$ ,

then $M(\zeta)=\tilde{T}(\zeta)$ is an entire function on $\prod C$ satisfying the following
inequality: For any $\delta>0$ , there exists a constant $C_{\delta}>0$ such that

(2.1) $|M(\zeta)|\leqq C_{\delta}\exp(H_{K}(\zeta)+\delta||\zeta||)$

where $||\zeta||,.=(|\zeta_{1}|^{2}+\cdots+|\zeta_{l}|^{z})^{1/2}$ for $\zeta=(\zeta_{i})G\prod C$. Conversely, if $K(\subset C^{n})$

is a convex compact subset of $\sum C$ and if $M(\zeta)$ is an entire function and
satisfies the inequality (2.1) for any $\delta>0$ , then there exists an analytic
functional $T\in P^{\prime}(\sum C)$ carried by $K$ such that $\tilde{T}(\zeta)=M(\zeta)$ .

PROOF. If $T\in P(\sum C)$ is carried by $K$, by virtue of Proposition 2.11
there exists $T^{\prime}\in ff$,$(C$“ $)$ such that ${}^{t}u.(T’)=T$ and $T^{\prime}$ is carried by $K$,
where ${}^{t}u$. is the transpose of $u$ . If we restrict $e^{\langle e,\zeta\rangle}$ to $C$“, $T’(e^{\langle z^{\prime},\zeta^{\prime}\rangle})$ is
an entire function of $\zeta^{\prime}\in C$“ by Proposition 1.12 in Chapter 2 in Martineau
[18] and

$|T’(e^{\langle z^{\prime},\zeta^{\prime}\rangle})|\leqq C_{\delta}\exp(H_{K}(\zeta)+\delta|\zeta|_{\iota})$
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holds for $\zeta GC^{n}$ . Thus, we regard $T(e^{\langle z,\zeta\rangle})$ as an entire function on $\prod C$

by Proposition 2.5 and we have

$|T(e^{\langle z,\rangle})|\leqq C_{\delta}\exp(H_{K}(\zeta)+\delta||\zeta||_{2})$ for $\zeta\in\prod C$ .
Conversely, suppose that (2.1) holds for $M(\zeta)$ . Then, (2.1) implies

$|M(\zeta^{\prime})|\leqq C_{\delta}\exp(H_{K}(\zeta’)+\delta|\zeta’|_{n})$ for $\zeta’\in C$“

By Proposition 1.12 in Chapter 2 in [13], there exists an analytic func-
tional $T^{\prime}\in\rho^{\prime}.(C’)$ carried by $K$ such that $M(\zeta)=\tilde{T}’(\zeta)$ . Thus, if we set
$T={}^{t}u_{n}(T’)\in\rho^{r}(\sum C)$ , then $T$ is carried by $K$ in view of Proposition 2.13,

Q.E.D.

COROLLARY 2.17. The $Fou\gamma ier$-Borel transformation $F:T-*\tilde{T}$ in-
duces a topological isomorphism of $\beta^{\prime}(\sum C)$ onto $Exp(\prod C)$ .

PROOF. The injectivity follows from the fact that linear combina-
tions of the exponential functions $e^{\langle z,\zeta\rangle}$ are dense in $\beta(\sum C)$ . It only
remains to show that the Fourier-Borel transformation is continuous, so
that the result follows from the above theorem and the closed graph
theorem for dual Fr\’echet-Schwartz spaces. Let $\{K\}$ be an exhausting
sequence of $\sum C$ which consists of convex compact sets such that $KcC$“.
Then, we have $d’(\sum C)\cong\lim_{\rightarrow}\rho,$

$(K_{r\iota})\cong\lim p_{n,B}^{\prime}(K)$ , where $P,B(K)$ denotes

the space of all the functions that
$are\rightarrow$

holomorphic in $\mathring{K}$ and bounded
on $K,.$ . Since the Fourier-Borel transformation of $P^{\prime}(K_{n})$ to $Exp(C$“

$)$ is
continuous, so is the Fourier-Borel transformation of 4 $n,B’(K)$ to $Exp(C)$ .
Therefore, the Fourier-Borel transformation of $d’(\sum C)$ to $Exp(\prod C)$ is
continuous. Q.E.D.

