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Introduction

Recently, the concept of holomorphic functions was extended to that
of holomorphic functions on infinite dimensional topological vector spaces,
and their properties have been discussed by many authors (see for ex-
ample the references in [16] and the articles in Séminaire Pierre Lelong
[17]). Among others, A. Martineau [14] investigated holomorphic fune-
tions on the space <(C™) of holomorphic functions on C*.

In this paper we will investigate holomorphic functions on the count-
ably infinite dimensional topological vector space 3 C of polynomials of
one complex variable. It is remarkable that the theory of holomerphie
functions on 3 C is very similar to that on the finite dimensional space
C". We also treat infinitely differentiable functions on S"R. We will
give a definition of hyperfunctions on 3R, which may contribute to
further discussion of the theory of hyperfunctions on topological vector
spaces.

In §1, we will introduce the space 3 C as the inductive limit of C*
and will show that any open subset of 3, C is paracompact (Proposition
1.2). We will recall the properties of pseudo-convex open subsets of S C.

In §2, we investigate the space of holomorphic functions on 3,C
and its dual space, which is the space of analytic functionals on 3 C.
The problem of supports of analytic functionals on 3, C can be reduced
to that on the finite dimensional space C*. We ean define the Fourier-
Borel transformation for analytic functionals on 3,C as in the finite
dimensional case and prove that the Fourier-Borel transformation induces
a topological isomorphism of the space of analytic functionals on 3,C
onto the space of entire functions of exponential type on the dual space
II C of 3. C (Corollary 2.17). At the end of §2, we will study the space
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of infinitely differentiable functions on 3, R and its dual space, which is
the space of distributions with compact supports on >, R. We can prove
a theorem of Paley-Wiener type (Theorem 2.25).

In §8, we will investigate the p-th cohomology group H?(U, ) of
an open set U of 3, C with coefficients in the sheaf # of germs of holo-
morphic functions on 3, C. We will construct a fine resolution of <~ and
will prove the vanishing of H?(U, <) for p=1, when U is pseudo-convex
(Theorem 3.6).

In the final section, we will give definitions of hyperfunctions and
distributions on >} R.

§1. Properties of >, C.
We begin with the definition of 3 C.

DEFINITION 1.1. We denote by 3,C (resp. 3,C? the direct sum of
complex planes C (resp. C? endowed with the inductive limit topology
of the sequence of the spaces {C"; u3:,} (resp. {C**; v}.,}), where uy,,: C"—
C™+' (resp. iy C*—C***Y) is defined by ui+i((2y, -~ -, 2))=(2, -+, 2, 0)
(resp. ’v:-i'.l((zl’ ) zzn))———(zn Tty Zomy 0) 0)).

We denote by wu, (resp. v,) the canonical injection from C* (resp. C**)
into 3 C (resp. 3. C? and by p, (resp. p,) the projection from J] C (resp.
M1 C>» onto C* (resp. C**), I C (resp. II C? being the topological dual of
33, C (resp. >, C?.

REMARK 1. We can easily see that 3,C and 3 C? are dual Fréchet-
Schwartz nuclear spaces.

REMARK 2. One can define 3R, D, R? [I R and ][] R* quite analo-
gously. ‘
The following proposition plays a fundamental role in this paper.

PROPOSITION 1.2. Any open set U in 3,C is paracompact.

Proor. Let {U,} be an arbitrary open covering of U. We shall
construct a locally finite refinement of {U,}. We identify «,(C*) with C*.
We can assume without loss of generality that U contains the origin and
that each U,=UNC" is connected in C*.

1. First, we choose an exhausting sequence {X,} of compact subsets
of U as follows. Let X, be an arbitrary closed disc with radius », (<1)
contained in UNC. If X, , has been already chosen, put
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Xi={ee UNC% lehisk, int |o—ylzL},
yeQunck) %

where r, satisfies »,>% and infoex, vecwnen [e—yl>1/r, (k=2) and |-|,
denotes the Euclidean norm on C* X, is a compact subset of U and we
have U=UJ;_, X,. Thus, X, is covered by a finite subfamily {U.ihisiza, of
{U,}. Therefore {Uiilisisngise 18 a refinement of {U,}.

2. We will construct inductively a locally finite refinement {U,} of
{U.,;}. Put

X, .={zeC™; inf |z—y|, <6} for &>0.
yeX“

Since {U,;NC%,g;za, is an open covering of X, in C*N U, there exists a re-
finement {V,;}.<<a; Of {U1;N C*igjs4, Such that V,;C X, and Ui, V,,; 0 X,. Put
Uli=p:7'(Vy;)N Uy, 5, Where g¢,(j) denotes an integer ¢ such that ViC
U,,NC? Thus, {Uiitisisa; is a refinement of {U,;} in 3 C and U;nC*C X,.
Suppose that for any i<k—1, we have constructed {U};},< isa; Which satisfy
the following conditions:

a) U;nC*'cX,.,,

b) there exists ¢, ,>0 such that UinXi ., =0,

¢) {Ulhsisa; I8 a refinement of {U;},<;<a,
Then, since {U,;NC**"},.;<,, is an open covering of X,— |Jt:! Ui, (U;nC7)
in C**'N U, there exists a refinement {Vishsisa, of {UpyNC*'}gic,, in
C*'N U, which satisfy the following condition:

(+) There exists €:-1>0 such that VN X, . =0
and V,cX,,,.

