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Introduction

This paper is a continuation of the previous paper [8]. Let $G$ be
a connected semisimple Lie group with finite center. We assume that
$G$ is not compact and moreover, the real rank of $G$ is one. In [8], we
have obtained an analogue of Paley-Wiener theorem on $C(G, \tau)$ (see

Theorem 2 in [8]). However, in that theorem we did not consider the
discrete part of $C(G, \tau)$ , i.e., the space of $\tau$-spherical cusp forms on $G$ .
Therefore in this paper we shall characterize the discrete part of
compactly supported functions on $G$ . Here we note that this character-
ization depends on $\{E_{p};1\leqq p\leqq\gamma\}$ and does not depend on any choice of
$\{h_{p};1\leqq p\leqq\gamma\}$ (see (4.12) and (4.15) in [8]). Next using the proof of
Theorem 2 in [8], we shall obtain the relation between a size of a support
of a compactly supported function on $G$ and an exponential type of its
Fourier transform. To obtain the relation we shall use the same method
in the classical Paley-Wiener theorem on an Euclidean space.

In \S 2 using the results of Harish-Chandra [6], we shall reform the
theorem of J. Arthur [1] and obtain some characterization of $C(G)$ . Then
applying the above consideration to each K-finite subspace of $C(G)$ , we
shall obtain an analogue of Paley-Wiener theorem on $C(G)$ (see \S 3).

\S 1. More precise characterization.

For an arbitrary function $g$ in $C(G, \tau)$ we shall define $g^{\prime}$ by
$g_{4^{-1}}(\mathscr{G}_{A}(g))$ and $g^{o}$ by $g-g’$ . Then from Theorem 1 in [8] we can easily
prove that $g$ belongs to $C_{A}(G, \tau)$ and $g^{o}$ to $\circ c(G, \tau)$ . Let notation be
as in [8].

LEMMA 1. (i) $\circ c(G, \tau)$ is contained in the space which is generated
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by $\{E_{p};1\leqq p\leqq\gamma\}$ .
(ii) $\circ c(G, \tau)$ is generated by $\{h_{\mathring{p}} ; 1\leqq p\leqq\gamma\}$ .
PROOF. Let $F$ be an arbitrary function in $C_{c}^{\infty}(G, \tau)$ . Then fron

Theorem 2 in [8] it is obvious that $g_{A}(p)$ belongs to $\ovalbox{\tt\small REJECT}(.\pi)_{*}an($

moreover, there exists a function $H$ in $C_{c}^{\infty}(G, \tau)$ such that $g_{A}(p)=g_{A}(H)$

Thus we obtain,

(1.1) $F’=H’$ .
On the other hand, from the proof of Theorem 2 in [8] we obtain,

(1.2) $H^{o}(x)=\sum_{1\leq p\leq\gamma}C(p)h_{p}^{o}(x)$

$=\sum_{1\leq p\leq\gamma}\frac{d^{r(p)}}{d\nu^{r(p)}}|_{\nu=\nu(p)}\hat{F}(\phi_{i(p)}^{j(p)}, s(p)\nu)h_{p}^{o}(x)$ $(xeG)$ .

However, since $F(x)$ has a compact support, we have,

(1.3) $\frac{d^{r(p)}}{d\nu^{r(p)}}|_{\nu=\nu(p)}\hat{F}(\phi_{i(p)}^{g(p)}, s(p)\nu)$

$=(F,$ $\frac{d^{r(p)}}{d\nu^{r(p)}}|_{\nu=\nu(p)}E(P:\phi_{i(p)}^{;(p)}: s(p)\nu:x))$

$=(F, E_{p})$ $(1\leqq p\leqq\gamma)$ .
Thus we obtain,

(1.4)
$H^{o}(x)=\sum_{1\leqq p\leqq\gamma}(F, E_{p})h_{\mathring{p}}(x)$ $(xeG)$ .

By the way, using the relation; (1.1), we can easily prove that $F-H=$
$F^{o}-H^{o}$ and both sides belong to $C_{\iota}^{\infty}(G, \tau)$ and moreover, to $\circ c(G, \tau)$

Therefore it must be zero, i.e., $F=H$ and $F^{o}=H^{o}$ . Thus we obtain,

(1.5) $F^{o}(x)=\sum_{1\leq p\leqq\gamma}(F, E_{p})h_{p}^{o}(x)$ $(xeG)$ .

Now we note that $C_{\theta}^{\infty}(G, \tau)$ is dense in $C(G, \tau)$ . Therefore {$g^{o}$ ; $ge$

$C_{c}^{\infty}(G, \tau)\}$ must be equal to $\circ c(G, \tau)$ , because dimo $ C(G, \tau)<\infty$ and $g\mapsto g^{c}$

is a continuous projection of $C(G, \tau)$ onto $\circ c(G, \tau)$ . Then (ii) is quite
obvious from (1.2) or (1.5).

Next we shall prove (i). First of all we shall apply the arguments
in \S 1 in [8] to the case of $P=G$ . Then $L^{a}=^{o}C(G, \tau)$ can be decomposed
as

(1.6)
$L^{a}=\bigoplus_{\iota\leqq g\leqq n}L^{a}(\Lambda_{j})$
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where $\Lambda_{j}\in\tau g^{2}(G)$ and $L^{G}(\Lambda_{j})=L^{a}\cap(\mathscr{F}\mathscr{F}_{A_{j}}\otimes V)$ for $1\leqq j\leqq m’$ . Moreover, we
choose an orthonormal basis of $L^{G}(\Lambda_{j})$ as follows,

(1.7) $\{\psi_{i}^{j};1\leqq i\leqq n_{j}^{\prime}\}$ , where $n_{j}^{\prime}=\dim L^{G}(\Lambda_{j})$ for $1\leqq j\leqq m^{\prime}$

For simplicity we put $e_{k}^{\prime}=\psi_{i}^{j}$ , where $k=\sum_{1\leqq p\leqq j-1}n_{p}^{\prime}+i(1\leqq k\leqq n^{\prime}=\sum_{1\leqq j\leq m^{\prime}}n_{j}^{\prime})$ .
(Note that $ n^{\prime}\leqq\gamma$ by (ii).) Here we may assume that $h_{\mathring{p}}(1\leqq p\leqq\gamma)$ has the
following expansion,

(1.8) $h_{p}^{o}=\sum_{1\leqq k\leqq}C_{pk}e_{k}^{\prime}$
$C_{pk}eC$ for $ 1\leqq p\leqq\gamma$ and $1\leqq k\leqq n^{\prime}$

Here we denote by $\underline{M}=(C_{pk})$ the $7\times n^{\prime}$ matrix whose $(p, k)$-entry is
equal to $C_{pk}(1\leqq p\leqq\gamma, 1\leqq k\leqq n^{\prime})$ , and in the next lemma we shall prove
that $\underline{M}$ does not depend on any choice of $\{h_{p};1\leqq p\leqq\gamma\}$ .

