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Introduction

This paper is a continuation of the previous paper [8]. Let G be
a connected semisimple Lie group with finite center. We assume that
G is not compact and moreover, the real rank of G is one. In [8], we
have obtained an analogue of Paley-Wiener theorem on & (G, ) (see
Theorem 2 in [8]). However, in that theorem we did not consider the
discrete part of & (G, 7), i.e., the space of z-spherical cusp forms on G.
Therefore in this paper we shall characterize the discrete part of
compactly supported functions on G. Here we note that this character-
ization depends on {E,; 1=p=7} and does not depend on any choice of
{h,; L<DP=<7v} (see (4.12) and (4.15) in [8]). Next using the proof of
Theorem 2 in [8], we shall obtain the relation between a size of a support
of a compactly supported function on G and an exponential type of its
Fourier transform. To obtain the relation we shall use the same method
in the classical Paley-Wiener theorem on an Euclidean space.

In §2 using the results of Harish-Chandra [6], we shall reform the
theorem of J. Arthur [1] and obtain some characterization of °(G). Then
applying the above consideration to each K-finite subspace of & (G), we
shall obtain an analogue of Paley-Wiener theorem on & (G) (see §3).

§1. More precise characterization.

For an arbitrary function g in & (G, r) we shall define g’ by
Zi(Z(9) and g° by g—g’. Then from Theorem 1 in [8] we can easily
prove that g’ belongs to &,(G, 7) and g° to °&(G, v). Let notation be
as in [8].

LEMMA 1. (i) °Z(G, 7) is contained in the space which is generated
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by {E,; 1=p=n}.
(ii) °& (G, T) 18 generated by {(hS; 1<p=<7).

PROOF. Let F' be an arbitrary function in C2(G, z). Then from
Theorem 2 in [8] it is obvious that &,(F) belongs to S#(&# )% and
moreover, there exists a function H in C(G, 7) such that & ,(F)= g ,(H).
Thus we obtain,

1.1 F'=H'.
On the other hand, from the proof of Theorem 2 in [8] we obtain,
(1.2) H°(x)= 3. C(p)h;(x)
1sSps7
dr(p)

T8, sowhi @) @ed .

12957 VTP |v=s

However, since F(x) has a compact support, we have,

ar ( 52(2)
(1.3) dor® y=y(p)F(¢t(p)9 s(p)v)
r(p) .
=(F 22| B i s @)

=(F, B,) (1=p=v).
Thus we obtain,

(1.4) H °(w)=152‘£ (F, E)hy(x) (x€@).

By the way, using the relation; (1.1), we can easily prove that F—H-—
F°—H° and both sides belong to C(G, r) and moreover, to °%& (G, 7).
Therefore it must be zero, i.e., F=H and F°=H°. Thus we obtain,

(1.5) F°(x) =152;, (F, E)hy(x) (x€@).

Now we note that C?(G,7) is dense in % (G, 7). Therefore {g°; ge
C2(G, v)} must be equal to °&(G, 7), because dim° & (G, 7)< - and gr—g°
is a continuous projection of €°(G, ) onto °&(G, ). Then (ii) is quite
obvious from (1.2) or (1.5).

Next we shall prove (i). First of all we shall apply the arguments
in §1 in [8] to the case of P=G. Then L¢=°%"(G, 7) can be decomposed
as
(1.6) L= @ L%4;)

1sjsm!
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where 4;€ &%G) and L°(4;)=L°N(5#3,QV) for 1=j<m’. Moreover, we
choose an orthonormal basis of L%(4;) as follows, ‘

a.mn (vi; 1=i<n}}, where nj=dim L4;) for 1l=j=m'.

For simplicity we put e, =+, where k=3 ,<; 17+ I1SESN =3 < j5m N3)-
(Note that n'<v by (ii).) Here we may assume that A(1=p=7) has the
following expansion,

(1.8) he= 3 Cuel CpeC for 1<p<vy and 1=k=n'.

1sksn’

Here we denote by M=(C,,) the vxn' matrix whose (p, k)-entry is
equal to C,,(1=<p=<v,1<k<n’), and in the next lemma we shall prove
that M does not depend on any choice of {h,; L=p=~}.