REMARK. It was shown in Boland-Dineen [1] that the Fourier-Borel
transformation of $\beta^{\prime}(\sum C)$ onto Exp $(\prod C)$ is an algebraic isomorphism.

Now, we treat the case of infinitely differentiable functions in $\sum R$ .
DEFINITION 2.18. Let $\Omega$ be an arbitrary open set in $\sum R$ (or $\sum R^{2}$).

We denote by $g^{2}(\Omega)$ the topological vector space of all infinitely differenti-
able functions on $\Omega$ endowed with the topology defined by the seminorms:

$|f|_{m,K}=\sup_{|p|\leqq m}(\sup_{xeK}|(\partial/\partial x)^{p}f(x)|)$ for $f\in C(\Omega)$ ,

where $K$ runs over all compact subsets of $\Omega,$ $m=1,2,$ $\cdots,$ $p=(p_{1}, p_{2}, \cdots)$ ,
$p_{j}$ is a non-negative integer and $|p|=p_{1}+p_{2}+\cdots$ .
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REMARK. We say that $f:\Omega\rightarrow C$ is infinitely differentiable if $f|_{R}$ :
$\Omega\cap R\rightarrow C$ is infinitely differentiable for any $n>0$ .

Just the same as in the ca8e of $\rho(U)$ (Proposition 2.2), we can prove

PROrOSITION 2.19. Let S2 be an arbitrary open set in $\sum R$. Then,
we have the isomorphism $g(\Omega)\rightarrow\sim\lim_{\leftarrow}g(\Omega)$ as topological vector spaces.

Hereafter we will write $\Omega_{t}=\Omega\cap R’$.
We can easily obtain the following corollary:

$CoROLLARY2.20$ . $g(\Omega)$ is a Fr\’ec’het-Schwartz nuclear space.

The presheaf $\{C(\Omega)\}$ defines a sheaf over $\sum R$ , which is denoted by 87.
LEMMA 2.21. Let $\Omega$ be an open set in $R^{n+1}$ . Then, the restriction

map from $\mathscr{G}_{+1}(\Omega)$ to $g,(\Omega’)$ is surjective, where $\Omega’=\Omega\cap R$ .
PROOF. Let $\mathcal{J}$ be the sheaf of germs of infinitely differentiable

functions in $R^{n+1}$ which vanish on $R$ . Then, $\mathcal{J}$ is a sheaf of $g_{n+1^{-}}$

modules, so that it is soft by Theorem 2 in Chapter A in [8]. Since
$H^{1}(\Omega_{J}\mathcal{J})=0$ holds, the lemma results from the following exact sequence
of the sheaves on $R^{+1}$ :

$0\rightarrow \mathcal{J}\rightarrow g_{n+1}\rightarrow ui_{+r}\cdot C_{\hslash}\rightarrow 0$ . Q.E.D.

PROPOSITION 2.22. We have the isomorphis$u\iota\lim_{\rightarrow}g’\langle\Omega_{t}$) $\rightarrow\sim g’(\Omega)$ as
$n$

topological vector spaces.

PROOF. By Proposition 2.19 and Lemma 2.21, the restriction map from
$g_{+1}(\Omega_{+1})$ to $g,.(\Omega.)$ is suriective. The restriction map from $Eie_{+1}(\Omega_{n+1})$

to $g.(\Omega.)$ maps a bounded set to a relatively compact set. Therefore,
from Theorem 5.13 in Komatsu [12] follows the above result. Q.E.D.

We denote by $\rho$ the canonical map frora $g_{\iota}^{\prime}(\Omega)$ to $C’(\Omega)$ . We con-
sider the Fourier transfrom of $\tau\in g^{r}(\sum R)$ .