Now let $F$ be an arbitrary function in $C_{c}^{\infty}(G, \tau)$ . Then from (1.5)

we have

(1.9) $(F, e_{k}^{\prime})=(F^{o}, e_{k}^{\prime})$

$=\sum_{1\leqq p\leqq\gamma}(F, E_{p})(h_{p}^{o}, e_{k}^{\prime})$

$=(F,\sum_{1\leqq p\leqq\gamma}C_{pk}E_{p})$ $(1\leqq k\leqq n^{\prime})$ .
Thus, we have,

(1.10) $e_{k}^{\prime}=\sum_{1\leqq p\leqq\gamma}C_{pk}E_{p}$
$(1\leqq k\leqq n^{\prime})$ .

Therefore (i) is obvious from this relation. Q.E.D.

COROLLARY. Let $F$ be in $C_{c}^{\infty}(G, \tau)$ . Then $F$ can be written as

$F(x)=F^{\prime}(x)+\sum_{1\leqq p\leqq\gamma}(F, E_{p})h_{p}^{o}(x)$ $(xeG)$ .

LEMMA 2. Let notation be as in the proof of Lemma 1. Then $\underline{M}$

does not depend on any choice of $\{h_{p};1\leqq p\leqq\gamma\}$ .

PROOF. It is enough to prove that $C_{pk}(1\leqq p\leqq\gamma, 1\leqq k\leqq n’)$ which
satisfy the relation (1.10) are unique. Suppose there exist constants
$C_{pk}^{\prime}$ for which

(1.11) $e_{k}^{\prime}=\sum_{1\leqq p\leqq\gamma}C_{pk}^{\prime}E_{p}$

$C_{pk}^{\prime}\in C$ for $1\leqq k\leqq n^{\prime}$

Then from (1.10) we have,

(1.12) $\sum_{1\leqq p\leqq\gamma}(C_{pk}-C_{pk}^{\prime})E_{p}=0$ for $1\leqq k\leqq n$
’
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However, since $\{E,;1\leqq p\leqq\gamma\}$ is a maximal linearly independent set (see
the definition of $E_{p}(1\leqq p\leqq\gamma)$ in [8]), we can obtain that $C_{pk}=C_{pk}^{\prime}$ for all
$ 1\leqq p\leqq\gamma$ and $1\leqq k\leqq n^{\prime}$ . This is the desired relation. Q.E. $D$ ,

Now we shall define a more precise Fourier transform on $C(G, \tau)$ as
follows; for $feC(G, \tau)$ ,

(1.13) $F(f)=((f, e_{1}),$ $(f, e_{2}),$
$\cdots,$ $(f, e_{*},))$

$\oplus(\hat{f}(e_{\iota}, \nu),\hat{f}(e_{2}, \nu),$ $\cdots,\hat{f}(e., \nu))$ for $\nu e\mathscr{G}^{-}$ .
Put $\mathscr{G}_{0}(f)=((f, e_{1}^{\prime}),$ $(f, e_{2}),$

$\cdots,$
$(f, e^{\prime}.))$ . Then the mapping $g_{0}$ of $C(G, \tau)$

into $ c\cdot$

,
coincides with $g_{4}$ for the case of $P=G$ in [8] and moreover

$F(f)$ can be written as $g_{0}(f)\oplus \mathscr{G}_{A}(f)$ . Thus, using Theorem 1 in [8],
we can easily obtain the following theorem.

THEOREM 1. The mapping $F:C(G, \tau)\rightarrow C^{\alpha^{\prime}}\oplus C(\mathscr{J})_{*}$ is a homeomor-
phism of $C(G, \tau)$ onto $C^{n^{\prime}}\oplus C(\mathscr{G}\gamma_{*}’*$ .

Next we shall define a subspace of $C^{\prime}’\oplus C(.\Psi)_{\star}^{\prime*}$ which becomes the
image of compactly supported functions in $C(G, \tau)$ .

Let $a\oplus V$ be an arbitrary element in $C^{\prime\iota^{\prime}}\oplus C(.\Psi)_{*}^{*}$ . Then we can write
$a$ and $V$ as follows.

$a=(a_{1}, a_{f}, \cdots, a_{n\prime})$

(1.14) $=(a_{1}^{1}, a_{2}^{1}, \cdots, a_{i}^{1}, a_{1}^{2}, a_{2}^{2}, \cdots, a_{z^{\prime}}^{2}, \cdots, a_{1}^{m^{\prime}}, a_{2}^{n^{\prime}}, \cdots, a^{l^{\prime}}:_{m},)$

$V=(v_{1}^{1}(\nu), v_{2}^{1}(\nu),$
$\cdots,$ $v_{n_{1}}^{1}(\nu),$ $v_{1}^{2}(\nu),$ $v_{l}^{2}(\nu),$

$\cdots,$ $v_{\eta}^{2}(\nu),$ $\cdots$ ,
$vi^{*}(\nu),$ $v_{2}^{*}(\nu),$ $v_{n_{ln}}^{n}(\nu))$

where $a^{\dot{f}}eC$ and $v_{i}^{\dot{f}}eC(\mathscr{G}^{-})(1\leqq i\leqq n_{j}, 1\leqq j\leqq m)$ . In this case, we shall
use the following notation for simplicity,

(1.15) $a=(a_{i}^{\dot{f}})=(a_{k})$ and $V=(v_{l}^{j})$ .
Let or be the subspace of $ C’\oplus C(\mathscr{G}\gamma_{*}\cdot$ which consists of all $ a\oplus V\in$

$C^{r^{\prime}}\oplus C(\mathscr{G}^{-})_{*}^{n}$ satisfying the following conditions;

(i) $Ve\mathscr{G}{}_{t}P(\mathscr{G}^{-})_{*}^{l}$ .
(1.16)

(ii) $a_{k}=\sum_{1\xi p\leqq\gamma}C_{pk}\frac{d^{r\{p)}}{d\nu^{r(p)}}|_{\nu=\nu(p)}v_{itp)}^{j(p)}(s(p)\nu)$ $(1\leqq k\leqq n^{\prime})$ .