Now let F be an arbitrary function in C?(G, 7). Then from (1.5)
we have

(1.9) (F, er)=(F", ex)
= >, (F, E,)(hz, €i)

1sps7

=(F, 3 C,,,,E,,) 1=<k=n').

1=psY

Thus, we have,

(1.10) e,= 3, C,E, (A<k=n’).

1sps7
Therefore (i) is obvious from this relation. Q.E.D.
COROLLARY. Let F be in C2(G, t). Then F can be written as
F(w)=F'(w)+1§ér(F, E )hp(x) (xe@).
LEMMA 2. Let notation be as in the proof of Lemma 1. Then M
does mot depend on any choice of {h,; 1<p<v).

PrOOF. It is enough to prove that C,.(1=p=<v, 1<k<n') which
satisfy the relation (1.10) are unique. Suppose there exist constants
'+ for which

(1.11) e= S, Ci.E, C.,.eC for 1=k=n'.
=r

Then from (1.10) we have,
(1.12) S, (C,,—Cu)E,=0 for 1s<k=n'.

1=p=7
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However, since {E,; 1I<p=<v} is a maximal linearly independent set (see
the definition of E,(1<p=<7v) in [8]), we can obtain that C,.=C.; for all
1<p=<v and 1<k<w'. This is the desired relation. Q.E.D.

Now we shall define a more precise Fourier transform on (@G, 7) as
follows; for fe & (G, 1),

(1.13) F(f)=((f, e), (f, €, -+, (, €4))
D (Fley, v), (e, v), -+, flen,v)) for veF .

Put &)=/, &), (f, €), - -+, (f, €.)). Then the mapping &, of = (G, 7)
into C*' coincides with &, for the case of P=G in [8] and moreover
F(f) can be written as &,(f)@P&,(f). Thus, using Theorem 1 in [81,
we can easily obtain the following theorem.

THEOREM 1. The mapping F: (G, t)— C*PZ(F )% is a homeomor-
phism of (G, ) onto C*PZF(F)L.

Next we shall define a subspace of C*@Z"(F )% which becomes the
image of compactly supported functions in & (G, 7).

Let a®V be an arbitrary element in C*@P%(F ). Then we can write
a and V as follows.

az(al, @3y * -, an')
(114) :(air a’;, Tty a}tp af; a%: Tty aié» Tty a{"', a;,/, Tty a:.',,,.,)
V= (’U}(J)), 'v;(p), Tty v}al(”)y vf(»)y ’U;(U), ) vf&g(”)) ]

(), V), vn, (V)

where ai€C and vie E(F )1<i=n,;, L<j<m). In this case, we shall
use the following notation for simplicity,

(1.15) a=(ai)=(a,) and V=(vj.

Let 22 be the subspace of C*@Z (.# ); which consists of all adV e
C*"PDZ (F ): satisfying the following conditions;

(i) VezA(F ).
(i) a= 3 C,3 i2(s(p)) (L=<k=n').

P STy Vi
1Sps7 dy™? |[v=v(p)

(1.16)

Then we have the following theorem.

THEOREM 2. Let f be a function in Z(G, 7). Then f belongs to
C2(G, 7) of and only if F(f) belongs to =%~
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_ ProoF. Let f be in C7(G, 7). Put F(f)=&(NDEL()=(/, e)D
(f(¢%, v)). Then from Theorem 2 in [8] we have & (f)e€ S#(F )i. More-
over, since f has a compact support, we have,

(1.17) f, e£)=1§§§.70pk(ﬁ E,) (see (1.9))
= > C 4 F(@i®, s(p)y) for 1<k=n'.

ok
1=p=y dy™® |y=vip

Therefore ((f, e)) satisfies the condition (ii) of 52 Thus we obtain that
F(f) belongs to 5#.

Next let f be in (G, ) and F(f) belongs to 5# Here we shall
write F(f) as ((f, e.)a( 7 (¢i, v)). Since £,(f) belongs to S (& )%, there
exists a compactly supported function H on G such that & ,(H)= & ,(f)
(see Theorem 2 in [8]). Moreover, H° can be written as (1.2) where
we use f instead of F. Therefore we can easily prove that,

L18)  (H =3 Cuirs| i, sop) for 1sksw'.
v=v(p)
Thus from Theorem 1 we have H=jf (note that F(H)=F(f), since F(f)

belongs to 5#). In particular, f has a compact support. This completes
the proof of Theorem. Q.E.D.

