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Let p(n) be the number of the partitions of n, then the generating
function of p(n) is given by

fl@y=T1—a)"=1+ Sp(m)z"  (=/<D).

In 1917, Hardy and Ramanujan [1] proved the asymptotic formula for
p(n):
p(n)"‘zﬁl/—:%‘;e}(p<ﬁ 2%) (n— o).
In 1934, Wright [11] studied the partition problem of % into k-th

powers of integers. In this case, the generating function is

fi@) =M A—a") =1+ Spma*  (al<1)
and Wright obtained the asymptotic formula for p,(n):

Ak kl/Z n—8/2+l/(k+1)

(27r)(k+1)/2(k+1)3/2 exp (Aknl/(1+k)) ’

() ~

where

A —-(k+1) { 1 [‘(]__|.. 1>C<1+ 1>}kl(k+1)
o= Tt '

In 1950, Rademacher [7] suggested the problem of generalizing the
partition function to algebraic number field. Three years later, in 1953,
Meinardus [4] succeeded in obtaining the asymptotic formula for the
partition function in a real quadratic field: Let K be a real quadratic
field and define the infinite product

£z, =TI A—e™),

where the product is taken over all totally positive integers v of K, '
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is the conjugate of v, 7 and 7’ are complex parameters with positive real
parts. f(z, 7') is expanded in a series:

flz, T)=1+ S P(pe™+",

‘where P(y) is the partition function corresponding to p(n) in rational
case. Meinardus proved that

P~ exp {8( X5 N() )+ e log* N(p)+a, log N(+8(1)}

as N(y¢)— -, where a,, a;, are real constants, 8(%) is a number connected
with ¢ and zeta functions with Grossencharacters, and D is the absolute
value of the discriminant of K.

In this paper, we shall generalize the partition problem to an
algebraic number field and prove the asymptotic formula for the partition
function, which includes all above results as special cases.

Let K be an algebraic number field of degree n. This and the
following notations will be used throughout this paper. Let K@
(g=1, ---, r,) be the real conjugates of K, K®», K?*2=K® (p=p+1, «--,
r,+7;) the pairs of complex conjugates of K, so that n=r,+2r,. We
denote by O the ideal consisting of all integers of K, by b the differente
of K, and by D=N(®) (norm of b) the absolute value of the discriminant
~of K. If p#is a number of K, we have an n-dimensional complex vector
(p9, «oo, ™) with real @ (¢=1, --.,7r) and complex ), pP+r2) =@
(p=7r,+1, -+, r,+71,), where p¥ is the conjugate of ¢ in K (i=1, ---, n).
We shall denote this vector also by . We shall consider more generally
any n-dimensional complex vector &é=(¢, ---, &,) with real &, ---, &, and
complex §&,,,,=&, (p=7r,+1, -+, r,+7,). For such & we write

SO=3&, NO=II
and denote by x(¢§) the n-dimensional real vector

x(&) = (517 *t %y ériy Re (5r1+1), ) Re (Er1+r2), Im ($r1+1)? %y Im (Er1+r2)) .

If |&|=<a (or =a) (i=1, .-+, n) for &=(&, ---, &,), then we write |&|<a
(or [§|=a). We call ¥ of K totally positive number, if v, ..., 70 are
positive. When »,=0, totally positive number means non-vanishing
number. We write v>0, if 7 is totally positive.

Let y, «-+, ¥, be positive numbers such that Yo=Yptr, (®=7,+1, <+ -,
r+7,). Let z,---, 2, be real numbers and =z, 2,,,=%, (p=7r,+1, ---,
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r,+1,) the pairs of complex numbers. Let m be an ideal, ¢ an integer.
We define the funetion

fly; )= II {L—exp(—S(lv|*y)+2miS*2)}*,

y=(m)

where the product is taken over all totally positive integers v congruent
to ¢ modulo m. Let 4§, -+-, 6, be a basis of b and put

2;=220"  (§=1, ---, m)
i=1

for real numbers «,, -+, x,. Using these z, ---, z, as the parameters in
f(y; 2), we consider the integral

Ay, y)= Sl—/; .o Sl/z/zf(y; 2)e S0 dy oo da,

—1

for totally positive integer v. Then we shall have the expansion of
f(y; z) in the series

(1) fls D=1+ 3, A@; y)e=iseo .

We shall call this A(v;y) the partition function and our main result is
stated as follows;

MAIN THEOREM. Let v be totally positive and vemf, where m,=
(m, £). Put

M= {Erzf(%)rlf(_z_)rzc<1+_’i’_b_> 22r21=1/k) N(y)1/k }Icl(r1+r2+k)

k I/ Iria—1/k+raq /DN(m)
and
Y= k]g‘” (q=1, A "'1) ’
Y= }é% (p:’rl_}-l! ct "'1+’rz) .

Then we have

DV 712 Jramra/a e N ) 20y,
A y)~ Y _exp(——->2+M+R®)),
w3 9) 21122 k) 2 (K + 1,) 2 N(Y) € p( 2+ k (y))

as N(¥)— . R(y) is the sum of the residues of certain special func-
tions defined in §6 below.

In §1, after seeing the convergence of f(y;z), we shall prove, in
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Theorem 1.2, the expansion of f(y;z) in the series (see (1) above). Then
we shall write

1/2 1/2
(2) AW; ¥)=f(y; O)S T S 1/2H(z)e'2“‘s‘"’dw1 ---do, ,
where H(z)=f(y;2)/f(y;0). Making use of the properties of a certain
exponential sum defined in § 2, we shall divide the domain of integration
of (2) into a finite number of sets, E.(7,), E.(o,), E, and E, (see defini-
tions in §3). On each set, we shall estimate H(z), which will give our
main result.

Roughly speaking, the estimation of H(z) will be established by two
different methods. One of them is function-theoretical method (§§ 4-9),
which is partly due to Rademacher [6]. We shall apply Hecke-
Rademacher’s transformation formula to our function f(y;z) (§4), and
obtain a fundamental formula for log f(y; 2):

(8) log fw; 2)= 1| (5w, 2)ds

(see §5). In §6, we shall prove some function-theoretical lemmas on
the properties of (3). After these lemmas, we shall be able to estimate
H(z) on the E.(7;), E(o,) and E, (§§7-9). In particular, we shall see
that H(z) on the K (7;) will lead to the main term of our asymptotic
formula for A(v;y).

Our second method for estimating H(z) is the application of trigono-
metrical sums, by which we shall be able to estimate H(z) on the remaining
set K, (§§10,11). In §10, we shall introduce the Farey division defined
by Siegel [8], and prove two theorems on a trigonometrical sum S(z; N).
Theorem 10.1 is analogous to that given by Siegel [8] and Theorem 10.2
is a simple consequence of three Lemmas 10.1~10.3, which will be quoted
from Siegel [8] and Mitsui [5]. Using these theorems, we shall prove
Theorem 11.1 concerning the difference

(4) ReS(z; N)—S(0; N)

and, after reducing the estimation of H(z) to that of (4), we shall easily
obtain the desired result (Theorem 11.2).

Collecting all above results, we shall prove, in § 12, the asymptotic
formula for partition function, and, after this, we shall give two corol-
laries for special cases. Finally, in § 13, we shall obtain an estimation
of R(y).

Here we add some definitions and notations used in this paper. Let
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Y be a number of K and put 7Ydo=Db/a with integral ideals a and b such
that (a, b)=1. We call a the denominator of 7 and denote this relation
by 7Y—a. A small Roman letter ¢ means positive constant which depends
only on K. It does not always mean the same constant at each time it
appears. We also use ¢, ¢,, +-+ in the same meaning. If X and Y are
two numbers such that |X|<cY, then we write X=0(Y) or XKY.

§1. Partition function and generating function.

Let %, -+, ¥, be positive numbers such that y,=v,,,, (0=7r,+1, ---,
r.+r,). Let z, ---, 2, be real numbers, z,, 2,.,,=%, (p=r,+1, +«o, r,+7,)
pairs of complex numbers. Let m be an ideal of K, ¢ an integer. m
and ¢ are assumed to be given once for all. For these y=(y, ---, ¥.),
2=(2, *++, %,), M, ¢t and an integer k£ we put

o(v; y, 2)=exp {—S(|*y) +2miS(* 2)}
and define the following function:

Sy 2)=fily; zsm, )= 11 A—e@;y,2)7",

v>0
v=(m)

where the product is taken over totally positive integers v congruent to
1 modulo m. We also define the series:

9(y; 2)=g,(y; z;m, )= % e(Y; ¥, %) .
v=p(m)

THEOREM 1.1. The product f(y;z) and the series g(y;z) are conver-
gent uniformly in any 2, «++, 2, and Y, <, Y=Y, >0. [f(y;2) and g(y; 2)
are connected in a formula:

(1.1) log f(y; 2)= >, —%g(my; mz) .

m=1

PRrROOF. Let y,=min(y, --+, ¥.). Since the number of the integers
vy such that |Y|=N is O(N"), we have

e 9, )< ;:‘,IN” exp (—cy, N) .
From this follow the convergence of g(y; z) and that of f(y; 2). Moreover

log f(y; 2)=— 2 log (1—e(v; ¥, 2))

v>0
v=¢(m)

S —1—e(v; my, mz) .
m
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Since the last double series is absolutely convergent, we have

log f(y; 2)= 3, L >, e(v; my, mz)= 3, ig(my; mz) .
m=1 M v;;((:n) m=1 M

Let 4, --+, 6, be the basis of b~ and put
2= 2w (j=1, -, m)
i=1

for real numbers «,, ---, x,. Using these z, -- *y 2, as the parameters in
f(y; z), we consider the integral
1/2 172 .
A(”; y):S e o0 S f(y; z)e_zﬂis(llz) dxl e« s 0 dx" ’
—1/2 —1/2 N

where v is a totally positive integer.
THEOREM 1.2. A(v;y) is the series of the following form:

(1.2) Ap; )= > exp{—S((n[*+---+ Dy},

y=y1 -|-....|_ya
vi>0,vi=p(m)

where the sum 1is extended over all partitions of v into k-th powers of
totally positive integers congruent to p modulo m. Using the A®v;y),
we have the expansion of S(y; z) in a series:

(1.3) fy; =1+ 3, A@; y)ersen

where the sum is taken over all totally positive integefs.
PROOF. Let m be a positive number. The finite product

;2= II (A—e®;y, 2)™
vgg,l:;fl(ﬂ:n)

can be expanded into the series:

Ia(¥; 2)=1+ 3 A, (v) eS|
where \

1/2

= 2 exp{=S((In|*+--+ By} .

k
v=y1 +...+y8

vi>0,v=p(),0< v <m

On the other hand, we see that
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lim f,.(y; 2)=f(y; 2) ,
which is uniformly convergent in z, ---, 2,. Hence
/2 1/2 . .
hmAm(v)—S S f(y;z)e”“””s‘”’dxl---dx”=A(v;y)
m—sco 1/2

and (1.2) is proved. For any positive ¢, we can take m,=m,(€) for which
the inequality

Fuly; 002/ (y; 00— (m=m,)
holds. Since f,.(¥;0)=f(y;0), if follows that

fy;0)—e=1+ %Am(v) =fay; 0=f(y;0) ,
which implies the convergence of >, A(y; ¥) and
S(y; 0)=1+ ;)A(v; Y) -

Hence the series on the right of (1.3) is also convergent. For any m,
we have

If(y; 2)—1— 23, Alv; y) 0]
=15 2)—ful; D+ | Fnly; 2)—1— 3, A; ) €507
The last term does not exceed
2 [A@; y) e — A, (V) €50
=AW Y)— 2 AW =f(Y; 0)—fu(y; 0) -

y>0
Hence (1.3) is proved by letting m to infinity.
In general, A(v;y) is of the form of infinite series. If K is totally
real, then A(y; y¥) is a finite sum and we see that

A; y)=e75" P(y) ,

where P(v) is the number of the partitions of v into the k-th powers of
the integers which are totally positive and congruent to g modulo u1.
Hence we can regard A(v;y) as the partition function generalized to the

case of algebraic number field. We call f(y;2) the generatmg functlon
of the A(y; y).

Now we define the set of 2=(z, ---, 2,);
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B=lzla=3200, —Ltsa,<l (=1, -, m)} .

Let ¢ be the mapping on E defined by ¢(z)=(z,, «-+,2,). Using this ¢,
we write A(Y; %) in the following form;

1.4 AP ) =fw; 0\ H@e " dg, - da, ,

#(
where

H(2)=1(y; 2)/f(y; 0) .
§2. An exponential sum.

We define the sum

1 iS(ok
ZezrﬂS(a 7) ,
N (a1) I
where 7Y —a, a,=a/(m, a) and ¢ runs through the residues mod a such that
o= (mod (m, a)). The number of the terms is equal to N(a,), so |G(7)|=1.
More precisely, we have

(2.1) GM=G(V;m, )=

THEOREM 2.1.
G(7) K N(a,)7/2
PROOF. Let £ be an integer such that xem, (x, ma,)=m. Let & run

through the complete system of the residues mod a,. Then we can
replace ¢ in the sum (2.1) by x&+ p:

2.2) G(v)= N(la)e >, exp(2miS((wE+ 1)) .

We denote by T the sum in this right hand side. Further we write
@(S)=(’CE+#)k—#k=xkek+kﬁk_—lek—lﬂ+ ce e _*_k#k—lx&
=+ apst T et as

In n=(a, -+, @), then ncrkcm. Let 7 be an integer such that TEMN,
(z,am)=n. Let B, ---, B, be integers defined by congruences a, =10,
(modan) (¢=1, .-+, n). Then

IT|= S exp2miS(z7o @) ,

where @(8)=8,&*+---+8,¢6. If 7v—a, then a,=a/(a, n) since (z/n, a)=1.
Hence a,ca, and
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IT|=N@)| 3, exp{2niSErp) ,
mod ag

where a,=aq,/a,. Since (8, -+, By, a)=1, we have

>, exp {2757;S(T’Y¢0()\,))} & N(a,)"/2*

A mod ay

(Hua [3], Theorem 1) and

T < N(a;) N(ap)' =/ .
Since (a, £)=(a, m),
N(a,) < N((a, m)) = N((a, ke 7'£) K1
and
T« N(a,)*~v/2* |

Thus the proof is completed.
Now we define two sets of the numbers of K as follows:

A={YVe E, G(7)=1},
A,={7[ve E, |GM)|=1,7¢ Ay} .

In view of Theorem 2.1, these are finite sets. The number of the
elements of A,U A, depend on K alone. We note that

T = N(a,) exp (2riS(p£*Y)) (e A,UA)
and, if y=g(modm), then S(*v)=S(¢*Y) (mod 1) for v e A,UA,. If we put
(2.3) 0 ,=max{cos 2rS(1*7)} ,

red;
then d,<1 and 6, depends on K alone.

THEOREM 2.2. If ve A, Y—a, then am{, where my=(m, ). Con-
versely, of ¥Y—a, aim¢, then v e A,.

PrROOF. We consider T in (2.2);

T= 3, exp{2mriS((k&+ p)*7)} .

& mod a;

Put c=(x, ¢) and let A be an integer such that nec, (A, ca)=c. Then
there exist o, and p, such that k=)0, (modca), p=xrp, (modca). Hence

T= Eelexp {2miS(\VY (0.6 + 0)")}

If A*eca, then T=N(a,). If \*¢a, then A*vy—b=1 and (o, 0, b)=1. If



198 TAKAYOSHI MITSUI

there exists a prime ideal p dividing b but not p,, then we can take &,
such that 0.&,+0,#0 (modp). Hence S(\*Y(0.%,+p0,)*) is not a rational
integer and T+N(a,). If there exists a prime ideal p dividing b and 015
then pt o, and the term of T with £=0, exp{2riS(\*Yp¥)}, is not equal
to 1. Hence T+#N(a,). Thus we have proved that vc 4, if and only if
afA.  Since (A, ca)=c=(x, ) and mix, if a(m, £)*, then a|(x, )%, which
implies a[A*. Conversely, if a[\*, then a|(x, #)* and so a|(m, p)*, since
(k, a)=(m, a). Thus the proof is completed.

REMARK. The number of the elements of A, is equal to N(m,)*.

§3. Division of E.

Let E, be the group of units of K and E(a) be the group of units
mod &, that is, the group of units congruent to 1 modulo & where & is
the product of an ideal a and all infinite primes. We denote by w the
number of the roots of unity in K, w(a) the number of the roots of
unity in E(a). Let ¢, ---, ¢, (r=7,+7,—1) be the fundamental units of
E,. The absolute value of the determinant

e, log |e"], - - -, e, log |e{"|

e log |eV], - -+, e, log [ei"]

where ¢,=1 (¢=1, ---,r,) and e;=2 (j=7,+1, ---,7), is called the
regulator of K and denoted by R. Similarly we denote by R(a) the
absolute value of the determinant

(A IOg |77§”|, ctcy 6y IOg |77§”|

e, log 9], -« -, e, log [ni"

where 7,, +--, 7, is the fundamental units of E(a). It is seen that the
order of the factor group E,/E(a) is equal to

(B,: B(a)) = %@"Rz(e_a) .

LEmMA 3.1. Let @), -+-, «,,, be positive numbers such that
ae+---+a,,.e.,=1 (€rsi=n—(e,+ -+ +e,)) .
Let v be a number of K. Then by a suitable choice of 7 e E(m), we have

NP 24 Se|NO)™  (¢=1, +--, r+1).
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ProOF. Let 7, ---, 7, be the fundamental units of E(m) and consider
the system of 7-+1 linear equations with » unknowns X,, -+, X,;

k3 X, log 9| =a, log IN®)| —log [p]  (g=1, -++, r+1).
i=1
We easily see that there exists a solution ¢, ---, ¢, and

kS__.‘l [¢;]log 7| +1og v |=e, log IN®)|+0(1)  (¢=1, -+, r+1),
S0 ' ,

0 TL) = [N (g=1, ===, 74+1).

Hence the lemma is proved if we take the unit 7= I1;_,7%

Now we return to our A(;y). We assume that N() (v>0) is
sufficiently large. . .

Put

e a:ﬁ(l_l_%) ’ = 2(r1+1rz+k) <1+ 2;7],0) ’

then r,a+2r,=1. Hence by Lemma 3.1,

e, N()* <p et e, N(v)* @=1, ---, 1),

NP < PP e, Ny  (p=7+1, «o, rt1y)
with a suitable unit ¢ in E(m). On the other hand, by the definition of
AW; v),

A(v; y)=A(ve"; y)
for any unit ¢ in E(m). Therefore, taking ve* instead of v if necessary,
we may assume by Lemma 3.1 that our v satisfies the inequalities
3.2) e NW) =V ?=ce,Nw)*  (g=1, -+, 1),
) C;,N(l))ﬁélv(m[éc‘N(l))ﬁ (p:’rx"l_ly *° "'1+'r2) .

We put

@9 w={wr(R) T(R) () e o]

and determine our parameters ¥, -+<, ¥, by

M

T (qzlv *t ""1) ’

Y=



200 TAKAYOSHI MITSUI

l”(ml

Yy P=r+1, ---, r,+7).