Put Ui;=pii(Vi)) N Usyipns Where g¢,(j) denotes an integer ¢ such that
Vi< U, NC*+'.  Hence, {Uishisisn, is a refinement of {U,;},<;<,, such that
UisNC**'C Xy, and Ul;N X, ,,.,_,=@. Therefore, by induction, we have
constructed an open covering {Ul;}isssa;:=« Which satisfies the above con-
ditions a), b) and ¢). Thus, {Uibisisniase i a refinement of {Uishisignnsie

3. It only remains to show that the above covering is locally finite.
Let x be an arbitrary point of U. The symbol m, denotes the minimum
integer in {meN;xeX,}). Then, there exist Uj, such that ze U/,
(tlo=m,, 1=<j,=n;) and an open neighborhood Wa, of  in C™*' con-
tained in ,-:)jonC”‘°+‘nX,,o,,mo. We can choose an open neighborhood
W 1 of 2 in C™+** contained in fp,;;ﬂ(W,,,o)ﬂ(U{O,-(,ﬂC"W“)ﬂ.75,,.(,+1,.,,,0+1 such
that WaaNC™'=W,, . Suppose that we have constructed {W mgtatesi
such that W, ., is an open neighborhood of z in Cm™+tu*' and that
Wate NC™ =W, .. .. Then, there exists an open set Wyt in Cmotk+t
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contained in p,;},ﬂ,(W..oﬂ_l)n(U,’o,-onC""°+"+‘)nX,.oH,,M“ such that W, ..N
C™**=W, ... Therefore, by induction, we have constructed {W.}nzm,
Put W=Uxn_n,Wa., then W is an open set of U. The construction of
{W.} shows that W does not intersect with {U/}m.+isi15ise;- Thus, we
have proved that the covering {U};} is locally finite. Q.E.D.

REMARK. Changing 3. C by 3. C? 3 R or 3 R? this proposition still
holds.

Now, we shall discuss other properties of subsets of >,C. For the
definitions of a holomorphically convex open set, a pseudo-convex open
set, a polynomially convex open (compact) set, etc., see for example [16].
For an open set U in 3, C, the following properties are equivalent (see
for example [5], [6], [16]):

1) U is a domain of existence of a holomorphic function,
2) U is a domain of holomorphy,

3) U is a pseudo-convex open set,

4) U is a holomorphically convex open set.

(1.1)

Similar to the case of finite dimensions, we obtain the following proposi-
tion in the case of >, C.

PROPOSITION 1.3. Any polynomially convex compact subset of >,C has
a fundamental system of neighborhoods consisting of polynomially convex
open subsets.

PrOOF. Let K be an arbitrary polynomially convex compact set and
let U be an arbitrary open neighborhood of K in 3C.

1. Since K is compact, there exists a positive integer » such that
KcC™ and that K is a polynomially convex compact set in C*. Thus,
there exists a polynomially convex open set V in C" such that KcVc
UNncC" by the well-known fact.

2. Let us put I,={z€C; |z|<r}. Since VcC"*N U, we have VX I.C
C*+' U for sufficiently small >0. Picking up one of such 7, say, r,
we write I,=1,. It is easy to see that VX, is a polynomially convex
open set in C"+',

3. Suppose that a polynomially convex open set VXI X.-.-XI,C
C*+™N U has been constructed for m=k—1, where I;,=1,, for some r;>0.
Then, for sufficiently small >0 we have VXI,x---xI,_ xI.cC**nU.
Picking up one of such 7, say, r,, VXI;X--- X I, is a polynomially convex
open set in C***, where I,=1I,. By induction we have constructed
(VXIX---xL}. Put W=U,VXI,xX---xXI. Since W is a finitely
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polynomially convex open subset of 3,C, W is a polynomially convex
open set (see for the details [16]). The construetion shows that
KcwcU. _ Q.E.D.

By the same method we can easily prove the following

PROPOSITION 1.4. Ewvery compact set in S, R is a polynomially com-
vex compact subset of >, C.

§ 2. Properties of &(U), &(U) and their dual spaces.

In this section we consider the spaces of holomorphiec functions and
infinitely differentiable functions on 3,C or [[C. For the definition of
a holomorphic function on a topological vector space, see for example
2] and [3].

DEFINITION 2.1. Let U be an arbitrary open set in 3C or JIC.
We denote by <7(U) the topological vector space of all holemorphic fune-
tions on U endowed with the topology of the uniform convergence on
each compact set in U.

Hereafter, we denote by ¢, the sheaf of germs of holomorphic
functions on C" and we write U,=UNC" for an open set U in 3 C.