Next we shall obtain the relation between a size of a support of a
compactly supported function on G and an exponential type of its
Fourier transform.

Let S#Z(R)(R: a positive number) be the subspace of 5% which
consists of all a@ V=(a))P;()) € 5Z satisfying the following conditions;
for each integer N, there exsist constants C, for which

(1.19)  |vip+(—1)") | ZCx(|lv+(—1)p|)"¥e®"! for ve & and
7eCL(&F ™) l=i=n; 1lsj=sm).

Moreover let C2(G, 7: R) denote the subspace of C:(G, r) which consists
of all functions in C=(G, 7) such that their supports are contained in a
compact set Gp,={xrecG; g(®x)<R} (see the definition of ¢ for V. S.
Varadarajan [9]). Then we obtain the following theorem.

THEOREM 3. [ belongs to C>(G, 7: R) if and only if F(f) belongs to
#(R).

ProOOF. Let f be a function in CY(G, 7: R). Then using the same
method in the classical Paley-Wiener theorem on an Euclidean space and
the definition of the Eisenstein integral, we can easily prove that each
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component f (¢, v) of &,(f) satisfies the above relation (1.19) for 1<i< Ny
1=j=<m. Thus F(f) belongs to .5 (R).

Next we assume that F(f)= &,(f)D &.(f) belongs to S~ (R). Then
from Theorem 2, f has a compact support. Moreover from Corollary of
Lemma 1 f can be written as,

1.20)  f@)=f"(@)+ 2, Eph; (@)
={f@- 3 £ Eh@+ 3 (f Bh@) (@e6).

Put G'(x)=f'(2)— Xic,sr (f, Ep)hj(x) (this function is same as (4.22) in
[8]). Here we note that the support of kh,(L=p=7) can be taken sufficiently
small (see the construction of h,(1=p=7v) in [8]). Therefore we may
assume that &, belongs to C(G, 7: R) for 1<p=<<v. Next we note that
7 (¢4, v)=F (97, VA =i=n;, 1<j<m) satisfy the condition (1.19) by the as-
sumption F(f) e 57 (R) and moreover, h,(¢i, v)=h"(i, V(IZiEn;, 1<j<m)
satisfy the same condition (1.19) for 1<p<7 (because h,cC>(G, r: R) and
we used the necessary condition). Thus we obtain that G’ satisfies the
condition (1.19). However we recall that G’(z) can be written as,

12D G@=_3, W)™ 3 | e, VEP: i v: )G (5 vy |

1S7Em Sizn;

Thus, using the proof of Theorem 2 in [8] (in particular (4.7), (4.8) and
(4.19)) and the condition (4.19), we can easily prove that G’ belongs to
Ce(G, 7: R) by the same method in the classical Paley-Wiener theorem on
an Euclidean space. Therefore we obtain that f belongs to C2 (G, 7: R).
This completes the proof of Theorem 3. Q.E.D.

§2. Some results.

In this section we shall describe the results which were obtained in
Harish-Chandra [6]. Then using these results, we shall reform the theorem
in J. Arthur [1] and obtain some characterization of the Schwartz space
& (G).

First of all we shall obtain a relation between an Eisenstein integral
and a matrix coefficient of the principal series for G.

Put V=C*(K x K). Then for any v, v, in V we shall define the
scalar product (,) as follows;

2.1) (v, 'vz)=§ vi(ky: ko)vy(ky: ky)dkdE,
KXK
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Then the norm of v in V is defined as,

(2.2) lolie={ ot ko) Pk,

and obviously V becames a Hilbert space under this norm. Moreover we
shall define a operator -, tr and anti-involution * as follows;

2, ”FS v (ley: Tyvy (k% kp)de
2.3) x
tr(v) = SK'v(k: kdk

v*(k,: k) =conj(v(k;*: ki) .
Next we shall define a double representation g of K on V as follows

pkyv(k,: k) =v(kk: k)

(2.4) V(ky: Feo) pe(l) = v(ky: kekey)

for all ke K and ve V. Then it is obvious that g is a unitary double
representation of K on V with respect to the above norm.

