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Introduction.

Let G be the universal covering group of De Sitter group and
G=KAN be its Iwasawa decomposition. Let MAN be a minimal para-
bolic subgroup of G. We consider the Eisenstein integral for MAN
which is defined as follows;

(1) E(s, v, x)=g et vatEb  (I(xk))vr,(k~ ) dk for seC,zxeG,
K

where 7, are irreducible unitary representations of K on V, (=1, 2) and
ve 7,={v; a linear endomorphism of V, into V, with 7,(m)v="vr,(m) for
all meM) (see, §3, [3], [5], [15]). Then Eisenstein integral E(s, v, a.)
has the series expansion on a Weyl chamber A*, which is divided into
two parts associated with the Weyl group W of the pair (G, A4);

(2) E(s, v, a,)=E(s, t)C,(s)v+ E(—s, t)Cy(8)v , for t>0,

where E(s, t)=e" ¥t A,(s)e *. (See, Harish-Chandra [3].) The eigen-
values of Casimir operator on G is parametrized by (s, v) and the
function x> E(s, », ) is an eigenfunction corresponding to (s, v). By
the change of variable y=e¢*, the differential equation for E(s, v, a,) is
transformed to an ordinary differential equation with a regular singular
point at y=0. The formula (2) gives the series expansion of the solution
E(s, v, a,) around the regular singular point y=0. As the classical theory
of differential equations teaches us, the coefficients A,(s) (k€ Z) satisfies
a certain recurrence formula with respect to ¥ and they are not well-
defined for all se C. So, the formula (2) is valid on a certain open dense
connected subset ~*(z,, 7,) of C. But the function s— E(s, t) can be
extended to a meromorphic function on C with values in the space of
all linear endomorphisms on 7 (see, §3). In this paper, we shall say
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the formula (2) by the name of the Harish-Chandra expansion, and by
the singularities of the function s+— Ef(s, t) we mean the singularities of
the Harish-Chandra expansion.

The purpose of this paper is to determine the singularities of the
Harish-Chandra expansion and to enumerate its singular points. So, we
shall prove the next theorem (see, § 3. Theorem 3.4).

THEOREM. For fized n € M(z,, 7,) and t>0, the function s—FH(s, n, t)=
E(s, t)v, can be extended to a 7y-valued meromorphic function on C and
1ts singularities are all simple poles. Moreover, E(s, n, t) is holomorphic
on the complement of these points below;

1) s=k, k>0 and n—keZ,

2) s=k+1/2, ke M(z, 7,) and n<k,

3) s=k+1/2, 0<k<min(|n;|, |n,]) and n—ke Z,

4) s=—(k+1/2), ke M(z, 7,) and k<n.

This theorem plays an important role in the proof of the Paley-Wiener
type theorem on G ([9]). In [6], Helgason has proved the Paley-Wiener
type theorem on a symmetric space X=G/K for arbitrary symmetric
pair (G, K) of non-compact type. His proof is based on the absence of
these singular points on a certain half space for right K-invariant
eigenfunctions (in our case, these correspond to the case where z,=trivial).
In general, we can’t expect this property, and so that we need more
delicate and deep considerations about E(s, t). Especially we need closer
studies of E(s, t)C,(s).

The proof of Theorem 3.4 is long and comlicated, so we shall prove
this in §6 after establishing some preliminary results. In §5, we
determine the explicit formula of ¢c-functions which appears in the Harish-
Chandra expansion, in terms of the Gamma functions. Using this
formula and Theorem 3.4, we reduce the proof of Theorem 3.1 to the
case when Re(s)<0.

In §4, we give the more precise formula of the coefficients A,(s) in
the Harish-Chandra expansion. From Lemma 4.4 and the related results,
we conclude that E(s, n, t) is meromorphic with respect to the variable
s (that is independent on ¢>0). The fundamental idea of the proof is
to consider the first term of the Laurent expansion of E(s, n,t) and
study this as a r-spherical eigenfunction on G*. To do this, we need the
results of §2 and the formulas of §4. In particular, Proposition 2.5 is
the key result to prove Theorem 3.4. In this proposition, we establish
the relation between the asymptotic behaviour of z-spherical eigenfunc-
tions and its eigenvalues. Proposition 2.5 is an extended analogue of
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Trombi-Varadarajan’s theorem (Theorem 7.1 of [13]).

§1. Notations and preliminaries.

1.1. Description of the universal convering group of De Sitter
group.

As usual, R, C, Z denote the set of real numbers, complex numbers
and integers, respectively. Let H be the quaternion field and 1,1, 7,k
be the standard basis of H over R. We write £ for the conjugate
quaternion of x and |x| for the norm of x. Let M,(H) be the set of all
2x 2 matrices with coefficients in H. We write g* for the adjoint matrix

of ge MyH), i.e., (Z 3) (% dc‘)

We use the same notations and definitions as in Chap. II, § 1 of [11].

Then the universal covering group G of De Sitter group is described as
follows;

1 0
G={g € M,(H); g*wg=w}, where w= (0 1) .
And subgroups K, M, A, N, N of G are described as follows;
u 0
K:{k(u, v)=(0 v);u,veU} , where U={uec H, |u|=1},

M= m(u)—~( )ueU},

. __(cht/2 sht/2
A‘{a’_(sht/z cht/2) GR}’
Nz{n”:(l—:’g 1—{—32) eI} where I={xec H;ZT=—2x},
_(1=vy/2 —y/2
1 ”_< y/2 1+y/2) yel}'

So, K is a maximal compact subgroup of G and G=KAN is an Iwasawa
decomposition of G. Moreover, M is the centralizer of A in K and MAN
is a minimal parabolic subgroup of G. The corresponding decomposition
of an element g in G=KAN is denoted by g=k(9)a,, n.,, and sometimes
we write k(u(g), v(9)) for k(g). When g=u, we write k(y), u(y), v(¥),
t(y) for k(w,), u(n,), v(w,), t(n,), respectively.

Let g={x e M,(H); X*w+wX=0}, then we may regard g as the Lie
algebra of G, i.e., (Xf)(g)=(d/dt)(f(gexp(tX))|.-, for fe C~(G) and X eg.
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The corresponding Lie algebras of subgroups K, M, A, N, N are denoted
by f, m, a, i, t respectively. Then these are described as follows;

¢ {(m 0. . ,,e,}
= y X, X ’
Oxll

1=<$ (1)> and 'w=<(]5 _g) constitute the Weyl group W of the pair (g, a).