PROPOSITION 2.2. Let U be an arbitrary open set in 3, C. Then,
we have the isomorphism < (U)~lim ~,(U,) as topological vector spaces.
«—

n

PROOF. We can easily check the conditions of Lemma 1 of 5.5 in
Chapter XI in Kantrovich-Akilov [10], which ensure that the canonical
map &Z(U)—-lim < ,(U,) is an algebraic isomorphism. Obviosuly, the family
of seminorms on (U) defining the topology of &(U) coincides with that
of 11111 Z(U,). Q.E.D.

n

COROLLARY 2.3. 2 (U) is a Fréchet-Schwartz nuclear space.

PrOOF. Since «(U) is the projective limit of {<,(U,)} and since
each ~,(U,) is a Fréchet-Schwartz nuclear space, the general theory
shows that ~(U) is also a Fréchet-Schwartz nuclear space. Q.E.D.

REMARK. It was shown in Noverraz [15] that <(U) is a Fréchet

space.
The presheaf {<7(U)} defines a sheaf over 3,C, which is denoted

by 2.
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The maximum principle and the principle of analytic continuation
hold not only for holomorphic functions on 3 C, but also for those on
more general topological vector spaces; see for example [3] and [16].

Since a Gateaux-analytic function is an analytic function (see [4]),
the proposition similar to Hartogs’ theorem of holomorphy holds obviously
in the case of 3.C. We have the following proposition in the case of

>.C.

PROPOSITION 2.4. Let U be a connected open subset of 3,C and let

K be a compact subset of U. Then, for any fe &Z(U\K), there exists a
unique function g € &(U) such that f=g on U\K.

ProOOF. For a sufficiently large positive integer n, K is a compact
subset of UNC" and (U\K)NC" is connected in UNC". By Hartogs’
theorem, there exists a unique ¢, Z(UNC*) such that g,=f|c» on
(U\K)NC*, where flcn€ Z(U\K)NC*™). On the other hand, g,.,|c»—g,=0
on (U\K)NC*. Thus, by the principle of analytic continuation, g,,c»=9.
on UNC". In view of Proposition 2.2, there exists a unique function
g€ (U) such that g|c»=g, and g=f on U\K. Q.E.D.

We consider holomorphic functions on [] C.

PropoSITION 2.5. Let U be an arbitrary open set im [IC. Then,
we have the isomorphism lim &,(U") =~ (U) as topological wvector spaces,
—_

where U*=p,(U) for n>07

ProOF. First, we shall check the conditions of Lemma 2 of 5.5 in
Chapter XI in Kantrovich-Akilov [10] to show the canonical map
lim 7, (U")—2(U) is an algebraic isomorphism. We define the map 2,
from &, (U*) to &(U) by 2.(f)=Fcp, for fe . (U". The other con-
ditions being obviously satisfied, it only remains to show that ~(U)cC
U 2,.(.(U™"). Since f e (U)is continuous on U, for any xe U and
any ¢>0 there exists an open neighborhood V,=D,XxI]2,+; C: of = such
that |f(2)— f(x)|<e holds for z=(z,) € V,, where D, is an open neighbor-
hood of p,(x) in C? for some positive integer ¢ and C, denotes the <i-th
coordinate axis of [[C. In fact, every open set W in JIC has a form
W=W’'XTlZ,+ C;, where W’ is an open set in C* for some positive integer
r. Thus, if we regard f as a function of only one variable z, for suf-
ficiently large positive integer m (the other variables being fixed), then
f is bounded. Since f is an entire function of one complex variable z,,
f does not depend on z,. Hence, Z(U)cU;..2.(Z.,(U"). We have
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obtained the algebraic isomorphism lim 27, (U*)~?(U). The topology of
lim ,(U*) is defined by all the seminorms {p} for which p-2, is con-

tinuous on Z,(U" for any n>0. On the other hand,let U=W . X [[Zm+: C..
Then the family of compact sets {KX[Iiinm+: K.} is a basis of compact
subsets of U, where K runs over compact sets in U and K, runs over
compact sets in C;. In view of the above facts, it is easy to see that
the topologies of ~(U) and lil'jl <. (U™ are equivalent. Q.E.D.

n

COROLLARY 2.6. Let U be an open set in [[C. Then, & (U) is a
strict inductive limit of Fréchet-Schwartz spaces.

ProOF. We define o,: 2, (U"—>&Z,.(U*") by @,(f)=fopit* for
feoz, (U™, where ptt' is the projection from C"+' to C*. Since w, is
an isomorphism from < ,(U*) onto ®,(.,(U™), the result follows from
Proposition 2.5. Q.E.D.

Now, we introduce a subspace of ~(I]C).

DEFINITION 2.7. We denote by Exp(J] C) the space of all functions
of Z(II C) that satisfy the following inequality:

IFQOI=Cexp(ry|C)+ -+l (€=C)ellC)

for some constant C>0, some positive integer » and some (7, ---, 7,)
(r;>0,2=1, ---, m). We call an element of Exp([[ C) an entire function
of exponential type on []C.

