On the Möbius and Allied Functions

Minoru TANAKA

Gakushuin University

We define the arithmetical functions $\mu_k(n)$, k=3, $4, \cdots$ as follows: $\mu_k(n) = (-1)^{\nu}$, when n is k-free, i.e., not divisible by k-th power of any prime, and has ν prime factors, repeated factors being counted according to their multiplicity;

 $\mu_k(n) = 0$, when n is not k-free.

Thus $\mu_3(1)=1$, $\mu_3(2)=-1$, $\mu_3(3)=-1$, $\mu_3(4)=1$, $\mu_3(5)=-1$, $\mu_3(6)=1$, $\mu_3(7)=-1$, $\mu_3(8)=0$, $\mu_3(9)=1$, $\mu_3(10)=1$, ..., $\mu_3(100)=1$, ..., $\mu_3(1000)=0$, ...

If we define $\mu_2(n)$ similarly, then the definition of $\mu_2(n)$ is just that of the Möbius function $\mu(n)$, and the Liouville function $\lambda(n)$ may be defined as

$$\lambda(n) = \lim_{k \to \infty} \mu_k(n)$$
.

Thus the function $\mu_k(n)$, k=3, 4,... may be said to be situated between the functions $\mu(n)$ and $\lambda(n)$. We shall henceforth write $\mu_2(n)$ for $\mu(n)$, and $\mu_{\infty}(n)$ for $\lambda(n)$.

We put

$$f_{\scriptscriptstyle 2}(s) \! = \! rac{1}{\zeta(s)}$$
 , $f_{\scriptscriptstyle k}(s) \! = \! rac{\zeta(2s)\zeta(ks)}{\zeta(s)\zeta(2ks)}$ $(k \! > \! 2, \, ext{odd})$, $f_{\scriptscriptstyle k}(s) \! = \! rac{\zeta(2s)}{\zeta(s)\zeta(ks)}$ $(k \! > \! 2, \, ext{even})$, $f_{\scriptscriptstyle \infty}(s) \! = \! rac{\zeta(2s)}{\zeta(s)}$,

where $s=\sigma+ti$ is a complex variable, and $\zeta(s)$ is the Riemann zeta-function. Then we have

(1)
$$f_k(s) = \sum_{n=1}^{\infty} \frac{\mu_k(n)}{n^s} \quad (\sigma > 1, 2 \le k \le \infty)$$
.

The cases k=2, ∞ are well-known; the cases $2 < k < \infty$ can be derived from

Received January 30, 1980

$$\begin{split} \sum_{n=1}^{\infty} \frac{\mu_k(n)}{n^s} &= \prod_{p} \left(1 - \frac{1}{p^s} + \frac{1}{p^{2s}} - \dots + \frac{(-1)^{k-1}}{p^{(k-1)s}} \right) \\ &= \prod_{p} \left(1 - \frac{(-1)^k}{p^{ks}} \right) \left(1 + \frac{1}{p^s} \right)^{-1} \quad (\sigma > 1) \; . \end{split}$$

We put, for $x \ge 1$,

$$M_k(x) = \sum_{n \leq n} \mu_k(n) \quad (2 \leq k \leq \infty)$$
.

Then (1) can be rewritten as

(2)
$$f_k(s) = s \int_1^{\infty} \frac{M_k(x)}{x^{s+1}} dx (\sigma > 1, 2 \le k \le \infty).$$

Here we briefly mention that

$$M_k(x) = o(x) \quad (2 \leq k \leq \infty)$$

and, on the Riemann hypothesis,

$$M_k(x) = O(x^{1/2+\epsilon}) \quad (2 \leq k \leq \infty)$$

with arbitrarily small positive ε . The case k=2 is well-known; the other cases can be obtained similarly.

Now we put

$$B_{2}=0$$
, $B_{k}=rac{\zeta\left(rac{k}{2}
ight)}{\zeta\left(rac{1}{2}
ight)\zeta(k)}$ $(k>2, ext{ odd})$, $B_{k}=rac{1}{\zeta\left(rac{1}{2}
ight)\zeta\left(rac{k}{2}
ight)}$ $(k>2, ext{ even})$, $B_{\infty}=rac{1}{\zeta\left(rac{1}{2}
ight)}$

then we have the following theorem:

THEOREM.

$$M_k(x) - B_k \sqrt{x} = \Omega_{\pm}(\sqrt{x}) \quad (2 \leq k \leq \infty)$$
.

This means that, for $2 \le k \le \infty$,

$$\liminf_{x\to\infty}\frac{M_{\mathbf{k}}(x)-B_{\mathbf{k}}\sqrt{x}}{\sqrt{x}}\!<\!0\ ,\quad \limsup_{x\to\infty}\!\frac{M_{\mathbf{k}}(x)-B_{\mathbf{k}}\sqrt{x}}{\sqrt{x}}\!>\!0\ .$$

Thus, for each k, $M_k(x)-B_k\sqrt{x}$ changes its sign infinitely often as x

tends to infinity.