Now let F be a finite subset of & (K) and put a(k)=>.r a;(k)(k € K)
where a,=d(5) conj(X,)(X, is the character of the class é and d(0)=X;(1)).
Then we denote by V, the subspace of V consisting all v in V such that

(2.5) v= SKaF(k);f.(k)vdk - SKaFGc)w(k)dk :

Then we can easily prove that V, is stable under g and dim(Vjy)<ee.
Then let p, denote the restriction of ¢ on V.

Now let @ be an element in & 2(M) and fix it. Let ® be an irreducible
representation of M on U, whose class belongs to w. Moreover, let 9,
(resp. 9.) denote the space of the representation

(26  w,=Indf (@|K,) (resp. 7,,=Indfun(@R@eRL) ve 7).

(cf. Harish-Chandra [6] §4). Then we can easily prove that the mapping:
f+ flx (the restriction of f on K) is a unitary isomorphism of §. onto
9.. Thus we ‘mayidentify these two spaces under the above mapping.
For a fixed finite subset F' of #(K), we put

@.7) P,= SKaF(k)rcw(k)dlc and ©F=P.($.) .

Then we define L=°% (M, V., tt) and L(w) as usual and obtain the
following lemmas.
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LEMMA 8. For each T in End(95), we can associate a ¥, in L{w)
such that the mapping: T—d.*T, is a linear isometry of End(HF) with
the Hilbert-Schmidt norm onto L(w) with L*norm, where d, is the formal
degree of the class w.

PrROOF. See Harish-Chandra [6] §7. ¥, is defined for T € End($*) as
follows;

(2.8) ¥ (m)(k,: k) =tr(k,(ks: k)@w)m)) (meM and k, k. € K)

where for an orthonormal basis {,;; 1<i<p}(resp. {u;; 1<j=<gq}) of Hf
(resp. U,), k7 is the linear transformation on U, given by

(2.9) Kr(k,: /’ﬂsz)u:1 gé hke)(T*h)(k), w) for weU, .
Thus 7, can be written as

(2.10) Crm)ky: k)= 2>, > (T*h) k), @(m)u,)(h(k,), u;) .

1sisSp 1sj=¢q

LEMMA 4. Let notation be as above. Then we have,
(2.11) EP: Vv 2)A: 1)=tr(x,, 2)T) (xe@).

PROOF. See Harish-Chandra [6].

Now let z,, z, be arbitrary elements in &(K) and put F={r, 7,}.
Then we denote by V. . the subspace of V consisting of all elements v
in V, satisfying;

172

2.11) o=\ a.(pukwdl= | a@onod

Here we choose an orthonormal basis of I as follows;

(2.12) 2., P.,.;; 1<i<[r;: w]dim 7,, 1<j<[7,: ] dim 7} ,

where dim 7,(i=1, 2) is the dimension of the representation space of r,.
Thus, using (2.10), we can write ¥, as follows.

(2.13) o(m)by: k)= 3, 3, (T*®. (k), @(m)u,) D, (k) u,)

1sisd; 1srsq

+ > 2 (T, k), @(m)w,)@.,, k), u,) ,

1£j5dy 157sq

where d,=[r;: w]dim 7, and d,=[7,: ]dimz,, Now we assume that T
belongs to End(9::, $2). Then we can write ¥, as

(2.14) Cr(m)e: k)= 3, 3, (T*0., j(ky), @(m)w,)@., k), u,) .

1=7=dy 1S7r=q
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In this case we can easily prove that ¥, is a V. .-valued function on
M. Therefore we obtain the following lemma.

LEMMA 5. Let notation be as in Lemma 3. If T belongs to
End(93, ), then ¥, belongs to L(®w) N (S£Q V.,

Note:

L((l)) n (%@ Vrl,r2)= Og(M’ VF: .UF) n (%)@ VF) n (%@ Vrl,rz)
=°g(My Vrl,rzy l“F) n (%@ Vrl.rg) .