We also denote by Exp(C") the space of all entire functions of ex-
ponential type on C*.

Put Hi({)=sup{Re<(z, {>;ze€ K} for any convex compact set K in
2.C.  Set Exp’(IIC, K)={FeExp(II C); |Fllg<c}, where |[F|x=
sup {|F'({)| exp(— Hx({)); e II C}. Obviously, Exp*(IIC, K) is a Banach
space with the norm |{|-||z. We define the topology of Exp(IIC) by
li_n} Exp* (I C, K), where K runs over all compact subsets of 3,C. This

K
topology is a dual Fréchet-Schwartz topology. In view of the above
discussion, we have the following

PROPOSITION 2.8. We have the isomorphism lim Exp(C*)~Exp([]C)
—

as topological vector spaces.

Next, we go on to the dual space of Z~(U). :
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DEFINITION 2.9. Let U be an open set in D>,C. &' (U) denotes the
topological dual space of ~(U). An element of &’'(U) is called an analy-
tic functional on U.

Z'(U) is a dual Fréchet-Sehwartz nuclear space.

LEMMA 2.10. Let U be a pseudo-convexr open set iw C**'. Then, the
restriction map from 2 .+(U) to &, (U’) i8 suyrjective, where U =UNC".

Proor. Consider the following exact sequence of sheaves on C**,
0 » S > &)n+1 - u:+1'ﬁn —0 ’

where _# is the sheaf of ideals of C* and w7.,.c, denotes the direct
image of ~,. Because the sheaf u!;.2”, is a coherent sheaf of ~,,,-
modules by Theorem 3 of §3 in Chapter I in Grauert and Remmert [8],
¥ is a coherent sheaf of #,,,-modules. Therefore, H'({/, _#)=0 holds.
Thus, we obtain the result. Q.E.D.

PROPOSITION 2.11. Let U be a pseudo-convex open set in >,C. Then,
we have the isomorphism lif)l i (U)=c'(U) as topological vector spaces.
ProorF. By Proposition 2.2 and Lemma 2.10, the restriction map
from 2~ (U) to < ,(U,) is surjective. The restriction map from &, ,(U,.,)
to <,.(U,) maps a bounded set to a relatively compact set. Therefore,
the result follows from Theorem 5.13 in Komatsu [12]. Q.E.D.

We treat the problem of supports of analytic functionals on 3 C.

DEFINITION 2.12. Let U be an arbitrary open set in 3, C.

i) We say that Te~'(U) is carried by an open set WcU if Te
t(7'(W)), where ¢ is the restriction map from 2(U) to &(W) and ¥ is
the transpose of t.

ii) We say that T e #'(U) is carried by a compact set K if T is
carried by any open set W such that UDWDOK.

Put o(x)=@}.,0(z;) (n< ). Let U be a domain of holomorphy in
3.C and let T be an analytic functional other than 6(z) on /. Then,
owing to Proposition 2.18, there exists the smallest positive integer =
such that T'=7"'@:.+.0(z;), where T'e #,(U,) is not the d-function on
U.. We have the following

ProposiTION 2.13. Assume T=T1 @7-.+.0(x;) as above. Let K be a
compact subset of U such that KCC". In the case m=<n, T is carried
by K if and only if T 18 carried by K. In the case m>mn, T is carried
by K if and only if T' @r-.+.0(x;) 8 carried by K.
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LEMMA 2.14. TeZ'(U) is earried by a compact set K (CC™) if and
only if for any compact set L such that KcLcU,, there exists a con-
stant C,>0 such that

IT(f)I§CL§gg|f(z)l for any feo(U).

PROOF. Suppose that there exists a compact set L such that for any
constant C>0 there exists a function f,€ #Z(U) for which

|T(fo)| >C sup |fo(@)] -

Since f,(z) is continuous on U, there exists an open neighborhood @ of
L in U such that

|T(fe)]>C sup | fe(2)] -

This inequality implies that
T ¢ r(Z'(w))

where 7 is the restriction map from & (U) to & (w). It contradicts the
assumption that 7T is carried by K.

Conversely, let W be an open neighborhood of K. For a compact
set L such that WO LD K, there exists a constant C,>0 such that

lT(f)léCngglf(z)! for any feZo(U).

This implies that «(&”'(W))s T, where ¢ is the restriction map from & (U)
to Z(W). Q.E.D.

Using this lemma we will prove Proposition 2.13.

- PROOF OF PROPOSITION 2.13. Since the proof in the case of m=<wn is
almost same as that in the case of m>=x, we will prove only the case
of m>n. Suppose that T is carried by K. Owing to Lemma 2.14, if
KcC™, for any compact set L such that XcLcU,, there exists a con-
stant C.,>0 such that

IT(l=C, Sup If ()] for any feZ.(U,) .
Since T'=T' @7.p+10(%;),

(T’ & s@NNISCosuplf@|  for any fe P (Dlen=Tn(Ua) -
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This implies that 7" @7 .+, 0(x,;) is carried by K.

