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Introduction

In this paper we consider a representation of Witt vectors and its
application to the Inaba theory of the construction of Galois extensions
of a field of characteristic » and to the explicit formula for the residue
vectors in the formal power series field.

E. Artin and O. Schreier characterized any cyclic extension L of
order p of a field K of characteristic p>0 by a root « of the equation
a? =2+ p: L=K(a). Thereafter E. Witt [10] has extended this method
to any cyclic p-extension L of K by considering Witt vectors: L=K(a),
a?=a+p. On the other hand, E. Inaba [4, 5, 6] expressed any finite
Galois extension I of K of characteristic » by the matrix equation of
the type X*=MX, MeGL,.(K). We define in §1 an isomorphism f, of
the additive group W.(K) of Witt vectors into the multiplicative 1-
unit group of the formal power series ring K[[t]]: f.(a+a’)=f.(a@) - f.(a').®
As an application we consider in §2 the relation between the Witt theory
and the Inaba theory.

Y. Kawada and I. Satake [7] applied the residue vectors defined in
Witt [10] to the class formation theory over a formal power series field
K in one variable with a finite constant field. In §3 we calculate the
residue vectors by the use of the mapping f, defined in §1. Using these
results, we consider in §4 the orthogonal pairings and the duality
defined by residue vectors. In §5 we consider the formal power series
field K in one variable with a finite constant field and the cyclic extension
field L of order ™ over K. We calculate the ramification index and the
conductor of L over K.
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Kawada and Mr. Teluhiko Hilano.
§1.

Isomorphism of the additive group of Witt vectors into the
multiplicative unit group of the formal power series ring.

1.1. Let p be a prime number, I, the p-adic valuation ring of the
rational numbers field @ and Q[[x]] the formal power series ring over Q.
Then we define

(L.1) G@)=exp (3, L) € QIfz]] -

27
LEMMA 1. The coefficients d,(ne Z) of z* of G(x) satisfy the follow-
g recursive relations:

d,=0 (n<0)
1.2) do=1
=234, ,c (n>0).
n i=o
PROOF. Taking the formal derivation of (1.1), we have
F@=(32") 6 .
=0 p
Hence
(1.3)

i 'nd,,x"“l:(i‘, x”"“1>< i‘, d,.a:") .
n=1 =0 n=0
Comparing the coefficients of z*! in both sides of (1.3), we obtain

nd,=d, ,+d, ,+d,_o+--- . Q.E.D.
LEMMA 2. All the coefficients of G(x) are contained in I, i.e.,
G(x) € L[[x]].®

PROOF. We shall show d,eI, by induction on #». By (1.2), it is
sufficient to show d, e I, for n=1 satisfying p|n

By (1.1), we have
G(x)”z-—exp(p i iix"‘) .
=0 p

Hence

(1.4)

G(x)? =G(x?) exp (px) .
*> We owe Mr. T. Hilano for this proof.
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Comparing the coefficients of " in both sides of (1.4), we obtain

i—1
Ao +D - fldoy -+, o)+ 2 p=dn,+p 3 L—d;,

t+pi=n,t21 ’l,!

where f(d, ---,d,_,) is a polynomial of d, ---,d,, with integer
coefficients. Hence

1 pi—l
dn= '—f(dm STy d%—l)_—(dzlp'—dﬂ/p)_!_ Z : dj .
D tﬁg:n 2!
Since d2,,—d,,, €I, and p*/i! € I,, by our assumption we have d, € I,.
Q.E.D.

Let D be an integral domain containing I,, ¢ an indeterminate
element over D, W_(D) the ring of Witt vectors of infinite length over
D and U®(D[[t]]) the l-unit group of D[[t]]: U*(D[[t])=1+tD[[t]]. For
any element w etD[[t]] and any Witt vector X=(X,, X, --*) € W.(D), we
define

(1.5) %.(X) :ij G(Xu") .

