On Singularities of the Harish-Chandra Expansion of the Eisenstein Integral on Spin (4,1)

Masaichi MAMIUDA

Waseda University

Introduction.

Let G be the universal covering group of De Sitter group and G=KAN be its Iwasawa decomposition. Let MAN be a minimal parabolic subgroup of G. We consider the Eisenstein integral for MAN which is defined as follows;

$$(1) \qquad E(s,\,v,\,x) = \int_K e^{(s-3/2)\,t\,(x\,k)} \, au_{_1}(k(xk)) v au_{_2}(k^{-1}) dk \;, \qquad ext{for} \quad s \in C, \; x \in G \;,$$

where τ_i are irreducible unitary representations of K on V_i (i=1,2) and $v \in \mathscr{Y}_M = \{v; \text{ a linear endomorphism of } V_2 \text{ into } V_1 \text{ with } \tau_1(m)v = v\tau_2(m) \text{ for all } m \in M\}$ (see, § 3, [3], [5], [15]). Then Eisenstein integral $E(s, v, a_t)$ has the series expansion on a Weyl chamber A^+ , which is divided into two parts associated with the Weyl group W of the pair (G, A);

$$(2)$$
 $E(s, v, a_t) = E(s, t)C_1(s)v + E(-s, t)C_W(s)v$, for $t > 0$,

where $E(s, t) = e^{(s-3/2)t} \sum_{k=0}^{\infty} A_k(s) e^{-kt}$. (See, Harish-Chandra [3].) The eigenvalues of Casimir operator on G is parametrized by (s, v) and the function $x \mapsto E(s, v, x)$ is an eigenfunction corresponding to (s, v). By the change of variable $y = e^{-t}$, the differential equation for $E(s, v, a_t)$ is transformed to an ordinary differential equation with a regular singular point at y = 0. The formula (2) gives the series expansion of the solution $E(s, v, a_t)$ around the regular singular point y = 0. As the classical theory of differential equations teaches us, the coefficients $A_k(s)$ ($k \in \mathbb{Z}$) satisfies a certain recurrence formula with respect to k and they are not well-defined for all $s \in \mathbb{C}$. So, the formula (2) is valid on a certain open dense connected subset $\mathcal{O}(\tau_1, \tau_2)$ of \mathbb{C} . But the function $s \mapsto E(s, t)$ can be extended to a meromorphic function on \mathbb{C} with values in the space of all linear endomorphisms on \mathscr{V}_M (see, § 3). In this paper, we shall say

the formula (2) by the name of the Harish-Chandra expansion, and by the singularities of the function $s \mapsto E(s, t)$ we mean the singularities of the Harish-Chandra expansion.

The purpose of this paper is to determine the singularities of the Harish-Chandra expansion and to enumerate its singular points. So, we shall prove the next theorem (see, § 3. Theorem 3.4).

THEOREM. For fixed $n \in \widehat{M}(\tau_1, \tau_2)$ and t > 0, the function $s \mapsto E(s, n, t) = E(s, t)v_n$ can be extended to a \mathscr{V}_M -valued meromorphic function on C and its singularities are all simple poles. Moreover, E(s, n, t) is holomorphic on the complement of these points below;

- 1) s=k, k>0 and $n-k \in \mathbb{Z}$,
- 2) s=k+1/2, $k \in \hat{M}(\tau_1, \tau_2)$ and n < k,
- 3) s=k+1/2, $0 \le k < \min(|n_1''|, |n_2''|)$ and $n-k \in \mathbb{Z}$,
- 4) $s = -(k+1/2), k \in \hat{M}(\tau_1, \tau_2) \text{ and } k < n.$

This theorem plays an important role in the proof of the Paley-Wiener type theorem on G ([9]). In [6], Helgason has proved the Paley-Wiener type theorem on a symmetric space X=G/K for arbitrary symmetric pair (G, K) of non-compact type. His proof is based on the absence of these singular points on a certain half space for right K-invariant eigenfunctions (in our case, these correspond to the case where τ_2 =trivial). In general, we can't expect this property, and so that we need more delicate and deep considerations about E(s, t). Especially we need closer studies of $E(s, t)C_1(s)$.

The proof of Theorem 3.4 is long and comlicated, so we shall prove this in § 6 after establishing some preliminary results. In § 5, we determine the explicit formula of c-functions which appears in the Harish-Chandra expansion, in terms of the Gamma functions. Using this formula and Theorem 3.4, we reduce the proof of Theorem 3.1 to the case when $Re(s) \le 0$.

In § 4, we give the more precise formula of the coefficients $A_k(s)$ in the Harish-Chandra expansion. From Lemma 4.4 and the related results, we conclude that E(s, n, t) is meromorphic with respect to the variable s (that is independent on t>0). The fundamental idea of the proof is to consider the first term of the Laurent expansion of E(s, n, t) and study this as a τ -spherical eigenfunction on G^+ . To do this, we need the results of § 2 and the formulas of § 4. In particular, Proposition 2.5 is the key result to prove Theorem 3.4. In this proposition, we establish the relation between the asymptotic behaviour of τ -spherical eigenfunctions and its eigenvalues. Proposition 2.5 is an extended analogue of

Trombi-Varadarajan's theorem (Theorem 7.1 of [13]).

- § 1. Notations and preliminaries.
- 1.1. Description of the universal convering group of De Sitter group.

As usual, R, C, Z denote the set of real numbers, complex numbers and integers, respectively. Let H be the quaternion field and (1, i, j, k) be the standard basis of H over R. We write \overline{x} for the conjugate quaternion of x and |x| for the norm of x. Let $M_2(H)$ be the set of all 2×2 matrices with coefficients in H. We write g^* for the adjoint matrix of $g\in M_2(H)$, i.e., $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^* = \begin{pmatrix} \overline{a} & \overline{c} \\ \overline{b} & \overline{d} \end{pmatrix}$.

We use the same notations and definitions as in Chap. II, $\S 1$ of [11]. Then the universal covering group G of De Sitter group is described as follows;

$$G = \{g \in M_2(H); g^*wg = w\}$$
, where $w = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

And subgroups K, M, A, N, \bar{N} of G are described as follows;

$$K = \left\{k(u, v) = inom{u \ 0}{0 \ v}; u, v \in U\right\}$$
, where $U = \{u \in H; |u| = 1\}$, $M = \left\{m(u) = inom{u \ 0}{0 \ u}; u \in U\right\}$, $A = \left\{a_t = inom{\mathrm{cht}/2 \ \mathrm{sht}/2 \ \mathrm{cht}/2}{\mathrm{sht}/2 \ \mathrm{cht}/2}; t \in R\right\}$, $N = \left\{n_x = inom{1 - x/2 \ x/2 \ -x/2 \ 1 + x/2}; x \in I\right\}$, where $I = \{x \in H; \overline{x} = -x\}$, $\bar{N} = \left\{\bar{n}_y = inom{1 - y/2 \ -y/2 \ 1 + y/2}; y \in I\right\}$.

So, K is a maximal compact subgroup of G and G=KAN is an Iwasawa decomposition of G. Moreover, M is the centralizer of A in K and MAN is a minimal parabolic subgroup of G. The corresponding decomposition of an element g in G=KAN is denoted by $g=k(g)a_{t(g)}n_{x(g)}$, and sometimes we write k(u(g), v(g)) for k(g). When $g=\overline{n}_y$, we write k(y), u(y), v(y), t(y) for $k(\overline{n}_y)$, $u(\overline{n}_y)$, $v(\overline{n}_y)$, $t(\overline{n}_y)$, respectively.

Let $g = \{x \in M_2(H); X^*w + wX = 0\}$, then we may regard g as the Lie algebra of G, i.e., $(Xf)(g) = (d/dt)(f(g \exp(tX)))|_{t=0}$ for $f \in C^{\infty}(G)$ and $X \in g$.

The corresponding Lie algebras of subgroups K, M, A, N, \bar{N} are denoted by f, m, a, n, \bar{n} respectively. Then these are described as follows;

$$\begin{split} &\mathbf{f} = \left\{ \begin{pmatrix} x' & \mathbf{0} \\ \mathbf{0} & x'' \end{pmatrix}; \, x', \, x'' \in I \right\} \;, \\ &\mathbf{m} = \left\{ \begin{pmatrix} x & \mathbf{0} \\ \mathbf{0} & x \end{pmatrix}; \, x \in I \right\} \;, \\ &\mathbf{a} = \left\{ \begin{pmatrix} \mathbf{0} & t/2 \\ t/2 & \mathbf{0} \end{pmatrix}; \, t \in R \right\} \;, \\ &\mathbf{n} = \left\{ \begin{pmatrix} -x & x \\ -x & x \end{pmatrix}; \, x \in I \right\} \;, \\ &\bar{\mathbf{n}} = \left\{ \begin{pmatrix} -y & -y \\ y & y \end{pmatrix}; \, y \in I \right\} \;. \end{split}$$

 $1=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $w=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ constitute the Weyl group W of the pair (g,α) . Let g_c denote the complexification of g and $\mathfrak S$ the universal enveloping algebra of g_c . By $\mathfrak R$, $\mathfrak M$, $\mathfrak M$ we denote the subalgebra of $\mathfrak S$ generated by $(1,\mathfrak k)$, $(1,\mathfrak m)$, $(1,\alpha)$, respectively. Then $\mathfrak R$, $\mathfrak M$, $\mathfrak M$ may be regarded as the universal enveloping algebra of $\mathfrak k$, $\mathfrak m$, $\mathfrak a$, respectively. In general for a Lie group G_0 , as usual, we regard an element D of the corresponding universal enveloping algebra $\mathfrak S_0$ of G_0 as a left invariant differential operator on G_0 and also as a differential operator on arbitrary open subset of G_0 .

1.2. The irreducible unitary representations of M and K.

Let U, I be the subset of H which are introduced in 1.1., then U is a Lie group with a Lie algebra I and isomorphic to SU (2) (cf. Chap. II, § 1 of [11]). Hence, for each nonnegative half integer n there exists the irreducible unitary representation σ^n on V^n which is realized in Chap. III of [14]. Moreover, any irreducible representation σ of U is equivalent to σ^n for some half integer $n \ge 0$ and any two representations σ^n and $\sigma^{n'}$ $(n \ne n')$ are inequivalent. Since K is isomorphic to the group $U \times U$ and M is the diagonal subgroup of K, the sets of equivalent classes of irreducible unitary representations \hat{M} , \hat{K} of M, K are parametrized respectively as follows;

$$\hat{M} = \{n; \, 2n \in Z \, \text{ and } \, n \geq 0 \}$$
 , $\hat{K} = \{(n', \, n''); \, 2n', \, 2n'', \, n' - n'' \in Z \, \text{ and } \, |n''| \leq n' \}$.