Conversely, suppose that 7" @2, d(x;) is carried by K. Then, for
any compact set L in C™ such that KcLcC™, there exists a constant
C.>0 such that

(T’ @ s@NNISC.suplf@]  for any feTuU.) -

Since T=T' @7-.+:0(x;), we get
IT(f)léchgg |[f(z)]  for any fe(U).

For any compact subset M of C™ such that LcM and KeMcU,, we
get obviously,

IT(f)lécaggglf(z)l for any feo(U).

In view of Lemma 2.14, this implies that T is carried by K. Q.E.D.

Summing up, the problem of supports of T'e &’(U) is reduced to
that of T' e ~,(U,).

Now, we consider the Fourier-Borel transformation for analytic func-
tionals on > C. See [9] and [13] for the Fourier-Borel transformation in
finite dimensional spaces.

DEFINITION 2.15. We call the function T()= T ,(e*®) (ze 3, C,CellIC)
on J] C the Fourier-Borel transform of T e ~'(3.C).

THEOREM 2.16. If TeZ'(3,C) is carried by a compact set K (CC*),
then M) =TQ) is an entire function on [JC satisfying the following
tnequality: For any 0>0, there exists a constant C,>0 such that

(2.1) - M) =Cs exp(Hk(E)+6l(Cl],)

where ||C|l,=(C,[*+ - - - +|CDV? for {=()eIIC. Conversely, if K (cC™)
18 a convex compact subset of >,C and if M) is an entire function and
satisfies the inequality (2.1) for any 6>0, then there exists an analytic
Sfunctional Te 2'(T,C) carried by K such that T(C)=M().

Proor. If T'e~'(3,C) is carried by K, by virtue of Proposition 2.11
there exists T'e #,(C*) such that ‘u,(T")=T and T’ is carried by K,
where ‘u, is the transpose of u,. If we restrict e*® to C*, T'(e¢"%") is
an entire function of {’ € C* by Proposition 1.12 in Chapter 2 in Martineau
[13] and

|T"(e¢*"”)| = C; exp(Hx(L")+6(L'],)
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‘holds for {’'eC”. Thus, we regard T(e*®) as an entire function on JIC
by Proposition 2.5 and we have

|T(e* )| =C; exp(Hx(8) +0[l¢]l.)  for Ce]IC.
Conversely, suppose that (2.1) holds for M({). Then, (2.1) implies
M| =C; exp(Hg(C)+0[C',)  for (eC.

By Proposition 1.12 in Chapter 2 in [13], there e:fists an analytic funec-
tional T’ € &7}(C*) carried by K such that M({)=T7"'(’). Thus, if we set
T=u,T)e 2’ (3,C), then T is carried by K in view of Proposition 2.13.

Q.E.D.

COROLLARY 2.17. The Fourier-Borel tramsformation F :T+— T in-
duces a topological isomorphism of &', C) onto Exp(I] C).

PrOOF. The injectivity follows from the fact that linear combina-
tions of the exponential functions e*® are dense in £Z(,C). It only
remains to show that the Fourier-Borel transformation is continuous, so
that the result follows from the above theorem and the closed graph
theorem for dual Fréchet-Schwartz spaces. Let {K,} be an exhausting
sequence of > C which consists of convex compact sets such that K,cC".
Then, we have Z'(3, C)'_;:li_r)n &’;(Kn)sli_r)n 2 «(K,), where &7, 5(K,) denotes

the space of all the functions that are holomorphic in I%,‘ and bounded
on K,. Since the Fourier-Borel transformation of ~,(K,) to Exp(C*) is
continuous, so is the Fourier-Borel transformation of &, 5(K,) to Exp(C").
Therefore, the Fourier-Borel transformation of &'(3,C) to Exp(IIC) is
continuous. Q.E.D.

REMARK. It was shown in Boland-Dineen [1] that the Fourier-Borel
transformation of #’(3C) onto Exp (I] C) is an algebraic isomorphism.
Now, we treat the case of infinitely differentiable functions in >} R.

DEFINITION 2.18. Let 2 be an arbitrary open set in >, R (or >, R?.
We denote by & (2) the topological vector space of all infinitely differenti-
able functions on 2 endowed with the topology defined by the seminorms:

flnx=sUp (sup (G/0y F@@))  for fe&(Q),

where K runs over all compact subsets of 2, m=1,2, ---, p=(D, D5, - *),
p; is a non-negative integer and |p|=p,+p.+ - .
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REMARK. We say that f:02—-C is infinitely differentiable if Slrn:
Q2N R*—C is infinitely differentiable for any n>0.

Just the same as in the case of ~*(UU) (Proposition 2.2), we can prove

PROPOSITION 2.19. Let 2 be an arbitrary open set in >\R. Then,
we have the isomorphism £ (2)~lim & ,(2,) as topological vector spaces.
(—

Hereafter we will write .Q,,=.QnR"’:
We can easily obtain the following corollary:
COROLLARY 2.20. &(2) is a Fréchet-Schwartz nuclear space.
The presheaf {& (2)} defines a sheaf over 3 R, which is denoted by &.