DEFINITION 2.23. For any $T\in C’(\sum R)$ we can find $T’\in g_{\sim}(R’)$ such
that $\rho.(T’)=T$ for some $n>0$ by Proposition 2.22. We define the 8upport
SuppT of $T\in g’(\sum R)$ to be the support of $T’ eC_{\hslash}^{\prime}(R’)$ .

If we regard $T\in \mathscr{G}’(\sum R)$ as $T\in C_{n}(R^{l})$ and as $T’\in \mathscr{G}_{n}(R^{n})(n\neq m)$

in two ways, the support of $T’ eS7(R^{n})$ coincides with that of $T^{\prime}’\in \mathscr{G}_{\tau*}(R^{m})$ .
Therefore, the above definition makes sense and the support of $T$ is
uniquely determined.
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DEFINITION 2.24. We define the Fourier transfom of $T\in g^{\prime}(\sum R)$

by $\langle T_{u}, e^{-i\langle x.\text{\’{e}}\succ}\rangle$ which we denote by $\hat{T}(\xi)$ .
We will prove a theorem of Paley-Wiener type.

THEOREJVa 2.25. Let $K$ be a balanced convex compact subset of $R$ .
For $T\in \mathscr{G}^{\prime}(\sum R)$ the $\beta ouowing$ properties are equivalent:

(a) The balanced convex hull of the support of $T$ is contained in $K$:
(b) The Fourier transform of $T$ is extended on $\prod C$ as an entire

function $\zeta\mapsto\hat{T}(\zeta)$ and there exist an integer $m>0$ and a constant $C>0$

such that the following inequality holds for $\zeta=\xi+i\eta(\xi, \eta\in\prod R)$ :
(2.2) $|\hat{T}(\zeta)|\leqq C(1+||\zeta||_{n})^{m}\exp(I_{K}(\eta))$ ,

where $I_{K}(\eta)=\sup_{xeK}|\langle x, \eta\rangle|$ .
PROOF. In view of Proposition 2.22 and the property (a), there exists

$T’\in g_{\iota}(R$“ $)$ such that $T=T^{\prime}\Phi_{\dot{g}=+1}^{\infty}\delta(x_{j})$ . For $T^{\prime}\in g_{\iota}^{r}(R^{n})$ , by the Paley-
Wiener theorem, $\zeta^{\prime}$ }$\rightarrow\hat{T}’(\zeta^{\prime})$ is an entire function on $C^{\prime n}$ and there exist an
integer $m>0$ and a constant $C>0$ such that the following inequality
holds:

$|\hat{T}^{\prime}(\zeta^{\prime})|\leqq C(1+|\zeta^{\prime}|, )^{m}\exp(I_{K}(\eta^{\prime}))$ for $\zeta^{\prime}\in C^{n}$ .
Therefore, we have

$|\hat{T}(\zeta\rangle$

$|\leqq C(1+||\zeta||_{n})^{n}\exp(I_{K}(\eta))$ for $\zeta\in\sum C$ .
Conversely, suppose that the inequality (2.2) holds:

$|\langle T_{x}, e^{-i\langle x.\zeta\rangle}\rangle|=|\hat{T}(\zeta)|\leqq C(1+||\zeta’||)^{m}\exp(I_{K}(\eta^{\prime}))$ .
Let $T=T^{\prime}\otimes_{\dot{g}=n+1}^{\infty}\delta(x_{j})$ , where $T^{\prime}\in g_{r\iota}’(R^{n})$ . Then, $\hat{T}’(\zeta’)=\langle T’, e^{-i\prec x^{\prime}.\zeta^{\prime}\rangle}\rangle$ is
an entire function on $C$“ and

$|\hat{T}^{\prime}(\zeta^{\prime})|\leqq C(1+|\zeta^{\prime}|_{n})^{m}\exp(I_{K}(\eta’))$ for $\zeta eR^{n}$ ,
$x^{\prime}\in R^{n}$ . Thus, by the Paley-Wiener theorem, the balanced convex huMl of
the support of $T$’ is contained in $K$. Since Supp $T=SuppT$‘, we proved
the theorem. Q.E.D.