PROOF. Let A be a real constant, the value of which will be assigned later on. Since we can write

$$\zeta(2s) = s \int_{1}^{\infty} \frac{[\sqrt{x}]}{x^{s+1}} dx \quad (\sigma > 1)$$
 ,

we have, by (2),

(3)
$$f_k(s) + (A - B_k)\zeta(2s) = s \int_1^{\infty} \frac{M_k(x) + (A - B_k)[\sqrt{x}]}{x^{s+1}} dx.$$

Here we recall the following well known properties of $\zeta(s)$: it is regular for $\sigma>0$, $s\neq 1$; it has a simple pole at s=1 with residue 1; it does not vanish for $\sigma\geq 1$, and for s>0; it has simple zeros for $1/2\leq \sigma<1$, $t\neq 0$.

Now we assume that, for some k, $M_k(x)+(A-B_k)[\sqrt{x}]$ is of constant sign for all sufficiently large values of x, and for a while we shall consider this k. Since $f_k(s)+(A-B_k)\zeta(2s)$ is regular for $\sigma>1$, and for s>1/2, we can then conclude that the integral on the right hand side of (3) is convergent for $\sigma>1/2$ by similar argument as in Landau [2], § 197; thus $f_k(s)+(A-B_k)\zeta(2s)$ becomes regular for $\sigma>1/2$, and $\zeta(s)$ does not vanish for $\sigma>1/2$, and has simple zeros for $\sigma=1/2$, $t\neq 0$. We denote one of them by $\rho=1/2+\gamma i$, $\gamma\neq 0$; and, making $\sigma\rightarrow 1/2+0$, we have, from (3),

$$egin{aligned} 2 & \lim_{\sigma o 1/2} \left(\sigma - rac{1}{2}
ight) |f_k(\sigma) + (A - B_k) \zeta(2\sigma)| \ & \geq & rac{1}{|
ho|} \lim_{\sigma o 1/2} \left(\sigma - rac{1}{2}
ight) |f_k(\sigma + \gamma i) + (A - B_k) \zeta(2\sigma + 2\gamma i)| \;. \end{aligned}$$

On the other hand, since

$$\lim_{\sigma o 1/2}\!\left(\sigma\!-\!rac{1}{2}
ight)\zeta(2\sigma)\!=\!rac{1}{2}$$
 ,

and

$$\lim_{\sigma o 1/2} \{f_{\scriptscriptstyle k}(\sigma) \! - \! B_{\scriptscriptstyle k} \zeta(2\sigma)\} \! < \! \infty$$
 ,

we have

$$\lim_{\sigma \to 1/2} \left(\sigma - \frac{1}{2} \right) \{ f_k(\sigma) + (A - B_k) \zeta(2\sigma) \} = \frac{A}{2}.$$

Also

$$egin{aligned} &\lim_{\sigma o 1/2} \left(\sigma - rac{1}{2}
ight) \{ f_k(\sigma + \gamma i) + (A - B_k) \zeta(2\sigma + 2\gamma i) \} \ &= \lim_{\sigma o 1/2} \left(\sigma - rac{1}{2}
ight) f_k(\sigma + \gamma i) \; , \end{aligned}$$

and this limit is finite and not zero. We denote this limit by C. Then (4) becomes

$$|A| \ge \left| \frac{C}{\rho} \right|$$
.

Thus, if we take A such that $|A| < |C/\rho|$, then $M_k(x) + (A - B_k)[\sqrt{x}]$ must change its sign infinitely often as x tends to infinity. The theorem now follows from this.

It is an open problem whether

$$\liminf_{x o \infty} \frac{M_k(x)}{\sqrt{x}} = -\infty$$
 , $\limsup_{x o \infty} \frac{M_k(x)}{\sqrt{x}} = +\infty$

or not. In connexion with this, cf. Ingham [1].

As is easily seen, $B_k < 0$ ($2 < k \le \infty$). Some numerical results concerning the behavior of $M_k(x)$, as x increases, obtained by the author will be reported elsewhere.

References

- [1] A. E. INGHAM, On two conjectures in the theory of numbers, Amer. J. Math., 64 (1942), 313-319.
- [2] E. LANDAU, Handbuch der Lehre von der Verteilung der Primzahlen II, Chelsea, N. Y., 1953.

Present Address:
DEPARTMENT OF MATHEMATICS
GAKUSHUIN UNIVERSITY
MEJIRO, TOSHIMAKU, TOKYO 171