%.(X) belongs to U¥(D[[t]]) by Lemma 2. f
LEMMA 3.

(1.6) Fu(X)=exp (3 2 ur)
- : i=0 P

where X is the i-th ghost component of X: XW=%i_,p’ X2/, (See Witt
[10].)

Proor.

5= 6ty = [l exp (5 - (XuY)

Ms
Ms

— exp ( ' pj—‘iX§i—‘jupi>

-
I
(=
i
w,

Ms
Py

=exp ( p"“X;-"'—ju"")

S
Il
=3
&,
Il
<

Q.E.D.

Ms

ol
L®
3

~

:exp(

i

PROPOSITION 1. The mapping F. (w#0) is an isomorphism of the
additive group of W.(D) into the multiplicative group U (D[[t]]).
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ProoF. By (1.6), we have
%u(X-{-X’):exp iwu}’i
i=o »*

o [§2] (i) .
=exp (Z _&_:;;Y__ul")

1=0

=F( X)F.(X") for X, X'e W.(D).
If F.(X)=1, then 32, (X“/p)u**=0. Hence we have X=0. Q.E.D.
Moreover, we have
1.7) Bu(VX) =Fun(X)
where VX=(0, X,, X, ---) for X=(X,, X,, ---)e W._(D). For, we have

BV =1 G(VI)u)

=11 G(X;- ("))
=%ur(X) .

For any integer 4, choose a positive integer m such that <<p™.
Then for X=(X,, X,, ---)e W. (D) we define

(1.8) h’i(X):Z d‘o- .od X(’;O. . .X':lm__—il

tm—1

where the summation is extended over all systems {i, :--, %,._,} of
integers satisfying 4,+¢p+- -+, p™ '=4. Since d,=0 for n<0, we
can verify that h, is unchanged when we change m under the condition
1<p™ for fixed 4. Further A,(X)=0 (n<0), h(X)=1 and A,(X)=2X,.
Then we have obviously by (1.5)

(1.9) | % (X)= g R(X)u' .
Hence we have
(1.10) K. X)=1+Xu  (modu?) .

By Proposition 1 and (1.9) we can easily see that
(1.11) hi(X+X')=é‘, hy(X)h,_i(X") for X, X'e W_(D).

LEMMA 4. For u#0 m=1 and n=0, the following two conditions are
equivalent:
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(i) m<prordu
(i1) F(V"W(D))c U™(D[[t]D
where U™ (D[[t]])=1+t"DI[[¢t]].

Proor. By (1.7) and (1.10), we have
BV X)=Fun(X) =1+ Xu*" + - -+ .
Hence (i) and (ii) are equivalent.

COROLLARY. &, s a continuous mapping from W (D) into
U“(D[[t]D).

1.2. Let K be a field of characteristic p, F, the prime field of K
and ¢ an indeterminate element over K. We denote by U“(K[[t]]) the
1-unit group of K|[[t]]. For any element u € tK][[t]] and any Witt vector
a=(a, a,, ---)e W.(K), we define

(1.1) Gx)=>7,d,x" e F,[[x]] for d,=d,(mod p)c F,
and
(1.5) fu(@) =117, G(au’) € U(KI[E])).

PROPOSITION 1'. The mapping f. (w=0) is an isomorphism of the
additive group of W (K) into the multiplicative group UX(K{[t]]).

PrROOF. Let D be an arbitrary integral domain containing I, such
that there exists a ring homomorphism 7 of D onto K. For X=
(X, Xi, ---)e W (D) we define W (7)) X)=xX, nX,, ---)e W.(K), and
for Y=>, Y,t* e D[[t]] we define 7,(Y)=>2,n(Y;)t' € K[[t]]. Then we
have the following commutative diagram:

Fu

_ W.(D) U (DI
(1.12) Wel) l ) l z,
Wo(K) - TOKIED -

fu

If f,(a¢)=1, then 7, o%.(X)=1 for any Witt vector X e W_(D) such that
W (t)(X)=a. By 1.9 we have h(X)eKermwr for <=1 and so
X;eKerrm for j=0. Therefore we obtain a=0. Hence f, is an into-
isomorphism.