Then we have the following theorem.

THEOREM 2. Let $f$ be a function in $C(G, \tau)$ . Then $f$ belongs to
$C_{\iota}^{\infty}(G, \tau)$ if and only if $F(f)$ belongs to .$Z
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PROOF. Let $f$ be in $C_{c}^{\infty}(G, \tau)$ . Put $ F(f)=g_{0}(f)\oplus g_{A}(f)=((f, e_{k}^{\prime}))\oplus$

$(\hat{f}(\phi_{i}^{j}, \nu))$ . Then from Theorem 2 in [8] we have $g_{A}(f)\in \mathscr{G}^{p}(\mathscr{F}^{\rightarrow})_{*}^{\#}$ . More-
over, since $f$ has a compact support, we have,

(1.17) $(f, e_{k})=\sum_{1\leqq p\leqq\gamma}C_{pk}(f, E_{p})$ (see (1.9))

$=\sum_{1\leqq p\leqq\gamma}C_{pk}\frac{d^{r(p)}}{d\nu^{r(p)}}|_{\nu=\nu(p)}\hat{f}(\phi_{i}^{j}\{pp\}, s(p)\nu)$ for $1\leqq k\leqq n$
’

Therefore $((f, e_{k}^{\prime}))$ satisfies the condition (ii) of $\mathscr{G}$ Thus we obtain that
$F(f)$ belongs to $\ovalbox{\tt\small REJECT}$

Next let $f$ be in $C(G, \tau)$ and $F(f)$ belongs to X Here we shall
write $F(f)$ as $((f, e_{k}^{\prime}))\oplus(\hat{f}(\phi_{i}^{j}, v))$ . Since $g_{A}(f)$ belongs to $\mathscr{G}(\mathscr{G}^{-})_{*}^{n}$ , there
exists a compactly supported function $H$ on $G$ such that $g_{A}1(H)=g_{A}(f)$

(see Theorem 2 in [8]). Moreover, $H^{o}$ can be written as (1.2) where
we use $f$ instead of $F$. Therefore we can easily prove that,

(1.18) $(H, e_{k}^{\prime})=\sum_{1\leqq p\leqq\gamma}C_{pk}\frac{d^{r(p)}}{d\nu^{r(p)}}|_{\nu=\nu(p)}\hat{f}(\phi_{i}^{f}\{pp\}, s(p)\nu)$ for $1\leqq k\leqq n^{\prime}$

Thus from Theorem 1 we have $H=f$ (note that $F(H)=F(f)$ , since $F(f)$

belongs to $\ovalbox{\tt\small REJECT}$). In particular, $f$ has a compact support. This completes
the proof of Theorem. Q.E.D.

Next we shall obtain the relation between a size of a support of a
compactly supported function on $G$ and an exponential type of its
Fourier transform.

Let $\ovalbox{\tt\small REJECT}(R)$ ($R$ : a positive number) be the subspace of fi4 which
consists of all $a\oplus V=(a_{i}^{j})\oplus(v_{i}^{j}(\nu))\in \mathscr{G}^{p}$ satisfying the following conditions;
for each integer $N$, there exsist constants $C_{N}$ for which

(1.19) $|v_{i}^{j}(\nu+(-1)^{1/z}\eta)|\leqq C_{N}(|\nu+(-1)^{1/2}\eta|)^{-N}e^{R|\eta|}$ for $\nu\in \mathscr{G}^{-}$ and
$\eta eCL(\ovalbox{\tt\small REJECT}^{+})$ $(1\leqq i\leqq n_{j}, 1\leqq j\leqq m)$ .

Moreover let $C_{c}^{\infty}(G, \tau:R)$ denote the subspace of $C_{\epsilon}^{\infty}(G, \tau)$ which consists
of all functions in $C_{c}^{\infty}(G, \tau)$ such that their supports are contained in a
compact set $G_{R}=\{xeG;\sigma(x)\leqq R\}$ (see the definition of $\sigma$ for V. S.
Varadarajan [9]). Then we obtain the following theorem.

THEOREM 3. $f$ belongs to $C_{t}^{\infty}(G, \tau:R)$ if and only if $F(f)$ belongs to
$\mathfrak{x}\ovalbox{\tt\small REJECT}^{p}(R)$ .

PROOF. Let $f$ be a function in $C_{c}^{\infty}(G, \tau:R)$ . Then using the same
method in the classical Paley-Wiener theorem on an Euclidean space and
the definition of the Eisenstein integral, we can easily prove that each
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component $\hat{f}(\phi_{i}^{j}, \nu)$ of $g_{A}(f)$ satisfies the above $relatio^{4}\dot{n}(1.19)$ for $1\leqq i\leqq n_{j}$ ,
$1\leqq j\leqq m$ . Thus $F(f)$ belongs to $c\ovalbox{\tt\small REJECT} \mathscr{F}(R)$ .

Next we assume that $F(f)=g_{0}(f)\oplus g_{A}(f)$ belongs to $\ovalbox{\tt\small REJECT} \mathscr{F}(R)$ . Then
from Theorem 2, $f$ has a compact support. Moreover from Corollary of
Lemma 1 $f$ can be written as,

(1.20) $f(x)=f^{\prime}(x)+\sum_{1\leqq p\leq\gamma}(f, E_{p})h_{p}^{o}(x)$

$=\{f’(x)-\sum_{1\leqq p\leqq\gamma}(f, E_{p})h_{p}^{\prime}(x)\}+\sum_{1\leqq p\leqq\gamma}(f, E_{p})h_{p}(x)$ $(xeG)$ .