By (3.1), (3.2) and (3.3),
clM—k/néyigczM—k/" (.7:' 1: %y n)
and

2ragrel(1/k)"I(2/k)"
3.4 M=
&4 kriri2er /D N(m)

Let 7, «--, 7s (f=N(n,)*) and g,, ---, 0, be the elements of A, and
A,, respectively. Let 4 be a number such that 1/3<4<1/2. For each
7; in A,, we define the subsets of E as follows;

c(1+—;‘-)(y1 ey )T

B(r)={z| ff 2, =Y ?|SM~* (p=1, ---, m) for any 7=7; (modd™)}
V4
E(7)={z| lee—79y:*'=C,  (i=1,---,m) for any Y=7; (modd™)}
_E1(’Y.‘i) ’

where C, is a constant such that
(3.5) y;i=CM=™" (j=1,--+,m).

Similarly we define E,(g,) and E,(o,) for 0,€A, (i=1, -+, g). Finally we
put

E,= UE)UE(),
By=E— (B + B~ Y (E(0)+Ef0)) .
According to this division of E, we divide the integral in (1.4) as follows:
(3.6) SM H(z)e 5o dg, . . . da,

S

i=1 S¢(E1(r,-)) i=1 §¢(E1(at)) + SNEZ) + §¢(E3) :
REMARK. It is easily seen that
9Y; Vi+1)=9(¥y; 7) G=L -, 1),
f(y;’>’5+z')=f(y;z') (.7=1’ "'9f)v
9(y; 0, +7)=exp{2riS(tfo)}g(y; ) (=1, ---, g).
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§ 4. Hecke-Rademacher’s transformation formula.

We put
Ty=Y,—2m12, q=1, -+, 1),
Tp=2Y, (p=r+1, cce, r,+7,) .

'Denoting by P the ideal numbers introduced by Hecke [2], we define the
series:

ri+rg

(Y, 2 ¥)= 2, Y (D/&) exp {— Z bz, +2m _; ®)*2,} ,

where m,=(m, y), m=mm, n,=(&), the sum is over all non-zero ideal
numbers ¥ in m, and + is a character modit for ideal numbers. The
character + has the properties;

(i) If (n, Z)#1, then (i)=0.

(i) If Z/peK and fi=D (modi), then ¥(®)=().
The number of such characters is equal to 27hp(1t), where h is the ideal
class number of K, (1) is Euler’s function for ideals.

It is obvious that @(y, z; ) is absolutely convergent.

Let £ be a number of m, such that (x/m, n)=1 and define Y, by the
congruence k=g (modm). We see (#, m)=1. Since (kp/@, n)=1, we
have

2"1h if = d ),
ST/ Do /a)-{ P if v=p (mod )

if not,

where « runs through all characters mod #i for ideal numbers. Since we
may assume £ft,>0,

S H (/DD (Y, 2; )

2’1h, p(n) ¥
= 3 exp{— 3 bl 2w 3, (7)) -
If v>0, then -
—ri V2 |Fr,+ 271 _Z, (v“”)"z = —S(v|*y) +2miS(¥*?) .
Hence we have o
(4.1) 9(y; &)= W(_)"Z"V(’C#o/a)@(% %) .

Let ¥ and N be non-zero ideal numbers. We say ¥ and X are
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associated with respect to E(w), if /X is a unit in Em). Let H,, ---, H,
be the fundamental units of E(n), &=e¢*/»®, Since Jy(Em)=1, we can
write @(y, z; 4) as follows;

4.2) (Y, z; )= (02)] ¥(®)

w(n

b=1 bl ----- br=—00

7‘1+1'2
b brnn 2
xexp{— 3, [H{"" ... H@ Dotz
g=1

+ 271 z"" (H{”’bl S HL”"”'E“”bﬁ""&"’)"zp} ,
p=r;+1

where the summation 3);,, means that D runs through all integral ideal
numbers not associated with each other with respect to Em).
Let

€, € rrc€,
M pa (1
E1 )Ez SRR Ef+’1

E{"ES .- B,

be the inverse of the matrix

o log [HP|, -+, log |HY

-, log [H{, -, log |Hi+|
and put
vq:vq(mu My Ay gyttt a,,) =g{E¢§j) (27rm,-+kp Z_l_lap@;‘m) (q=1, %y ’I”+1) ’
= =7

where
6P =arg H{”  (j=1, ---, r; p=r,+1, -+, n) .

Now we quote an essential lemma from Rademacher [6];

LEMMA 4.1. (Hecke-Rademacher’s tranmsformation Jormula). Let
W, «--, W, be complex numbers with pdsitive real pvarts, and W, ., ---,
W, .., Dositive numbers. Let U, -, U, be complex numbers such that
Upir,=U, =741, «++, r,+7,). Then we have

r41

3, _exp(—SH - HOPW,

+2mi 3, (H®™ - HP'")U,)

p=r;+1
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- 3 2 (i
mx"">m21'=_°° a71+1§,an20 27’C’LkrR(n) = ];]1:"'1 lUPl
ap up+,.2—0
SN EACE=ASR | (27 U, |)'»
og—ico g=1 W;-H:Vq P=T1+1(Wﬁ+16ﬂ'2} Uplz)l,,/2+a+ivp
I'l,+2s+2:1V),)
rd,+1)
1y . l,+1 . . 16z%| U, >
><F(2 FeiV, et e iV, 1+ 1 s s
where 6,>0, l,=a,+a,,,, ®=r,+1, «+-, r+1), V,=v,/e,k (¢=1, ---, r+1)

and F(a, B, 7; x) 18 the hypergeometric function. The summation vari-

ables m,, +--, m, run through all rational integers and a, ., *--, a, run

through mon-negative integers with the conditions a,-a,.,,=0 (p=7r,+1,
sy 7Ty :

Proor. ([6], Hilfssatz 14).
Applying this lemma with W,=pp@a|*r, (¢=1, -+, r+1) and U,=
(B D@ @Yy (p=r,+1, ---, n) to the inner sum of (4.2), and putting

M) = HI#(Q)[—WQ H < ,:\’Z(m )kap ,

p=r +1 lﬂ(l’)‘
we have
w(n) co oo
D(y, z; ¥)= 2, > > 11 (2riz,) H Fimdkep
(P)n b=1 myg,---, m.=—0co “rl’H' ----- @p20 p=r;+1 +1
ap ap+,.2—0

(Tp + 167[2|z,,lz)_11’/2 -V,

i 1 S o I(s+1V,) ”‘”
k"R(n) 271

org=1  T4t¥¢ p=r+1
ra, +23+21,V,,)F » v L,+1 . . I 41 1672z,
F(l Ty ( +8+1 3] 8 ’me » T 91——'_;+16n21zp|2)
o« FONONMA) -
IN@)|** N(my)*es
where we denote the integral Swm by S( -
op—~1i ()]

Since

<

(n

g

»
H E(p)bkﬂp —_
b=1 p=7r;+1

p=r;+1

{w(n) if [ E®ks=1,
0 if not, ,

we have finally
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43) 0w, mW=3, 5 57 11 (2wiz,)» 220 302;20((:))

< 1 . S ﬁ I'(s+1V,) ﬁz (23 + 16722, |F) t/2~5= 7
211 Jiog ¢=1 Tt p=ri+
Iri,+2s+2iV,) l,+1 . . 16xz,|*
X . F V,, -2 —8s—1V, l,+1; ——1%21___
Ta,+1) ( FaeVy, o= —s =iV, Lt r;+167c=|z,12>

WD) N g
NG Nam®

where the sum 37,, means that the summation variables Apiyy =%y
satisfy the following conditions

Qrigry *° %y a,=0, ap'a’p+r2:0 p=r+1, ---, r,+7,),

”
[I E@®kp—=1
P=fl+1
This last condition means that A\ becomes Grossencharacter modii for
ideal numbers. Therefore, the summation 3., 3., over m,, ---, m, and
@41y **°, A, is Tegarded as the sum ), taken over all Grossencharacters
A mod 1t for ideal numbers.

§ 5. Fundamental formulas for ¢g(y;z) and log f(y; 2).

Following Rademacher [6], we put
I'(s+1) l+s l+1—s
G ’ l) = F ) l
Ry ( 22, 1+1;3)

where s is complex variable, ! is non-negative rational integer and 0<xz<1
([6], p. 368, (4.311)). As usual, we write s=o0+4t. Then (4.8) is rewritten
as follows:

(5.1) @(y, z; ¥)= py if}é}%) > 2m

x\ 11 (emigy 1 —LEEiVY I @3+ 4z, by

log) P=Fi+1 0=1 (Y, —2m12,)* Ve »=
: 4m’|z,|* PMOIMA)
X G(28+21V,, L, z =
( SHE Ve b 2+477:”|z,,|”) NO)* Nanyy™

LEMMA 5.1. Let 0,=5/4. Then the series in the right hand side of
(5.1) 28 absolutely convergent.

ProOF. Using the well-known estimation for gamma function, we have
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I'(s+1V,) (L4t+ V)22
5.2 g - g
(5.2) (Y,—2m12,)° "% < |y, —27i2,|°

X exp {——(% — larg (yq—27riz,,)l>|t‘_—}- V,,I} q=1 ---, 1)

([6], p. 381, (5.42)). If we put

__1 I(s+yh/2
(5.3) G, L, )= 5o F—s11)/2) Gi(s I, @),

then Gy(s,l, ) is regular in the strip —1<o<8 and we have the
estimation:

t|/4)Vi- x1+l+]t] (1_37)_1“

5.4 (s, 1, 1/

®-4) Gis, L, m) e 1+1  A+d2vi=a~

([6], p. 371, Hilfssatz 19) for —1+e<0<8—e. (In [6], the estimation of
G, of the form (5.4) was obtained for 0<e<0<8—¢. But examining the

proof of Hilfssatz 19 precisely, we can see that (5.4) holds for —1+e<
0=3—¢.) Hence, by (5.3) and (5.4),

(5.5) G(2s+2tV,, l,, x,)

1+ L+ £+ Vs (L—a,)~
8,t+ V)¢ > : :
Cexp(—b,li+ VD) I, +1 A+ I—ays"
for —(1+¢)/2=0=(8—¢)/2, where we put
1 —_— 2 2
="2—"/1"xp r Xp= ﬁ% (D=r+1, ooy 7,+75) .