\S 3. Vanishing of cohomology groups.

Dineen [6] proved that $H^{1}(U, P)=0$ for any pseudo-convex open set
$U$ in a topological vector space with the finite open topology.

REMARK. An infinite dimensional vector space $E$ is said to be endowed
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with the finite open topology if its topology is defined by the set of all
finitely open sets, where a subset $U$ of $E$ is said to be finitely open if
$U\cap F$ is open in $F$ for any finite dimensional subspace $F$ of $E$.

We will prove that the p-th cohomology group vanishes for $p\geqq 1$ in
the case of $\sum C$ by the method remarked in the above paper.

Let $D$ be an arbitrary open set $\sum R$ . We denote by $g_{D}$ the restric-
tion of the sheaf $g$ to $D$.

PROPOSITION 3.1. $\mathscr{G}_{D}$ is a fine sheaf.
PROOF. 1. Let $U,$ $E$ and $F$ be an open subset, a closed subset and

a closed subset of $\sum R$ respectively such that $U\supset F\supset\dot{F}\supset E$. Assume
without loss of generality that $E$ contains the origin and $U\cap R$ is con-
nected in $R$ for every $n>0$ . Then, we will prove that there exists a
$C^{\infty}$-function $\psi$ defined on $\sum R$ such that

1) $\psi\geqq 0$ ,
2) $\psi=1$ on some neighborhood of $E$,
3) Supp $\psi cF$.

Put $\Delta_{a}(\delta_{a})=\{z=(z_{i})\in\sum R;|z-x_{i}|<\delta_{x},\}$ , where $\delta_{\theta}=(\delta_{gi}),$ $0<\delta_{x},$ $<\infty$ . Assume
that $x=0$ . Obviously, for every $i$ there exists a $C^{\infty}$-function $\phi_{i}$ defined
on $R$ such that

1) $\phi_{i}\geqq 0$ ,
2) $\phi>0$ on the open disc with radius $\delta_{0},$ $/2,$ $\phi(0)=1$ ,
3) Supp $\phi_{i}$ is contained in the open disc with radius $\delta_{0}$ . $\cdot$

Put $\phi(z)=\prod_{i=1}^{\infty}\phi(z)$ , then $\phi(z)$ is a $C^{\infty}$-function defined on $\sum R$ that satisfies
the following conditions:

1) $\phi(z)\geqq 0$ ,
2) $\phi(z)>0$ on $\Delta_{0}(\delta_{0}/2)$ ,
3) Supp $\phi c\Delta_{0}(\delta_{0})$ .
2. Let $\{X\}$ be the exhausting sequence of compact subsets con-

structed in the proof of Proposition 1.2, replacing $C$ by $R$ . We choose
$\Delta_{g}(\delta_{a})$ for each $xeX_{1}$ as follows: For any $n>1$ ,

1) if $x\in X_{1}\cap E,$ $\Delta_{a}(\delta_{x})\cap RcX_{n}\cap F$,
2) if $x\in X_{1}\cap(F\backslash E),$ $\Delta_{x}(\delta_{l})\cap R\subset X_{\hslash}$ and $\Delta_{x}(\delta ae)$ does not intersect with

both of $E$ and $\partial F$,
3) if $x\in X_{1}\backslash F,$ $\Delta ae(\delta_{g})\cap R\subset X\cap GE$,

where $\partial F$ denotes the boundary of $F$. Then, $\{\Delta_{r}(\delta_{g}/2)\cap R^{2}\}aeex_{1}$ is a
covering of $X_{1}$ . Since $X_{1}$ is compact, a finite 8ubcovering $\{\Delta_{l}(\delta./2)\cap R^{2}\}_{eI_{1}}$

of $\{\Delta_{\alpha}(\delta_{\Leftrightarrow}/2)\cap R^{2}\}_{g\in X_{1}}coverX_{1}$ . Put $V_{1}=\bigcup_{eI_{1}}\Delta_{l}(\delta ae/2)$ and $u_{1}=\{\Delta. (\delta_{r})\}_{ieI_{1}}$ .
3. Suppose that, for any $j\leqq k,$ $V_{j}$ and $U_{j}=\{\Delta_{x_{i}}(\delta ae_{i})\}_{eI_{j}}(xeX_{j})$ have

been constructed with the following properties:
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Then, there exists $\epsilon_{k}>0$ such that $V_{k}\cap R^{k+1}\supset X_{k},$
$k$