Next we shall reform the results of J. Arthur [1]. Let f be a
function in (@) (the scalar valued Schwartz space on G@). Then we can
define a usual Fourier transformation; f(w, v) and f(4) as follows;

Fo, =\ r@nt@ds @ezm),ves)
(2.15) ¢
Fy= r@mimde  ezE),

where 7f,=Ind§{.n(@Xe’ ®1) and 7, is the representation of G whose class
belongs to 4. Here we denote by 9., and , the representation spaces of
nf, and 7w, respectively. Then we choose an orthonormol basis of
9.(resp. O, which transforms under =zl ,x(resp. 7, %) (the restriction of
7, (resp. 7t ) to K) according to the irreducible representation z in & (K)
as follows;

(2.16) (0. 1=1<[r: w] dim 7} (res:p. (.. 1=i1<[4: 7] dim 7})

where [7: wl=[7\x: @], [4: T]=[4ix: 7]. Put d.=[r: w]dim7z and d!=
[4: 7] dim 7.

Now for f in Z(G), we define V=C>(K x K)-valued function f as
follows.

(2.17) F@)(ky, k)=f(kak,) for ky,k,cK and zeG.

Then we can easily prove that the mapping: fi— f is a topological linear
isomorphism of & (G) onto (G, V). Here we fix a finite subset F'={z,, 7}
in & (K) and put p,‘zsxa,‘(k)p(k)dlc(izl, 2). Then we define f, . as
follows.

(2.18) fopn@=p. (F@)p,, for fe& (@) (xeq).

Obviously, f.,. belongs to (G, V.., #r) and moreover, the mapping
S ti,.; I8 a topological linear isomorphism of

1272
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G (@)ey,e,={f € T(G); a. *xf*a.,=f)

onto (G, V.., ttx). Now we apply the arguments in §1 to the pair
(Vepegs Yepiry)(Pleycy=0r|Vz,,c,) instead of (V, 7). Then we can obtain the
homeomorphism F., ., of (G, V. ., ¢r) onto C*DZ(F )i, where n, n’
depend on 7,7, (see the definition of the mapping F). Then we have
the following lemma.

LEMMA 6. Let notation be as above. Them we can choose an ortho-
normal basis: {¢i; L<1<n;} of L(w;)(resp. {vi; L<i<n}} of L(4;)) satisfying
the following relations;

(2.19)  di¥O.,,, flw;, V)P., )=F. (6], 1), where i=d. (P—1)+q
(l=p=d.,1=q¢=d,, 1=j=m)

and

AP, ,, FA)P)=(fepeyy ¥)),  where i=di(p—1)+q
(1=s=p=d!,1=q=d!,1=j=m)

Jor feZz(G).
PrOOF. For each j, p, ¢, we have,
@,y F@s, 0., )=\ T@NO., 5, 7L,)0., 2
={ @ tr @@ T, o 4:p, O)de

where T(z,, 7,: j: P, @) is an element in End(9, $:2) given by the following
conditions;

(2.20) (T(y, 7ot J: D, OP:),pry Pryg) =0,,0,, for 1<p'<d. and 1=¢'=d., .

Thus using Lemma 4, the above equation can be written as
Sam)E(P: Uiy egimat V2 2)(L: Dda
= Sagxme)(klt k) B(P: T e, vy iipar: V2 )yt keo)dhe,dleod
= SG(frl,fz(x), E(P: ¥ pcpepiiponrt V2 2))yd2

=Fercd@ricpeyimar V) (see the definition of £ in [8]) .

However from Lemma 5 and its note, we can easily prove that
{47 rieyeyinas LED=d and 1<q=d.} is an orthonormal basis of L(w;),
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where L="% (M, V. cp tepes)(We,cy=tr| Vo). Therefore this basis is the
desired one.
For the second relation we can choose the desired basis as follows;

(YD, p) T4 (@)Pey) (ki Ko); 1=p=d., and 1=g=d.},

(note the orthogonal relation of the matrix coefficients of the discrete

series for G). - Q.E.D.
Now we shall define a Fourier transformation on & (G). Put
(2.21) g‘(G)—— @(K(C”"’l”z’@%)(f IALLY!
71,79 €& (K)

where 'n(z'l, 7,) and n'(z,, 7;) denote the dependence of % and »’ on 7,7,
Then we denote by %(G) the subspace of %(G) which consists of all
®.,, (@D V)=@®., - (@)Di()) e &(G) (of couse, j,i depend on 7, T;)
satisfying the following conditions;