Hence, putting
6=min (t%, L —|arg (y,— 2m'zq)|) ,
»,q 2

we have, by (5.2) and (5.5), the estimation of the integrand in (5.1):

! I'(s+ ’b | )
2 g
e B G
X ﬁ 2 (y,, + 4722, ) e G(28 + 22V, 1,41, w")%—l

~ 1472 o—1/2
<IN exp (-0 S e+ Vi) Ji LELLVD
7=1 q ']

o Tt Akl e+ VDo (A—g,) iyt
p=riHl l,+1 A+ @A/2)V 1 —a,)»" (g5 + 472, ")

In particular, if 0=5/4, then the last expression is replaced by
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b

+1

N@)™ exp(— = Sit+ Vil ) 1T a*@+1,) -

qg=1 p=r;+
Hence
oo +r1 riprg
(5.6) 0w 5 WS S|~ exp(—eRit+ Vhdt 11 ap1+1,),
im —co = p=r;

where I, ,,, --+, l,,,,, Tun through all non-negative rational integers.
Here we see

V=V, (my, -+, m

p=r1+1
Let u,, ---, u, be real numbers and define
Vq*= Vq*(uu ** % u,): k
p=r;+1
If m;su;<m;+1 (j=1, ---, r), then
V- VASZESIES @=L e 04D,
S0 we have
r+1 r+1
exp(—c§|t+ Vq|)<<exp(—-cq§|t+ VD .
Hence
oo r+1
(5.7) ;}S exp(—c 3+ V,)dt
m —o0 g=

oo o r+1
< S_ S exp (—e 3L [t+ Vidt du, - - - du, .

- 00

If we change the variables of integration by putting
Eq=t+ Vq* (q=1, M) ’r+1) )
then its Jacobian

a(t! Uy =, u,.)
3(51, 52’ * Er+1)
is a constant. Hence from (5.6) and (5.7) it follows that

r1+ry r1+7ry
D(y, z; ak)«% p];[ xt(1+1,)= ,._I,I Q-2

Thus the proof is completed.
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From this lemma it follows that we can change the order of the
summations in (5.1) and, moreover, we can invert the order of the
summation ;. and integration. Thus we have

.o 2rw(m) 1 S ud . e
. @ ) 3 —_ b 2 4
68 0w nwn=200 . L[ T (i)
o I'(s+1V) wE o, 2|,y [2)\~lp/2—8—iV
X q]-;Il (y,— 2miz,) "+ p:lgﬂ (yp+47 |2, ") 7' »

; dnlz,? \ M@ YMD)
28+2iV,, L, 2 Y)_ds .
x G (2421, yz+4n2tz,,|2)N<mo>keg§ O

Now we consider the series

)
sner 0P

in the integrand in (5.8). Lete¢, .-, ¢, (m=(F, E))) be the representa-
tives of the factor group E,/E(n). Then

AND) _ 5 D) &
om [N(D)® & ‘N(ﬁ)ls ;"W‘*(st) ’

where the sum 3}, is taken over all non-zero ideals (V). Second sum in
the right hand side is equal to m if an(e)=1 (=1, ---, m) so that
Jan(e)=1 for all units . The character A with this property is called
the Grossencharacter for ideals. In this case, the series

_ < AMD)
Lo, ) =3 st

is called Hecke’s zeta function, which was first defined by Hecke [2]. If
Jrn 18 not a Grossencharacter for ideals, then it is easily seen that
Si¥n(e,)=0. Hence if we put

RZONENE: 2 G for ideals ,
C*(s, 1/r)\J)___{C(S VN) 1 W\ is a Grossencharacter for ideals
0 if not ,
then
(5.9) YMD) _ wRQY puo e

o IN®)* w@R
Combining (4.1), (5.8) and (5.9), we have

THEOREM 5.1. If we put
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2w MA) L S 5ep/RCH(s, w2 |

2 I, )= e Nmey 2rhe(n) G

(5.10) Py(s; y, 2)= II (2miz,)» ] —LE+iVy)

p=r;+1 =1 (Y, —2miz,)* e
y ﬁ;.rz(yi+47r2lz ]z)—l,,/Z—s—inG<23+2i Vp, l,,, M) ’
p=r+1 ? Yr+4An*|2, [
then we have
0; )= S\ Py(s; 9, ) Zullos; m, po)ds
) 2 211 Je

and

log f(y; 2)= 3, 1. S Py(s; ¥, 2)C(1+n8)Z (ks; m, p)ds ,

2 21 Jo/e

where {(38) is the Riemann zeta function.
From now on, we put

Vi85 9, 2)=Py(8; 4, 2)C(1+n8)Z (ks; m, p) .
§6. Some function-theoretical lemmas.

It is well-known that, if )\ is non-principal Grossencharacter mod
for ideals, then {(s, ¥\) is an entire function. If ¥\ is principal, then
C(s, ¥*») has only one pole of order 1 at s=1. The residue of E(s, PrN\)
at s=1, which is denoted by R?s £(s, ¥rn), is

2r+1n-rz ¢(n) .
h R if ¥A=1,
Res (s, yA)={ wV D N(n)

0 if  PA#1.

By the definition (5.10), Z(ks; m, ££) has a pole of order 1 at s=1/k if
A=1, and we easily see that

221‘2 n-rz
kv D N@m)

Res Z,(ks; m, p)=
1/k

P; is regular in the strip —1/4k<0<5/4, except for a finite number
of poles on the line 6=0. Therefore, if A1, then P,-Z, is regular at
s=1/k. P,-Z, has a pole of order 1 at s=1/k and
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(6.1) Res {P\(s; ¥, 2)Z,(ks; m, (1)}

_ 2l (k)" 1 omig )ik
irrra D Nea) o Vo™ 27050

< 11 (yi+4)z Iz)“”"G<—?— 0, ATz, ) .
kL ’ k' yi4Antz,)

In particular, if z,=.--=2,=0, then, noting that G(s, 0, 0)=1I(s)27°, we
have by (3.4)

Rgcs {P.(s; ¥, 0)Z,(ks; m, )}

_ 2nanl U@y oy M
kritre 221'2//"\/ DN(m> ' " C(1+n/k)
LEMMA 6.1.
1

: S Py(s; y, ) Zs(ks; m, t)ds
271 J6/

_ 1 . .
=1\ Psi v, ) Zi(ks; m, )ds

+ >,  Res{Py(s;y, 2)Z(ks; m, 1)},

—1l4k=0=5/4

where the last sum is the sum of the residues of P,-Z, at the poles lying
wn the strip —1/4dk<0<5/4.

ProOF. To prove this lemma, it is sufficient to show that

(6.2) Pz’szS——->0

Sﬁ/4+iT

—1/4k-+iT

as |T|— oo, where the integral is along the horizontal line from —1/4k+4T
to 5/4+4T. If |T| is large enough, and s=0+1T (—1/4k=0=5/4), then
by (56.2) and (5.5)

Py(s; v, Z)<<exp(—cr§_‘,:lT+ Vi) -

As is well-known,

rigr

Uy IA+HT+o) TT A+, +2T o)) (~1/25053/2) -

Hence
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(6.3) Z(ks; m, 1)< TL(L+ kT +v,)) lﬁ: A+1,+ 26T +v,))
g=1 p=r;+1

1 1472
< I_Il(1+lT+ VD _H+1(1+l,,+ T+ V,|)
' (—1/4k<0<5/4) .
Therefore

P,-Z;dsge "

Sb/t-iw'T

—1/4k+4iT

and our assertion (6.2) follows at once.
If 0<e<1/k, then, by the similar argument,

1.8 P,-Z,ds = 1,8 P, Z,ds
27w Jwso 271 J©
+{O if a1,
Res (P,- Z)) if a=1.
1/k
Hence
(6.4) 0w; )= 5= P:-Zyds+Res(P.-Z) .
7 27t Jo 1/k

Now we consider ¥y(s;y, 2). Since ¥;={(1+ns)P;-Z,, we obtain

; 222 (1K) n
6. N ’ = —— —
(6.5) IE?ks V.59, 2 krtr2” D N(m) C<1+ k )

x T (g, —2miz,)™* 1T (Y>+47%|2,[) "G (3 0 _47_c’|z_,,|2__>
=i ? pritr ? k’ ,y;+47l'zlzp|z ’

In particular,

o 2remnl(/k)(2/k)" A VN
ResT(s; 1, 0) = < b s S (1+ )W+ v =M.

LEMMA 6.2. We have

1 S ) _ 1 S )
(6.6) Sri o LB Y s =—— | Ti(s; y, 2)ds
+ D, Res¥y(s;y,2),
—1/4kSoSB/4
(6.7) 1.§ T8 v, z)ds=—1—.S V(s; v, 2)ds
271 s 2mr Jw
0 wWf A1,
0 1/k
{Resw‘1 wWf a=1, (0<e<1/k)

1/k
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and

log f(y; 2)= 2—1—8 U.(s; ¥, 2)ds+Res ¥ (s; 9, 2) .
7 2w J© Tk

Proor. It is well-known that
(6.8) L(1+ns) KA+t

for —1/2<0<83. Hence, using the estimation in the proof of Lemma
6.1, we easily see that

5/1+4T
S P, Z,-C(1+ns)ds — 0

—1/4k+1iT
as |T|— . From this follows (6.6). Similarly (6.7) is obtained.