More precisely,

for
$$n \in \widehat{M}$$
, $m = m(u) \in M$ $\sigma^n(m) = \sigma^n(u)$,

and

for
$$(n', n'') \in \hat{K}$$
, $k = k(u, v) \in K$, $\tau^{n', n''}(k) = \sigma^{n_1}(u) \otimes \tau^{n_2}(v)$,

where

$$2n_1 = n' + n''$$
, $2n_2 = n' - n''$.

We use the same symbols σ^n , $\tau^{n',n''}$ for the corresponding representations of \mathfrak{M} , \mathfrak{R} , respectively. Let

$$egin{aligned} U_{\scriptscriptstyle 1} &= rac{1}{2}inom{i}{0}\;, & U_{\scriptscriptstyle 2} &= rac{1}{2}inom{j}{0}\;, & U_{\scriptscriptstyle 3} &= rac{1}{2}inom{k}{0}\;, \ U_{\scriptscriptstyle 1}' &= rac{1}{2}inom{i}{0}\;, & U_{\scriptscriptstyle 2}' &= rac{1}{2}inom{j}{0}\;, & U_{\scriptscriptstyle 3}' &= rac{1}{2}inom{k}{0}\;, \ U_{\scriptscriptstyle 3}' &= rac{1}{2}inom{k}{0}\;-k \end{pmatrix}. \end{aligned}$$

Then $\{U_i; i=1, 2, 3\}$ forms a basis of m and $\{U_i, U_i'; i=1, 2, 3\}$ forms a basis of \mathfrak{k} . Furthermore,

$$oldsymbol{\omega}_{\mathfrak{m}}\!=\!-\sum_{1}^{3}U_{i}^{2}$$
 , $oldsymbol{\omega}_{\mathfrak{t}}\!=\!oldsymbol{\omega}_{\mathfrak{m}}\!-\sum_{1}^{3}U_{i}^{\prime\prime^{2}}$

are Casimir operators of M, R, respectively. They satisfy

$$\sigma^n(\omega_m) = n(n+1)\sigma^n(1)$$
 and $\tau^{n',n''}(\omega_t) = 2(n_1(n_1+1) + n_2(n_2+1))\tau^{n',n''}(1)$

(cf. Chap. II, § 1 of [11] and Chap. III of [14]).

Let V_i be a Hilbert space with a Hermitian form $(,)_i$ (i=1,2). For a bounded linear operator L on V_1 into V_2 , let L^* denote the adjoint operator of L, i.e.,

$$(L^*v_{\scriptscriptstyle 2}, \, v_{\scriptscriptstyle 1})_{\scriptscriptstyle 1} \! = \! (v_{\scriptscriptstyle 2}, \, Lv_{\scriptscriptstyle 1})_{\scriptscriptstyle 2} \qquad {
m for \ any} \quad v_i \in V_i \ (i \! = \! 1, \, 2)$$
 .

For $\tau = \tau^{n',n''}((n', n'') \in \hat{K})$ and $\sigma^n(n \in \hat{M})$, by $\mathrm{HOM}_M(V^\tau, V^n)$, we denote the space of all linear mappings L on V^τ into V^n such that $\sigma^n(m)L = L\tau(m)$ for all $m \in M$, where V^τ is the representation space of τ .

In our case, the dimension $d(\tau, n)$ of $\mathrm{HOM}_{M}(V^{\tau}, V^{n})$ equale to 0 or 1, because $\tau|_{M} = \sigma^{n_{1}} \otimes \sigma^{n_{2}}$ (equivalent). When $d(\tau, n) = 1$, there exists an element $P_{n}(\tau)$ of $\mathrm{HOM}_{M}(V^{\tau}, V^{n})$ such that $P_{n}(\tau)P_{n}(\tau)^{*} = \sigma^{n}(1)$. For each τ we put $\hat{M}(\tau) = \{n \in \hat{M}; d(\tau, n) = 1\}$, then we know that

$$\tau|_{M} = \sum_{n \in \hat{M}(\tau)} \sigma^{n}$$
,

and for $\tau = \tau^{n',n''}$

$$\hat{M}(\tau^{n',n''}) = \{ n \in \hat{M}; |n''| \le n \le n' \text{ and } n'-n \in Z \}$$

(see, § 8 of [14]).

§ 2. Spherical functions on G^+ .

In this section we shall introduce certain function spaces of G^+ and study some properties of these function spaces.

Let $G^+ = \{x \in G; x \notin K\}$, $A^+ = \{a_t; t > 0\}$, then G^+ , A^+ are open submanifolds of G, A, respectively. M operates on the product manifold $K \times A^+ \times K$ by $(k, a, k')m = (km, a, m^{-1}k')$ for $k, k' \in K$, $a \in A^+$ and $m \in M$. The following lemma is clear from Lemma 1.2 of [11].

LEMMA 2.1. G^+ is diffeomorphic to the quotient manifold $(K \times A^+ \times K)/M$.

Let τ_1 , τ_2 be two irreducible unitary representations of K on V_1 , V_2 respectively. We write \mathscr{V} for the space of all linear mappings of V_2 into V_1 and write \mathscr{V}_M for the subspace of \mathscr{V} consisting of all elements L such that $\tau_1(m)L = L\tau_2(m)$ for any $m \in M$.

DEFINITION. An infinitely differentiable function F on G^+ with values in $\mathscr T$ is said to be (τ_1, τ_2) -spherical (or simply, spherical) on G^+ if $F(k_1 \times k_2) = \tau_1(k_1) F(x) \tau_2(k_2)$ for any $k_1, k_2 \in K$ and $x \in G^+$. Similarly, an infinitely differentiable function f on A^+ with values in $\mathscr T$ is said to be spherical on A^+ if $f(A^+) \subset \mathscr T_M$.

Fix a positive number r and let F, f be spherical functions on G^+ , A^+ respectively. F (resp. f) is said to be type r if it satisfy the condition;

for each $D \in \mathfrak{G}$ (resp. $D \in \mathfrak{A}$) and any ε satisfying $0 < \varepsilon < 1$, there is a constant $c = c(D, F, \varepsilon) > 0$ (resp. $c = c(D, f, \varepsilon) > 0$) such that $|DF(k_1a_tk_2)| \le ce^{-(r+3/2-\varepsilon)t}$ for $k_1, k_2 \in K$ and $t \ge 1$, (resp. $|Df(a_t)| \le ce^{-(r+3/2-\varepsilon)t}$ for $t \ge 1$), where |L| is the operator norm of $L \in \mathscr{Y}$.

PROPOSITION 2.2. Let F be an infinitely differentiable function on G^+ with values in $\mathscr T$ and let $f=F|A^+$ be the restriction of F to A^+ . If F is spherical on G^+ then $f=F|A^+$ is spherical on A^+ , and the mapping $F\mapsto f=F|A^+$ is a linear bijection. Furthermore, F is of type r if and only if $f=F|A^+$ is of type r.

PROOF. Since ma = am for $m \in M$, $a \in A$, the first half of assertions is easy from Lemma 2.1.

From Harish-Chandra [3] (also, Chap. 9, § 1 of [15]), we see that for

each $D \in \mathfrak{G}$ there exist analytic functions a_1, \dots, a_n of $K \times A^+ \times K$ with values in $\operatorname{End}(\mathscr{Y})$ and elements D_1, \dots, D_n of \mathfrak{A} such that

$$c_0 = \sum_{i=1}^{n} (\sup_{\substack{t \geq 1 \\ k, k' \in K}} |a_i(k, a_t, k')|)$$

is bounded, and

(2.1)
$$(DF)(ka_tk') = \sum_{i=1}^{n} a_i(k, a_t, k')(D_iF)(a_t)$$
 for $k, k' \in K, t > 0$,

in particular, if $D \in \mathfrak{A}$, then

(2.2)
$$(DF)(a_t) = (Df)(a_t)$$
 for $t > 0$ $(f = F|A^+)$,

where $\operatorname{End}(\mathscr{V})$ is the space of all linear endomorphisms on \mathscr{V} and |L| is the operator norm of $L \in \operatorname{End}(\mathscr{V})$.

If F is of type r, then

$$|(DF)(a_t)| \le ce^{-(r+3/2-\varepsilon)t}$$
 for $t \ge 1$ and $D \in \mathfrak{A}$.

Hence, from (2.2) we have the estimate

$$|(Df)(a_t)| \leq c e^{-(r+3/2-\varepsilon)t}$$
 .

Conversely we assume that f is of type r. For each $D \in \mathfrak{G}$, let a_1, \dots, a_n , D_1, \dots, D_n be the same as above and select positive constants c_1, \dots, c_n such that

$$|(D_i f)(\alpha_i)| \le c_i e^{-(r+3/2-\varepsilon)t}$$
 for $t \ge 1$ $(i=1, \dots, n)$,

then from (2.1) we get

$$|(DF)(ka_tk')|\!\leq\!ce^{-(r+3/2-\epsilon)t}$$
 for $k,\,k'\in K$ and $t\!\geq\!1$,

where $c = \max(c_0c_1, \dots, c_0c_n)$. Thus, Proposition 2.2 is proved.

LEMMA 2.3. Let V_0 be a complex Banach space with norm $|\cdot|$ and $\{a_n; n=0, 1, 2, \cdots\}$ be a sequence of V_0 . Let $(s)_n = \Gamma(s+n)/\Gamma(s)$ for $s \in \mathbb{C}$ and $n \in \mathbb{Z}$, where Γ is the usual Gamma function. Suppose that a_n satisfy the inequality $|a_n| \leq |a_0|(c)_n/n!$ $(n=0, 1, 2, \cdots)$ for some constant c>0, then the series

$$\sum_{n=0}^{\infty} a_n e^{-nt}$$

is absolutely convergent on $(0, \infty)$ and this convergence is uniform on $[r, \infty]$ for each r>0. Moreover, when we write $f(t)=\sum_{n=0}^{\infty}a_ne^{-nt}$ (t>0),

for each integer $i \ge 0$ there is a constant $c_i > 0$ such that

$$\left|\left(\frac{d}{dt}\right)^i f(t)\right| \leq c_i (1 - e^{-t})^{-(c+i)} \quad \text{on} \quad (0, \infty) .$$

Proof. Since

$$\left|\left(\frac{d}{dt}\right)^i(a_ne^{-nt})\right| \leq |a_0|\left|\left(\frac{d}{dt}\right)^i(((c)_n/n!)e^{-nt})\right|,$$

it will be sufficient to consider the case when $V_0 = C$ and $a_n = (c)_n/n!$. In this case, our lemma is easy from the classical argument for the formula;

$$\sum_{n=0}^{\infty} \frac{(c)_n}{n!} e^{-nt} = (1 - e^{-t})^{-c} \quad \text{on} \quad (0, \infty) .$$

By Leibniz formula and Lemma 2.3, we have the next proposition.