(i) for each triplet (p, ¢;, ¢.) of polynomials,

(2.22) sup - dlm |ai |p1(| A; |)Q1(I71|)Q2(! T )< oo,

T1,To€& (
1s5sm’ (ry,79)
1sisa) (rl To)

(11) for each set (py, s, 41, T5, ®) of polynomials p,, »,, ¢;, ¢ and an

integer n,
(—g’)—)” vi(v)

(see the definitions of |z,|, |7.], |4;] and |@;| in [1]).
Next we define a Fourier transformation F: & (G)—»%(G) as follows;

223  FH=_@ Fo.lfon) for feF@.

T1s7T9€E

sup dllz p1(|_a_)j|)p2(lpl)Q1([T1!)Q2(l72|)< oo

71,79 €€ (K)

ve &
1S3Sm(ry,79)
1sisn5(ry,79)

Then using Lemma 6, we can reform the results of J. Arthur [1] to the
following form.

ATHEOREM 4. The mapping F is a homeomorphism of & (G) onto
= (@).
§3. An analogue of Paley-Wiener theorem on % (G).

In this section using the results in the preceding sections, we obtain
an analogue of Paley-Wiener theorem on &(G). First we define C7(G: R)
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as usual, i.e., {f €C2(G); supp(f)cGz}. Next we define 92’(@: R) as
follows;
(2.24) 22(G: R)=z(G)N @ (@, R,

TIrToE
where 2#°(t,, 7,: R) is the space 5#°(R) in §1 corresponding to the case
of V=V, and t=p, .. Then we obtain the following theorem.

THEOREM 5. Let notation be as above and f be in Z(G). Then f
belongs to C7(G: R) if and only if F(f) belongs to 57(G: R).

PrOOF. First let f be in C7(G: R). Then we can easily prove that
the support of f; . is contained in G, for all 7, 7, &(K). Thus we
obtain f . eCrG, t, . R) and F. . (f, .)€ (z, 7,: R) by Theorem 3
for all 7, 7, & (K). Therefore F(f) belongs to 5#(G: R).

Next let F(f) be in %(@: R). Here using the Fourier expansion on
K xX K, we can obtain,

(2.25) f= Z frl.rg .
7y tge. (K)
Then from the assumption F(f)e é‘é’(@: E) we can obtain that F, . (f: )
belongs to S#(z,, 7,: R) for 7, 7,€ &(K). Therefore using Theorem 3,
we have f. . eC2@G, ., .. R). Thus, in particular f. .(1:1)eC3(G: R)
and moreover, f=f(1:1) € C>(G: R). This completes the proof of theorem.
Q.E.D.

NoTE. From the definitions of & (@) and >#(t,, 7, R), 2#(G: R) is
the subspace of _‘_g(é) which consists of all @.,,.((a.)P®i()) e & (G)
satisfying the following conditions; for each 7,, 7, e & (K),

(1) i) e (F ) |

(ii) Q= Dispsr C,k(d"”/dv""’)xu=»(,)vf§£§(8(?)») A=sk=n'(zy, 7o)

(iii) there exist constants C, for which

|9+ (—1)¥2) | SCy(|v+(—1)¥p|)Yem for ve.F and ye.F +
A=ss=m(ty, 7)), 1=i=ni(7,, 7))

(iv) for each triplet (p,, q,, ¢;) of polinomials,

r(p)
sup g, @

ok
T roe ¥ (K) 13ps7 k d))'(“ v=v(p)
1Sksn’(ry.79)

X 0,(] 4, DQ1(| 71 )as(] T)< oo,
where 4,=4;, when e, € L%(4;) for 1=sk=n/,

v (s(P)v)
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(v) for each set (p, », ¢, ¢, n) of polynomials p,, p,, ¢;, ¢. and an

integer »,

(1]
(2]
(3l
4]
[51]
(6]
(7]

(81
)

sup di}

Tir70€ 2 (K)
puzevﬁ"

(E@;)””“”)lmlsv.fl)pz(lvl)ql(l 7N 7)< oo .

1s5smlr,,7g)
15‘51‘:’(1‘]_,1‘2)
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