LEMMA 2.21. Let Q be an open set in R"*'. Then, the restriction
map from &,.,(2) to &, (2') is surjective, where Q' =2 N R".

PROOF. Let .# be the sheaf of germs of infinitely differentiable
functions in R*** which vanish on R". Then, .# is a sheaf of Ept1m
modules, so that it is soft by Theorem 2 in Chapter A in [8]. Since
HY(R2, #)=0 holds, the lemma results from the following exact sequence
of the sheaves on R**:

0 > F —— Eor > UR &y —— 0 . Q.E.D.

PROPOSITION 2.22. We have the isomorphism lim &£H2,)=&'(2) as
—_

”

topological vector spaces.

Proor. By Proposition 2.19 and Lemma 2.21, the restriction map from
Eniri(2a+) to &,(2,) is surjective. The restriction map from &,.,(2,.,)
to &.(2,) maps a bounded set to a relatively compact set. Therefore,
from Theorem 5.13 in Komatsu [12] follows the above result. Q.E.D.

We denote by p, the canonical map from &(R2,) to &'(2). We con-
sider the Fourier transfrom of Te &’'(S R).

DEFINITION 2.23. For any Te &’'(3  R) we can find 7’ e &(R*) such
that 0,(T")=T for some »>0 by Propesition 2.22. We define the support
Supp T’ of Te &'(3, R) to be the support of T'e Fi(R").

If we regard Te &' R) as T' e &, (R*) and as T"” € &L(R™) (n%m)
in two ways, the support of 1" € & ,(R*) coincides with that of T ¢ &L(R™).
Therefore, the above definition makes sense and the support of 7T is
uniquely determined.
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DEFINITION 2.24. We define theAFourier transform of Te&'(C, R)
by (T,, e *~®> which we denote by T(2).

We will prove a theorem of Paley-Wiener type.

THEOREM 2.25. Let K be a balameced comvexr compact subset of R™.
For Te&'(3 R) the following properties are equivalemt:

(a) The balanced convex hull of the support of T is contained in K:

(b) The Fourier transform of T is extended on [[C as an entire
Sunction Cl—»T(C) and there exist an integer m>0 and a constant C>0
such that the following inequality holds for {=¢&+1in (¢, ne I R):

(2.2) ITOI=CA+E])™ exp(I(7)) ,
where Ix(n)=sup,.x|{x, n)|.

PrROOF. In view of Proposition 2.22 and the property (a), there exists
T' e &.(R") such that T=T" @7+, 0(x;). For T' e & /(R"), by the Paley-
Wiener theorem, {'—7"(¢’) is an entire function on C* and there exist an
integer m>0 and a constant C>0 such that the following inequality
holds:

IT'EH=CA+ ()" expUx(®))  for {'eC*.
Therefore, we have
IT@I=CA+|Cll)"expUx(y)) for LeXC.
Conversely, suppose that the inequality (2.2) holds:
KT,y =) =|T@)|=CA+IC']l.)™ expx(7)) -

Let T=T @5.n+.0(x;), where T'e &,(R"). Then, T’(C')z{T’, e s
an entire function on C* and

IT'(CH=CA+ ()" exp(I(y))  for C'eR*,

a’ € R*. Thus, by the Paley-Wiener theorem, the balanced convex hull of
the support of 7’ is contained in K. Since Supp T=Supp 7, we proved
the theorem. Q.E.D.

§3. Vanishing of cohomology groups.

Dineen [6] proved that H YU, )=0 for any pseudo-convex open set
U in a topological vector space with the finite open topology.

REMARK. An infinite dimensional vector space E is said to be endowed
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with the finite open topology if its topology is defined by the set of all
finitely open sets, where a subset U of E is said to be finitely open if
UNF is open in F for any finite dimensional subspace F' of E.

We will prove that the p-th cohomology group vanishes for p=1 in
the case of 3,C by the method remarked in the above paper.

Let D be an arbitrary open set 3, R. We denote by &, the restric-
tion of the sheaf & to D.

PROPOSITION 3.1. &, i8 a fine sheaf.

ProoF. 1. Let U, E and F be an open subset, a closed subset and

a closed subset of 3 R respectively such that UDFDOFDOE. Assume
without loss of generality that E contains the origin and UNR* is con-
nected in R" for every n>0. Then, we will prove that there exists a
C~-function + defined on 3, R such that

1) +=0,

2) 4 =1 on some nelghborhood of K,

3) SuppyCF.