PROPOSITION 2.4. Retain above notations and assumptions. For $s \in C$, let $f_s(t) = \exp(-(s+3/2)t)f(t)$, then for each integer $i \ge 0$ there is a constant $c_i > 0$ such that

$$\left|\left(rac{d}{dt}
ight)^i f_s(t)
ight| \leq c_i \left(|s| + rac{3}{2}
ight)^i (1 - e^{-t})^{-(c+i)} e^{-(r+3/2)t} \;, \qquad for \quad t > 0 \;,$$

where r = Re(s). In particular when $V_0 = \mathscr{V}_M$ and t > 0, $f_s(a_t) = f_s(t)$ is a spherical function on A^+ of type r.

Let \mathfrak{h} be the Cartan subalgebra of \mathfrak{g} which contains \mathfrak{a} and U_1 . Let \mathfrak{Z} denote the center of \mathfrak{G} and \mathfrak{I} be the canonical isomorphism of \mathfrak{Z} into the algebra of all polynomial functions on \mathfrak{h}_c^* which is the complex dual space of \mathfrak{h}_c (cf. Harish-Chandra [4]).

For each $s \in C$ and $n \in \hat{M}$, let $\lambda_{s,n}$ be the linear function on \mathfrak{h}_{s} with

$$\lambda_{s,n}(U_1) = -(-1)^{1/2} \left(n + \frac{1}{2}\right), \quad \lambda_{s,n}(H) = s, \text{ where } H = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

So, we define the algebra homomorphism $\chi_{s,n}$ of β into C by $\chi_{s,n}(z) = \gamma(z)(\lambda_{s,n})$ for $z \in \beta$.

Now we shall define certain function spaces consisting of spherical functions,

$$C^{\scriptscriptstyle\infty}(G^{\scriptscriptstyle+}$$
, $au)\!=\!\{f;f \ {
m is} \ {
m a} \ au\!=\!(au_{\scriptscriptstyle 1}\!,\, au_{\scriptscriptstyle 2}\!)\!-\!{
m spherical} \ {
m on} \ G^{\scriptscriptstyle+}\}$.

For $s \in C$, $n \in \hat{M}$ and r > 0, we define

$$C_{s,n}^{\infty}(G^+, \tau) = \{ f \in C^{\infty}(G^+, \tau); \ zf = \chi_{s,n}(z)f \text{ for all } z \in \mathcal{B} \}$$

and

$$C_{s,n}^{\infty}(G^+, \tau, r) = \{ f \in C_{s,n}^{\infty}(G^+, \tau); f \text{ is of type } r \}$$
.

The following proposition, which plays an important role in our proof of the main Theorem 3.4, had proven in [10] under more general situations. The methods used in that paper are an extention of those which are used to prove the Theorem 7.1 in Trombi-Varadarajan [13].

PROPOSITION 2.5. Retain above notations. Assume that $s \in \mathbb{R}$ satisfies $s \neq \pm (n+1/2)$ $(n \in \widehat{M}(\tau_1, \tau_2))$, then for a given $F \in C_{s,n}^{\infty}(G^+, \tau, r)$ (r>0) $F_r = \lim_{t \to +\infty} e^{-(r+3/2)t} F(a_t)$ exists and $F_r \in \mathscr{V}_M$. Moreover, if $F_r \neq 0$ then r equals one of numbers; s, -s, n+1/2, -(n+1/2).

§ 3. The Harish-Chandra expansions.

We use the notations and the definitions introduced in §1 and §2, and also use the notation $\text{End}(V_0)$ for the space of all linear endomorphisms on a linear space V_0 .

3.1. Definition of the coefficients A_k and the Theorem of Harish-Chandra.

Let

$$Y_1 = 2^{-1/2} (U_2' + (-1)^{1/2} U_3'), Y_0 = (-1)^{1/2} U_1'$$

and

$$Y_{-1} = 2^{-1/2}(-U_2' + (-1)^{1/2}U_3')$$
.

Then Y_1 , Y_0 , Y_{-1} are elements of f_c which satisfy

$$\sum_{i=1}^{1} (Y_{j})^{2} = -\sum_{i=1}^{3} (U_{i}')^{2} = \omega_{t} - \omega_{m}$$
 .

Let τ_1 , τ_2 , \mathscr{V} , \mathscr{V}_M be the same as in § 1 and § 2. (3.1) For $v \in \mathscr{V}$, put

$$egin{align} L_0 v = & au_1(oldsymbol{\omega}_{ exttt{m}}) v = v au_2(oldsymbol{\omega}_{ exttt{m}}) \;, \ L_1 v = \sum_{-1}^1 au_1(Y_j) v au_2(Y_{-j}) = -\sum_{1}^3 au_1(U_i') v au_2(U_i') \;, \ L_2 v = & au_1(oldsymbol{\omega}_{ exttt{t}} - oldsymbol{\omega}_{ exttt{m}}) v + v au_2(oldsymbol{\omega}_{ exttt{t}} - oldsymbol{\omega}_{ exttt{m}}) \;. \end{align}$$

Then, from the definition of \mathscr{V}_{M} and simple calculations, \mathscr{V}_{M} is stable under the linear endomorphisms L_{0} , L_{1} , L_{2} . Hence, we may conclude that $L_{i} \in \operatorname{End}(\mathscr{V}_{M})$ (i=0, 1, 2).

Now we shall define the rational functions A_k $(k \in \mathbb{Z})$ on C with values in End (\mathscr{Y}_M) as follows;

- (3.2) $A_k=0$ if k<0 and $A_0=$ the identity endomorphism on \mathscr{Y}_M ,
- (3.3) for k>0, A_k are defined by the recurrence formula below;

$$\begin{split} (2ks-k^2)A_k(s)-L_0A_k(s)+A_k(s)L_0\\ =&6\sum_{j\geq 1}\left(s-\frac{3}{2}+2j-k)A_{k-2j}(s)\right.\\ &+4\sum_{j\geq 1}(2j-1)L_1A_{k-(2j-1)}(s)\\ &-4\sum_{j\geq 1}jL_2A_{k-2j}(s)\ . \end{split}$$

Let E(s, v, x) denote the function below;

(3.4)
$$E(s, v, x) = \int_{K} \exp\left(\left(s - \frac{3}{2}\right)t(xk)\right) \tau_{1}(k(xk))v\tau_{2}(k^{-1})dk,$$

for $s \in C$, $v \in \mathscr{V}_M$ and $x \in G$, where dk is the normalized Haar measure on K. Then the function $x \mapsto E(s, v, x)$ is a real analytic function on G with values in $\operatorname{End}(\mathscr{V})$ and (τ_1, τ_2) -spherical on G. Moreover, the function $s \mapsto E(s, v, x)$ is holomorphic on C and for each $n \in \widehat{M}(\tau_1, \tau_2)$, the function $E_{s,n}(x) = E(s, v_n, x)$ belongs to $C_{s,n}^{\infty}(G^+, \tau)$ (cf. Chap. 9 of [15], 3.2 below for v_n). The following theorem have been proved by Harish-Chandra (cf. [3], also Chap. 9 of [15]).

THEOREM 3.1 (Harish-Chandra). There is an open connected dense subset $\mathcal{O}(\tau_1, \tau_2)$ in C and the meromorphic functions C_1 , C_w on C with values in End(\mathcal{Y}_M) having the following properties;

- 1) The complement of $\mathcal{O}(\tau_1, \tau_2)$ in C is a discrete set and $A_k(k \in \mathbb{Z})$, C_1 , C_w are all holomorphic on $\mathcal{O}(\tau_1, \tau_2)$.
- 2) Fix any compact subset B of $\mathcal{O}(\tau_1, \tau_2)$ and positive number r. Then, for each integers $i, j \ge 0$, the series

$$\sum_{k\geq 0} \left(\frac{\partial}{\partial s}\right)^{i} \left(\frac{\partial}{\partial t}\right)^{j} (E_{k}(s, t)) \qquad (where E_{k}(s, t) = A_{k}(s)e^{-kt})$$

is uniformly convergent on $B \times [r, \infty)$.

3) Put $E(s, t) = e^{(s-3/2)t} \sum_{k\geq 0}^{\infty} E_k(s, t)$, then the following equality is valid,

$$E(s, v, a_t) = E(s, t)C_1(s)v + E(s, t)C_w(s)v ,$$
 for $s \in \mathcal{O}(\tau_1, \tau_2), v \in \mathscr{V}_M \ and \ t > 0$.

3.2. The statement of the main theorem.

Let $\hat{M}(\tau_1, \tau_2)$, $P_n(\tau_i)$ (i=1, 2) be the same as in § 1. When $\hat{M}(\tau_1, \tau_2)$ is not empty, we put

$$v_n = P_n(\tau_1)^* P_n(\tau_2)$$
 for $n \in \widehat{M}(\tau_1, \tau_2)$.

The following Lemma is a simple application of the Schur's lemma.

LEMMA 3.2. \mathscr{V}_{M} contains non-zero elements if and only if $\widehat{M}(\tau_{1}, \tau_{2})$ is not empty. When $\widehat{M}(\tau_{1}, \tau_{2})$ is not empty, $\{v_{n}; n \in \widehat{M}(\tau_{1}, \tau_{2})\}$ forms a basis of \mathscr{V}_{M} .