Put $\underline{G}’(x)=f’(x)-\sum_{1\leq p\leqq\gamma}(f, E_{p})h_{p}^{\prime}(x)$ (this function is same as (4.22) in
[8]). Here we note that the support of $h_{p}(1\leqq p\leqq\gamma)$ can be taken sufficiently
small (see the construction of $h_{p}(1\leqq p\leqq\gamma)$ in [8]). Therefore we may
assume that $h_{p}$ belongs to $C_{\epsilon}^{\infty}(G, \tau:R)$ for $ 1\leqq p\leqq\gamma$ . Next we note that
$\hat{f}(\phi_{i}^{j}, \nu)=\hat{f}’(\phi_{i}^{j}, \nu)(1\leqq i\leqq n_{j}, 1\leqq j\leqq m)$ satisfy the condition (1.19) by the as-
sumption $F(f)\in\ovalbox{\tt\small REJECT}\nearrow(R)$ and moreover, $\hat{h}_{p}(\phi_{i}^{j}, \nu)=\hat{h}_{p}(\phi_{1}^{j}, \nu)(1\leqq i\leqq n_{j}, 1\leqq j\leqq m)$

satisfy the same condition (1.19) for $ 1\leqq p\leqq\gamma$ (because $h_{p}\in C_{a}^{\infty}(G, \tau:R)$ and
we used the necessary condition). Thus we obtain that $\underline{\hat{G}}^{\prime}$ satisfies the
condition (1.19). However we recall that $\underline{G}’(x)$ can be written as,

(1.21) $\underline{G}’(x)=\sum_{1\leqq J\leqq m}|W(\omega_{j})|^{-1}\sum_{1\leqq i\leqq n_{j}}\int_{F}\mu(\omega_{j}, \nu)E(P:\phi_{i}^{j}:\nu:x)\underline{\hat{G}}’(\phi_{i}^{j}, \nu)d\nu$ .

Thus, using the proof of Theorem 2 in [8] (in particular (4.7), (4.8) and
(4.19)) and the condition (4.19), we can easily prove that $\underline{G}^{\prime}$ belongs to
$C_{c}^{\infty}(G, \tau:R)$ by the same method in the classical Paley-Wiener theorem on
an Euclidean space. Therefore we obtain that $f$ belongs to $C_{c}^{\infty}(G, \tau:R)$ .
This completes the proof of Theorem 3. Q.E.D.

\S 2. Some results.

In this section we shall describe the results which were obtained in
Harish-Chandra [6]. Then using these results, we shall reform the theorem
in J. Arthur [1] and obtain some characterization of the Schwartz space
$C(G)$ .

First of all we shall obtain a relation between an Eisenstein integral
and a matrix coefficient of the principal series for $G$ .

Put $V=C^{\infty}(K\times K)$ . Then for any $v_{1},$ $v_{2}$ in $V$ we shall define the
scalar product $(, )$ as follows;

(2.1) $(v_{1}, v_{2})=\int_{K\times K}\overline{v_{1}(k_{1}\cdot.k_{2}})v_{2}(k_{1}:k_{2})dk_{1}dk_{2}$ .
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Then the norm of $v$ in $V$ is defined as,

(2.2) $||v||^{2}=\int_{K\times K}|v(k_{1}:k_{2})|^{2}dk_{1}dk_{2}$

and obviously $V$ becames a Hilbert space under this norm. Moreover we
shall define a operator ., tr and anti-involution *as follows;

$v_{1}\cdot v_{2}=\int_{K}v_{1}(k_{1}:k)v_{2}(k^{-1}:k_{2})dk$ ,
(2.3)

$t\gamma(v)=\int_{K}v(k:k^{-1})dk$ ,

$v^{*}(k_{1}:k_{2})=conj(v(k_{2}^{-1}:k_{1}^{-1}))$ .
Next we shall define a double representation $\mu$ of $K$ on $V$ as follows

$\mu(k)v(k_{1}:k_{2})=v(k_{1}k:k_{2})$

(2.4)
$v(k_{1}:k_{2})\mu(k)=v(k_{1}:kk_{2})$

for all keK and $v\in V$ . Then it is obvious that $\mu$ is a unitary double
representation of $K$ on $V$ with respect to the above norm.

Now let $F$ be a finite subset of $g(K)$ and put $\alpha_{F}(k)=\sum_{\delta eF}\alpha_{\delta}(k)(k\in K)$

where $\alpha_{\delta}=d(\delta)$ conj $(\chi_{\delta})$ ( $\chi_{\delta}$ is the character of the class $\delta$ and $d(\delta)=\chi_{\delta}(1)$).

Then we denote by $V_{F}$ the subspace of $V$ consisting all $v$ in $V$ such that

(2.5) $v=\int_{K}\alpha_{F}(k)\mu(k)vdk=\int_{K}\alpha_{F}(k)v\mu(k)dk$ .

Then we can easily prove that $V_{F}$ is stable under $\mu$ and $\dim(V_{F})<\infty$ .
Then let $\mu_{F}$ denote the restriction of $\mu$ on $V_{F}$ .

Now let $\omega$ be an element in $g^{2}(M)$ and fix it. Let $\underline{\omega}$ be an irreducible
representation of $M$ on $U_{\omega}$ whose class belongs to $\omega$ . Moreover, let $\mathfrak{H}_{\omega}$

(resp. $\mathfrak{H}_{\omega}^{\prime}$ ) denote the space of the representation

(2.6) $\pi_{\omega}=Ind_{K_{M}}^{K}(\underline{\omega}|K_{M})$ (resp. $\pi_{\omega,\nu}=Ind_{MAN}^{G}(\underline{\omega}\otimes e^{\nu}\otimes 1)\nu e\ovalbox{\tt\small REJECT}_{c}$ ).