Put 4,00.,)={z=(2,) € 2. R; lz‘—xil<5,,}, where 9,=(0,,,), 0<d,,, <. Assume
that #=0. Obviously, for every ¢ there exists a C~-function ¢, defined
on R such that

1) ¢.,=0,

2) ¢,>0 on the open disc with radius é,./2, ¢,(0)=1,

3) Suppg, is contained in the open disc with radlus 0Oo,¢-

Put ¢(z)=T1, 6:(2;), then ¢(z) is a C*-function defined on 3} R that satisfies
the following conditions:

1) ¢(2)=0,

2) $(2)>0 on 4,(3,/2),

3) Supp ¢ 4,(0)-

2. Let {X,} be the exhausting sequence of compact subsets con-
structed in the proof of Proposition 1.2, replacing C by R. We choose
4.(0,) for each x € X, as follows: For any n>1,

1) if xeX,NE, 4,0,)NR*CX,NF,

2) if xe X,N(F\EK), 4,0,)NR"cX, and 4,(5,) does not intersect with
both of E and oF,

8) if xe X\\F, 4,0.)NR*"cX,NLE,
where OF denotes the boundary of F. Then, {4,(0./2)NR},cx, is a
covering of X,. Since X, is compact, a finite subcovering {4,,0.,/2) N R*}..,,
Of {Ac(aslz)nRz}zexlcover X Put Vl Utell An‘(am‘/z) and u —'{Asg(azt)}iell

3. Suppose that, for any j<k, V; and U;={4,,00.)}ic1; (x. € X;) have
been constructed with the following properties:
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I) For any 4,(0,) €U, there exists ¢;_,>0 such  that for any
positive integer n> 7,
i) if xe(X;—V;_)NE, then 4,(0,)NX;_,.; =@ and 4,(3,)N
R cX,NF,
i) if xe(X;—V,;_)NF\E), then 4,0.)N X;_.,.; =@, 4,0.)N

(
@.1) R*c X, and 4,(0,) does not interseet with both of E and
oF,
iii) if re(X;—V,;_)\F, then 4,0.)NX; .., ,=@ and 4,(0,)N
R cX,N{E,

\I) V,;=V, UUier,; 4.,0.,/2) N R D X,.

Then, there exists ¢,>0 such that V,NR**'DX,,. ForeachzeX, ,—V,,
we can choose 4,(d,) which satisfies the condition I) of (3.1) with j replaced
by k+1. Then, {4,(0./2) N R**%},.x,,,-v, I8 an open covering of X,,,—V, in
R**. Since X,.,— V, is compact, a finite subcovering {4,,(5,,/2) N R**%},.,, .,
of {A,(5Q/2) ﬂRk-’—g}zexk_H-—Vk cover Xk+1'—' Vk. Put

Ven=VaU(U 4(30.))  20d  W={4@dhiesy, -
Thus, by induction, we construct V; and U; with the property (8.1) for
every j=1,2,3,---. Put U=U,U,. Then, U is an open covering of
U. The construction shows that, for any compact subset of U, there
are only a finite number of elements of I which interseet with it. Put
F={i e U, L,; Ac‘(atn) NF=+ @}: I.={ie Ig; Axt(azi) NE+ @}, uF={Az,(3x,)}teIF
and Uz={4,,0,)}icr,. Let ¢, be a C~-function constructed in the same
way as in 1 subordinate to 4,,9,,) (¢=1, 2,8, ---). Thus, ¢(2)=3.cs, $.(2)
is well defined and is a positive C~-function. In fact, for any x> R
if we choose an open neighborhood U, of x such that U,N R* is relatively
compact, U,N R" intersects with only finitely many elements of 1,. Hence,
¢(2) is a C~-function in view of the definition. Since {4.,0.,/2)}cs, is
also a covering of F, ¢(z) is positive at every point of F. Set ;(z)=
(¢;/9)(2) for z€ F, 4;(2)=0 for ze€(F and 4y=3),c;, ¥:. (2) satisfies the
conditions needed.

4. Let {U,} be an arbitrary locally finite open covering of D. Since
D is paracompact, there is a locally finite refinement {V,} of {U,} such
that {V,cU,}. Just the same way as above, we can choose a locally
finite refinement {W,} of {V,} such that W,cV,. Set F=V, and E=W,,
then, 1, 2 and 3 imply that there exists +, subordinate to U,. Set
v=v. and @, =+,/+’. Hence, we have a family of C>-functions {®,}
subordinate to {U,} such that :
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1) 9,20 and ¢,=0 on (U,,

2) .. (®)=1 for xe D.
Since the operation of multiplication by ¢, induces a sheaf homomorphism
from &, to &,, &, is a fine sheaf. Q.E.D.

REMARK. Changing 3 R by 3 R’ this proposition still holds. Here-
after we identify 3, C=Y R:.