PROOF. Firstly, we note the following facts (cf. Chap. III, § 8 of [14]);

Let $P_{n,i} = P_n(\tau_i)^* P_n(\tau_i)$ $(n \in \widehat{M}(\tau_i), i=1, 2)$, then $P_{n,i}$; $n \in \widehat{M}(\tau_i)$ are projections of V_i and satisfy the equalities

Moreover, the subspaces $V_i^n = P_{n,i} V_i$; $n \in \hat{M}(\tau_i)$ are all stable under the linear mappings $\tau_i(m)$ $(m \in M)$. Let $\tau_i^n(m)$ be the restriction of $\tau_i(m)$ onto V_i^n $(m \in M, n \in \hat{M}(\tau_i))$, then τ_i^n is equivalent to σ^n as the representations of M. Now, we put

$$\mathscr{Y}_{\mathtt{M}}(n,\,n') = \{v' = P_{\mathtt{n},\mathtt{1}} \, v \, P_{\mathtt{n}',\mathtt{2}}; \, v \in \,\, \mathscr{Y}_{\mathtt{M}} \qquad \text{for} \quad n \in \widehat{M}(au_{\mathtt{1}}), \, n' \in \widehat{M}(au_{\mathtt{2}}) \}$$
 ,

then we may regard $v' \in \mathscr{V}_{M}(n, n')$ as a linear mapping of $V^{n'}$ into V^{n} such that $\sigma^{n}(m)v'=v'\sigma^{n'}(m)$ for all $m \in M$. Hence, by Schur's lemma, we have $\mathscr{V}_{M}(n, n')=\{0\}$ for $n \neq n'$. Since $P_{n}(\tau_{i})P_{n}(\tau_{i})^{*}=\sigma^{n}(1)$ $(n \in \widehat{M}(\tau_{i}), i=1, 2)$, we obtain the relations

$$egin{aligned} P_{n,1}v_nP_{n,2} &= P_n(au_1)^*P_n(au_1)(P_n(au_1)^*P_n(au_2))P_n(au_2)^*P_n(au_2) \ &= P_n(au_1)^*\sigma^n(1)^2P_n(au_2) \ &= P_n(au_1)^*P_n(au_2) = v_n \ , \qquad ext{for} \quad n \in \hat{M}(au_1, au_2) \ . \end{aligned}$$

Thus, $v_n \in \mathscr{V}_M(n, n)$ and

$$\begin{aligned} \operatorname{trace}(v_{\scriptscriptstyle n}v_{\scriptscriptstyle n}^*) &= \operatorname{trace}(P_{\scriptscriptstyle n}(\tau_{\scriptscriptstyle 1})^*P_{\scriptscriptstyle n}(\tau_{\scriptscriptstyle 2})P_{\scriptscriptstyle n}(\tau_{\scriptscriptstyle 2})^*P_{\scriptscriptstyle n}(\tau_{\scriptscriptstyle 1})) \\ &= \operatorname{trace}(P_{\scriptscriptstyle n,1}) = 2n + 1 \neq 0 \ . \end{aligned}$$

Therefore, by Schur's lemma, we have $\mathscr{V}_{M}(n, n) = Cv_{n}, v_{n} \neq 0$. But, it is easy to see that

$$\mathscr{Y}_{M} = \sum_{n,n'} \mathscr{Y}_{M}(n, n')$$
 (direct sum).

Hence, we conclude our lemma.

From the results of § 2 and Theorem 3.1, we see that there exists an unique function $F_{s,n} \in C^{\infty}(G^+, \tau)$ such that $F_{s,n}(a_t) = E(s, t)v_n$ for t>0, $s \in \mathcal{O}(\tau_1, \tau_2)$. By the definitions of v_n , $P_n(\tau_i)$ (i=1, 2), we have the equations

$$\tau_1(\boldsymbol{\omega}_m)v_n = v_n\tau_2(\boldsymbol{\omega}_m) = n(n+1)v_n$$
 for $n \in \widehat{M}(\tau_1, \tau_2)$.

Hence, from the arguments in 9.1.5. of [15], we have the next lemma.

LEMMA 3.3. Let $F_{s,n}$ be the same as above, then $F_{s,n} \in C_{s,n}^{\infty}(G^+, \tau)$.

In later sections, we write E(s, n, t) for $E(s, t)v_n$. Let $\tau_i = \tau^{n_i \cdot n_i}$ (i=1, 2) be the same as in §1 and assume that $\hat{M}(\tau_1, \tau_2)$ is not empty. Then we have the next result which is our main theorem.

THEOREM 3.4. Fix $n \in \widehat{M}(\tau_1, \tau_2)$ and t>0, then the function $s \mapsto E(s, n, t) = E(s, t)v_n$ can be extended to a $\mathscr{V}_{\mathtt{M}}$ -valued meromorphic function on C and its singularities are all simple poles.

Moreover, E(s, n, t) is holomorphic on the complement of these points below;

- 1) s=k, k>0 and $n-k \in \mathbb{Z}$,
- 2) s=k+1/2, $k \in \widehat{M}(\tau_1, \tau_2)$ and n < k,
- 3) s=k+1/2, $0 \le k < \min(|n_1''|, |n_2''|)$ and $n-k \in \mathbb{Z}$,
- 4) $s = -(k+1/2), k \in \widehat{M}(\tau_1, \tau_2) \text{ and } k < n.$

§ 4. Some properties of A_k .

In the first place, we introduce some notations. Let $I(n) = \{p; 2p \in \mathbb{Z}, n-p \in \mathbb{Z} \text{ and } |p| \leq n\}$ for $n \in \widehat{M}$ and $\{v_p^n; p \in I(n)\}$ be the orthonormal basis of V^n introduced in Chap. III of [14]. Let τ_i , V_i (i=1,2), \mathscr{V} , \mathscr{V}_M , etc., be the same as in \S 1. By $(\ ,\)_i$, we denote the positive definite Hermitian form on V_i such that $\tau_i(k)$ $(k \in K)$ are unitary endomorphism on V_i (i=1,2). For each $n \in \widehat{M}(\tau_i)$ and $p \in I(n)$, we put $v_{p,i}^n = P_n(\tau_i)^* v_p^n$ (i=1,2). Then we know that $(v_{p,i}^n, v_{q,i}^n)_i = \delta_{p,q}$ (i=1,2).

LEMMA 4.1. For each i=1, 2 and j=-1, 0, 1 put

$$c_{i,i}(n, p; n', q) = (\tau_i(Y_i)v_{n,i}^n, v_{q,i}^{n'})$$
 for $n, n' \in \widehat{M}(\tau_i), p \in I(n), q \in I(n')$

(see § 3 for Y_j). Then $(p-q+j)c_{j,i}(n, p: n', q)=0$.

PROOF. Let $U=(-1)^{1/2}U_1$. Then it is easy to see that

$$[U, Y_j] = j Y_j$$
 $(j = -1, 0, 1)$.

Hence,

$$\tau_i(U)\tau_i(Y_j)-\tau_i(Y_j)\tau_i(U)-j\tau_i(Y_j)=0$$
.

But, $(\tau_i(U)v, v')_i = (v, \tau_i(U)v')_i$ for any $v, v' \in V_i$ and $\tau_i(U)v_{p,i}^n = pv_{p,i}^n$ for $n \in \widehat{M}(\tau_i), p \in I(n)$ (i=1, 2) (cf. Chap. III of [14]). Thus,

$$(au_i(U) au_i(Y_j)v_{p,i}^n, v_{q,i}^{n'})_i = qc_{j,i}(n, p: n', q),$$
 $(au_i(Y_j) au_i(U)v_{p,i}^n, v_{q,i}^{n'})_i = pc_{j,i}(n, p: n', q),$
 $(au_i(jY_j)v_{p,i}^n, v_{q,i}^{n'})_i = jc_{j,i}(n, p: n', q).$

Therefore,

$$(p-q+j)c_{j,i}(n, p: n', q)=0$$
.

Let (v, w) be the positive definite Hermitian form on \mathscr{V}_M given by $(v, w) = \operatorname{trace}(vw^*)$ for $v, w \in \mathscr{V}_M$.

LEMMA 4.2. Let L_0 , L_1 , L_2 be the same as in § 3 and assume that $\hat{M}(\tau_1, \tau_2)$ is not empty. Then, $L_0v_n = n(n+1)v_n$ and $L_2v_n = b_nv_n$ for $n \in \hat{M}(\tau_1, \tau_2)$, where b_n is a certain real number. Moreover, when we write $L_1v_n = \sum_{n'} a_{n,n'}v_{n'}$ (n' varies over the set $\hat{M}(\tau_1, \tau_2)$), we have $a_{n,n'} = 0$ for $n, n' \in \hat{M}(\tau_1, \tau_2)$ with |n-n'| > 1.

PROOF. By definitions of v_n , L_0 , L_2 , we may reduce the assertions for L_0 , L_2 to the calculations of the eigenvalues of ω_t , ω_m . But these eigenvalues are already given in § 1. Now we shall prove that

$$(*)$$
 $(L_1v, w)=(v, L_1w)$ for any $v, w \in \mathscr{Y}_M$.

Since τ_i (i=1, 2) are unitary representations, $\tau_i(Y_j)^* = \tau_i(Y_{-j})$ (j=-1, 0, 1 and i=1, 2). Hence,

$$egin{aligned} v(L_1w)^* &= \sum_{-1}^1 v(au_{_1}(Y_{_j})w au_{_2}(Y_{_{-j}}))^* \ &= \sum_{-1}^1 v(au_{_2}(Y_{_j})w^* au_{_1}(Y_{_{-j}})) \ &= \sum_{-1}^1 v(au_{_2}(Y_{_{-j}})w^* au_{_1}(Y_{_j})) \;. \end{aligned}$$

Thus,

$$egin{aligned} (v,\, L_{\scriptscriptstyle 1} w) &= \operatorname{trace}(\sum_{\scriptscriptstyle -1}^{\scriptscriptstyle 1} v(au_{\scriptscriptstyle 2}(Y_{\scriptscriptstyle -j}) w^* au_{\scriptscriptstyle 1}(Y_{\scriptscriptstyle j})) \ &= \operatorname{trace}(\sum_{\scriptscriptstyle -1}^{\scriptscriptstyle 1} (au_{\scriptscriptstyle 1}(Y_{\scriptscriptstyle j}) v au_{\scriptscriptstyle 2}(Y_{\scriptscriptstyle -j})) w^*) = (L_{\scriptscriptstyle 1} v,\, w) \;. \end{aligned}$$

Let us return to the proof of Lemma 4.2. It is easy to see that

 $(v_n, v_{n'}) = (2n+1)\delta_{n,n'}$. So, the assertion (*) implies the formula

$$a_{n,n'}(2n'+1) = \overline{a_{n',n}}(2n+1)$$
,

where $\overline{a_{n',n}}$ is the conjugate complex number of $a_{n',n}$. Hence, we may consider only the case when n' > n+1. Since $v_n v_{p,2}^{n'} = P_n(\tau_1)^* P_n(\tau_2) P_n(\tau_2)^* v_p^{n'} = \delta_{n,n'} v_{p,1}^n$ (cf. Chap. III of [14]), we have from $L_1 v_n = \sum_n a_{n,n'} v_{n'}$ that $(L_1 v_n)(v_{n',2}^{n'}) = a_{n,n'} v_{n',1}^{n'}$. By using $(v_{n',1}^{n'}, v_{n',1}^{n'})_1 = 1$,

$$\begin{split} a_{n,n'} &= ((L_1 v_n)(v_{n',2}^{n'}), \ v_{n',1}^{n'})_1 \\ &= \sum_j (\tau_1(Y_j) v_n \tau_2(Y_{-j}) v_{n',2}^{n'}, \ v_{n',1}^{n'})_1 \\ &= \sum_{j,n'',p} c_{-j,2}(n', \ n': \ n'', \ p) (\tau_1(Y_j) v_{p,1}^{n''}, \ v_{n',1}^{n'})_1 \delta_{n,n''} \\ &= \sum_{j,p} c_{-j,2}(n', \ n': \ n, \ p) c_{j,1}(n, \ p: \ n', \ n') \ , \end{split}$$

where p varies on the set I(n). Since $p+j \le n+1 < n'$, we have $p+j-n' \ne 0$ for $p \in I(n)$ and j=-1, 0, 1. Hence, we conclude from Lemma 4.1 that $c_{j,1}(n, p: n', n') = 0$ for $p \in I(n)$ and j=-1, 0, 1. This implies $a_{n,n'} = 0$ if n' > n+1.