(cf. Harish-Chandra [6] \S 4). Then we can easily prove that the mapping:
$f\mapsto f|_{K}$ (the restriction of $f$ on $K$ ) is a unitary isomorphism of $\mathfrak{H}_{\omega}$ onto
$\mathfrak{H}_{\omega}$ . Thus we $\lfloor\prime mayidentify$ these two spaces under the above mapping.
For a fixed finite subset $F$ of $\mathscr{G}(K)$ , we put

(2.7) $P_{F}=\int_{K}\alpha_{F}(k)\pi_{\omega}(k)dk$ and $\mathfrak{H}_{\omega}^{F}=P_{F}(\mathfrak{H}_{\omega})$ .

Then we define $L=^{o}C(M, V_{F}, \mu_{F})$ and $L(\omega)$ as usual and obtain the
following lemmas.
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LEMMA 3. For each $T$ in End $(\mathfrak{H}_{\omega}^{F})$ , we can associate a $\Psi_{T}$ in $ L(\omega$

such that the mapping: $T\mapsto d_{\omega}^{1l2}\Psi_{T}$ is a linear isometry of End $(\mathfrak{H}_{\omega}^{F})$ witl
the Hilbert-Schmidt norm onto $L(\omega)$ with $L^{2}$-norm, where $d_{\omega}$ is the forma
degree of the class $\omega$ .

PROOF. See Harish-Chandra [6] \S 7. $\Psi_{T}$ is defined for $TeEnd(\mathfrak{H}_{\omega}^{F})$ af
follows;

(2.8) $\Psi_{T}(m)(k_{1}:k_{2})=tr(\kappa_{T}(k_{2}:k_{1})\underline{\omega})m))$ ($meM$ and $k_{1},$ $h\in K$) ,

where for an orthonormal basis $\{h_{i};1\leqq i\leqq p\}(resp. \{u_{j};1\leqq j\leqq q\})$ of $\mathfrak{H}_{0}^{1}$

(resp. $U_{\omega}$), $\kappa_{T}$ is the linear transformation on $U_{\omega}$ given by

(2.9) $\kappa_{T}(k_{1}:k_{2})u=\sum_{1\leqq i\leqq p}h_{i}(k_{2})((T^{*}h_{i})(k_{1}), u)$ for $ueU_{\omega}$ .
Thus $\Psi_{T}$ can be written as
(2.10) $\Psi_{T}(m)(k_{1}:k_{2})=\sum_{1\leq i\leqq p}\sum_{1\leqq j\leqq q}((T^{*}h)(k_{1}), \underline{\omega}(m)u_{j})(h_{i}(k_{2}), u_{j})$ .

LEMMA 4. Let notation be as above. Then we have,

(2.11) $E(P:\Psi_{T}:\nu:x)(1:1)=tr(\pi_{\omega,\nu}(x)T)$ $(x\in G)$ .
PROOF. See Harish-Chandra [6].
Now let $\tau_{1},$ $\tau_{2}$ be arbitrary elements in $g(K)$ and put $F=\{\tau_{1}, \tau_{2}\}$ .

Then we denote by V.,,., the subspace of $V$ consisting of all elements $t$

in $V_{F}$ satisfying;

(2.11) $v=\int_{K}\alpha_{r_{1}}(k)\mu(k)vdk=\int_{K}\alpha_{\tau_{l}}(k)v\mu(k)dk$ .

Here we choose an orthonormal basis of $\mathfrak{H}_{w}^{F}$ as follows;

(2.12) {$\Phi_{r_{1},i},$ $\Phi_{\tau_{2},j};1\leqq i\leqq[\tau_{1}:\omega]$ dim $\tau_{1},1\leqq j\leqq[\tau_{2}:\omega]$ dim $\tau_{2}$} ,

where dim $\tau_{i}(i=1,2)$ is the dimension of the representation space of $\tau_{i}$ .
Thus, using (2.10), we can write $\Psi_{T}$ as follows.

(2.13)
$\Psi_{T}(m)(k_{1}:k_{2})=\sum_{1\leq i\leq d_{1}}\sum_{1\leq r\leq q}(T^{*}\Phi_{\tau_{1},i}(k_{1}),\underline{\omega}(m)u_{r})(\Phi_{\tau_{1},i}(k_{2}), u_{r})$

$+\sum_{1\leqq j\leqq d_{2}}\sum_{1\leqq r\leq q}(T^{*}\Phi_{\tau_{2},j}(k_{1}),\underline{\omega}(m)u_{r})(\Phi_{\tau_{2^{\prime}}j}(k_{2}), u_{r})$ ,

where $d_{1}=[\tau_{1}:\omega]$ dim $\tau_{1}$ and $d_{2}=[\tau_{2}:\omega]$ dim $\tau_{2}$ . Now we assume that $T$

belongs to End $(\mathfrak{H}_{\omega^{1}}^{\tau}, \mathfrak{H}_{\omega}^{\tau_{2}})$ . Then we can write $\Psi_{T}$ as
(2.14)

$\Psi_{T}(m)(k_{1}:k_{2})=\sum_{1\leqq i\leqq d_{2}}\sum_{1\leqq r\leqq q}(T^{*}\Phi_{\tau_{2},j}(k_{1}), \underline{\omega}(m)u_{r})(\Phi_{\tau_{2},j}(k_{2}), u_{r})$ .
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In this case we can easily prove that $\Psi_{T}$ is a $V_{\tau_{1}.r_{2}}$-valued function on
$M$. Therefore we obtain the following lemma.

LEMMA 5. Let notation be as in Lemma 3. If $T$ belongs to
End $(\mathfrak{H}_{\omega}^{\tau_{1}}, \mathfrak{H}_{\omega}^{\tau_{2}})$ , then $\Psi_{T}$ belongs to $L(\omega)\cap(\ovalbox{\tt\small REJECT}_{\omega}\otimes V_{\tau_{1}.\tau_{2}})$ .