DEFINITION 3.2 [6]. Let U be an open set in 3, C. For each positive
integer p, we denote by &°?(U) the space of all forms of the following
kind:

f= 2 fq “4p d—q 'Adztp

£<s <dp

where f; ..., € &(U) and 2=(2)€ 3, C. For p=0 we put &°(U)=&(U).
We define the d-operator linearly by

of= X (fii, By A+ NdZF) ,
11<see <y

where
0(foyt, A2, A\ - - - NdZ,)
i1—1
— 1 afq ZJ4yeip dz /\d" /\ .. /\d’z‘"
i=o Z i
p—1

(—1)'@%_:2 Q2 A -+ AdE AAE A DT, A - - AdZ,,

k=1 1 <j<tpi;

+ (=1 5 ¥us gz AL AdE, NdE; .
] 0% ; »

For p=0, &€°? denotes the sheaf associated with the presheaf {&°*(U)}.
We denote the restriction map from &°?(U) (resp. & 2(U..)) to
.?(U,) by
DY PPN/ FAREE AR len= 3 Foiplen @2y N\ - - - NdZ,,

1<t <ty i <--r<ipsn
where fi ..., € &(U) (resp. fi...t, € Ents(Unsr)-

LEMMA 3.3 [6]. Let U be an arbitrary pseudo-convex open set of
SC. If ge & (U) and dg=0, then there exists fe &"(U) such that
df=g for each mon-negative integer q.

ProoF. For each positive integer n, it is well known that the fol-
lowing sequence is exact:
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00— ZU,) — &°U,) — - - —> &E™U,) — 0.

For any integer n=q-+1, d(g|c»)=0. Owing to the exactness of the above
sequence there exists f, € &2 9(U,) such that 3f,=g|c.. Since a(f,+icn—fo)=
9lcn—9glen=0, there exists h,e &2 (U,) for ¢=1 (resp. h,c 7, (U,) for
g¢=0) such that f,.,|c+—f,=h,. We have h,., € £ (U,,, for g=1 (resp.
h,‘+1e ﬂ,ﬁ.l(Un.{—I) for q':-O) SuCh that h“+110n=hn and (fn+1+hn+1)|0”=fn for
g=1 (resp. (fari+hui)len=Ff, for ¢=0). In fact, the restriction map from
&Eni(U,yy) to &(U,) (resp. from ~,.,(U,;,) to <,(U,)) is surjective.
Thus, a solution of the equation 3f=g|c» on U, can be extended to a
solution on U,:,. We can assume without loss of generality that f,.,|cn=F,.
Therefore, there exists fe &°Y(U) such that fle.=f, and (Gf—g)|c»=0.
We obtain df=g. Q.E.D.

COROLLARY 3.4. The following sequence is exact:
0— F(U) — &°AU) — &) —> -+ .

PROPOSITION 3.5. Let D be any open set in 3,C. The following
exact sequence i3 a fine resolution of the sheaf p:

0 N 0
0 > Tp > &p° 20,1 > oo

PROOF. Since each x € D has a basis of neighborhoods consisting of
pseudo-convex open sets, the exactness follows from the above corollary.
In view of Proposition 3.1, the sheaf #%? is fine for each »p=0. Q.E.D.

Now, we have the following

THEOREM 3.6. Let U be an arbitrary pseudo-convex open set in >, C.-
Then, we have

H(U, 27)=0  for p=21,

where H?(U, &) is the p-th cohomology group of U with coefficients in
the sheaf .

PROOF. Since 00—, — &p*—&)'—--- is a fine resolution of ~7,, it
can be concluded from the cohomology group theory on a paracompact
space that

Ker {I'(U, &y~ (U, &)}
HYU, &)= ’ :
( ? Im {I"(U, &y*)—I'(U, &7}

Therefore, by Corollary 8.4, we get
H*»(U, £)=H*(U, &y)=0 (p=1) . Q.E.D.

(p=1).
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In view of Proposition 1.4, we have the following

COROLLARY 3.7. Let K be a polynomially convex compact set in 3 C.
Then, we have

H*(K, 77)=0 Sfor p=1.
§ 4. Definitions of hyperfunctions and distributions.

In this section we will give definitions of hyperfunctions and distri-
butions on 3} R.

Let 2 be an open set in >, R. There is no continuous functions with
compact support on 2 except zero. Hence, it is natural to consider the
following subspace of Z(2) to define distributions on 2. Put

,)={f € &(2); Supp f N R" is compact for any »>0} .
Then, we have the canonical isomorphism

() =lim 2,(2,)
-

as vector spaces, where =,(2,) denotes the space of distributions on 2,.
Therefore, we endow =Z,(2) with the projective limit topology lim &,(R,).
<~

In view of Theorem 5.13 in Komatsu [12] and the above cons”ideration,
we have the following

LEMMA 4.1. We have the isomorphism <=2,/(2)=lim =2'(R2,) as topo-

n

logical wector spaces.

DEFINITION 4.2. We call the sheaf <, associated with the presheaf
{<=27(2)} the sheaf of distributions. A section of the sheaf <&, over 2
is called a distribution on Q.

We give a definition of hyperfunctions in >} R. See for example [11]
for the theory of hyperfunctions in finite dimensional spaces. We define
the map w3, from H3,(V,, &) to H3!!(V.n, Tur) by wu(f(@))=f(a)&
(x,+,) for f(x")e H3 (V,, 7). Set FZ(2)= lj_rP H; (V., T

”

DEFINITION 4.3. We call the sheaf <#Z associated with the presheaf
{<#(2)} the sheaf of hyperfunctions. We call a section of the sheaf <#
over 2 a hyperfunction on Q2.
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