Now we shall consider the matrix coefficients of $A_k(s)$ with respect to the basis $\{v_n: n \in \hat{M}(\tau_1, \tau_2)\}$ of \mathscr{V}_M . For $k \in \mathbb{Z}$ and $n, n' \in \hat{M}(\tau_1, \tau_2)$, let

(4.1)
$$A_{k}(s, n, n') = (2n'+1)^{-1}(A_{k}(s)v_{n}, v_{n'}) \quad (s \in \mathcal{O}(\tau_{1}, \tau_{2})).$$

Then $A_k(s, n, n')$ $(k \in \mathbb{Z} \text{ and } n, n' \in \widehat{M}(\tau_1, \tau_2))$ are rational functions of s on C and

$$A_{k}(s)v_{n} = \sum_{n' \in \hat{M}(\tau_{1}, \tau_{2})} A_{k}(s, n, n')v_{n'}$$
.

Moreover, from the formula (3.3) and Lemma 4.2, we have

$$\begin{aligned} (4.2) & (2sk-k^2+n(n+1)-n'(n'+1))A_k(s, n, n') \\ &= \sum_{j\geq 1} \left(6\left(s-\frac{3}{2}+2j-k\right)-4jb_{n'}\right)A_{k-2j}(s, n, n') \\ &+ \sum_{j\geq 1} (2j-1)\sum_{n} 4a_{p,n'}A_{k-(2j-1)}(s, n, p) \ , \end{aligned}$$

where p varies on the set $\widehat{M}(\tau_1, \tau_2, n') = \{p \in \widehat{M}(\tau_1, \tau_2): |n'-p| \leq 1\}$.

LEMMA 4.3. For $k \in \mathbb{Z}$ and $n, n' \in \widehat{M}(\tau_1, \tau_2)$ with |n-n'| > k, $A_k(s, n, n') = 0$. Moreover, when n' = n - k with k > 0, we have the formula

(4.3)
$$A_k(s, n, n-k) = \prod_{j=1}^k (2a_{n-k+j,n-k+j-1}) / (k! (s+\frac{1}{2}+n-k)_k).$$

PROOF. When $k \le 0$, Lemma 4.3 is clear from the definition of A_k . For k > 0, we use the induction on k. Since $k - 2j \le k - 2$ $(j = 1, 2, \cdots)$, $k - (2j - 1) \le k - 2$ $(j = 2, 3, \cdots)$ and $|n - p| \ge |n - n'| - 1$ $(p \in \widehat{M}(\tau_1, \tau_2, n'))$, we see from the induction hypothesis that $A_{k-2j}(s, n, n') = 0$ $(j = 1, 2, \cdots)$, $A_{k-(2j-1)}(s, n, p) = 0$ $(j = 2, 3, \cdots)$ and $p \in \widehat{M}(\tau_1, \tau_2, n')$ if $|n - n'| \ge k$. Hence, when $|n - n'| \ge k$, we have from (4.2) that

$$(4.4) \qquad (2ks-k^2+n(n+1)-n'(n'+1))A_k(s, n, n') = 4 \sum_{p \in \hat{M}(\tau_1, \tau_2, n')} a_{p, n'} A_{k-1}(s, n, p) .$$

If |n-n'|>k, then |n-p|>|n-n'|-1>k-1 for all $p\in \widehat{M}(\tau_1, \tau_2, n')$. Thus the induction hypothesis and (4.4) imply that

$$(2ks-k^2+n(n+1)-n'(n'+1))A_k(s, n, n')=0$$
 if $|n-n'|>k$.

Since $A_k(s, n, n')$ is a rational function, we obtain that $A_k(s, n, n') = 0$ if |n-n'| > k. When n' = n-k with k > 0, we have $p = n' + 1 = n-k + 1 \subset \widehat{M}(\tau_1, \tau_2, n')$ and n - (n'-j) = k+j > k-1 (j=0, 1). Therefore, by the induction hypothesis and (4.4), we have the formula

$$2\left(s+rac{1}{2}+n
ight)A_{k}(s,\ n,\ n-k)=4a_{n-k+1,\,n-k}A_{k-1}(s,\ n,\ n-k+1)$$
 .

This implies the formula (4.3).

We define the set $S_k(n)$ $(n \in \widehat{M}(\tau_1, \tau_2))$ and $k \in \mathbb{Z}$ with k > 0 by

$$S_k(n) = \{(k/2) + (n'(n'+1) - n(n+1))/2k; n' \in \hat{M}(\tau_1, \tau_2) \text{ with } |n-n'| \leq k\}$$
 ,

and put $S^k(n) = \bigcup_{j=1}^k S_j(n)$. Then, we see easily from (4.2) and Lemma 4.3 that the singular points of the function $s \mapsto A_k(s)v_n$ are contained in $S^k(n)$, and from the definition of $S_k(n)$ that $S^k(n) \subset [-n-1/2+k, n+1/2+k]$. Let $C_- = \{s \in C; \text{ Re } (s) \leq 0\}$ and put $S_k^-(n) = S_k(n) \cap C_-$, $S_k^k(n) = S^k(n) \cap C_-$. By $S_-(n,k)$, we denote the set of all singular points of the function $s \mapsto A_k(s)v_n$ in C_- and put $S_- = \bigcup_{\substack{n \in \hat{M} \\ k \geq 0}} (c_1,c_2) S_-(n,k)$. Then we have that $S_-(n,k) \subset S_-^k(n) \subset [-n,0]$ $(k>0, n\geq 0)$ and $S_-^k(n) = S_-^{k'}(n)$ if $k\geq k'>n+1/2$. Moreover, from (4.2) the above arguments prove that there is an integer n_0 such that

$$(s-s_0)^{n_0}A_k(s)v_n \longrightarrow o$$
 as $s \longrightarrow s_0$ for any $k \in \mathbb{Z}$, $s_0 \in \mathbb{C}_-$.

Thus, we have the next lemma.

LEMMA 4.4. Retain the above notations. Then $S_{-}(n, k) \subset [-n, 0]$ $(k=0, 1, \cdots \text{ and } n \in \widehat{M}(\tau_1, \tau_2))$ and S_{-} is a finite set. Moreover, there is an integer $n_0 > 0$ such that

$$(s-s_0)^{n_0}A_k(s)v_n \longrightarrow o \quad as \quad s \longrightarrow s_0$$

$$for \ any \quad k \in \mathbb{Z}, \ s_0 \in C_- \quad and \quad n \in \widehat{M}(\tau_1, \ \tau_2) \ .$$

For an integer k and $s \in \mathcal{O}(\tau_1, \tau_2)$, we put

$$|A_k(s)| = \max(|A_k(s, n, n')|; n, n' \in \hat{M}(\tau_1, \tau_2))$$
.

Then, for any compact subset B of $\mathcal{O}(\tau_1, \tau_2)$, there is a constant c = c(B) > 0 such that

 $|A_k(s,n,n')| \le (c/k) \sum_{j=0}^{k-1} |A_j(s)|$ for $s \in B$, $n,n' \in \hat{M}(\tau_1,\tau_2)$ and k>0. (This follows from the formula (4.2).) Hence,

$$|A_k(s)| \leq (c/k) \sum_{j=0}^{k-1} |A_j(s)|$$
 for $s \in B$ and $k > 0$.

LEMMA 4.5. For arbitrary compact subset B of $\mathcal{O}(\tau_1, \tau_2)$ there is a constant c = c(B) > 0 such that

$$|A_k(s)| \le (c)_k/k!$$
 for $k=0, 1, 2, \cdots$ and $s \in B$.

PROOF. Let $a_k = \sum_{j=0}^k |A_j(s)|$ $(k=0, 1, 2, \cdots)$, then $a_k - a_{k-1} \le (c/k)a_{k-1}$ (k>0). Hence, by the induction on k, $a_k \le ((c+k)/k)a_{k-1}$ (k>0). Thus, we have from the fact; $1 = a_0 = |A_0(s)|$ that $a_k \le (c+1)_k/k!$ $(k=0, 1, \cdots)$ Therefore, $|A_k(s)| \le (c/k)a_{k-1} \le (c)_k/k!$ $(k=0, 1, \cdots)$ and $s \in B$.

For $k \in \mathbb{Z}$ and $s_0 \in \mathbb{C}$, let $a_k(s_0, j)$ $(j \in \mathbb{Z})$ denote the linear endomorphism on \mathscr{Y}_M which appears in the Laurent expansion of $A_k(s)$ at $s=s_0$ i.e.,

(4.5)
$$A_k(s) = \sum_{j=-\infty}^{+\infty} a_k(s_0, j)(s-s_0)^j.$$

From the Cauchy's integral formula and Lemma 4.5, we have the next corollary.

COROLLARY 4.6. Fix $s_0 \in C$ and integers j, k with $k \ge 0$. Then there are positive constants c_1 , c_2 , which are independent of j, k, such that $|a_k(s_0, j)| \le c_1^{-j}(c_2)_k/k!$.

§ 5. The explicit formulas of $C_1(s)$ and $C_w(s)$.

Let dy denote the Euclidean measure $dy_1dy_2dy_3$ on I (where $y=y_1i+y_2j+y_3k\in I$). Put $c_0=\int_I e^{-3t(y)}dy$, then $d\bar{n}=dy/c_0$ is the Haar measure on \bar{N} such that $\int_{\bar{N}} \exp{(-3t(\bar{n}))}d\bar{n}=1$. Let

$$(5.1) \qquad C(s,\,\tau) = \int_{\overline{N}} e^{-(s+3/2)t(\overline{n})} \tau(k(\overline{n})^{-1}w) d\overline{n} \;\; , \qquad \text{for} \quad s \in C \quad \text{with} \quad \text{Re}(s) > 0 \;\; ,$$

where τ is an irreducible unitary representation of K and $w=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Then this integral converges absolutely and the function $s\mapsto C(s,\tau)$ can be extended to a meromorphic function with values in $\operatorname{End}(V^{\tau})$ (where V^{τ} is the representation space of τ and $\operatorname{End}(V^{\tau})$ is the space of all linear endomorphisms on V^{τ}) (cf. § 11 of [1] and Theorem 3 of [7]). It is easy to check that $t(m\bar{n}m^{-1})=t(\bar{n}),\ k(m\bar{n}m^{-1})=mk(\bar{n})m^{-1}$ for $\bar{n}\in\bar{N},\ m\in M$ and $d\bar{n}$ is invariant under the adjoint action of M on \bar{N} . So, we have $\tau(m)C(s,\tau)=C(s,\tau)\tau(m)$ for any $m\in M$. Hence, for $n\in \hat{M}(\tau)$, by the definition of $P_n(\tau)$, there is a meromorphic function $c_n(s,\tau)$ on C such that

$$(5.2) c_n(s,\tau)P_n(\tau) = P_n(\tau)C(s,\tau).$$

Moreover, using the facts that $t(m\bar{n}m^{-1})=t(\bar{n})$, $k(m\bar{n}m^{-1})=mk(\bar{n})m^{-1}$ and the invariance of $d\bar{n}$, we have from Lemma 4.4 of [1] the integral formula

(5.3)
$$\int_{K} f(k)dk = \int_{M} \int_{\overline{N}} f(k(\overline{n})m)e^{-3t(\overline{n})} dm d\overline{n} ,$$

where f is a continuous function on K and dm is the normalized Haar measur on M.