LEMMA 6.8. The series

>3 1.5 T(s; 9, 2)ds
7 2T J(—1/4k)

18 convergent.

ProorF. Using the same notations as in §5, we have by (5.2), (5.5),
(6.3) and (6.8)

r41 1472
Py(s; v, :4)<<exp(—6’qz1 lt+ Vo) H+1x,iv/2(1+l,,) ,
= p=ry

T1472

Zyths; m, ()< TL QA+ 1e+ Vil T (141"

r1+

EA+ns) KA +t])e .

Hence
1 o0 r41 1472
S| s« s ST exp(—e it Vi T1 wpA+L)
7 27 J(—1/4k) {m) {1} J—oco g=1 p=ri+1

which is clearly convergent.
This lemma gives the convergence of the series

(6.9) R(y; 2)=3, 2, Res ¥(s; 9, 2) ,

where 3., means the sum of the residues of ¥; at the poles on the
line 6=0. We write

(6.10) log f(y; 2)= Z—LS ¥,ds+R(y; 2)+Res¥, .
7 21 J(~1/4k) 1/k
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LEMMA 6.4. Assume that the tnequalities |z;|/y;<b (=1, ---, n) hold
by a constant b, then, uniformly in z, ---, z,, we have

(6.11) z-—lfﬁ P Z;ds=0(M*)  (0<e<1/k),
1 2m J©
1 _ —1/4
- Pz'szS——O(M ) .
T 2w Ji—1/4m)
Similarly
(6.12) 5 1,S Vds=0(M*)  (0<e<l/k),
2 2w Jw@
> 1,8 T, ds=0(M*) .
2 2w Ji—1/41)

PrOOF. Since the proofs of these four formulas are similar, it will
be sufficient to show (6.12). By (5.2), (5.5) and our assumption on ¥ and
zZ, we have

r41
Py, 2) LY, -+ y,)° exp(—cg_.lltJr Vi)
r1472

X II 2*(1+1,) .

p=r;+1

From this and the estimations in the proof of Lemma 6.3, (6.12) can easily
be obtained.

§ 7. Estimation of H(2) on the E\(7;).
LEMMA 7.1. Assume that z in E satisfies the inequalities

27z'|z,,]/y,,§M“’ (q::l’ Ty 1’+1) .
Then we have
R(y; z2)—R(y; 0)=0(M~4?) .

PRrROOF. We have by (6.6) and (6.12)

(7.1) R(y; z)—R(y; 0)
1 . . .
:;% {Sm _S(—mk)} {PZ(S’ ¥ 2) Pys; v 0)}
XC(A+n8)Z (ks; m, ti)ds
=S\ (Pisi ) 99— Pls; v, 0} (U +18) 2,83 m, p)ds
7 2wt Jw©

+o
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where ¢ is a small positive number such that 0<e<4/2k. By the defini-
tion of Py(s; vy, 2),

& I'(s+1V,) "H* G(2s+21V,, 0, 0) .
Py(s; v, 0) = {q—l Yot e p=1;{+1 Yy t¥e if all a, are 0,
0 if not.

Hence the last sum over the ) in (7.1) can be written as follows:

1

imi ta}=10} 27T

(7.2)

g(e)a(s; ¥, D0 +n8) Z,(ks; m, f)ds

1
oni

() (0}

:ZI+22 ’

S( ){PA(S; Y, 2)— Pi(s; ¥, 0} +ns)Z (ks; m, t)ds

where the sum Y, is taken over the Grossencharacters A for ideal numbers
mod it with {a,,};t{O} and the sum X, is taken over the N with {a,}={0}.
We put

4n’|z, "

G R ST
P

p =

Then, by our assumption for z,
xp<<M—2A (p:’rl_!_l’ M) 7"1"""2) .
Moreover,

larg (y,—2miz,)| < M~ (=1, -+, 7).

Reviewing the proof of Lemma 6.4, we have, for o=e¢, the estimation
of the integrand in the series JX:

Pi(s; y, 2)L(1+ms8)Z,(ks; m, 1)

'r1+r

& M*(1+[t])* exp (— _z‘, It+ Vql) P (1+L,) .

__.7-1

Hence

1472

(7.3) S<M* S, TI wbA+1,)
{t}#1{0} p=ry+1
Tl 1‘2 oo
< M 11+ Sl L+~ 1)
p=ri+1 Ip=0

_...Msk( H (1 x1/2)~z 1)<<Msk—A .

p=r+1

As for X,, we write
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S=3 _LS 1 (34 V,)C(L+n8) Z:(ks; m, f2)
211 J@

{m} g=1
{{}=0

. Nemiv, W2 G(28+21V,, 0, x,)
X —2m1z,) "V » Yy Tp
{;;[;[1 (yq Z q) qp=11+1 (y?)+47t2lzp|2)a+n’,,

1 L Ti4T2 . )

— Iy 11 E28 }21‘/; 201 de

p=r+1 P

and we must estimate the expressions in the braces { }. Consider

(7.4) I (y,—2miz,) "
7=1
1

: '1 > rl - 3
= Lot Mg o(IT A—iw,)~"e—1} ,

gq=1

where w,=2nz,/y, (¢=1, --+, r,). If we put, for a complex variable z,
P(2)= I A —izw) s,
then @(z) is regular for 0=<z=<1 and
| (= dwg)e— 1= (1)~ (0)

= ||.¢@dz | < maxip (@) .
Since

¢'<z>=¢<z>2(s+v:vq>—1L ,
g=1 —W2W,

we have
71
max |@'(2)| = X, (A +[t+ V|)|w, max |p(2)]|
0szs1 g=1 0sz=s1
KM~ (1+[t+ V,)max|p(2)] -
g=1 0=z=s1
By the definition of ¢(z),
r1
lp(2)| = qI=III1— 12w, exp (—[t+ V| tan™'(zw,))

<exp(Z S jt+Vil) -

Therefore

max |¢'(2)| < M~ ,,% (L+[t+ V,|) exp (_g_ z=, lt+ V,,|) .
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From this and (7.4) we have

S I'(s+1V,) " (s+1V,)
7-5 q - —_ d q
79 ';['—Il (Yo—2mizy) e ql—=]; Yertive

+ 0 -arrerin qul(1+ t+ Vi) exp (- %Z; t+Vil)) -

Similarly we have

(1.6) (W4T, ) Tr= g L QU (L 8+ VD)
Finally we consider

G(s, 0, x£)—G(s,0,0) .
Since

— I'(s/2) b (a2 \(a—1/2(] _ —s/2
(.7)  Gls, 0, %)= V?:‘r((l—s)/mso“ /2(1 — ) /2(1 — )2

([6], p. 369, (4.315)), we must estimate
|| wer o — e (L — ey~ 1} du .

“We consider this as a complex integral in u-plane and change the path
of integration as in [6], p. 872. New path C is an arc of a circle passing
=0 and u=1. On this C, the inequality

targ u(i:zx) <-— li’ vi—zx

holds for 0<x<1, and, moreover, ¢,<|u/Reu|=c,. If we put

¥(2)=(1—zux)™"*,
then

e , : _E_’ ux
(w115 max (6 < max |90 5+ T

<L x|su|max {ll—zu:zcl"“’/”“1 exp (—%arg(l—zuw))} .
By the property of the path stated above, we have
(1.8) Slu"’+"/2(1—u)“’"””{(1—uac)“’/2—l}du

[}

< |8 SC |u|* =2 |L—u|°/*exp (% arg ﬂ%{—?) |dul

<<x|3|e—(lt|/4)~’1——‘ms W/l(l_amll—ul(a—”/zldul .
c
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Since ¢,<|u/Reu|=c, on C,

(7.9) Solul‘l‘”/2 |L—u| 2| du| K S:x““””(l—x)“’"””dx<<1 .

By (7.7), (7.8) and (7.9) and the estimation for gamma function, we have

G(s, 0, 2)—G(s, 0, 0) K w(L+ [¢])7+/2g 1/ 0 V1=
or
(7.10) G(28+2iV,, 0, 2,)=G(28+21V,, 0, 0)+O(M 24e=t+Vs!)

Similarly we have
(7.11) G(s, 0, x) e~ 1H1/HVTTE

By (7.5), (7.6), (7.10) and (7.11),

e F(S‘*—’di) T 2 2 2\—s—iV y
N e amizyre L, W4Tz G2 4217, 0, ;)

=L@ Vo) T o gas+2i7,, 0, 0)

g=1 y;+{vq p=r;+1

+ O TT (L+]t+ Vil exp (—oSile+ V) -

Hence
o r+1 r+41
(7.12) 22<<M"‘“"‘%,§_ qI=II(1+ [t+ V)@ +1E]) exp(—ch_IItJr Va)de

LKM*E—4,
Collecting (7.1), (7.2), (7.3) and (7.12), we have
R(y; 2)—R(y; 0) K M~ M*~ 4 M4
and the proof is completed.

THEOREM 7.2. Assume that z<€ E,(7;). Let ¥ be a number such that
Y=7; (modd™?!) and t=2—"7 satisfies the inequalities
2w\t | [y, =M~ (g=1, -, r+1).
Put
W,=27T,/Y, (g=1, +--, 1),
W, =27|T,| /Y, (p=r,+1, coc, r,+71,) .

Then we have
r1 r14-72
H(z)=exp {M(z% Siw,—Q- %, > w )} (L+0M ),
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where Q 18 a positive definite quadratic form of w, --:, w, with
determinant

_ k+r
IQI-—W.