For each $x\in X_{k-1}-V_{k}$ ,
we can choose $\Delta_{x}(\delta_{x})$ which satisfies the condition I) of (3.1) with $j$ replaced
by $k+1$ . Then, $\{\Delta_{g}(\delta_{\iota}/2)\cap R^{k+2}\}_{xex_{k+\iota-V_{k}}}$ is an open covering of $X_{k+1}-V_{k}$ in
$R^{k+2}$ . Since $X_{k+1}-V_{k}$ is compact, a finite subcovering $\{\Delta_{x_{i}}(\delta_{x_{i}}/2)\cap R^{k+2}\}_{ieI_{k+1}}$

of $\{\Delta_{\varpi}(\delta_{x}/2)\cap R^{k+2}\}_{xex_{k+1}-V_{k}}$ cover $X_{k+1}-V_{k}$ . Put

$V_{k+1}=V_{k}\cup(\bigcup_{ie1_{k+1}}\Delta_{x}(\frac{1}{2}\delta_{x_{i}}))$ and $U_{k+1}=\{\Delta_{x_{i}}(\delta_{x_{i}})\}_{ieI_{k+1}}$ .

Thus, by induction, we construct $V_{j}$ and $0_{i}$ with the property (3.1) for
every $j=1,2,3,$ $\cdots$ . Put $\mathfrak{U}=\bigcup_{i=1}^{\infty}\mathfrak{U}_{i}$ . Then, $U$ is an open covering of
$U$. The construction shows that, for any compact subset of $U$, there
are only a finite number of elements of $U$ which intersect with it. Put
$I_{p}=\{ie\bigcup_{=1}^{\infty}I;\Delta oe(\delta oe_{l})\cap F\neq\emptyset\},$ $I_{E}=\{i\in I_{p};\Delta_{x}(\delta_{x_{i}})\cap E\neq\emptyset\},$ $u_{F}=\{\Delta_{g}(\delta_{x})\}_{ieI_{F}}$

and $\mathfrak{U}_{B}=\{\Delta_{x}(\delta_{r})\}_{eI_{E}}$ . Let $\phi$ be a $C^{\infty}$-function constructed in the same
way as in 1 subordinate to $\Delta_{x_{i}}(\delta_{x_{i}})(i=1,2,3, \cdots)$ . Thus, $\phi(z)=\sum_{ieI_{F}}\phi_{i}(z)$

is well defined and is a positive $C^{\infty}$-function. In fact, for any $xe\sum R$

if we choose an open neighborhood $U_{x}$ of $x$ such that $U_{x}\cap R$“ is relatively
compact, $U_{x}\cap R$“ intersects with only finitely many elements of $U_{p}$ . Hence,
$\phi(z)$ is a $C^{\infty}$-function in view of the definition. Since $\{\Delta_{x_{i}}(\delta_{g}/2)\}_{ieI_{F}}$ is
also a covering of $F,$ $\phi(z)$ is positive at every point of $F$. Set $\psi_{j}(z)=$

$(\phi_{\dot{f}}/\phi)(z)$ for $z\in F,$ $\psi_{j}(z)=0$ for $z\in GF$ and $\psi=\sum_{iGI_{E}}\psi_{i}$ . $\psi(z)$ satisfies the
conditions needed.