Note:
$L(\omega)\cap(\ovalbox{\tt\small REJECT}_{w}\otimes V_{\tau_{1},\tau_{2}})=^{o}C(M, V_{F}, \mu_{F})\cap(\ovalbox{\tt\small REJECT}_{\omega}\otimes V_{F})\cap(\ovalbox{\tt\small REJECT}_{\omega}\otimes V_{\tau_{1},r_{2}})$

$=^{o}C(M, V_{\tau_{1},\tau_{2}}, \mu_{F})\cap(\mathscr{G}_{\omega}\otimes V_{\tau_{1},\tau_{2}})$ .
Next we shall reform the results of J. Arthur [1]. Let $f$ be a

function in $C(G)$ (the scalar valued Schwartz space on $G$). Then we can
define a usual Fourier transformation; $\hat{f}(\omega, \nu)$ and $\hat{f}(\Lambda)$ as follows;

$\hat{f}(\omega, \nu)=\int_{a}f(x)\pi_{\omega.\nu}^{P}(x)dx$ $(\omega eg2(M), \nu e\mathscr{G}^{-})$

(2.15)
$\hat{f}(\Lambda)=\int_{a}f(x)\pi_{\Lambda}(x)dx$ $(\Lambda eg^{2}(G))$ ,

where $\pi_{\omega,\nu}^{P}=Ind_{MAN}^{a}(\underline{\omega}\otimes e^{\nu}\otimes 1)$ and $\pi_{l}$ is the representation of $G$ whose class
belongs to $\Lambda$ . Here we denote by $\mathfrak{H}_{\omega}$ and $\mathfrak{H}_{\Lambda}$ the representation spaces of
$\pi_{\omega,\nu}^{P}$ and $\pi_{A}$ respectively. Then we choose an orthonormol basis of
$\mathfrak{H}.(resp. \mathfrak{H}_{A})$ which transforms under $\pi_{\omega,\nu|K}^{P}(resp. \pi_{A1K})$ (the restriction of
$\pi_{\omega.\nu}$(resp. \mbox{\boldmath $\pi$}ノ$\{$) to $K$ ) according to the irreducible representation $\tau$ in $\mathscr{G}(K)$

as follows;

(2.16) {$\Phi_{\tau}$ ,,; $1\leqq i\leqq[\tau:\omega]$ dim $\tau$ } (resp. $\{\Phi_{\tau,i};1\leqq i\leqq[\Lambda:\tau]$ dim $\tau\}$ )

where $[\tau:\omega]=[\tau_{1p}:\omega],$ $[\Lambda:\tau]=[\Lambda_{1K}:\tau]$ . Put $d_{\tau}=[\tau:\omega]$ dim $\tau$ and $d_{\tau}^{\prime}=$

$[\Lambda:\tau]$ dim $\tau$ .
Now for $f$ in $C(G)$ , we define $V=C^{\infty}(K\times K)$-valued function $\tilde{f}$ as

follows.

(2.17) $\tilde{f}(x)(k_{1}, k_{l})=f(k_{1}xk_{2})$ for $k_{1},$ $k_{2}eK$ and $xeG$ .
Then we can easily prove that the mapping: $f->\tilde{f}$ is a topological linear
isomorphism of $C(G)$ onto $C(G, V)$ . Here we fix a finite subset $F=\{\tau_{1}, \tau_{2}\}$

in $g(K)$ and put $p_{\tau_{i}}=\int_{K}\alpha_{\tau_{i}}(k)\mu(k)dk(i=1,2)$ . Then we define $f_{r_{1},\tau_{2}}$ as
follows.

(2.18) $f_{r_{1},\tau_{2}}(x)=p_{\tau_{1}}(\tilde{f}(x))p_{\tau_{2}}$ for $f\in C(G)$ $(x\in G)$ .
Obviously, $f_{\tau_{1},\tau_{2}}$ belongs to $C(G, V_{1^{f}2}, \mu_{F})$ and moreover, the mapping
$f\vdash\rightarrow f_{\tau_{1}.\tau_{2}}$ is a topological linear isomorphism of
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$C(G)_{\tau_{1}.\tau_{2}}=\{fe\mathscr{G}(G);\alpha_{\tau_{1}}*f*\alpha_{\tau_{2}}=f\}$

onto $C(G, V_{1’ 2}, \mu_{F})$ . Now we apply the arguments in \S 1 to the pail
$(V_{\tau_{1},\tau_{2}}, \mu_{\tau_{1},\tau_{2}})(\mu_{\tau_{1},\tau_{2}}=\mu_{F}|V_{\tau_{1},\tau_{2}})$ instead of (V, $\tau$). Then we can obtain the
homeomorphism $F_{\tau_{1},\tau_{2}}$ of $C(G, V_{\tau_{1},\tau_{2}}, \mu_{F})$ onto $C’’\oplus C(\mathscr{G}^{-})_{*}$ , where $n,$

$n^{\prime}$

depend on $\tau_{1},$ $\tau_{2}$ (see the definition of the mapping $F$). Then we have
the following lemma.

LEMMA 6. Let notation be as above. Then we can choose an ortho-
normal basis: $\{\phi_{i}^{j};1\leqq i\leqq n_{j}\}$ of $L(\omega_{j})$ ($resp$ . $\{\psi_{i}^{j};1\leqq i\leqq n_{j}^{\prime}\}$ of $L^{o}(\Lambda_{j})$ ) satisfying
the following relations;

\langle 2.19) $d_{\omega_{j}}^{1l2}(\Phi_{\tau_{1},p},\hat{f}(\omega_{j}, \nu)\Phi_{\tau_{2},q})=\hat{f}_{\tau_{1},\tau_{\Phi}}(\phi_{i}^{j}, \nu)$ , where $i=d_{\tau_{2}}(p-1)+q$

$(1\leqq p\leqq d_{\tau_{1}},1\leqq q\leqq d_{\tau_{2}},1\leqq j\leqq m)$

and
$d_{J}^{1l2}(\Phi_{\tau_{1p}}^{\prime},\hat{f}(\Lambda_{\dot{f}})\Phi_{-q}2’)=(f_{\tau_{1},\tau_{2}}, \psi_{i}^{j})$ , where $i=d\rightarrow,(p-1)+q$

$(1\leqq p\leqq d_{1}-,1\leqq q\leqq d_{\tau_{2}}^{\prime},1\leqq j\leqq m)$

for $f\in C(G)$ .
PROOF. For each $j,$ $p,$ $q$ , we have,

$(\Phi_{-p}1’’\hat{f}(\omega_{j}, \nu)\Phi_{t_{2},q})=\int_{a}\overline{f(x)}(\Phi_{\tau_{1},p}, \pi_{\omega_{j}.\nu}^{P}(x)\Phi_{\tau_{2},q})dx$