By (1.7), (1.9), (1.10), Lemma 4 , Corollary and (1.12) we have

(L.7)y fu(Va)=f.(a)
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1.9y ful@) =3, h(a)u!
1.10) fla)=1l+au (mod u?) .

LEMMA 4'. For u+0, m=1 and n=0, the following two conditions
are equivalent:

(i) mZp"ordu
(ii) fV*W(K)cU™(KI[[t]D.

COROLLARY'. f, %8 a continuous mapping from W_(K) into
US(K[¢]D.

Moreover, we have
(1.13) flaa)=f.(ax)* for aec W (F,), ae W K).

Since f.(na)=f.(a)" holds for meZ, by Proposition 1’ and f{, is
continuous, we have (1.13).

§2. Application to the Inaba theory on the construction of Galois
extensions.

2.1. The isomorphic representation of the additive group of Witt
vectors of length » by matrices.

We denote by W,(K) the ring of Witt vectors of length » over a
field K of characteristic »>0. Then we have the ring-isomorphism

(2.1) W.(K)=W_ (K)/ V*W_(K)

where Va=(0, «,, a,, - --) for a=(a,, a,, ---) e W (K). For m=2 consider
the set

1 b6, b,---bp,y

B,.(K)={Be M,(K)|B= T e L
o b,
\ . 1

Then B,.(K) is a subgroup of GL,(K). We denote such a matrix Be
Bm(K) by B:[l, bl, bg, .. %y bm—-—l]° Put

UY=UKI[[t])=1+tK|[t]] for 1=1.
Then we have the group-isomorphism

(2.2) @: B (K)=U®» U™
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where B=[1, b,, b,, -+-, b,,_,] € B,.(K) is mapped to the residue class con-
taining 14+ 0t +b,2+---+b,_t" e U® by o.

LEMMA 5. For wetK|[[t]], n=1 and m=1 satisfying (ord u)p* '+
1=m=(ord u)p", we can define the mapping ' satisfying the follow-
wmg commutative diagram:

fu

W.(K) UL (K[
(2 . 3) canonical ] /D l canonical
W.(K) B.(K)

(n}
f“

where §, 18 the mapping defined by (1.5)' in §1. Moreover, the mapping
18 injective. Hence the mapping f* is an isomorphism of the additive

group of W,(K) into the multiplicative group B,(K).

Proor. By Lemma 4’, we have f,(V*"W_(K)) cU™. Hence we can
define the mapping i with the above property. It is clear that ™ is
injective if (ord w)p* *+1=<m. Q.E.D.

2.2. Relation between the Witt theory and the Inaba theory.

In this section we shall consider the relation between the Witt
theory [10] and the Inaba theory [4, 5, 6] by the use of the mapping ™
defined by (2.83). In the Witt theory we have the following theorem:

THEOREM (*). Let K be a field of characteristic p>0, LOK an
abelian extension whose Galois group G=Gal (L|K) s cyclic of order p*
and X an isomorphic representation of G onto W,(F,). Then there exists
a vector a=(a, ay, -+, a,_;) € W,(L) such that 9, a=Pa—a=pec W,(K),
L=K(a) and oca=a+X(o) for oce@G, where oca=(oa, oa,, -, o, ,),
Pa:(agy af, - - “ aﬁ——l) and K(a)_:K(ao: Qg -, an—l)' '

On the other hand, in the Inaba theory we have the following
theorem:

THEOREM (**). Let K be a field of characteristic p>0, LDOK a
finite Galois extension whose Galois group is G=Gal (L|K) and 4 an
t8omorphic representation of G into GL,(F,). Then there exists a matrix
A=(a;;)eGL,(L) such that ¢,A=PA-A"'=MecGL,(K), L=K(A) and
A=A A(e) for oe€G, where ocA=(oa,), PA=(a?), and K(A)=
K(an’ R S amm).