Proor. By (6.5), (6.10) and (6.12) we have
log f(y; z)=log f(y; ©)

— Q2relk Mﬁ (1 w )—1/k H (1—|—?,U) 1/kG< wp )
I'2lk)2 o= ! p=r +1 ? " 14wt

+R(y; ©)+O(M %)

. 1/k > —1/k k—2 2
_Mﬂ(l i) ’,,I,{ (1 +w?) ( Lo w)
+R(y; 7) +O(M =)+ O(M )

=M(1+i1 S w2 S ws) 1 Ry o)+ 0 ,

where

71
Q:ﬂ wg_}__l_ Z WeWy,

2k =1 k* 1s¢<q 5,
We easily see that @ is positive definite and the determinant |Q| of Q is

1+ 1 .- 1

IQ[ 1 1+k"° 1 — k'l"rl
(2762)’1 ....... orifpritt ”

Since
log f(y; 0)=M+R(y; 0)+O(M ™) ,

we have by Lemma 7.1

r1472
log H(z)=M( i+ 3 w,—Q— 28 'S us) 1 o(ar-)

and the proof is completed.
§8. Estimation of H(z) on the E (o).

In general, we have

(8.1) log | H(z)|=Relog f(y; z)—log f(y; 0)
=Reg(y; 2)—9(y; 0) .
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THEOREM 8.1. If ze E(0,)), then we have
|H(z)|<exp(—cM) .

PROOF. Assume that z € E,(0;). We can take ¢ such that o= o, (modbd™?)
and T=z—0 satisfies the inequalities

ZﬂITq]/ngM_" (q:]-’ °t %y n) .
Since g,€ A4,,
(8.2) 9(y; z)=exp (2miS(1fo)} 9(y; 7) .

Defining w, (¢=1, ---, r,) and w, (p=7,+1, -+, r,4+7,) as in Theorem%7.2,
we have by (6.1) and (6.4)

Pra/k M T (1 inr \—1/k
T@/kys Catnih Lo

x I a+wp=r6(2, 0,25 ) 1o

(8.3) 9y, )=

p=r;+1 -E 1+w;
— M -4 ek
= iy O +0M™) .

Combining (8.1), (8.2) and (8.3), we have

kg.) — _M_ 1—-4
log |H(2)| < (cos 2 S(¢t*a,) l)C(l—i—n/k) +O(M*4)

M__ | owmrsy,

CA+n/k)
where o, is the number defined in (2.3). Thus we have

log |[H(2)|< —cM

=(0.—1)

for sufficiently large M.

§9. Estimation of H(z) on E,.
THEOREM 9.1. If ze E,, then
|H(2)|sexp (—eM'™*) .

PROOF. Assume that ze E,(7,). We can take 7 such that v=7v
(mod d™') and r=2z—7 satisfies the inequalities

)

eMM<4m S oty < 4nnCE .
i=1
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Defining w,, w, as in Theorem 8.1, we have

. . 22r2/k M _ ik
O 9 D= +%/k);lm fwg) ™

r14+72

% TI (L+w2)- “"G(—— 0,12 )+O<M”‘)

p=ri+1

In the present case, we can not use the expansion by {w,} as is utilized
in Theorem 8.1. We put

o=2/k, r=1x,=wy/(1+w})
and consider G(o, 0, x). It is known that

1 I'(g/2) S w1 — ) —uz— (L—wao/2) ;.
21w I'(3—0)/2) Jo (1—uz) "

([6], p- 370, (4.317)). Using the inequalities

A—ux)™*=(1—x)""?,

G(O’, 0, x) =

1—uz—QA—wae/2 3 0, 1-% 1 0,7 _4)
1—ux 2 l—wux 2 ’

we have

(1—x)°2G(o, 0, )= 21/177: F(g(”/i;/z)s w2 (L — ) o 12 {1___3,(1 u)}
21/7r I'@—o)/2 {(1 (3 0') (0;'1>

)F
+gagl(335)r (" =)}

1 I'(0/2)

== ()T (FH-Fo+ 5557}
_ F2<f> (1——-—(1+0)x>
Since
(1—a)? =1+ wp) ™",
we have

A+up) G (2, 0,15 ) s LB (1 wir),

where b,=4n*nC2%. Hence, from (9.1) it follows that
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T /b T w3 ek

lo(y; D = ____C(1+ oy L) T (1- Ty ) +o
M _ z" 2 Af ek
M M- "

Combining this inequality and (8.1), we have for z e E,(7;)

log |H(2)|=|g(y; )| —9(¥; 0)
< —eM'H 4L O(M*F)
< —cMit,

The same result holds for ze€ E,(s,) and the proof is completed.

§10. Some results on trigonometrical sums.

Let N be sufficiently large number. Let V= V(N) be the set of
(4y, *++, u,) in m-dimensional space defined as follows:
0<u,=N (¢g=1,:--, 1),
2+up+fZSN2 (p=1'1+1, M) r1+"'2) .

We consider the trigonometrical sum

(10.1) S(z; N)= ()Z,V exp(2riS(v*z)) ,
v=(m)

where the sum is taken over the vy such that x(¥) € V and y= g (mod m).
- To estimate S(z; N), we here introduce the Farey division of E.
We put

H=N*"s T=N'" (1/2<a<l)
and define the set
r={v|\vret, v—a, Nao=T"}.

For each element ¥ of I' with Y—a we define a subset B, of E as fol-
lows;

B,={z|ze E, N(max(H|z—7,|, T™))=N(a)™* for any 7,=7(mod d™)}
and put
B'=FKE— U B,.

rerlr
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This division of E into B° and B,(ve€I) is called the Farey division of
E with respect to (H, T) ([5], § 2).

THEOREM 10.1. Assume that z€ B, with Y—a. By the definition of
B,, there exists v, such that v,=7(mod ™) and T=2z—"7, satisfies the
rnequality

(10.2) N(max(T™, Hiz]))<N(a)™.
Then we have

272 ok _
10.3 ;N — e oo\ p2miS(n"T) Lo n O(N "¢ ,
10.3) S N)=—r2s G("/)S . Se 7 qau + + + dat, +ON™ )

where G(Y) is the sum defined in §2, and, in the inmtegral im (10.3),
D=0y, *++, M) 8 defined by

Ne="Uq q=1,---, 1),
vﬂ:up+iup+r2=77p+’rz =741 oo, r+7,) .

ProoF. The proof is analogous to that of [8], Lemma 7. First we
see

(10.4) S(z; N)=3, eS¢ n 2 exp{2mi S(\L+0)*7)},

z{2+o)eV
A€a,ito=p(m)

where ¢ runs through the residues mod a such that o= (mod(um, a)) and
the inner sum is over the A in a such that An+o=pg¢ (mod ur) and
x(n+0)e V. We take a number A\, €a such that n+o=p¢ (mod m) and
write the inner sum of (10.4) as

>, exp{2rt S(W+k)*T)},

where k=0+X, and a,=a/(a, m). In view of the inequality (10.2), we
can take =@, ---, 6,) satisfying the conditions

Oy =+, 0,>0, 0,=0,,,,>0 (p=r,+1, -, 7+7),
6 max(H|z|, T)s D™V,
NO)=VDNG@) .

By Minkowski’s theorem, there exists a number «, such that
a,ea, 0<|a|=6.
Put a,a =0, then N(b)= N(a,) N(a)'< N(@)N(@a)'=1"D. Hence the number
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of the b depends only on K. Let B8, ---,8, be a basis of b~*. Then
a,=a,8; (1=1, ---, ») is a basis of a. Since amca, we can take a basis
0.+, 0, of am such that

P;= gjaﬂa‘i (G=1, ---, n) ,

where the a; are rational integers. We may further assume that
O=a;=au=a; (j=Si=<l=<n). Since a,---a,,=N(a,m)/N(a)< N(m), we have
©0,=0(0) (¢=1, ---,n). Take A\ in the sum and write A= m,0, with
rational integers m,, ---, m,. We define =3 £,0,, where &, ---, &, are
real numbers. If m,<¢&<m,+1 (i=1,---,7n), then 7—Aag6 and

@ +£) e — M+ 0) T L)) + &7+ [N+ £
LKH'N¥'=N"°,
Hence we have
exp(2mi S(M+ K)*z)) = S’-"‘-ffgexp{zm S+ K)*T))dE, - - -de, +ON ) .
We change the variables of integration from (¢, ---, &) to (u, ---, u,).
Then
0(%yy =) Uy)
a(fn M) Eﬂ)

=2""v"D N(am) .
Hence
(10.5) exp{2nt S((\+ £k)*7)}

= %@_)S = \expiami S +m9)du,- - -du, + 0N ,
where FE,; is the set of (u, ---, u,) such that

(U, -, u,,)=x(7\.+lc)+i2:‘,ltix(pi), 0<t, <l (i=1, ++-, m).
Summing up both sides of (10.5) over the A such that
x(N+K)eV, ream,

and noting that the number of such A is O(N". N(am)™), we have
(10.6) >, exp{27t S((L+k)Fr)}

z(2+K)EV
A€aim

= 2r2 cee 2 k LRI
B ‘_/ .D N(alm) z‘fé%fvs E,; Sexp{27cz S((Y]-{-[c) T)}dul dun

+O(N**N(am)™)
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_ 2
V"D N(a,m)
+O(N*'N(am)~'d)+ O(N**N(am)™) ,
where d is the diameter of E,. Putting (10.6) into (10.4) and noting

that d=0(0)=0(T)=0(N'*), we have theorem at once.
Now we quote two lemmas from [8] and a lemma from [5].