Let g, denote the complexification of g and & the universal enveloping
algebra of g.. By &, I, A we denote the subalgebra of & generated by
1,1, (1, m), (1, a), respectively. Then R, M, A may be regarded as the
universal enveloping algebra of f, m, a, respectively. In general for a
Lie group G,, as usual, we regard an element D of the corresponding
universal enveloping algebra &, of G, as a left invariant differential
operator on G, and also as a differential operator on arbitrary open
subset of G,.

1.2. The irreducible unitary representations of M and K.

Let U, I be the subset of H which are introduced in 1.1., then U is
a Lie group with a Lie algebra I and isomorphic to SU (2) (cf. Chap.
II, § 1 of [11]). Hence, for each nonnegative half integer » there exists
the irreducible unitary represetation ¢® on V™ which is realized in Chap.
III of [14]. Moreover, any irreducible representation ¢ of U is equivalent
to o™ for some half integer n>0 and any two representations o™ and "
(n#n') are inequivalent. Since K is isomorphic to the group Ux U and
M is the diagonal subgroup of K, the sets of equivalent classes of
irreducible unitary representations M, K of M, K are parametrized
respectively as follows;

J‘Zf={n; 2ne Z and n>0},
K={(n', n"); 20, 20", n' —n" € Z and |n"|<n'}.

More precisely,
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for mneM, m=mw)eM  o"(m)=0c"(u),
and
for (n,n"eK, k=ku,v)eK, (k=" (wRQr"(v),
where
2n,=n"+n", 2n,=n"'—n".

We use the same symbols %, z**" for the corresponding representations
of M, K, respectively. Let

1/ 0 1/70 1/k0
=303 "=los) B3los):

1/¢ O , 1 (j 0 1 (lc 0)
U]_’:_ ’ U2:_‘ ’ Ug’-—:* .
2(0 —1;) 2 O——j) 2\0 —k&
Then {U;; ©=1, 2, 3} forms a basis of m and {U,, U;; ©1=1, 2, 3} forms a
basis of f. Furthermore,

3 3
W, = — zl] Uz, W=, — Zl, u.”

are Casimir operators of I, &, respectively. They satisfy
o"(@.)=n(n+1o"1) and z"""(@)=2(n,(n,+1)+n(n,+1))c*"*"(1)

(cf. Chap. II, §1 of [11] and Chap. III of [14]).

Let V, be a Hilbert space with a Hermitian form (, ); (¢=1, 2). For
a bounded linear operator L on V, into V,, let L* denote the adjoint
operator of L, i.e.,

(L*vg v,),=(v,, Lw)), for any wv,eV, (¢+=1,2).

For z=7""*"((n/, n”’)e K) and a”(fneM), by HOM,(V® V™), we denote
the space of all linear mappings L on V* into V" such that ¢*(m)L= Lt(m)
for all m e M, where V'~ is the representation space of z.

In our case, the dimension d(z, n) of HOM,(V*®, V") equale to 0 or 1,
because 7|,=0" Qo™ (equivalent). When d(z, n)=1, there exists an
element P,(z) of HOM,(V?, V*) such that P,(7)P.7)*=o0"(1). For each
T we put M(Z')={ne M; d(z, n)=1}, then we know that

rlM:‘- Z o" ’

ne M(zr)

and for z=7""""
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M(z'”"””):{fn eM;|n"|<n<n’ and n'—me Z}
(see, §8 of [14]).

§ 2. Spherical functions on G*.

In this section we shall introduce certain function spaces of G* and
study some properties of these function spaces.

Let G'={reG;x¢ K}, A*={a,; t>0}, then G*, A* are open submani-
folds of G, A, respectively. M operates on the product manifold K x A* x K
by (k, a, K'Ym=(km, a, m™*k’) for k, k' € K, a € A* and me M. The follow-
ing lemma is clear from Lemma 1.2 of [11].

LEMMA 2.1. G* is diffeomorphic to the quotient manifold (KX
At x K)/M.

Let 7z, 7, be two irreducible unitary representations of K on V,, V,
respectively. We write 7~ for the space of all linear mappings of V,
into V, and write 73 for the subspace of " consisting of all elements
L such that z,(m)L=Lz,(m) for any m e M.

DEFINITION. An infinitely differentiable function F on G* with values
in 77 is said to be (r, 7,)-spherical (or simply, spherical) on G* if
F(k, X ky)=1,(k)F(2)r,(k,) for any k, k,e K and xeG*. Similarly, an
infinitely differentiable function f on A* with values in 7" is said to be
spherical on A* if f(4Y)c 73.

Fix a positive number » and let F, f be spherical functions on G*,
A" respectively. F (resp. f) is said to be type » if it satisfy the
condition;

for each De® (resp. DeN) and any ¢ satisfying 0<e<1, there is

a constant c=c(D, F,e)>0 (resp. c=c¢(D, f,e)>0) such that

|DF(k.a.k,)| <ce ¥t for k,k,eK and t>1, (resp. |Df(a,)|<

ce” "2t for t>1), where |L| is the operator norm of Le 7 .

PROPOSITION 2.2. Let F be an infinitely differentiable function on
G* with values in 7~ and let f=F|A* be the restriction of F to A*.
If F 1is spherical on G* then f=F|A* is spherical on A*, and the
mapping F—f=F|A" is a linear bijection. Furthermore, F is of type
r of and only if f=F|A" s of type r.

PROOF: Since ma=am for m e M, ac A, the first half of assertions
is easy from Lemma 2.1.

From Harish-Chandra [3] (also, Chap. 9, §1 of [15]), we see that for
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each De® there exist analytic functions a,, ---, a, of Kx A" x K with
values in End(7") and elements D,, ---, D, of ¥ such that

Co= ;( sup la.(k, a., k"))

k,k’e K

is bounded, and
@.1)  (DF)(kak)=3a.k, a, K)D.,F)a,) for k kekK,t>0,

in particular, if De 9, then A
(2.2) (DF)(a,)=(Df)(a.) for t>0 (f=F|A"),

where End(?7") is the space of all linear endomorphisms on 7” and |L]| is
the operator norm of L e End(9).
If F is of type 7, then

(DF)(a,)| < cert3/2—er for t>1 and De¥.
Hence, from (2.2) we have the estimate
(DS a)| Seemtrroor

Conversely we assume that f is of type ». For each De®, let a, ---, a,,
D, ---, D, be the same as above and select positive constants ¢, ---, ¢c,
such that

(Duf)a)| <ee ¥t for t>1 (i=1, .-+, n),
then from (2.1) we get | |

(DF)(ka k)| <cem+¥/2 ot for k kK eK and t>1,
where ézmax(cocl, <+, ¢C,). Thus, Proposition 2.2 is proved.