When LD K is a cyclic extension of order p” and the range of 4 in
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Theorem (**) is B,(F,) where p*'+1<m<p", we shall consider the
relation between Theorem (*) and Theorem (**).

Theorem (*)— Theorem (**)

Let LDK be a cyclic extension of order p™ and 4 an isomorphic
representation of G into B,(F,). For a generator g, of G, we put

Ale)=[1, N, -+, Ap_y] and I=min {t=1|N,;#0}.

Since the order of A(s,) is »p*, we have 1-p"*<m. We determine an
isomorphic representation X of the cyclic group of order p™ such that
X(o,)=1€ W,(F,). Then by Theorem (*), there exists a vector a € W,(L)
such that ¢,a=peW,(K), L=K(a) and s,c=a+1. On the other hand, the
mapping G defined by (1.1) of tF,[[t]] to UV (F,[[t]]) is bijective. Hence
there is an element wctF,[[t]] such that A(c,)=G(u) mod U™ ={M(1).
Since ord =1, by Lemma 5, the mapping {® is an isomorphism. If we
put {™(a)=A¢ B,(L) and {"(#)=M e B,(K), then 9;,A=M, L=K(A) and
cdA=A- A(o) for c€@. Q.E.D.

Theorem (**)= Theorem (*)

Let LDK be a cyclic extension of order »* and X an isomorphic
representation of G onto W,(F,). Then there exists a generator o, of
G such that X(o,)=1. For p"'+1=<m=p*, we define the mapping
A=f™oX of G into B,(F,). Then the mapping 4 is an isomorphic
representation of G and A(o,)=I[1,d, d,, ---, d._,] where d,, d, --- are
defined by (1.2) in §1 and d,=d, (mod p)e F,. By Theorem (**) there
exists a matrix A e B,(L) such that ¢, A=Me B,(K), L=K(A) and cA=
A-A(o) for 0eG. Now if we put A’=AC for Ce B,(K), then 9,A'=
M'eB,(K), L=K(A") and ¢A’'=A’- A(c) for 6€G. On the other hand,
in Galois cohomology theory we have the following lemma:

LEMMA (*). Let LDK be a finite Galois extension whose Galois
group is G=Gal(L|K). Then the l-cohomology group of G over W.(L)

18 trivial:
HYG, W,(L))=0 (see Witt [9]) .
Since X is an isomorphism of G onto W,(F,), by Lemma (*), there

exists a vector ae W, (L) such that X(a)=0o(a)—a for ceG. In parti-
cular, since X(g,)=1, o (a)=a+1.

LEMMA 6. For 1<l<m—1 i_b_he're exists a matriz C(l) e B,.(K) such
that A -C)=[1, h(a), k), - -+, ki), a}, - - -1 where h; is defined by (1.8)
n §1.
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PrROOF. We shall prove the existence of C(l) by induction on I. In
case =1 by g,A=A-A(g,), we have o(a,—h,(a))=a,—hk,(x). Namely,
there exists an element ¢, € K such that h,(a)=a,+¢,. Hence put C(1)=
[1,¢,0, ---, 0] € B.(K), we have A-C(1)=[1, h,(a), a}, ---]. Let us assume
that this lemma is valid for {—1. Then there exists C(I—1)e B,(K)
such that A-CU—D=[1, k(a), -+, ki a), a, ---]. Put A'=A-C(I-1).
Since g,A'=A’- A(e,) and h(a+1)=3%_h(@h,_;1) by (1.11), we have
o(a,—h(a))=a,—h,(a). Hence there exists an element ¢;€ K such that
h(a@)=ai+e¢. Now if we put C()=C(—DIL 0, ---,0,¢,0, --, 0], then

— — — l
we have A-C()=[1, k), hy(), - -+, hi(@), al+,---]. In particular, if we

put C(m—1)=C, then we have AC=[1, h,(a), k@), - -, hn_(@)]=F" ().
Hence we have g,a=pec W,(K), L=K(a) and ca=a+X(o) for 0eG.