$=\int_{a}\overline{f(x)}tr(\pi_{\omega_{j}.\nu}^{P}(x)T(\tau_{1}, \tau_{2}:j:p, q))dx$

where $T(\tau_{1}, \tau_{2}:j:p, q)$ is an element in End $(\mathfrak{H}_{\omega}^{\sim_{1}}, \mathfrak{H}_{\omega}^{\tau_{2}})$ given by the following
conditions;

(2.20) $(T(\tau_{1}, \tau_{2}:j:p, q)\Phi_{\tau_{1},p^{\prime}}, \Phi_{\tau_{l},q^{\prime}})=\delta_{pp^{\prime}}\delta_{q,q^{\prime}}$ for $1\leqq p^{\prime}\leqq d_{\tau_{1}}$ and $1\leqq q’\leqq d_{\tau_{2}}$ .
Thus using Lemma 4, the above equation can be written as

$\int_{G}\overline{f(x})E(P:\Psi_{T(\tau_{1},\tau_{2}\cdot j\cdot p,q)}: \nu:x)(1:1)dx$

$=\int_{G}\int_{K\times K}\overline{f(x})(k_{1}:k_{2})E(P:\Psi_{Tt\tau_{1},\tau_{2}:j:p,q)}: \nu:x)(k_{1}:h)dk_{1}dk_{2}dx$

$=\int_{G}(f_{\tau_{1},\tau_{2}}(x), E(P:\Psi_{T(\tau_{1}.\tau_{l}\cdot j\cdot p,q)}: \nu:x))_{V}dx$

$=\hat{f}_{\tau_{1},\tau_{2}}(\Psi_{T(\tau_{1},\tau_{2}:j:p,q)}, \nu)$ (see the definition of $\hat{f}$ in [8]).

However from Lemma 5 and its note, we can easily prove that
{$d_{w}^{\iota/}\Psi_{T(\tau_{1}.\tau_{2}:jp,q)}$ ;

$j$

$1\leqq p\leqq d_{\tau_{1}}$ and $1\leqq q\leqq d_{\tau_{2}}$ } is an orthonormal basis of $L(\omega_{j})$ ,
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where $L=^{o}C(M, V_{\tau_{1},\tau_{2}}, \mu_{\tau_{1},\tau_{2}})(\mu_{\tau_{1},r_{2}}=\mu_{F}|V_{\tau_{1},\tau_{2}})$ . Therefore this basis is the
desired one.

For the second relation we can choose the desired basis as follows;

{$d_{\Lambda_{\dot{f}}}^{1/2}(\Phi_{\tau_{1},p},$ $\pi_{A_{j}}(x)\Phi_{\tau_{2}.q})^{\sim}(k_{1}:k_{2});1\leqq p\leqq d_{\tau_{1}}$ and $1\leqq q\leqq d_{\tau_{2}}$},

(note the orthogonal relation of the matrix coefficients of the discrete
series for $G$). Q.E.D.

Now we shall define a Fourier transformation on $C(G)$ . Put

(2.21) $\underline{C}(\hat{G})=\bigoplus_{\tau_{1},\tau_{2}eZ(K)}(C^{*(\tau_{1},\tau_{2})}’\oplus C(\mathscr{F}^{-})_{*}^{(\tau_{1},\tau_{2})})$

where $n(\tau_{1}, \tau_{2})$ and $n^{\prime}(\tau_{1}, \tau_{2})$ denote the dependence of $n$ and $n^{\prime}$ on $\tau_{1},\tau_{f}$ .
Then we denote by $C(\hat{G})$ the subspace of $C(\hat{G})-$ which consists of all
$\oplus_{\tau_{1},\tau_{l}}(a\oplus V)=\oplus_{\tau_{1},\tau_{2}}((a_{i}^{j})\oplus(v_{i}^{j}(\nu)))e\underline{C}(\hat{G})$ (of couse, $j,$ $i$ depend on $\tau_{1},$ $\tau_{2}$)

satisfying the following conditions;
(i) for each triplet $(p_{1}, q_{1}, q_{2})$ of polynomials,

(2.22)
$ 1\leqq\dot{g}\leqq m(\tau_{1},\tau_{2})\sup_{\tau_{1},\tau_{2}\in f(K)}d_{\Lambda_{j}}^{1/2}|a_{i}^{j}|p_{1}(|\Lambda_{j}|)q_{1}(|\tau_{1}|)q_{2}(|\tau_{2}|)<\infty$

,

$1\leqq i\leqq’\prime j(\tau_{1},\tau_{2})$

(ii) for each set $(p_{1}, p_{2}, q_{1}, q_{2}, n)$ of polynomials $p_{1},$ $p_{2},$ $q_{1},$ $q_{2}$ and an
integer $n$ ,

$\sup_{\tau_{1},\tau_{2}eU(K)}d_{\omega;}^{1/2}|(\frac{d}{d\nu})v_{i}^{j}(\nu)|p_{1}(|\underline{\omega}_{j}|)p_{2}(|\nu|)q_{1}(|\tau_{1}|)q_{2}(|\tau_{2}|)<\infty$

$1\leqq i\leqq n_{j}(\tau_{1},\tau_{2})1\leq g\leq n(\tau_{1},\tau_{2})\nu\in F$

(see the definitions of $|\tau_{1}|,$ $|\tau_{2}|,$ $|\Lambda_{j}|$ and $|\underline{\omega}_{j}|$ in [1]).
Next we define a Fourier transformation $F:C(G)\rightarrow C(\hat{G})$ as follows;

(2.23) $F(f)=\bigoplus_{\tau_{1},\tau_{2}e\yen(K)}F_{r_{1},\tau_{2}}(f_{\tau_{1},\tau_{2}})$ for $feC(G)$ .

Then using Lemma 6, we can reform the results of J. Arthur [1] to the
following form.

THEOREM 4. The mapping $F$ is a homeomorphism of $C(G)$ onto
$C(\hat{G})$ .