LEMMA 2.3. Let V, be a complex Banach space with norm |-| and
{a,; n=0,1,2, ---} be a sequence of V,. Let (s),=I(s+mn)/I'(8) for se€C
and ne€Z, where I' is the usual Gamma function. Suppose that a,
satisfy the inequality |a,|<|a,/(c)./n! (n=0,1,2, ---) for some constant
¢>0, then the series

Ea”e—nt
1s absolutely comvergent on (0, ) and this convergence is unmiform on
[7, =] for each r>0. Moreover, when we write f(t)=>>moae”™ (t>0),
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for each imteger ©1>0 there 18 a constant ¢,;>0 such that
i .
(L) 70| <e@—e  on ().

PROOF. Since

(&) e

<la
7 < ay

(L) @nmne=|

it will be sufficient to consider the case when V,=C and a,=(c),/n!. In
this case, our lemma is easy from the classical argument for the formula;

é‘,o 3‘3" eMm=1—e?)"" on (0, ).

By Leibniz formula and Lemma 2.3, we have the next proposition.

PROPOSITION 2.4. Retain above mnotations and assumptions. For
seC, let f,(t)=exp(—(s+3/2)t)f(t), then for each integer 1>0 there is a
constant ¢,>0 such that

ay, | BN pmty—tetir — (et
(L) 70| < e(lsl+5) @—eserverome, for >0,
where r=Re(s). In particular when V,= 73 and t>0, fla,)=f,(t) is a
spherical function on A* of type 7.

Let § be the Cartan subalgebra of g which contains a and U,. Let
8 denote the center of & and v be the canonical isomorphism of 8 into
the algebra of all polynomial functions on §)* which is the complex dual
space of ), (cf. Harish-Chandra [4]).

For each scC and ne M, let ., be the linear function on §, with

1 1/01
= —(—=1)v2 —_— = = -
N, a(U)=—(—1) (n+ 2) , New(H)=s8, where H > (1 0) .

So, we define the algebra homomorphism %,,. of 8 into C by x,.(2)=
Y(2)(N\,,,) for ze B.

Now we shall define certain function spaces consisting of spherical
functions,

C=(G*, 7)={f; f is a v=(r,, 7,)-spherical on G*}.

For seC, ne M and >0, we define
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Con(G*, T)={f € C=(G™, 7); 2f =Y., (2)f for all ze B}
and
Co(G*, 7, r)={f € C.(G, 7); f is of type 7} .
The following proposition, which plays an important role in our proof
of the main Theorem 3.4, had proven in [10] under more general situa-

tions. The methods used in that paper are an extention of those which
are used to prove the Theorem 7.1 in Trombi-Varadarajan [13].

PROPOSITION 2.5. Retain above notations. Assume that s € R satisfies
s# +(n+1/2) (n € M(z,, 7,)), then for a given FeC=.(G*, 7, r) (r>0) F,=
lim,_,..e " t¥®*F(a,) exists and F,e 7. Moreover, if F,+#0 then r equals
one of numbers; s, —s, n+1/2, —(n+1/2).

§3. The Harish-Chandra expansions.

We use the notations and the definitions introduced in §1 and § 2,
and also use the notation End(V,) for the space of all linear endomor-
phisms on a linear space V,.

3.1. Definition of the coefficients A, and the Theorem of Harish-
Chandra.
Let

Y,=27V U +(= 10D, Yo= (1)UL
and
Y_ =27 (- U, +(—=1"U;) .
Then Y,, Y, Y_, are elements of ¥, which satisfy

S(Yir=— (U =0—0,.

-1

Let 7, 7, 77, 73 be the same as in §1 and § 2.
3.1 For ve 7", put

Ly =7(0.,)v =075(®y) ,
Lo=3n(Y)or(Y_5)=— Se(UdveUD) ,
L,y =1,(0,— ®»,)v+v7,(0,—®,) .

Then, from the definition of %5 and simple calculations, %; is stable
under the linear endomorphisms L, L,, L,. Hence, we may conclude that
L, eEnd( 73) (¢=0, 1, 2).
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Now we shall define the rational functions A4, (k€Z) on C with
values in End( ;) as follows;

(3.2) A,=0 if k<0 and A,=the identity endomorphism on %73,
(3.3) for k>0, A, are defined by the recurrence formula below ;
(2ks — k) A, (8) — LoAy(8) + Au(s) L,
-3 s——-2—+2j—k)A,,,2,-(s)
+4 ,Z‘zl (27 —1) L, Ai_55-1x(8)

—4 E JL, A, _,;(8) .
Let E(s, v, x) denote the function below;
- _3 -1
3.4) E(s, v, x)= SK exp ((s— : Ye@h) ) 7. Ge(wh)yor o)k

for seC, ve 7, and € G, where dk is the normalized Haar measure
on K. Then the function z+— E(s, v, x) is a real analytic function on G
with values in End(?°) and (z,, 7,)-spherical on G. Moreover, the function
s+— E(s, v, x) is holomorphic on C and for each n ¢ M(‘cl, 7,), the function
E, . (x)=E(s, v,, ) belongs to C>.(G", ) (cf. Chap. 9 of [15], 3.2 below
for v,). The following theorem have been proved by Harish-Chandra
(cf. [3], also Chap. 9 of [15]).

THEOREM 3.1 (Harish-Chandra). There 18 an open connected dense
subset ~(t, 7,) in C and the meromorphic functions C,, C, on C with
values tm End( 7;) having the following properties;

1) The complement of < (t,, T,) in C 18 a discrete set and A (ke Z),
C, C, are all holomorphic on 7 (t, T,).

2) Fix any compact subset B of ~(z,, t,) and positive number r.
Then, for each integers i, j=>0, the series

%(%)i(—(%—Y(Ek(s, £)  (where Eis, t)=A,(s)e")

18 untformly convergent on BX|[r, o).
3) Put E(s,t)=e" ¥ 3> H.(s, t), then the following equality is
valid,
(3.5) E(s, v, a,)=E(s, t)C(s)v+ E(s, 1)Cu(8)v ,
Jor se 7 (t, 7,), ve 75 and t>0.



HARISH-CHANDRA EXPANSION 123

3.2, :I‘he statement of the main theorem. o
Let M(z, 7,), P,(z,) (1=1,2) be the same as in §1. When M(z, 7,)
is not empty, we put

v.=P,(t)*Py(z)  for me M, 7).
The following Lemma is a simple application of the Schur’s lemma.

LEMMA 3.2. ¥, contains nmon-zero elements if and only if M(z'l, Ty)
i1s mot empty. When M(z, 7,) ts not empty, {v,;ne M(z, 7,)} forms a
basis of 7.