Put $\bar{n}(t) = a_t \bar{n} a_t^{-1}$ for $\bar{n} \in \bar{N}$ and $t \in R$, then it is easy to see that $k(a_t k(\bar{n})m) = k(\bar{n}(t))m$, $k(k(\bar{n})m) = k(\bar{n})m$ and $t(a_t k(\bar{n})m) = t(\bar{n}(t)) - t(\bar{n}) + t$. Hence, from the formulas (3.4) and (5.3) we have

$$\begin{array}{ll} (5.4) & e^{-(s-3/2)t} E(s, \, v, \, a_t) \\ \\ = & \int_{\overline{N}}^{(s-3/2)t(\overline{n}(t))} e^{-(s+3/2)t(\overline{n})} \tau_1(k(\overline{n}(t))) v \tau_2(k(\overline{n})^{-1}) d\overline{n} \\ \\ & \text{for} \quad s \in C, \, t \in R \quad \text{and} \quad v \in \mathscr{V}_M \; . \end{array}$$

Since $a_t \bar{n}_y a_t^{-1} = \bar{n}_e - t_y$ and $d(\bar{n}(t)) = e^{-3t} d\bar{n}$, we have from (5.4)

$$(5.5) e^{(s+2/3)t} E(s, v, a_{-t})$$

$$= \int_{\overline{N}} e^{-(s+3/2)t(\overline{n}(t))} e^{(s-3/2)t(\overline{n})} \tau_1(k(\overline{n})) v \tau_2(k(\overline{n}(t))^{-1}) d\overline{n}$$
for $s \in C$, $t \in R$ and $v \in \mathscr{V}_M$.

since $\bar{n}(t) \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ as $t \rightarrow +\infty$, we see that $t(\bar{n}(t)) \rightarrow 0$ and $k(\bar{n}(t)) \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ as $t \rightarrow +\infty$. Hence, by using the estimates in § 11 of [1] and (5.4)-(5.5), we have

$$\lim_{t\to +\infty} e^{(-s+3/2)t} E(s, v, a_t) = \int_{\overline{N}} e^{-(s+3/2)t(\overline{n})} v \tau_2(k(\overline{n})^{-1}) d\overline{n}$$

for $s \in C$ with Re(s) > 0 and $v \in \mathscr{Y}_{M}$, and

$$\lim_{t\to +\infty} e^{(s+3/2)t} E(s, v, a_{-t}) = \int_{\overline{N}} e^{(s-3/2)t(\overline{n})} v \tau_1(k(\overline{n})) d\overline{n}$$

for $s \in C$ with Re(s) < 0 and $v \in \mathscr{Y}_M$. But, we have from Theorem 3.1

$$\lim_{t\to+\infty}e^{(-s+3/2)t}E(s,\,v,\,a_t)=C_1(s)v\qquad\text{for }s\in\mathscr{O}(\tau_1,\,\tau_2)\text{ with }\mathrm{Re}(s)>0,\,v\in\mathscr{V}_{\mathtt{M}}\;,$$

and also, since $E(s, v, a_{-t}) = E(s, v, wa_t w) = \tau_1(w)E(s, v, a_t)\tau_2(w)$,

$$\lim_{t\to+\infty}e^{(s+3/2)t}E(s, v, a_{-t})=\tau_1(w)(C_w(s)v)\tau_2(w)$$

$$\text{for } s\in\mathscr{O}(\tau_1, \tau_2) \quad \text{with } \operatorname{Re}(s)<0, v\in\mathscr{V}_w.$$

Since τ is an unitary representation and $w=w^{-1}$, it is easy to check that

$$\int_{\overline{N}} e^{-(s+8/2)t(\overline{n})} au(k(\overline{n})) d\overline{n} = au(w) C(\overline{s}, \, au)^* \qquad ext{for} \quad s \in C \quad ext{with} \quad ext{Re}(s) > 0$$
 ,

where \overline{s} is the complex conjugate of s. Consequently, we have formulas below;

By definition of v_n (see § 3) and $c_n(s, \tau)$, we obtain

$$v_n C(s, \tau_2) = c_n(s, \tau_2) v_n ,$$

$$C(-\overline{s}, \tau_1)^* v_n = \overline{c_n(-\overline{s}, \tau_1) v_n} .$$

To obtain the explicit formulas of $C_{i}(s)v$ and $C_{w}(s)v$, we need the following proposition.

PROPOSITION 5.1. Let $\tau = \tau^{n',n''}$ be an irreducible unitary representation of K. Then for each $n \in \hat{M}(\tau)$

$$(5.7) \quad c_{\rm n}(s,\,\tau) = \frac{\varepsilon^{\rm 2n} \, 2^{-2s+3} \, \Gamma(2s) \Gamma(-s+3/2+n') \Gamma(-s+1/2-|n''|)}{\Gamma(-s+3/2+n) \Gamma(-s+1/2-n) \Gamma(s+3/2+n') \Gamma(s+1/2-|n''|)} \; , \\ \ where$$

$$\varepsilon =
\begin{cases}
1 & \text{if} & n'' \ge 0 \\
-1 & \text{if} & n'' < 0
\end{cases}$$

PROOF. Let σ^n $(n \in \hat{M})$ be an irreducible unitary representation of M on V^* (see § 1). For $s \in C$ and $n \in \hat{M}$, let $\mathscr{H}_{s,n}^{\infty}$ be the space of all infinitely differentiable functions on G with values in V^* such that

 $f(xma_tn) = e^{-(s+3/2)t}\sigma^n(m^{-1})f(x)$ for $x \in G$, $m \in M$, $t \in R$ and $n \in N$.

Put $R_{s,n}(x)f(x')=f(x^{-1}x')$ for $f\in \mathscr{H}_{s,n}^{\infty}$, $x, x'\in G$, then $R_{s,n}$ is a representation of G on $\mathscr{H}_{s,n}^{\infty}$. For any function f in $\mathscr{H}_{s,n}^{\infty}$ satisfying $\operatorname{Re}(s)>0$, the integral

$$A_{s,n}f(x) = \int_{\overline{N}} f(xw\overline{n})d\overline{n} = \int_{\overline{N}} e^{-(s+3/2)t(\overline{n})} f(xwk(\overline{n}))d\overline{n}$$

is absolutely convergent (see § 11 of [1]). Moreover, since $wa_tw=a_{-t}$, wmw=m for $t\in R$, $m\in M$, we see that $A_{s,n}f\in \mathscr{H}_{-s,n}^{\infty}$ for $f\in \mathscr{H}_{s,n}^{\infty}$ (Re(s)>0). and

$$(5.8) A_{s,n}R_{s,n}(x)f = R_{-s,n}(x)A_{s,n}f, \text{for } x \in G, f \in \mathcal{H}_{s,n}^{\infty}(\operatorname{Re}(s)) > 0.$$

Now let τ be an irreducible unitary representation of K on V^{τ} and assume that $n \in \hat{M}(\tau)$. Put

$$f_{\tau,v}(x) = e^{-(s+3/2)t(x)} P_n(\tau)(\tau(k(x)^{-1})v)$$
 for $v \in V^{\tau}, x \in G$:

then $\mathscr{H}_{s,n}^{\infty}(\tau) = \{f_{\tau,v}; v \in V^{\tau}\}$ is a finitely dimesional subspace of $\mathscr{H}_{s,n}^{\infty}$ which consists of all K-finite vector of type τ under $R_{s,n}$ (the Frobenius' reciprocity theorem and the branching theorem for a compact group imply this assertion). And for $f \in \mathscr{H}_{s,n}^{\infty}(\tau)$ (Re(s)>0), it is clear that

$$(5.9) A_{n,n} f = c_n(s, \tau) f.$$

Now we shall prove the following assertion.

$$(5.10) \quad \text{For } \tau = \tau^{n',n''} \text{ and } n \in \widehat{M}(\tau), \text{ let } c_n(s,\tau) = c_n(s,n',n'').$$

$$\text{If } (n,n''+1), \ (n',n''), \ (n'+1,n'') \in \widehat{K}, \text{ then}$$

$$c_n(s,n',n''+1) \Big(s + \frac{1}{2} + n'' \Big) = c_n(s,n',n'') \Big(-s + \frac{1}{2} + n'' \Big) ,$$

$$c_n(s,n'+1,n'') \Big(s + \frac{3}{2} + n' \Big) = c_n(s,n',n'') \Big(-s + \frac{3}{2} + n' \Big) .$$

Let

$$R'_{s,n}f(x) = \left(\frac{d}{dt}\right)(R_{s,n}(a_t)f(x))\Big|_{t=0}$$
 for $f \in \mathscr{H}_{s,n}^{\infty}$, $x \in G$.

Then we see from (5.8) that

$$(5.11) A_{s,n}R'_{s,n}f = R'_{-s,n}A_{s,n}f \text{for } f \in \mathscr{H}_{s,n}^{\infty} \text{ with } \operatorname{Re}(s) > 0.$$

In [12], Thieleker introduced a series of representations of G with parameter (λ_0, m) ([12], p. 501). The mapping $f(x) \mapsto f(x^{-1})$ $(f \in \mathcal{H}_{s,n}^{\infty})$ gives

an equivalence between $R_{s,n}$ and a representation with parameter $\lambda_0 = s$, m = n introduced by Thieleker. Moreover, our parameter (n', n'') corresponds to $(\Lambda_{\omega_1}, \Lambda_{\omega_2})$ in Thieleker's notation ([12], p. 473). Let $P_{s,n}(\tau)f(x) = \dim(V^{\tau}) \int_K \operatorname{trace}(\tau(k)) f(k^{-1}x) dk$ for $f \in \mathscr{H}_{s,n}^{\infty}$, then $P_{s,n}(\tau)$ is a projection of $\mathscr{H}_{s,n}^{\infty}$ onto $\mathscr{H}_{s,n}^{\infty}(\tau)$ and (5.9) implies

$$A_{s,n}P_{s,n}(\tau) = P_{s,n}(\tau)A_{s,n} = c_n(s,\tau)P_{s,n}(\tau)$$
 ,

Hence, by applying Theorem 1 of [12] to $R'_{*,n}$, we have the assertion (5.10) directly from (5.8).