\S 3. An analogue of Paley-Wiener theorem on $C(G)$ .
In this section using the results in the preceding sections, we obtain

an analogue of Paley-Wiener theorem on $C(G)$ . First we define $ C_{c}^{\infty}(G:R\rangle$
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as usual, i.e., $\{feC_{l}^{\infty}(G);supp(f)\subset G_{R}\}$ . Next we define $\ovalbox{\tt\small REJECT}(\hat{G}:R)$ as
follows;

(2.24) $\mathscr{F}\mathscr{F}(\hat{G}:R)=C(\hat{G})\cap\bigoplus_{-.\tau\in Y(K)}\mathscr{G}^{p}(\tau_{1}, \tau_{2}:R)$ ,

where $\mathscr{G}^{p}(\tau_{1}, \tau_{2}:R)$ is the space $\mathscr{G}^{p}(R)$ in \S 1 corresponding to the case
of $V=V_{\tau_{1},\tau}$, and $\tau=\mu_{\tau_{1},\tau_{2}}$ . Then we obtain the following theorem.

THEOREM 5. Let notation be as above and $f$ be in $C(G)$ . Then $f$

belongs to $C^{\infty},$$(G:R)$ if and only if $F(f)$ belongs to $\ovalbox{\tt\small REJECT}(\hat{G}:R)$ .
PROOF. First let $f$ be in $C_{l}^{\infty}(G:R)$ . Then we can easily prove that

the support of $f_{r_{1},\tau_{2}}$ is contained in $G_{R}$ for all $\tau_{1},$ $\tau_{2}e\mathscr{G}(K)$ . Thus we
obtain $f_{\tau_{1},\tau_{f}}eC_{l}^{\infty}(G, \mu_{\tau_{1},\tau_{1}}:R)$ and $F_{\tau_{1},\tau}(f_{\tau_{1},\tau_{2}})e\ovalbox{\tt\small REJECT}(\tau_{1}, \tau_{2}:R)$ by Theorem 3
for all $\tau_{1},$ $\tau_{2}eg(K)$ . Therefore $F(f)$ belongs to $\mathscr{G}^{p}(\hat{G}:R)$ .

Next let $F(f)$ be in $\ovalbox{\tt\small REJECT}(\hat{G}:R)$ . Here using the Fourier expansion on
$K\times K$, we can obtain,

\langle 2.25) $\tilde{f}=\sum_{1^{\tau_{2}e.(K)}}f_{\tau_{1},\tau_{2}}\leftarrow$ .

Then from the assumption $F(f)e\ovalbox{\tt\small REJECT}(\hat{G}:R)$ we can obtain that $F_{\tau_{1},\tau_{l}}(f_{\tau_{1},\tau},)$

belongs to $\ovalbox{\tt\small REJECT}(\tau_{1}, \tau_{2}:R)$ for $\tau_{1},$ $\tau_{2}e\mathscr{G}(K)$ . Therefore using Theorem 3,
we have $f_{\tau_{1}.t},$ $eC_{c}^{\infty}(G, \mu_{\tau_{1}.\tau},:R)$ . Thus, in particular $f_{\tau_{1^{f}2}},(1:1)eC_{\iota}^{\infty}(G:R)$

and moreover, $f=\tilde{f}(1:1)eC_{e}^{\infty}(G:R)$ . This completes the proof of theorem.
Q.E.D.

NOTE. From the definitions of $C(\hat{G})$ and $c\mathscr{G}(\tau_{1}, \tau_{2}:R),$ $\ovalbox{\tt\small REJECT}(\hat{G}:R)$ is
the subspace of $\underline{C}(\hat{G})$ which consists of all $\oplus_{\tau_{1},\tau_{t}}((a_{k})\oplus(v^{j}(\nu))eC(G)-$

satisfying the following conditions; for each $\tau_{1},$ $\tau_{2}eg(K)$ ,
(i) $(v:(\nu))e\mathscr{G}(\mathscr{J})_{*}^{(\tau_{1},\tau g)}$

(ii) $a_{b}=\sum_{1\leqq p\leqq\gamma}C_{pk}(d^{r(p)}/dv^{r(p)})_{|\nu\nu(p)}=v_{(p)}^{;\{p)}(s(p)\nu)(1\leqq k\leqq n^{\prime}(\tau_{1}, \tau_{a}))$

(iii) there exist constants $C_{N}$ for which

$|v^{j}(\nu+(-1)^{1/2}\eta)|\leqq C_{N}(|\nu+(-1)^{\iota/2}\eta|)^{-N}e^{R|\eta|}$ for $\nu e.\Psi$ and $\eta eF^{+}$

$(1\leqq j\leqq m(\tau_{1\prime}\tau_{g}), 1\leqq i\leqq n_{j}(\tau_{1}, \tau_{2}))$

(iv) for each triplet $(p_{1}, q_{1}, q_{2})$ of polinomials,

$1\leqq k\leqq\cdot,(r_{1}.r_{2})\sup_{\tau_{1}.\tau_{2}el|K)}|\sum_{1\leqq p\leqq\gamma}d_{k}^{1(2}C_{k}\frac{d^{t(p)}}{d\nu^{\prime(p)}}v_{(p}^{\dot{g}(p}\}(s(p)\nu)|\nu=\nu(p)|$

$\times p_{\iota}(|A_{k}|)q_{1}(|\tau_{1}|)q_{2}(|\tau_{2}|)<\infty$ ,

where $A_{k}=A_{j}$ , when $e_{k}^{\prime}eL^{a}(\Lambda_{\dot{f}})$ for $1\leqq k\leqq n^{\prime}$ ,
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(v) for each set $(p_{1}, p_{2}, q_{1}, q_{t}, n)$ of polynomials $p_{1},$ $p_{2},$ $q_{1},$ $q_{2}$ and an
integer $n$ ,

$\sup_{\tau_{1},\tau_{2}ee(K)}d_{\omega_{j}}^{1l2}|(\frac{d}{d\nu})v_{i}^{\dot{f}}(\nu)|p_{\iota}(|\underline{\omega}_{j}|)p_{2}(|\nu|)q_{1}(|\tau_{1}|)q_{2}(|\tau_{2}|)<\infty$ .
$1\leq i\leq\dot{g1\cdot 2}\{r^{1}\tau^{2})1\leq g\leq r(\tau,\tau)\nu eF$
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