Proor. Firstly, we note the following facts (cf. Chap. III, §8 of
[14]);

Let P, ,=P,(t)*P,(t,) (neM(z'), 1=1, 2), then P, ,; fneM(z'i) are pro-
jections of V, and satisfy the equalities

Pn,iPn’,iza'ny'n’Pn,i ,
>, P, .,=the identity endomorphism on V,.

A
neM(ry)

Moreover, the subspaces V! =P, ,V,; n e M(z,) are all stable under the
linear mappings z,(m) (me M). Let z?(m) be the restriction of z,(m)
onto VI (me M, fneJlZf(z',.)), then 77 is equivalent to o™ as the representa-
tions of M. Now, we put

Zuln, W)={v'=P, 0P, ;ve 7 for meMx), ne Mz,

then we may regard v' € 7;(n, n') as a linear mapping of V™ into V"
such that o"(m)v'=v'6"(m) for all m e M. Hence, by Schur’s lemma, we
have 73(n, n')={0} for n#n'. Since P,(z,)P,(z,)*=0"(1) (n € M(z,), 1=1, 2),
we obtain the relations
P, 0, P, ;= P,(7)* Py(T)(Pn(7)* Pp(72)) Po(72)* Py(72)
w(T)*0" (1) P,(7,)
=P, (t)*P,(t)=v,, for meMx,7,).
Thus, v, 73(n, n) and

tra’ce (,v'n,v::) = trace (P'n(z-l)*Pn(z—2)Pn(T2)*Pn(T1))
=trace(P,,) =2n+1+0.
Therefore, by Schur’s lemma, we have 9,(n, n)=C»,, v,#0. But, it is
easy to see that ,
V= Z Zu(n, n') (direct sum) .

n,n’
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Hence, we conclude our lemma.

From the results of §2 and Theorem 3.1, we see that there exists
an unique function F,, e C>(G*, ) such that F, . (a,)=E(s, t)v, for ¢>0,
se 7(t, 7). By the definitions of v,, P,(7,) (=1, 2), we have the equa-
tions

T @)V, =0,T(0,)=n(n+1)v, for me Mz, 7).
Hence, from the arguments in 9.1.5. of [15], we have the next lemma.
LEMMA 38.3. Let F,, be the same as above, then F,, € C>.(G*, 7).

In later sections, we write E(s, n,t) for E(sA, twv,. Let z,=t"m/
(t=1, 2) be the same as in §1 and assume that M(z, 7,) is not empty.
Then we have the next result which is our main theorem.

THEOREM 3.4. Fiz me M(z,7,) and t>0, then the function s—
E(s, n, t)=E(s, t)v, can be extended to a 7y-valued meromorphic function
on C and its singularities are all simple poles.

Moreover, E(s, m,t) 18 holomorphic on the complement of these points
below;

1) s=k, k>0 and n—ke Z,

2) s=k+1/2, ke M(z, 7,) and n<k,

3) s=k+1/2, 0<k<min(|n/|, |n;]) and n—ke Z,

4) s=—(k+1/2), ke M(t,, 7,) and k<n.

§4. Some properties of A,.

In the first place, we introduce some notations. Let I(n)={p;2pec Z,
n—p€eZ and |p|<n} for ne M and {v}; p € I(m)} be the orthonormal basis
of V™ introduced in Chap. III of [14]. Let 7z, V, (+=1, 2), 7°, 7%, etc.,
be the same as in §1. By (, );, we denote the positive definite Hermitian
form on V, such that 7,k) (ke K) are unitary endomorphism on V,
(1=1, 2). For each n e M(z,) and p e I(n), we put v2,=P,(z.)*v: (i=1, 2).
Then we know that (v%,, v2.),=0,, (2=1, 2).

LEMMA 4.1. For each 1=1,2 and j=—1,0,1 put
05.m, p: W, Q) =(@(Y )05 03 Sor m,n e M), peln), geln)
(see §3 for Y;). Then (p—q+J)c;n, p: v, ¢)=0.
PROOF. Let U=(—1)V2U,. Then it is easy to see that
[0, Y;]=5Y; (G=-1,0,1).
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Hence,
T(U)t (Y ;) — 7Y )t(U)—37z(Y;)=0.

But,A(ri(U)v, v, =W, 7(UW'), for any v, v' €V, and 7 (U)v;.=pv;,: for
ne M(z,), peI(n) (i=1, 2) (cf. Chap. III of [14]). Thus,

(T (D) (Y )50 V5 )i=ac;(n, p: 7, Q) ,
(Y )T (U3, v5 )i=D0C5,(n, P: 7, Q) ,
(T (FY )50 Ve i=JC54(n, D21, Q) .
Therefore, ‘
(p—q+3)ec;n, p:n', q)=0.

Let (v, w) be the positive definite Hermitian form on 7 given by (v, w)=
trace(vw*) for v, we 7.

LEMMA 4.2. Let L, L, L, be the same as in §3 and assume that
M(z'l, 7,) is mot empty. Then, Lw,=n(n+1)v, and L,v,=b,v, for ne
Jﬁ(tl, 7,), where b, is a certain real mumber. Moreover, when we write
Lv, =30V, (0 varies over the set M(z,, 7,)), we have a,,=0 for
n, n' € M(z,, 7,) with |n—n'|>1.

PrOOF. By definitions of w,, L,, L,, we may reduce the assertions
for L,, L, to the calculations of the eigenvalues of w, ®,. But these
eigenvalues are already given in §1. Now we shall prove that

(x) (Lyv, w)= (v, Lyw) for any v, we 7% .

Since 7, (i=1, 2) are unitary representations, (Y ,)*=7(Y_;) (j=-1,0,1
and 7=1, 2). Hence,

o(Lyw)* = 30 (Y Jwri( Y- )"
= 30T (Yw e (Y_)

= S (e Y w*r(¥) -
Thus,
(v, Lyw)=trace (S, 0(z(Y-)w*z,(Y7)

=trace (3 (ry( Yot Y- )w*)= (L, 0) .