LEMMA 10.1. We have

(10.7) S(z; N)2k~1<<N,,(2k_1_1)
+_Nn(2k~—1~k) Z l; eXp{27Z‘iS(k! )\,1. . '>"Ic—17\'z)}] ,

ey Ak

S-; : Sexp{zm; S+ K)e))du, - « - du,

where N, Ay, + -+, Ny, run through the non-zero elements of m such that
T AN+ 2o+ ) € Vi= V—a(p)
Sfor all 1=k, <---<k,<k—1, V, being the translation of V by —ux(t).

Proor. ([8], p. 831, (58)).
In (10.7), if N, ---, A,_, are fixed, then A runs through the numbers
such that

) € P=P(h, -+, M) = ) (Vi 4o +0)

ky<ee-<kys
Putting y=Fk! \,---N\,_,, we have
LEMMA 10.2. If we define the sum
S(P) :x(%‘,Pexp(Zrci S(Owz)) ,
im

then
(10.8) S(P)<N*™ min (N, ||S(z2)) ,
where ft, -+, tt, ©8 the basis of m, ||x|| 78 the distance between x and
the nearest rational integers.
Proor. (8], p. 332, (64)).

LEMMA 10.3. Let z be a point in B°, which is defined by the Farey
division with respect to (H, T). Let Q be an n-dimensional cube
Q:{(xli Tty xn) I ]xi|§ w (7'=1y M) n)}
and define
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L= 3 min(U, ||S(v2)||™ ,

z(v)eQ

where the sum 18 taken over the imtegers vy such that x(v)eQ and
Py * 5 Uy 18 the basis of O. Then we have

npr(1 .1 HlogH logH
L<<WU(T+W+ wuU t U )

Proor. ([5], Theorem 3.3).

THEOREM 10.2. If k>1 and ze B°, then
S(z; N)zk—1<<Nn(2k—1—1)+Nn-2’¢—1+s+a—1 ,
where ¢ 18 arbitrary small positive constant.
Proor. Combining Lemmas 10.1 and 10.2, we have

S(z; Ny g Nret~t-n
+Nn(2"“‘—k)+”—1 Z mll’l (N HS(#ivz)H_l) ’

A1y dp—y 1513

(10.9)

where A, +-+, \;_, Tun through all non-zero integers such that |\,|<cN
(=1, -+, k—1),v=Kk! Ny+-*N,, and g, -+, ¢, is a basis of ©O. The
value of the last sum in (10.9) does not exceed

(10.10) 2, , min (N, [|S(pp2)l[™) 5_‘.* 1,

WEeNk—1 15esa - T Tt -1

where 3}*1 is the number of (A, -+, \_;) such that

v=k! Nc Ny
| =cN (t=1, +++, k—1).
Since
SU*ILKNEN()*,
we have
S(z; Ny g Nre*-n
0\ A Y min (N, [[S(e22)[7) ,

lviSeNk—1 1gig

where the sum is taken over the integers v such that |[v|<c¢N**. Ap-
plying Lemma 10.3 to the last sum, we have

>% min (N, [[S(ep2)||™)
1sisa

& N™k—D+1 (_%+N];_1+Hl;ng +10§VH><<Nn(k-—1)+a log N
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and the proof is completed.

§11. Estimation of H(z) on E..

Consider S(z; N) in previous paragraph with N=XM"", X being a
constant which will be determined later.

THEOREM 11.1. If ze€ E,, then
Re S(z; N)—S(0; N)<—cN™.
Proor. If k=1, then we have, by (10.1),
(11.1) S(z; N)KN*™ min ([[S(#:2)[]™)

where g, ---, pt, is a basis of m. Let o, ---, 0, be a basis of (md)™*
such that

| 1 if i=j
S )= 1<4,j5=n).
(outt4) {0 if i (1=1,5=n)
We write S(¢#2)=a;+d, (=1, ---, ®) with rational integers a, and

—1/2<5d,<1/2 (4=1, ---, ») and put

a=i§:llaipz- ’ T=ﬁ] d.0; .
Then z=a+7 and
INCZINESA (t=1, -+, m).

If a¢—a, then mca, which implies that a € A,UA,. Since z¢€ E,, there
exists an index ! for which

7|t =2 M
Co,
Since

min (||S(#;2)||™")=min (|d,|™)<min (7,7 <M,
1sisn 15isn 1Sjs=n
we have by (11.1) S(z; N)KXN**MY*, or

IS(z; N)|<cX'N".
Since

. A (2m)2N* a—t
S(0; N)_——VD'N(m) +O(N"™)

([5], Lemma 3.2), taking X sufficiently large, we have
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Re S(z; N)—S8(0; N)<|S(z; N)|—S(0; N)< —¢N™".

If £>1, then we consider the Farey division of E into B° and
B, (veI') with N=XMV»,
If ze B°, then by Theorem 10.2

Sz N)XN*  (3=(1—a+e)/2) .

Hence theorem is evident.
If ze B, with v —a, then by (10.3)

. 2'2 n—a
(11.2) Re S(z; N)gmw(v)u +ON™™) ,
where
(11.3) I= S o Sexp{zm' S(*o))du,- - - du,

Now we see that there exists a constant b,<1 such that |G(7)|<b,
for all vy¢ A,UA,. In fact, it follows from Theorem 2.1 that there
exists a number N, such that |G(7)|<1/2 for v with v—aq, N@)=N,. On
the other hand, by the definitions of A4, and A4,,

0= max |G(V)|<L1.
N(a)s=Ng
T#AgUAy,7—a

Hence |G(7)|=b,=max(d, 1/2)<1 for all v¢ A,U A, and

. b02r2 n—a
Re S(z; N)é—_‘/mlLl +O(N*"™)

for v¢ A,UA,, which gives
(11.4) Re S(z; N)< bo; L s0; N

for sufficiently large N, since |I,|<n"2N". Thus we have

Re S(z; N)—S(0; N)< ——%S(O; N)< —eN".
Finally assume that e AJUA,. We put 2=7+7. Then there exists
an index ! for which
!Tll = Coyl ECM_M” .

Suppose K is real. Without the loss of generality we may assume
that [=1, 7,>0. (11.3) is written as follows:
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Nk
-[1: S e e Sezmslduz' . du"hS erivg rldul ,
0
where S(%*7)=S,+u’z,. Hence

N N
lIllés ..‘S duz"'dun
—N -N

0

Since
v riukr 4
‘ go e? 1dul é—aﬁ- ’
we have
(11.5) ILIK N 77V <e X' N™ .

N &
S 62””"1 rldull .
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Suppose K is imaginary. In this case, we may assume l=n and

|z =cM ¥, We write in I

S(vkr) = Sz + z-1'+1.(,u1'+1 + iun)k + T'n(ur+1 - iun)k ’

and
Il': S s ngﬁsﬁn’.dul. . .durdur_l_z. . .dun_l
X Ssuz +u2 <2 €XP[47E Re{z, 1, (%, 1+ 90,) Ao, 1 du, .
r+1T¥p=
Put
Uy +iu, = Ue® , T, =Re* ,
then

(11.6) |11|ggN SN Aty - A, Aty e+ - At
—-N —N

X

The last double integral is

SNd Usz”exp{m U*R cos(k6 -+ 9)}d0 = 2nSN UJ4xRUMAU .
1] 0 0

If N<R*, then
} SONUJO(MRU")dUl §S:deU§R"2/’° :

If N>R V* then we divide the integral by U=R™"*:

SN UJ(4xRU*AU = SR_M + SN

.
0 Rk

SNd USZ” U exp{4miU*R cos (k6 +)}db ' :
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It will be sufficient to consider the second integral in the right hand side:

U R—z/k RNk
g UJ(ArRUYAU = S £#/41 ] (Amt)dt .
R—1/k E I

Applying the second mean-value theorem to the last integral, we have

RN,‘: 5 1 4né
S /% J (Act)dt = S Jy(4mt)dt :Z;S Jo(w)du (1<¢&¢<RN¥) .

This is bounded. In fact,

(11.7) So Jo(u)du=71t-gz du S cos(u sin 6)do

=£Sx/zs—in(—z—sﬂl—0)—d0= 2 {Sn/4+sn/z}

T Jo sin 4 7 (Jo x/4

and we see

S”/zsin(z sin 6) do< S”” dé <VZ2_
/4 sin @

’

=4s8in @ 4
S"“sin(zsinﬂ) wzglf‘/? sin 2t d
0 sin 6 o tV1-¢
Sl/V_z

. / V2 g
S 2t 1 +oenae =T Ay 1041y

Hence (11.7) is bounded. Therefore we have
(11.8) |LI|SeN* |7, *<cX:N".

Collecting the results (11.2), (11.5) and (11.8) and taking X sufficiently
large, we have

Re S(z; N)—S(0; N)< —¢N*"
for large N. Thus the proof is completed.
THEOREM 11.2. If zec E,, then
|H(z)| <exp(—cM) .
ProOF. From (8.1) we can derive the inequality

(11.9) log |H(z)|<Re (ZV eW; ¥ 2)— X e(v; 9, 0).
z(v)e z({v) €
v=p(m) v=p(m)

If x2(v)e V, then
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S(y|*y) EnN*C,M *"*=nC X" .
Hence the right hand side of (11.9) does not exceed
e "0o¥*(Re S(z; N)—S(0; N)} .
Since X is a constant, we have by Theorem 11.1
log |H(z)|<c(Re S(z; N)—S(0; N))= —¢cN"=—cM .

and our theorem is proved.

§12. Asymptotic formula for the partition function.

Now we are in a position to prove the asymptotic formula for the
partition function A(y; y). We put

J;= H(z)e *=8tadg, - - dex, .