4. Let $\{U_{\alpha}\}$ be an arbitrary locally finite open covering of $D$ . Since
$D$ is paracompact, there is a locally finite refinement $\{V_{\alpha}\}$ of $\{U_{a}\}$ such
that $\{V_{\alpha}\subset U_{\alpha}\}$ . Just the same way as above, we can choose a locally
finite refinement $\{W_{\alpha}\}$ of $\{V_{\alpha}\}$ such that $\overline{W}_{\alpha}\subset V_{\alpha}$ . Set $F=\overline{V}_{\alpha}$ and $E=\overline{W}_{\alpha}$ ,
then, 1, 2 and 3 imply that there exists $\psi_{\alpha}$ subordinate to $U_{\alpha}$ . Set
$\psi^{\prime}=\sum_{\alpha}\psi_{\alpha}$ and $\varphi_{\alpha}=\psi_{a}/\psi^{\prime}$ . Hence, we have a family of $C^{\infty}$-functions $\{\varphi_{\alpha}\}$

subordinate to $\{U_{\alpha}\}$ such that
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1) $\varphi_{\alpha}\geqq 0$ and $\varphi_{\alpha}=0$ on $GU_{\alpha}$,
2) $\sum_{\alpha}\varphi_{\alpha}(x)=1$ for $xeD$ .

Since the operation of multipltcation by $\varphi_{\alpha}$ induces a sheaf homomorphism
from $g_{D}$ to $g_{D},$ $g_{D}$ is a fine sheaf. Q.E.D.

REMARK. Changing $\sum R$ by $\sum R^{2}$ , this proposition still holds. Here-
after we identify $\sum C\cong\sum R^{2}$ .

DEFINITION 3.2 [6]. Let $U$ be an open set in $\sum C$. For each positive
integer $p$ , we denote by $g^{0,p}(U)$ the space of all forms of the following
kind:

$\beta=\sum_{i_{1}<\cdots<i_{p}}f_{1p}ff_{\overline{Z}\wedge}$ A $d\overline{z}_{i_{p}}$

where $f_{i_{Ip}}\ldots\in \mathscr{G}(U)$ and $z=(z)\in\sum C$. For $p=0$ we put $\mathscr{G}^{0.0}(U)=^{c}d(U)$ .
We define the $\overline{\partial}$-operator $1i$nearly by

$\overline{\partial}f=\sum_{i_{1}<\cdots<i_{p}}\overline{\partial}(\beta_{t_{1}\cdots i_{p}}d\overline{z}_{t_{1}}\wedge\cdots\wedge d\overline{z}_{i_{p}})$ ,

where

$\overline{\partial}(f_{i_{1l}}\ldots d\overline{z}_{1}\wedge\cdots$ A $d\overline{z}_{i}p$

$=\sum_{j=0}^{l_{1}-1}\frac{\partial f_{\iota p}i}{\partial\overline{z}_{\dot{f}}}d\overline{z}_{j}\wedge d\overline{z}_{i_{1}}A\cdots$ A $d\overline{z}_{i_{p}}$

$+\sum_{k=1}^{p-1}\sum_{l_{k}<j<i_{k+1}}(-1)^{k}\frac{\partial f_{i_{1p}}}{\partial\overline{z}_{j}}d\overline{z}_{i_{1}}\wedge\cdots$ A $d\overline{z}_{i_{k}}\wedge d\overline{z}_{i}$ A $d\overline{z}_{k+1}\wedge\cdots Ad\overline{z}_{p}$

$+(-1)^{p}\sum_{j>i_{p}}\frac{\partial\beta_{i_{1}\cdots i_{p}}}{\partial\overline{z}_{j}}d\overline{z}_{c_{1}}\wedge\cdots\wedge ff\overline{z}_{i_{p}}\wedge d\overline{z}_{j}$ .

For $p\geqq 0,$ $g^{0.p}$ denotes the sheaf associated With the presheaf $\{g^{0.p}(U)\}$ .
We denote the restriction map from $g^{0.p}(U)$ (resp. $g_{\alpha}^{op_{1}}\dotplus(U_{+1})$) to

$\ovalbox{\tt\small REJECT}^{0,p}(U_{*})$ by

$\sum_{i_{1}<\cdots<i_{p}}f_{i_{1}\cdots i_{p}}d\overline{z}_{i_{1}}\wedge\cdots$ A $d\overline{z}_{i_{p}}|_{c^{n}}=\sum_{i_{1}<\cdots<i_{p}\leqq}f_{i_{1}\cdots i_{p}}|_{c^{n}}d\overline{z}_{i_{1}}\wedge\cdots\wedge d\overline{z}_{i_{p}}$
,

where $f_{i_{1p}}\ldots eC(U)$ (resp. $f_{1}\ldots i_{p}\in C_{l+1}(U_{n+1})$).