Therefore, using (5.10) and Lemma 5.2 below, our proposition can be proved by the induction on (n', n'').

LEMMA 5.2. Let $c_n(s) = c_n(s, n, n)$. Then

(5.12)
$$c_n(s) = s^{-2s+3} \Gamma(2s) / (\Gamma(s+3/2+n)\Gamma(s+1/2-n)),$$

and

$$c_n(s, n, -n) = (-1)^{2n} c_n(s)$$
.

PROOF. Let $\tau_n = \tau^{|n|,n}$ for a half integer n. Then the representation space of τ_n is identified with $V^{|n|}$ and $\tau_{|n|}(k) = \sigma^{|n|}(u)$, $\tau_{-|n|}(k) = \sigma^{|n|}(v)$ for $k = k(u, v) \in K$. Let t(y), u(y), v(y) be the same as in § 1, then

$$t(y) = \log(1+|y|^2)$$
, $u(y) = v(-y) = (1-y)(1+|y|^2)^{-1/2}$ ([11], p. 365).

Since w = k(1, -1) and $\sigma^{|n|}(-1) = (-1)^{2n} \sigma^{|n|}(1)$, we have

$$au_{|n|}(k(u(y), v(y))^{-1}w) = \sigma^{|n|}(u(y)^{-1}),$$

$$\tau_{-|n|}(k(u(y),\,v(y))^{-1}w)\!=\!(-1)^{2n}\sigma^{|n|}(v(y)^{-1})\;.$$

Furthermore, we note that $u(y)^{-1} = u(-y)$, $v(y)^{-1} = v(-y)$ and dy is invariant under the action $y \mapsto -y$. So, by the definition of $C(s, \tau)$, we obtain

$$C(s,\, au_{|n|})\!=\!(-1)^{2n}C(s,\, au_{-|n|}) \ = c_0^{-1}\int_I (1\!+\!|y|^2)^{-(s+3/2)}\,\sigma^{|n|}((1\!-\!y)(1\!+\!|y|^2)^{-1/2})dy \;.$$
 for $s\in C$ with $\mathrm{Re}(s)\!>\!0$.

Let du denote the normalized Haar measure on U, then for $u_0 \in U$, $n \in \widehat{M}$, the irreducibility of σ^n implies

(5.13)
$$\int_{U} \sigma^{n}(uu_{0}u^{-1})du = f_{n}(u_{0})\sigma^{n}(1)$$

where f_n is a certain continuous function on U. Moreover,

$$egin{aligned} &(2n+1)f_n(u_0) = \mathrm{trace}\,(f_n(u_0)\sigma^n(1)) \ &= \int_U \mathrm{trace}\,(\sigma^n(uu_0u^{-1}))du \ &= \mathrm{trace}\,(\sigma^n(u_0)) = C_{2n}^1\Big(rac{u_0 + ar{u}_0}{2}\Big) & (ext{cf. [11], p. 383)} \;, \end{aligned}$$

where C_{2n}^1 is the Gegenbauer polynomial of order 2n. Since dy is invariant under the adjoint action of U on I, by using (5.13) for $s \in C$ satisfying Re(s) > 0, we have

$$C(s,\, au_{|n|})\!=\!c_n^{-1}\!\!\int_I (1\!+\!|y|^2)^{-(s+3/2)}\,C_{2n}^1((1\!+\!|y|^2)^{-1/2})dy\,\sigma^n\!(1)$$
 ,

where $c_n \! = \! c_0(2n+1)$ and $n \! \ge \! 0$. Since $P_{|n|}(\tau_n) \! = \! \sigma^{|n|}(1)$ and $C(s, \tau_n) \! = \! c_n(s) P_n(\tau_n)$,

$$c_n(s) = 4\pi c_n^{-1}\!\!\int_0^\infty (1+r^2)^{-(s+3/2)}\,C_{2n}^1((1+r^2)^{-1/2})r^2\,dr$$
 .

Let $r = \tan x$ with $0 \le x \le \pi/2$, then

$$c_n(s) = 4\pi c_n^{-1} \int_0^{\pi/2} \sin^2 x \cos^{2s-1} x \, C_{2n}^1(\cos x) \, dx$$
.

We know

$$\sin (2n+1)x = \sin x \ C_{2n}^{1}(\cos x)$$
, $\left(\frac{d}{dx}\right)(\cos^{2s} x) = (-2s)\sin x \cos^{2s-1} x$.

Hence, using the integration by parts,

$$egin{align} \int_0^{\pi/2} \sin^2 x \cos^{2s-1} x \ C_{2n}^1(\cos x) dx \ &= -(2s)^{-1} \! \int_0^{\pi/2} \! \left(rac{d}{dx}
ight) (\cos^{2s} x) \sin{(2n+1)} x \, dx \ &= (2s)^{-1} (2n+1) \! \int_0^{\pi/2} \cos^{2s} x \cos{(2n+1)} x \, dx \quad & (ext{Re}(s) \! > \! 0) \; . \end{split}$$

But, for $s \in C$ satisfying Re(s) > 0,

$$\int_0^{\pi/2} \cos^{2s} x \cos(2n+1)x \, dx = \frac{\Gamma(2s+1)2^{-2s-1}\pi}{\Gamma(s+3/2+n)\Gamma(s+1/2-n)} \qquad \text{(cf. [8], p. 9) ,}$$

and by the simple calculations,

$$c_{\scriptscriptstyle 0}\!=\!\int_{\scriptscriptstyle I} e^{-3t(y)}\,dy=\!\pi^2\!/4$$
 .

Therefore, we obtain (5.12).

COROLLARY 5.3. Retain above notations. All the zeros and poles of $c_n(s, n', n'')$ are simple and they are as follows; Zeros,

- 1) s=k+1/2, $n < k \le n'$ and $n-k \in \mathbb{Z}$,
- 2) s=k+1/2, $0 \le k < |n''|$ and $n-k \in \mathbb{Z}$,
- 3) $s = -(k+1/2), |n''| \le k < n \text{ and } n-k \in \mathbb{Z},$
- 4) s = -(k+1/2), n' < k and $n-k \in \mathbb{Z}$, Poles,
- 5) s=-k, $k\geq 0$ and $n-k\in \mathbb{Z}$.

Since the distribution of zeros and poles of the Gamma function are known, this corollary is obtained from the explicit formula (5.7).

We know that $\tau^{n',n''}(w) = \varepsilon(n', n'')\tau^{n',n''}(1)$ (where $\varepsilon(n', n'') = (-1)^{2n'-2n''}$). Hence (5.6), (5.7) imply the following proposition.

PROPOSITION 5.4. Let $C_1(s)$, $C_w(s)$ be meromorphic functions which appears in Theorem 3.1, and let $\tau_i = \tau^{n_i',n_i'}$ (i=1,2). Then for each $n \in \hat{M}(\tau_1, \tau_2)$ and $s \in \mathcal{O}(\tau_1, \tau_2)$,

(5.14)
$$C_{1}(s)v_{n} = \varepsilon(n'_{2}, n''_{2})c_{n}(s, \tau_{2})v_{n},$$

$$C_{w}(s)v_{n} = \varepsilon(n'_{2}, n''_{2})c_{n}(-s, \tau_{1})v_{n}.$$

§ 6. Proof of Theorem 3.4.

In this section, we assume that $\hat{M}(\tau_1, \tau_2)$ is not empty. To begin with, we shall prove the following lemmas.

LEMMA 6.1. For fixed $n \in \widehat{M}(\tau_1, \tau_2)$ and t > 0, the function $s \mapsto E(s, n, t) = E(s, t)v_n$ can be extended to a \mathscr{V}_M -valued meromorphic function on $C_- = \{s \in C; \operatorname{Re}(s) \leq 0\}$ whose poles are all simple. Moreover, if $s_0 \neq -(k+1/2)$ for $k \in \widehat{M}(\tau_1, \tau_2)$ with n > k, then E(s, n, t) is holomorphic at $s = s_0$.

LEMMA 6.2. For each $n \in \widehat{M}(\tau_1, \tau_2)$ and t > 0, the function $s \mapsto E(s, v_n, a_t)$ is holomorphic on C with values in \mathscr{Y}_{M} and has zeros at points below;

- 1) s=k+1/2 for $n-k \in \mathbb{Z}$ with $n'_1 < k \le n'_2$, if $n'_1 < n'_2$,
- 2) s=k+1/2 for $n-k \in \mathbb{Z}$ with $|n_1''| < k \le |n_2''|$, if $|n_1''| < |n_2''|$,
- 3) s = -(k+1/2) for $n-k \in \mathbb{Z}$ with $n'_2 < k \le n'_1$, if $n'_2 < n'_1$,
- 4) s = -(k+1/2) for $n-k \in \mathbb{Z}$ with $|n_2''| < k \le |n_1''|$, if $|n_2''| < |n_1''|$.

PROOF OF LEMMA 6.1. From Lemma 4.4, we see that the functions $s \mapsto A_k(s)v_n$ $(k \in \mathbb{Z} \text{ and } n \in \widehat{M}(\tau_1, \tau_2))$ are holomorphic at $s=s_0$ satisfying $\text{Re}(s_0) \leq 0$ and $s_0 \notin [-n, 0]$. Hence, using Lemma 2.3 and Corollary 4.6, the series

(6.1)
$$E(s, n, t) = e^{(s-3/2)t} \sum_{k=0}^{+\infty} A_k(s) v_n e^{-kt} \qquad (t>0)$$

is holomorphic at $s=s_0$ satisfying $\text{Re}(s_0) \leq 0$ and $s_0 \notin [-n, 0]$. Let $s_0 = -r \in [-n, 0]$ and consider the Laurent expansion

(6.2)
$$E(s, n, t) = \sum_{j=-\infty}^{+\infty} E(n, t, j)(s+r)^{j} \qquad (t>0) ,$$

then the function $t \mapsto E(n, t, j)$ $(j \in \mathbb{Z})$ is a spherical function on A^+ (Proposition 2.4, Corollary 4.6).