Let us return to the proof of Lemma 4.2. It is easy to see that
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(Vpy Vur)=(2nm+1)d,,,.. So, the assertion (x) implies the formula
Unw(20'+)=a, (2n+1),

where a,., is the conjugate complex number of a,. ,. Hence, we may
consider only the case when n’'>n-+1. Since v,v%,= P,(7)*P.(7,) P.(7,)* v =
On,nVp,, (cf. Chap. III of [14]), we have from L4v,=>3,.a, . v, that
(L, )(Ve ) =a,, . vi,:. By using (v, vi,).=1,

a’n,n’ =((len)(v::.2)’ v::,l)l
= ;(Tl( Y,-)’U,,Tz( Y~a‘)v::,zr vz:,1)1

= g,‘ pc—.i,s('n” n': 'n'"’ p)(71( Yj)vz:;: 'v::.1)15n,n"
',

= 3, c_; (0, ' n, p)c; (n, p: 0, n'),

Y4

where p varies on the set I(n). Since p+j<n+1<n/, we have p+j5—n'+#0
for pe I(n) and j=—1,0,1. Hence, we conclude from Lemma 4.1 that
ciq (n, p:n’, W')=0 for pel(n) and j=—1,0,1. This implies a,, =0 if
n>n+1.

Now we shall consider the matrix coefficients of A,(s) with respect
to the basis {v,:ne M(z'l, 7o)} of 7%. For ke Z and n, n' € Jl?(z‘l, 7,), let

(4.1) A8, n, n')=(2n" +1)7(A(8)V., v,) (s€ (T, T0)) -

Then A,(s, n, n") (ke Z and n, ' € IlAl(z"l, 7,)) are rational functions of s on
C and

A= 3 Aus, m, 0\, .

n’eM(ry,7g)
Moreover, from the formula (3.3) and Lemma 4.2, we have
(4.2) 2sk—K+n(n+1)—n'(n' +1)A.(s, n, n')
_ _3 ANV _ ,
- Z(G(s =25 k) 4,7b,,,)A,,_2,(s, n, n)

j=1

+ %(2.7.—1)§4ap,~n’Ak—(2j—1)(sr n, p) ’

where p varies on the set Jrl(z'l, T, N)={pe M(Tl, 7,): [0’ —p| <1}

LEMMA 4.3. For keZ and mn, n'eMcx, 7,) with ln—n'|>k,
A (s, m, n')=0. Moreover, when n’'=n—k with k>0, we have the formula

4.3)  Ays, m, n—k)= }i[l(za,,_,,ﬂ.,”_,,ﬂ._l) / (k! (s + % tn— Ia)k> :
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PrOOF. When £<0, Lemma 4.3 is clear from the definition of A,.
For k>0, we use the induction on k. Since k—27<k—2 (7=1,2, --.),
k—(2j—1)<k—2 (j=2,8, --) and |n—p|>|n—n'|—1 (p e M(z,, 7,, ), We
see from the induction hypothesis that A, ,;(s, », n)=0 (=12, ---),
Ay qin(s, m, P)=0 (j=2,8, --- and pe M(z, 7, n)) if [n—n'|>k. Hence,
when |n—n'|>k, we have from (4.2) that

(4.4) 2ks—FE+n(n+1)—n'(n’+1))A(8, n, n')
=4 >, Gy Ai(s,n, D).

peM(rl,rz,n’)

If m—n'|>k, then |n—p|>|n—n'|—1>k—1 for all p e M(z,, t,, ). Thus
the induction hypothesis and (4.4) imply that

2ks—E+n(n+1)—n'(n +1)A.(s n, n')=0 if [ n—n'|>k.

Since A,(s, n, n’) is a rational function, we obtain that A,(s, n, n’)=0 if
lm—n'|>k. When n’'=n—k with k>0, we have p=n'+1l=n—Fk+1C
Mz, 7,, ') and n—m'—3)=k+3>k—1 (3=0,1). Therefore, by the in-
duction hypothesis and (4.4), we have the formula

2<s+ —;- -+ n)Ak(s, n, n'—“k):4aon—k+1,-n—kAk—l(s’ n, n—k+1).

This implies the formula (4.3).
We define the set S,(n) (ne M(z,, 7,) and ke Z with k>0) by

Si(n) ={(k/2) + (n' (0’ + 1) — n(n+1))/2k; n’ € M(z,, 7,) with |[n—n'|<k},

and put S¥n)=UJ}..S;(n). Then, we see easily from (4.2) and Lemma 4.3
that the singular points of the function s+ A,(s)v, are contained in S*(n),
and from the definition of S,(n) that S*(n)c[—n—1/2+k, n+1/2+k]. Let
C_={seC; Re(s)<0} and put Si(n)=S,(n)NC_, S:(n)=S¥n)NC.. By
S_(n, k), we denote the set of all singular points of the function s—A,(s)v,
in C_ and put S_=U:§g;<,1,,2) S_(n, k). Then we have that S_(n, k)cS*(n)C

[—n, 0] (>0, n>0) and S*(n)=S"(n) if k>k'>n+1/2. Moreover, from
(4.2) the above arguments prove that there is an integer %, such that

(8—8,)mA(8)v,— 0 as s——s, for any keZ,s,eC_.
Thus, we have the next lemma.

LEMMA 4.4. Retq\in the above motations. Then S_(n, kycl[—mn, 0]
(k=0,1, --- and ne M(z, 7)) and S_ i3 a finite set. Moreover, there is
an integer n,>0 such that
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(8—8)"A(8)v,— 0 as s8—— s,
for any keZ s,eC_. and neMz,7,).

For an integer k and s e ~(zr, 7,), we put
|A,(8)|=max (|A(s, n, n)|; m, n’ € M(z,, 7)) -

Then, for any compact subset B of ~’(z, 7,), there is a constant
c¢=c¢(B)>0 such that
|A(s, m, n')}g(c/k)k_i | A ;(8)) for seB,n,n' € M(rl, 7,) and k>0.
(This follows from tl;goformula (4.2).) Hence,
xAk(s)|g(c/k)§|A,-(s)| for seB and k>0.

LEMMA 4.5. For arbitrary compact subset B of 7(z,, T;) there 18 a
constant c=c(B)>0 such that

|A,(8)| < (e)/K! Jor k=0,1,2,--- and seB.

PROOF. Let a,=3}_,|4;8)| (¥=0,1,2, ---), then a,—a, ,<(c/k)a,_,
(k>0). Hence, by the induction on %k, a,<((c+k)/k)a,_, (k>0). Thus,
we have from the fact; 1l=a,=|A,s)| that a,Z<(c+1)/k! (k=0,1, ---)
Therefore, |A,(8)|<(¢c/k)a,_,<(c)/k! (k=0,1, --- and se B).

For ke Z and s, C, let a,(s,, 7) ( € Z) denote the linear endomorphism
on 7, which appears in the Laurent expansion of A,(s) at s=s, i.e.,

(4.5) A= 3 aulsn D=8’ -

From the Cauchy’s integral formula and Lemma 4.5, we have the next
corollary.