LEMMA 3.3 [6]. Let $U$ be an arbitrary pseudo-convex open set of
$\sum C$. If $g\in g^{0.q+1}(U)$ and $\overline{\partial}g=0$ , then there exists $f\in \mathscr{G}^{0,q}(U)$ such that
$\overline{\partial}\beta=g$ for each non-negative integer $q$ .

$PRC\infty F$ . For each pogitive integer $n$ , it is well known that the fol-
lowing sequence is exact:
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$0\rightarrow 8_{n}(U_{n})\rightarrow g_{n}^{0,0}(U)\rightarrow\cdots\rightarrow g_{n}^{0,n}(U_{n})\rightarrow 0$ .
For any integer $n\geqq q+1,\overline{\partial}(g|_{c^{n}})=0$ . Owing to the exactness of the above
sequence there exists $f_{n}\in g_{*}^{0,q}(U,)$ such that $\overline{\partial}f_{n}=g|_{c^{n}}$ . Since $\overline{\partial}(f_{+1}|_{c^{n}}-f_{n})=$

$g|_{c^{n}}-g|_{c^{n}}=0$ , there exists $h_{n}\in\ovalbox{\tt\small REJECT}^{0.q-1}(U_{n})$ for $q\geqq 1$ (resp. $h\in P,$ $(U)$ for
$q=0)$ such that $f_{n+1}|_{c^{n}}-f_{n}=h$ . We have $h_{n+1}\in g_{n}\dotplus 1(U_{n+1})$ for $q\geqq 1$ (resp.
$h_{n+1}\in\rho_{n+1}(U_{+1})$ for $q=0$) such that $h_{n+1}|_{c^{n}}=h_{n}$ and $(f_{+1}+h_{n+1})|_{c^{n}}=f$ for
$q\geqq 1$ (resp. $(f_{n+1}+h_{+1})|_{c^{n}}=f$ for $q=0$). In fact, the restriction map from
$\mathscr{G}_{n+1}^{0q}(U_{n+1})$ to $g_{n}^{0_{q}},(U_{n})$ (resp. from $\rho_{n+1}(U_{n+1})$ to $\rho(U_{n})$) is surjective.
Thus, a solution of the equation $\overline{\partial}f=g|_{c^{n}}$ on $U_{n}$ can be extended to a
solution on $U_{n+1}$ . We can assume without loss of generality that $f_{+1}|_{c^{n}}=\beta,.$ .
Therefore, there exists $f\in g^{0,q}(U)$ such that $f|_{C^{n}}=f_{n}$ and (Of- $g$) $|_{c^{n}}=0$ .
We obtain $\overline{\partial}\beta=g$ . Q.E.D.

COROLLARY 3.4. The following sequence is exact:

$ 0\rightarrow p(U)\rightarrow C^{0,0}(U)\rightarrow g^{0.1}(U)\rightarrow\cdots$

PROPOSITION 3.5. Let $D$ be any open set in $\sum C$. The following
exact sequence is a fine resolution of the sheaf $a_{D}$ ;

$ 0\rightarrow p_{D}\rightarrow g_{D}^{0,0}\rightarrow g_{D}^{0,1}\rightarrow\ldots$

$PR\infty F$ . Since each $x\in D$ has a basis of neighborhoods consisting of
pseudo-convex open sets, the exactness follows from the above corollary.
In view of Proposition 3.1, the sheaf $g_{D}^{0,p}$ is fine for each $p\geqq 0$ . Q.E.D.