By using the Cauchy's integral formula, we conclude from Theorem 3.1, Lemma 4.4 and Lemma 4.5 that there is an integer j_0 such that E(n, t, j) = 0 if $j < j_0$, t > 0 and $E(n, t, j_0) \neq 0$, when $E(s, n, t) \neq 0$ around s = -r. Moreover, we have from the definition of j_0 and (6.2) that

(6.3)
$$E(n, t, j_0) = e^{-(r+3/2)t} \sum_{k=0}^{+\infty} a_k (-r, j_0) v_n e^{-kt}$$

(see § 4 for $a_k(-r, j_0)$). Now we select an integer $k_0 \ge 0$ such that

$$a_k(-r, j_0) = 0$$
 if $k < k_0$ and $a_{k_0}(-r, j_0) \neq 0$.

Put $a_k=a_{k+k_0}(-r, j_0)v_n$, then, from Corollary 4.6, there are constants $c_i>0$ (i=1,2) such that $|a_k|\leq c_1(c_2)_k/k!$ $(k-0,1,2,\cdots)$. From Lemma 3.3, we see that there is a function $F_s\in C^\infty_{s,n}(G^+,\tau)$ such that $F_s(a_t)=E(s,n,t)$ for t>0. Put

(6.4)
$$F_{j_0}(x) = \frac{1}{2\pi i} \oint F_s(x)(s+r)^{-(j_0+1)} ds \quad \text{for} \quad x \in G^+ .$$

Since $zF_s = \chi_{s,n}(z)F_s$ for all $z \in \mathcal{B}$ and the function $s \mapsto \chi_{s,n}(z)$ is a polynomial function on C, we have from the definition of j_0 and (6.4) that $F_{j_0} \in C_{-r,n}(G^+, \tau)$ (by definition of F_s , the function $s \mapsto F_s(x)$ is meromorphic at s = -r). Moreover, from the choice of k_0 and (6.3),

$$F_{j_0}(a_t) = E(n, t, j_0) = e^{-(r+k_0+3/2)t} \sum_{k=0}^{+\infty} a_k e^{-kt}$$
.

Hence, we have from Proposition 2.4 that F_{i_0} is of type $r+k_0$ if $r+k_0>0$. We need the next lemma.

LEMMA 6.3. Retain above notations. If $j_0 < 0$, then $k_0 > 0$ and $r = n - k_0 + 1/2$ with $n - k_0 \in \widetilde{M}(\tau_1, \tau_2)$.

PROOF. Since $A_0(s)$ = the identity endomorphism on \mathscr{Y}_M , we get $k_0 > 0$. Next, since $|a_k| \le c_1(c_2)_k/k!$ $(k=0, 1, 2, \cdots)$,

$$|e^{(r+k_0+3/2)t}F_{j_0}(a_t)-a_0| \leq |\sum_{k=1}^{+\infty}a_ke^{-kt}| \leq c_1((1-e^{-t})^{-c_2}-1)$$
 for $t>0$.

So, $\lim_{t\to+\infty}e^{(r+k_0+3/2)t}F_{j_0}(a_t)=a_0\neq 0$. Hence, Proposition 2.5 implies that $r+k_0=\pm r$ or $r+k_0=\pm (n+1/2)$. Since $k_0>0$, we have $r+k_0=n+1/2$. So, it is enough to show that $n-k_0\in \hat{M}(\tau_1,\tau_2)$. If we write $a_k(-r,j_0)v_n=\sum_{n'\in \hat{M}(\tau_1,\tau_2)}a_k(n,n')v_n$, then

$$a_k = \sum_{n' \in \hat{M}(\tau_1, \tau_2)} a_{k+k_0}(n, n') v_{n'},$$

and

$$a_{k}(n, n') = \frac{1}{2\pi i} \oint A_{k}(s, n, n')(s+r)^{-(j_{0}+1)} ds$$
.

Therefore, we see from (4.2) and the choice of j_0 , k_0 that

$$(-2k_0r-k_0^2+n(n+1)-n'(n'+1))a_{k_0}(n,n')=0$$
.

Since $r=n-k_0+1/2$, we have

$$-2k_0r-k_0^2+n(n+1)-n'(n'+1)=(n-k_0-n')(n-k_0+n'+2).$$

and $n-k_0+n'+2\neq 0$ for any $n'\in \hat{M}(\tau_1, \tau_2)$. Hence $(n-k_0-n')a_{k_0}(n, n')=0$ for any $n'\in \hat{M}(\tau_1, \tau_2)$. But since $a_0=\sum_{n'}a_{k_0}(n, n')v_n\neq 0$, there is an element $n'\in \hat{M}(\tau_1, \tau_2)$ such that $n'=n-k_0\in \hat{M}(\tau_1, \tau_2)$ and $a_0=a_{k_0}(n, n-k_0)v_{n-k_0}$. This completes the proof.

Now, we return to the proof of Lemma 6.1. From (4.3), we see that the function $s\mapsto A_{k_0}(s,\,n,\,n-k_0)$ has at most simple pole at $s=-(n-k_0+1/2)$. Hence, we have from Lemma 6.3 that $j_0=-1,\,k_0>0$ and $r=n-k_0+1/2$ with $n-k_0\in \hat{M}(\tau_1,\,\tau_2)$ if $j_0<0$. This completes the proof of Lemma 6.1.

PROOF OF LEMMA 6.2. From Proposition 5.1, we have

(6.5)
$$c_n(s, \tau)c_n(-s, \tau) = c_n(s)c_n(-s)$$

for $n \in \widehat{M}$ and $\tau = \tau^{n',n''}$ with $(n', n'') \in \widehat{K}(n)$, where $\widehat{K}(n) = \{(n', n'') \in \widehat{K}; |n''| \le n \le n' \text{ and } n' - n \in \mathbb{Z}\}$. Hence, from (3.5) and (6.5), we have

(6.6)
$$c_n(s, \tau_1)E(s, v_n, a_t) = c_n(s, \tau_2)E(-s, v_n, a_t),$$

for $s \in \mathcal{O}(\tau_1, \tau_2)$, $n \in \widehat{M}(\tau_1, \tau_2)$ and t > 0. But it is clear from (3.4) that the function $s \mapsto E(s, v_n, a_t)$ is a \mathscr{V}_{M} -valued holomorphic function on C. Now, (6.6) implies

$$\frac{c_n(s, \tau_1)}{c_n(s, \tau_2)}E(s, v_n, a_t) = E(-s, v_n, a_t).$$

Noting that poles (resp. zeros) of the function $s \mapsto c_n(s, \tau_1)/c_n(s, \tau_2)$ correspond to zeros of the function $s \mapsto E(s, v_n, a_t)$ (resp. $E(-s, v_n, a_t)$) and, using Corollary 5.3, we may determine the zeros and poles of the function $s \mapsto c_n(s, \tau_1)/c_n(s, \tau_2)$. Hence, Corollary 5.3 implies Lemma 6.2.

Now, we shall prove Theorem 3.4. When $s \in C$ satisfies $\text{Re}(s) \leq 0$, Theorem 3.4 has been proved in Lemma 6.1. From (3.5) and Proposition 5.4, we have

(6.7)
$$E(s, n, t) = c_n(s, \tau_2)^{-1} (\varepsilon E(s, v_n, a_t) - c_n(-s, \tau_1) E(-s, n, t))$$
,

for $s \in \mathcal{O}(\tau_1, \tau_2)$, $n \in \hat{M}(\tau_1, \tau_2)$ and t > 0, where $\varepsilon = (-1)^{2n'_2 - n'_2}$. Hence, from Lemma 6.1 and Proposition 5.1, the function $s \mapsto E(s, n, t)$ is meromorphic on $C_+ = \{s \in C; \operatorname{Re}(s) > 0\}$ with values in \mathscr{V}_M . Noting that $\hat{M}(\tau_1, \tau_2) = \{k \in \hat{M}; \max(|n''_1|, |n''_2|) \le n \le \min(n'_1, n'_2) \text{ and } n'_i - n \in \mathbb{Z} \ (i = 1, 2)\}$, we see from Corollary 5.3 that the function

$$s \longmapsto c_n(s, \tau_2)^{-1}c_n(-s, \tau_1)E(-s, n, t)$$

satisfy the conditions of Theorem 3.4 on $C_+ = \{s \in C; \text{Re}(s) > 0\}$. Moreover, using Lemma 6.2 and Corollary 5.3, the same arguments are valid for the function

$$s \longmapsto c_n(s, \tau_2)^{-1} E(s, v_n, a_t)$$
.

Hence, (6.7) implies Theorem 3.4.

References

- [1] Harish-Chandra, Spherical functions on a semisimple Lie group I, Amer. J. Math., 80 (1958), 241-310.
- [2] HARISH-CHANDRA, Spherical functions on a semisimple Lie group II, Amer. J. Math., 80 (1958), 553-613.
- [3] HARISH-CHANDRA, Differential equations and semisimple Lie groups, 1960, unpublished.
- [4] HARISH-CHANDRA, Invariant eigendistributions on a semisimple Lie group, Trans. Amer. Math. Soc., 119 (1965), 457-508.
- [5] Harish-Chandra, Harmonic analysis on real semisimple Lie groups I, J. Func. Anal., 19 (1975), 104-204.
- [6] S. HELGASON, The surjectivity of invariant differential operators on symmetric spaces I, Ann. Math., 98 (1973), 451-479.
- [7] A. W. KNAPP and E. M. Stein, Intertwining operators for semisimple groups, Ann. Math., 73 (1971), 489-578.
- [8] W. Magnus and F. Oberhettinger, Formeln und Satz fur die speziellen Funktionen der mathematischen Physik, Springer-Verlag, 1948.
- [9] M. Mamiuda, An analogue of the Paley-Wiener type theorem on the universal covering group of De Sitter group, to appear.
- [10] M. Mamiuda, The relation between asymptotic behaviours and eigenvalues on semisimple Lie groups of real rank one, preprint.

- [11] R. TAKAHASHI, Sur les représentations unitaires des groupes de Lorentz généralisés, Bull. Soc. Math. France, 91 (1963), 289-433.
- [12] E. THIELEKER, On the quasisimple irreducible representations of the Lorentz group, Trans. Amer. Math. Soc., 179 (1973), 465-505.
- [13] P.C. TROMBI and V.S. VARADARAJAN, Asymptotic behaviour of eigenfunctions on a semisimple Lie group, Acta Math., 129 (1972), 237-280.
- [14] N. VILENKIN, Special functions and the theory of group representations, Transl. of Math. Mono., 22, Amer. Math. Soc. (1968).
- [15] G. WARNER, Harmonic analysis on semisimple Lie groups II, Springer-Verlag, (1972).

Present Address:
DEPARTMENT OF MATHEMATICS
WASEDA UNIVERSITY
NISHI-ÔKUBO, SHINJUKU-KU,
TOKYO, 160