COROLLARY 4.6. Fix s,€C and integers j, k with k>=0. Then there
are positive constants c¢,, ¢;, which are imdependent of j, k, such that
law(8ey D)L cCi(e)fRe! .

§ 5. The explicit formulas of C,(s) and Cy(s).

Let dy denote the Euclidean measure dy,dy.dy, on I (where y=y,1+
Y. +ykelI). Put c°:S e *"dy, then dn=dy/c, is the Haar measure on
N such that S_exp(—ét(ﬁ))dﬂ:l.
Let )

(6.1) C(s, z')=S_e“‘”””‘"z‘(k(ﬁ)‘lw)dﬁ , Tfor seC with Re(s)>0,
N
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where 7 is an irreducible unitary representation of K and w=<$ __(1))

Then this integral converges absolutely and the function s—C(s, 7) can
be extended to a meromorphic function with values in End(V®) (where
V+ is the representation space of z and End (V™) is the space of all linear
endomorphisms on V*) (cf. §11 of [1] and Theorem 3 of [7]). It is easy
to check that t(mam )=t#), k(mam*)=mk(@)m™* for ne N, me M and
dn is invariant under the adjoint action of M on N. So, we have
z(m)C(s, 7)=C(s, T)r(m) for any me M. Hence, for neﬂ(z'), by the
definition of P,(r), there is a meromorphic function c¢,(s, 7) on C such
that

(5.2) ¢, (s, )P, (t)=P,(7)C(s, T) .

Moreover, using the facts that t(mam™)=t(n), k(mam *)=mk(®)m™" and
the invariance of d#, we have from Lemma 4.4 of [1] the integral
formula

(5.3) SK Floydle = SM SN FU@ym)e=™ dmd ,

where f is a continuous function on K and dm is the normalized Haar
measur on M.

Put #(t)=a,a;' for € N and te R, then it is easy to see that
ka k@m)=k@m@)m, kk@E)m)=k#)m and tlak®@)m)=t(nt))—t(n)+t.
Hence, from the formulas (3.4) and (5.3) we have

(5.4) e~V F(s, v, a,)
oS S_ (s=3/DURIN) g~ (et 3/ DM T (Jo(7(1)))vT,(B(R) AR
' for seC,teR and ve 7.
Since a,,a;'=%,—t, and d(n(t))=e**dn, we have from (5.4)
(5.5) eVt B v, a_,)
=|_eerermemon g ¢ (@) vr (b(R(E) )

N
for seC,teR and wve 7.

since ﬁ(t)_,((l) (1)> as t— +oco, we see that #(n(t))—0 and k('fi(t))-»((l) (1)>

as t— +oo. Hence, by using the estimates in § 11 of [1] and (5.4)-(5.5),
we have

lim e‘“’+3/2)‘E(8, v, at).___ S_e—ka+s/z)t(%) vrz(k(ﬁ)—l)dﬁ
t—+oo N
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fo;' seC with Re(8)>0 and ve 7;, and

lim e(8+3/2)t E’(s, ,v’ a—t) — S_ e(l—3/2)t(ﬁ) vz—1(k(ﬁ))dﬁ
t—+4o0 N - '

for seC with Re(s)<0 and ve 7;. But, we have from Theorem 3.1

tlime“'+ ¥DtE(s, v, a,)=C(8)v - for se~(r,t,) with Re(8)>0,ve 7,
—4-00
and also, since E(s, v, a_,)=E(s, v, wa,w)=1,(w)E(8, v, a,)T.(w),
lim g™/ B(s, v, a_,)=7,(w)(C.(8)v)T:(w)
t—+-oo0
for se(r, 7,) with Re(8)<0,ve 7;.

Since 7 is an unitary representation and w=w"", it is easy to check that
S_e—wwmm t(k(®)dT=T(w)CE, 7)* for seC with Re(s)>0,
N

where 3 is the complex conjugate of s. Consequently, we have formulas
below;

(5.6) C.(8)v=vC(s, 7,)T,(W) , C.(8)v=C(—3, 7,)*vry(w) ,
for se~(z,7,) and ve 7;.

By definition of v, (see §8) and c,(s, 7), we obtain
v,C(8, T;)=c,(8, T,)V. ,
C(—5, t)*v,=c, (-8, 7,)v, .

To obtain the explicit formulas of C(s)v and C,(s)v, we need the follow-
ing proposition.

PROPOSITION 5.1. Let 7=7*"*" be an irreducible unitary representa-
tion of K. Then for each n e M(r)

(5.7) e¢.(s8, 7)= 27+ ['(28)['(— 8+ 8/2+n)[(—8+1/2— |n"])
e I'(—8+38/2+n)[(—s+1/2—n)[(s+3/2+n)(s+1/2—|n"]) ’

where
1 +f »">0
€=
-1 if »'<0.
PROOF. Let o* (ne M) be an irreducible unitary representation of

M on V* (see §1). For seC and ne M, let S#,% be the space of all
infinitely differentiable functions on G with values in V™ such that
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flaman)=e ¥ g"m ") f(x) for xeG, meM,tecR and meN.

Put R, . ()f(2)=f(x"'x") for fe 5%, x, 2 €@, then R, isa representa-
tion of G on 2£.%. For any function f in 523 satisfying Re(8)>0, the
integral

A, f@)= S_v_ flewn)dn = Sﬁ e~ HVOE £ (ko)) d

is absolutely convergent (see §11 of [1]). Moreover, since waw=a_,,
wmw=m fort e R, m € M, we see that 4, ,f € 527, for fe 223 (Re(s)>0).
and

(5.8) A,.R,. (x)f=R_,.)A,.f, for xe@, feZ7(Re(s)>0.

Now let 7 be an irreducible unitary representation of K on V- and
assume that n e M(z). Put

Jeo(@)=e"r2t® P () (z(k(x) V) for veV95, xeG;

then S£ 5% (7)={f..,; ve V°} is a finitely dimesional subspace of &%, % which
consists of all K-finite vector of type z under R,, (the Frobenius’
reciprocity theorem and the branching theorem for a compact group
imply this assertion). And for fe S#%(z) (Re(s)>0), it is clear that

(5.9) A, .f=c.(s,7)f.
Now we shall prove the following assertion.
(5.10) For z=7""*" and ne M(z), let ¢c.(s, T)=c,(s, ', n"").
If (n, n"+1), (W, n"), (W' +1, n"")e K, then

c.(8 n', n"+1) (s + —21— + n") =c,(s, 7, n”)(—~ s+ -%- + n”) ,

c.(s, m'+1, n”)(s -+ % + n’) =c,.(8, n, n")(-— s+ -g- + n’) .