Now, we have the following

THEOREM 3.6. Let $U$ be an arbitrary pseudo-convex open set in $\sum C_{-}$ .
Then, we have

$H^{p}(U, P)=0$ for $p\geqq 1$ ,

where $H^{p}(U, 8)$ is the p-th eohomology group of $U$ with ccefficients in
the sheaf $p$.

PROOF. Since $ 0\rightarrow P_{U}\rightarrow g_{U}^{0,0}\rightarrow C_{U}^{0,1}\rightarrow\cdots$ is a fine resolution of $p_{U}$ , it
can be concluded from the cohomology group theory on a paracompact
space that

$H^{p}(U, e_{U})=\frac{Ker\{\Gamma(U,C_{U}^{0,p})\rightarrow\Gamma(U,g_{U}^{0,p+1})\}}{{\rm Im}\{\Gamma(U,g_{U}^{0,p-1})\rightarrow\Gamma(U,g_{U}^{0.p})\}}$ $(p\geqq 1)$ .

Therefore, by Corollary 3.4, we get

$H^{p}(U, p)=H^{r}(U, P_{\sigma})=0$ $(p\geqq 1)$ . Q.E.D.
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In view of Proposition 1.4, we have the following

COROLLARY 3.7. Let $K$ be a polynomially convex compact set in $\sum C$.
Then, we have

$H^{p}(K, P)=0$ for $p\geqq 1$ .
\S 4. Definitions of hyperfunctions and distributions.

In this section we will give definitions of hyperfunctions and distri-
butions on $\sum R$ .

Let $\Omega$ be an open set in $\sum R$ . There is no continuous functions with
compact support on $\Omega$ except zero. Hence, it is natural to consider the
following subspace of $\mathscr{G}(\Omega)$ to define distributions on $\Omega$ . Put

$\mathcal{D}_{b}(\Omega)=$ {$f\in C(\Omega)$ ; Supp $f\cap R$“ is compact for any $n>0$}.

Then, we have the canonical isomorphism

$\mathcal{D}_{b}(\Omega)_{\rightarrow}^{\sim}\lim_{n}\mathcal{D}(\Omega)\leftarrow$

as vector spaces, where $\mathcal{D},$ $(\Omega)$ denotes the space of distributions on $\Omega_{n}$ .
Therefore, we endow $\mathcal{D}_{b}(\Omega)$ with the projective limit topology $\lim_{\leftarrow}\mathcal{D}(\Omega)$ .
In view of Theorem 5.13 in Komatsu [12] and the above consideration,
we have the following

LEMMA 4.1. We have the isomorphism
$\mathcal{D}_{b}(\Omega)\sim\leftarrow\lim_{n}\mathcal{D}^{\prime}(\Omega_{\hslash})\rightarrow$

as topo-

logical vector spaces.

DEFINITION 4.2. We call the sheaf $\mathcal{D}_{b}^{\prime}$ associated with the presheaf
$\{\mathcal{D}_{b}(\Omega)\}$ the sheaf of distributions. A section of the sheaf $\mathcal{D}_{b}^{\prime}$ over $\Omega$

is called a distribution on $\Omega$ .
We give a definition of hyperfunctions in $\sum R$ . See for example [11]

for the theory of hyperfunctions in finite dimensional spaces. We define
the map $w_{n+1}$ from $H_{\rho_{n}}(V, p_{n})$ to $H_{\rho_{n+1}}^{+1}(V_{+1}, ae_{+1})$ by $ w_{n}(f(x’))=f(x’)\otimes$

$\delta(x_{n+1})$ for $\beta(x’)\in H_{\rho_{n}}(V_{n}, p_{n})$ . Set $\mathscr{B}(\Omega)=\lim_{\rightarrow}H_{o_{n}}(V_{n}, p_{n})$ .

DEFINITION 4.3. We call the sheaf ta associated with the presheaf
$\{\mathscr{G}(\Omega)\}$ the sheaf of hyperfunctions. We call a section of the sheaf ta
over $\Omega$ a hyperfunction on $\Omega$ .
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