S¢<E1<rj>)
Let 7=2—7; and define w, w, as in the previous paragraphs. Then,
writing z instead of z—7;, we have

a21) J=eren|  HE@erseds,. . dn,

$(E4(0))

— 6—27:€S(vrj) 2"'4/ﬁ
(2m)"

X SWH(z)exp (——’L—Jg é_i_‘,lwq> qi;[ll dw,

Yi***Yan

r1+7rge

X I w,exp{—2¢V Mw, cos (0,+p,)}d0,dw, ,

p=r;+1

where 0,=arg z,, p,=arg v (p=r,+1, ---, r,+7,;) and the domain of in-
tegration W is defined as follows;

qu|§.M—A (q=1) M) Irl) ’
W, 0sw,=M™ (p=r,+1, «oc, 141y,
0=<6,<2m (=7,+1, -+, 7 +1,) .

3
We denote by J* the integral over W in (12.1). Then we have by
Theorem 8.1

ry ri+7r
122  Jr=| e Ildw, I w,
w g=1 p=r;+1

X exp { — %—Z#Mwi — 2tV Mw, cos (6,+@,) }dﬁ,dw,,
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rit+ry

— e T+ _2+k .
+O(M ) SW e .,I=Il dw, p=IrII+1 w, exp( o Mw3 )dﬂ,dw,,
=Jr +O0(M~9J; .

Since @ is a positive definite quadratic form, there exists a positive
constant a such that @=a(wi+---+w?). Hence

—aMw? ° 2+k 2 —n/2
(12.3) J*<<(S dw)" (S w exp 24 % pur Jaw ) <.
As for J¥, we write
(12.4) Jr=L,- Lz,
where
M—4 M—4
Lo=§ S e *dw,- - -dw,, ,
—y—4 —y—4
-4
L1=§ dar W exp { 2';2ka —2iV Mw cos § }d

First we write

Lozr S“ e‘”del---dw,l—i-{SM_d ...SM—A _Sw Sm }e“"?dwl---dw,l .

~—o00 — 00 ~y—4 —~nM—4 —oo —00

The second term in this right hand side is estimated as follows:

(s

0

e-—axwzdw>'1_1<<M—r1/2 exp(—cM*) ,

By a simple calculation we have

Sm ces Sm g_yqdwl. . .dwnz ]QI‘I/ZE"1/2M—'1/2 .
Hence
(12.5) L0= IQl—‘l/Sn-rl/SM—rl/2+O(M—rl/g_o) .

As for L,, we have

L,=2=n SM—A w exp (— 22—';';sz> J(2V' M w)dw

an S”m “ exp( 22’;" t’)Jo(zt)dt

M
=2, o Jrexe (~EEE e )aanae .
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By a formula for Bessel function we have

S:texp( 22'216 ) (2t)dt = f_ kexp( ;f;)

([9], p. 394) and

te~’dt Lexp(—c M) .

1/2— 4

Smm Atexp(—gzil—-oz!f ) 0(215)dt<<§
Hence

_2r K 2k’ . 1—24
(12.6) =2k kexp( 2+k)+0(exp( e M)

Collecting the results from (12.1) to (12.6), we have

_ 7 Qe r r1/2]a(r1+1)/2 2’627'
J__ezms(yr)zz"l/_D . Oragr/2fire .21]‘; N 2
o Vet T Ty oY ( 2+k>
X (1L+O0(M ™))
o ) -‘/E_Mrl/Zsz2~rl/2+1/2 okr B
—_ 2ri8(vy 5) . 2 1 O M c .
¢ 2?1/27tﬂ/2(2+k)rg(k+,',1)l/2N(u) exp ( ’c ) x ( + ( ))

Now assume that yemf, then

.Zf‘ e-——zm'S(vrj) __:N(méc) .

J=1
Hence we have

S H@eseods, - da,
i=1 JS(E (r )
_l/—D—M,l/zkzrz—n/zﬂ/zN(tno)k 2k r _
o _ —22 0 ) x(14+0WL) .
(12.7) E TG Ryt ) PN T ( 2+ ) ( .

On the other hand, we have by Theorems 8.1, 9.1 and 11.2

g

(12.8) {ES +§ +§ }H(z)e‘z"“("’dxl---dx”=0(exp(—cM°)).
#(E(0))  Yotmp  JetEy

Since
f(y; 0)=exp(M+ R(y))1+O0(M ™))
(we write R(y) instead of R(y;0)), we have by (12.7) and (12.8)

_ DMAMrgnerystaNm )t
A(v; ) 211222 - o)k +r,) 2 N(V) exp (

2kr,
R
2o M+ @)
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as N(y)—o. Thus we have completed the proof of our Main Theorem.
As special cases, we have

COROLLARY 1. If K i3 totally real, then
A(y; y)=e DX P(y) ,

where P(v) is the number of the partitions of v imto k-th powers of
totally positive integers congruent to ¢ mod m and we have

Dl/2k(1—n)/2Mn/2N(m )k
P ~ 0
O~ G+ o Nw)

éxp ((1 + %)M + R(y)) ,

M={r(1+3) ¢ (1+2) b D3Ny Nom)

}k/(n+k)

COROLLARY 2. Let P(N) be the number of the partitions of N into
the k-th powers of integers which are congruemt to a mod m, where
0<a=m and (a, m)=1. Then we have

k —1/2)].1/2 /
m ta/m=1/ )k / du m ba,/m—a/m—l/zedNb

(1 + k)1/2+a/m(27z)(1+k)/2 4

P(N)~r(”%>'°

where

bzfjlu_k , d=(lc+1){—k—1,’;1“(l+%>c (1+-;-)}"’"+'” :

Proor. By Corollary 1,

P<N>~§(2E(TMH5)’” exp (X1m+ rw))

where

_ b

(i 3)e (Rt

y=M/kN ,

}k/(k+1)

and R(y) is the residue of
1I(s/k) 1 a 8
C(S, m,)C <1+ k)

k yn/k ms

at s=0, where {(s, a/m) is the Hurwitz zeta function. For small s we
have the expansions;

m=y~r=1— ‘Z‘ log(ym'*)+--- ,
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¢ (s, %)L—-—é——%-k(log F(%)———;— log 27c)s+ <o ([10], p. 271),

where C is Euler’s constant. Hence

Ry)=— (% — %>log(ym") +k (log r (%) — —%— log 27:)

and consequently

1 <___M__>1/26mm:p<%>k (2m)~*/* (M)“/W—lm 1 ( M )1/2

N\2z(1+k) EN N\2z(1+k)
_ <i>k Ma/m mk(a/m-—llz) 1/2—a/m ]
m (271-)(1+k)/2ka/m—1/2(1+k)l/z

Thus we have Corollary 2.

§13. Estimation of R(¥).
In §6, R(y) was defined to be the sum of residues:
R(y)=§f‘,§) Res?,(s; v, 0) .
We shall prove in this paragraph that

R(y) < (log N(v))™*r= .

It follows from Cauchy’s theorem that

Ru)=3-2\ @i, 0ds
7 2mido;

where C, is the simple closed curve lying in the strip |o|=e(<1/4k) and
including the poles of ¥,(s; ¥, 0) on the line 0=0. Since 2, =+++=2,=0,
we can write

1 * r1+ry . 1
R(y)= _1_8 j Le+iV,+1 I'(2s+2iV,+1)

m) 271 )05 ¢=1 Y prrar (29, )0
X

K(8)2-2Z(ks; m, i)~ T —L—ds ,
. 8 ¢=i8+1V,
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where the sum is over all rational integers m,, +--, m, and
#(8)=8C(1+mns) ,

V=225 Bom;  (g=1, ---, r+1).
ek =

The poles of ¥,(s; y, 0) inside C, are at 8=0, —1V, «++, —iV,,,. Let

oty -+, it, be the distinct poles among them and define the curve or the
sum of curves in s-plane by

Ci={s| min (|s—t;))=¢} .
1S5<n
Then we can replace C; by C, and moreover we can write

S Tds=3 g T.ds,
¢} CAi

i=1
where' C, ; is the part of C; defined by
Coj=(s| min (s—ith)=[s—it;) ~ (G=1, ---, m).
On C,;, we put s=1it;+¢ce®. Then, using the results in §§ 5, 6, we have

the following estimations:

ﬁ I'(s+1V,+1) W2 I'(28+21V,+1)

=i Yo +ive p=ritt (29, s

e+l T TH
<M*TL (++ Viexp(—Z Seje+ V)
qg= =1

r+1
(8) K A +t))° K ;1[=Il A+|V,D°,
r+1 r+1
Z(ks; m, 1)< ql;[l A+[t+ V< ql}l A+]Vol)e .
Hence
r+1 T
S Tds < M4~ TL (1+| V) exp (— Z37 e lt + Vi) .
Ca,j g=1 2 g=1
We consider the square of 3 ¢,jt+ V|
r+1 r+1
(X 8ot + Vil = 3, e+ V)
=(r A2t S eV, + 'ﬁ*,:eg Ve,
q=1 9=

Since this last quadratic polynomial in ¢ takes the minimum value for



t= —
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a1 67 Vo/(ri+4my),

Sledt+ Virz Siavi-Gla vy +4r) .

Since >;fle,V,=0, we have

r+41 r147r2

(qglleq q)z—(q; €q )2<'rzz|eq .
Hence

r+1 t V . 1 r+1 V2

(q;eql + Vo .——_—.( ——m Zeq

1
z SV

and

o _r+1 T r+41
|| #dsa«meT @+ |Viiyexo (- 23V, -
134 g=1 4% q=1

On summing up the right hand side over j and {m}, we have, in the
- same manner as in the proof of Lemma 5.1,

R(y) << Mske—r—l .

Since this estimation is uniform in ¢, we can put eé=1/log M and obtain
the desired result

[1]
[2]
[3]
[4]
[5]
[6]
[71
[8]

R(y)<(log M) ™.
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