Let ;
B f@=(-%)(R.a@) f@)|  for fesms weG.

Then we see from (5.8) that
(5.11) A, .R, . f[=R._,.A,.f for fes#5; with Re(s)>0.

In [12], Thieleker introduced a series of rebresentations of G with
parameter (A, m) ([12], p. 501). The mapping f(x)— f(x™!) (fe FZ3) gives
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an equivalence between R, , and a representation with parameter A,=s,
m=n introduced by Thieleker. Moreover, our parameter (n’, n’’) corre-
sponds to (4., 4,,) in Thieleker’s notation ([12], p. 473). Let P, (2)f(x)=

dim(V’)S trace (z(k))f(k*x)dk for fe 57,3, then P, . (r) is a projection of
K
7,5 onto 57,5%(7) and (5.9) implies

A,.P, . (7)=P, . (0)A,.=c.(s, T)P,.(7),

Hence, by applying Theorem 1 of [12] to R, ,, we have the assertion
(5.10) directly from (5.8).

Therefore, using (5.10) and Lemma 5.2 below, our proposition can
be proved by the induction on (n’, n"’).

LEMMA 5.2. Let c,(8)=c.(s, n, n). Then

(5.12) c.(8)=s(28)/(I'(8+3/2+n)[(s+1/2—m)) ,
and

(8, n, —n)=(—1)"c,(s) .

PrOOF. Let z,=7'""* for a half integer n. Then the representation
space of 7, is identified with V'* and 7, /(k)=0""(u), 7_.(k)=0""'(v) for
k=Fk(u, v)e K. Let t(y), u(y), v(y) be the same as in §1, then

ty)=log(1+ly, u@=v(—-yx)=A-ymA+yP)™"* (11], p. 365).
Since w=Fk(1, —1) and o'""(—1)=(—1)**¢'*'(1), we have
T (R(u(y), v(¥) " w)=0"(w(y)™) ,
T 1w (B(u(y), v(¥)) " w)=(—1y"a"™(v(y)™) .

Furthermore, we note that u(y) '=u(—%), v(¥)'=v(—y) and dy is invariant
under the action y— —y. So, by the definition of C(s, 7), we obtain

C(s, 7)) =(—1)""C(s, T_ia)

=c;’ 81(1+ lyH~er e (A —y)(A+yH)V)dy .
for seC with Re(s)>0.

Let du denote the normalized Haar measure on U, then for u,e U, n e M,
the irreducibility of o™ implies

(5.13) Sva"(uuou‘l)duzf (w)o*(1)

where f, is a certain continuous function on U. Moreover,
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(2n+1)f.(u,) = trace (f.(w)o™(1))

= SU trace (o™(uu,u ™)) du
. n [ Wt ]
— trace (6"(u)=C., (._2_) (cf. [11], p. 383),

where C., is the Gegenbauer polynomial of order 2n. Since dy is invariant
under the adjoint action of U on I, by using (5.13) for s e C satisfying
Re(s)>0, we have

CGs, Tim)=cs| A+ [y CL(@+ Py o)
where ¢, =c,(2n+1) and #>0. Since P, (z,)=0'"(1) and C(s, 7,)=¢,(8)P,(T,),
eu(®)=dmezt| (L) Ol (L) e
0

Let r=tanx with 0<{x<7/2, then

T

2
c,.(8)=4dme, IS sin? ¢ cos* ' x C},(cos x)dx .

0

We know

sin 2n+1)x=sin z C},(cos x) ,

(i) (cos™ x)=(—2s) sinx cos®* ' x .
dx

Hence, using the integration by parts,

w/2
S sin® x cos* ! x C}, (cos x)dx
0

= — (28)_18::/2 (_(—id;) (cos* x) sin 2n+ L)xdx
=(28)"'(2n+1) Sm cos* x cos (2n +1Dxdx (Re(8)>0) .

But, for s e C satisfying Re(s)>0,

w2 r@2s+12*>'zn
28 2 Daxdx=
SO cos® xcos (2n+1)xdx I's+3/2+n)"(s+1/2—n)

and by the simple calculations,

(cf. [8], P. 9),

co=S e dy =mt/4 .
I
Therefore, we obtain (5.12).
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COROLLARY 5.3. Retain above notations. All the zeros and poles of
c.(s, n', n”") are simple and they are as follows;

Zeros,

1) s=k+1/2, n<k<n’ and n—keZ,

2) 8=k+1/2, 0<k<|n"| and n—ke Z,

3) 8=—(k+1/2), IW'|<k<n and n—ke Z,

4) 8=—(k+1/2), v <k and n—ke Z,

Poles,

5) 8=—k, k>0 and n—ke Z.

Since the distribution of zeros and poles of the Gamma function are
known, this corollary is obtained from the explicit formula (5.7).

We know that z*"*"(w)=¢e(n’, n”’)t*"*'(1) (where e(n’, n'")=(—1)»-"),
Hence (5.6), (5.7) imply the following proposition.

PROPOSITION 5.4. Let C,(s), C,(8) be meromorphic functions which
appears in Theorem 8.1, and let z,=t** (i=1,2). Then for each
n e M(z, 7,) and s € (T, T,),

(5.14) C.(8)v,=¢e(n. ny)e,(s, To)v, ,

C.(8)v,=e&(n3 n;)c,(—s, T)v, .

§6. Proof of Theorem 3.4.

In this sectionl, we assume that M(z'l, 2'2)' is not empty. To begin
with, we shall prove the following lemmas.

LEMMA 6.1. For fized n € M(z,, 7,) and t>0, the function s—E(s,n,t)=
E(s, t)v, can be extended to a 7,-valued meromorphic function on C_=
{s € C; Re(8)<0} whose poles are all simple. Moreover, if 8, —(k+1/2)
for keﬁ(q, T,) with n>k, then E(s, n,t) 18 holomorphic at 8=s,.

LEMMA 6.2. Foreachmne M(zfl, T,) and t >0, the function s—FE(s, v,, a,)
18 holomorphic on C with values in 75 and has zeros at points below;

1) s=k+1/2 for n—keZ with ni<k<n, if n <n,, v

2) s=k+1/2 for n—keZ with |n'|<k<Z|n:|, +f |n'|<|n|,

8) 8s=—(k+1/2) for n—keZ with n,<k<mn;, if n.<n,,

4) s=—(k+1/2) for n—keZ with |n)|<kZ|n|, tf [n/|<|n/|.

PROOF OF LEMMA 6.1. From Lemma 4.4, we see that the functions
s— A8, (keZ and me M(z, 7,) are holomorphic at s=s, satisfying
Re(s,)<0 and s,¢[—m, 0]. Hence, using Lemma 2.3 and Corollary 4.6,
the series '
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(6.1) C E(s, m, t) =gyt gA,,(s)v,.e"“ t>0)

is holomorphic at s=s, satisfying Re(s,)<0 and s,¢[—m=, 0].
Let 8,=—7r¢€[—mn, 0] and consider the Laurent expansion

6.2) E(s, m, )= 3 Bn, t, Ha+r)  (¢>0),

then the function t—FE(n,t, j) (J€Z) is a spherical function on A+
(Proposition 2.4, Corollary 4.6).

By using the Cauchy’s integral formula, we conclude from Theorem
3.1, Lemma 4.4 and Lemma 4.5 that there is an integer jo such that
E(n,t, 5)=0 if j<j,, t>0 and E(n,t, j,)*#0, when E(s, n, t)#0 around
s=—7. Moreover, we have from the definition of j, and (6.2) that

(6.3) Bty Gy <f+-°'f2"2ak( 7, GOv,e

(see §4 for a,(—1, 7,)). Now we select an integer k,>0 such that
Cal(—7, 5)=0 if k<k, and a,(—7, 5)+#0.

Put a,=a;.x(—7, Jo)v,, then, from Corollary 4.6,‘there are constants ¢,>0
(=1, 2) such that la./<ec(c)/k! (k—0,1,2, ---). From Lemma 3.3, we
see that there is a function F, € Cr (G, 7) such that F(a,)=E(s, n, t) for
t>0. Put

(6.4) Fi@)= f Fa)s+m)-iids  for weG*.

Since zF,=Y,,.(2)F, for all z € 3 and the function s %,,.(2) is a polynomial
function on C, we have from the definition of j, and (6.4) that F; €
C_...(G", 7) (by definition of F,, the function s— F,(x) is meromorphlc at
8= —7r). Moreover, from the choice of %k, and (6.3),

. . : Bl
F;(a)=E(n,t, j,)=¢ """ 3 q,67 .
k=0
Hence, we have from Proposition 2.4 that F; is of type r+Fk; if r+k,>0.
We need the next lemma.

LEMMA 6.3.  Retain above mnotations. If 35,<0, then ko>0‘ and
r=n—ky,+1/2 with n—k,ec M(z,, 7,). :

PROOF. Since A (s)=the identity endomorphlsm on 7y, we get k,>0.
Next, since |a,|<e, () /k! (k=0,1,2, ---), :
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le(r+ko+a/2)t Fio(at) _'a'ol < I +Z°° a, e—ktl Scl((l_e—t)—cz_. 1) for t>0.
k=1

So, lim,,,,.e"**+2* F; (a,)=a,#0. Hence, Proposition 2.5 implies that
r+ky=*r or r+k,= +=(n+1/2). Since k,>0, we have r+k,=n-+1/2. So,
it is enough to show that n—k,e M(r, 7,). If we write a,(—7, j,)v.=
Zn’eﬁ\l(tl,rz) ak(n, n')'vn’; then

G= 2 Gpp(n, w0, ,

n’e M(ry,T9)

and

ak(n’ n’): ?}r?fAk(sv n, n')(3+7’)_(j°+1)d8 .

Therefore, we see from (4.2) and the choice of j, k, that
(—2kr —Ei+n(n+1)—n'(n' +1))a, (n, n')=0.
Since r=n—k,+1/2, we have
—2kr—k+nn+l)—n'(n'+1)=(n—k,—n)(n—k,+n'+2),

and n—k,+n'+2+#0 for any n'€ M(z,, 7,). Hence (n—ky—n")a,(n, n')=0
for any n’ € M(z'l, 7,). But since a,=2., a,,(n, n')v,+#0, there is an element
n' € M(z,, 7,) such that »’'=n—Fk, e M(z,, 7,) and ay=0,,(n, B —ko)v,_,. This
completes the proof.

Now, we return to the proof of Lemma 6.1. From (4.3), we see
that the function s—A,(s, n, n—k,) has at most simple pole at
s=—(n—k,+1/2). Hence, we have from Lemma 6.3 that j,=-—1, k,>0
and r=n—Fk,+1/2 with n—Fk,€ M(z, 7)) if j,<0. This completes the
proof of Lemma 6.1.

PROOF OF LEMMA 6.2. From Proposition 5.1, we have
(6.5) (8, T)C.(—8, T)=c,(8)c,(—8)

for ne M and ="' with (n', n"”)e K(n), where K(n)={n', n")e K;
In"|<n<n' and »'—n e Z)}. Hence, from (38.5) and (6.5), we have

(6.6) c.(8, T)E(8, v, a)=c,(8, T)E(=s, v,, a,) ,

for se 2(t, 7.), n € M(z,, ;) and t>0. But it is clear from (3.4) that the
function s+— E(s, v,, a,) is a 7,-valued holomorphic function on C. Now,
(6.6) implies

[ACRN] E(s, v, a,)=E(—s, v,, a,) .
cﬂ(89 7'-2)
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Noting that poles (resp. zeros) of the function s—e¢,(s, 7,)/c.(s, T,) corre-
spond to zeros of the function s— E(s, v,, a,) (resp. E(—s, v,, a,)) and,
using Corollary 5.3, we may determine the zeros and poles of the func-
tion s—e,(s, 7,)/c.(s, 7,). Hence, Corollary 5.3 implies Lemma 6.2.

Now, we shall prove Theorem 3.4. When seC satisfies Re(s)<0,
Theorem 3.4 has been proved in Lemma 6.1. From (3.5) and Proposition
5.4, we have

(6.7) E(s, m, t)=c,(8, 7,) (¢E(s, V., a;)—c,(—8, T)E(—s, n, 1)),

for se 2~7(t, T,), € Iﬂ(tl, 7,) and t>0, where e=(—1)*", Hence, from
Lemma 6.1 and Proposition 5.1, the function s— E(s, n, t) is meromorphic
on C,={scC;Re(s)>0} with values in %;. Noting that M(z, 7,)=
{k e M; max(|n!'|, |n))<n<min(n, n.) and n.—n e Z (i=1, 2)}, we see from
Corollary 5.3 that the function

8 ¢,(8, 7o) 'C(—8, T)E(—s, n, T)

satisfy the conditions of Theorem 3.4 on C,={s € C; Re(s)>0}. Moreover,
using Lemma 6.2 and Corollary 5.3, the same arguments are valid for
the function

8§ —— 0,,(8, Tz)_lE(s: Vs at) .

Hence, (6.7) implies Theorem 3.4.
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