Q.E.D.
SIMPLE EXAMPLES.
1. If LoK is cyclic of order » and A(g,)=[1, 1, 1/2!, ---, 1/(p—
1)!]e B,(F,) where o, is a generator of G, then we have
M=|1, B8, e e BL(K)
2 »—1
A=[1, , Lo ‘--,—_‘—“—]eB L
o, 21 p—1! o(L)

where af=a,+ /¢, and o,0,=a,+1.

2. If LoOK is cyclic of order p* and A(o)=[1,d, d;, -+, dn_]€
B,.(F,) where o, is a generator of G and p"'+1<m=p", then we have

{M:[ly h-l(f")r Ez(#); Tty Em—l(#)] € Bm(K)
A:[ly }_Ll(a)y E2(a)7 Tty }_im—l(a)] € Bm(L)
where ¢, =g and ca=a+1.
REMARK. If m=p", then {1, h(a), h(a), - -+, hpn,()} is a base of L
over K: L=@";* Kh,(a).
§3. Calculation of the residue vectors.

Let D be an integral domain of characteristic 0 and ¢ an indeterminate
element over D. For YeIX®), Y=#0 and Ze W.(D(())), the residue
vector (Y, Z) is defined as
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ay
(n) (»)
(3.1) (Y, Z)™ =res (——Z ) (n=0)

where Z™ and (Y, Z)™ are n-th ghost components of Z and (Y, Z),
respectively (see Witt [10]).

LEMMA 7. Let D contain I,, 21, m=1 and (j, p)=(m, p)=1. Let
Y=%.i(X) for Xe W.(D) where F; is defined by (1.5) and Z ={t™"}=
™ 0,0, ---). Then we have

iX  (m=j)

(%, Z)={ 0  (m=j).

PROOF. Using the formula (1.6) we have
) _($, xouwr-) . 5,01)

Therefore

_]‘_‘_i_Y—_l_fi_Zﬁd_t_’— S X 1) . i1 = 7 Y pivieg
Y dt Y dt dt—<4§oX ) ) JET=23, JX O

and Z™=¢™*", Hence we have
dY — - ini—mpn—
n) (n) —_ (I)45pt—m 1
(Y, Z) -res(Z ——)—res i§=0: JXWgirtme dt)

_ {J’X"" (m=7)
o (m=7) .

This proves our result. Q.E.D.

Let C be a field of characteristic » and K the formal power series
field in one variable ¢ over the field C: K=C((t)). We denote by K* the
multiplicative group of K. For ae K* and 8¢ W_(K) the residue vector
(a, B) e W,(C) is defined and satisfies the following properties:

Let a, 0’ e K*, B, 8'€ W._(K). Then

(i) (ad, B)=(a, B)+(a, B)

(ii) (a, B+8)=(a, B)+(a, B')

(iil) (a, ceB)=c(a, B) for ce W (C)

(iv) (a, VB)=Vi(e, B)

(v) (o, PB)=P(a, B)
where VB=(0, B, 8:, - --) and PB=(B}, B, ---) for B=(B,, B, - ) € W.(K)
(see Witt [10]). Hence by the continuity of («, 8) and the properties (i),
(ii), the multiplicative group K* and the additive group of W._(K) are
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paired to W.(C). In order to calculate the residue vector (a, 8) for any
acK* and Be W_(K), we consider the decomposition of K* and W_(K)
as follows.

PROPOSITION 2. The multiplicative group K* is decomposed as

(8.2) K*=C*"xt*x (.I)I=1 f.i(WL(C))

where t*={t'|l € Z} and the infinite product of f.:(W.(C)) (7, »)=1, j=1)
means the direct product as topological groups.

ProoF. It is obvious that K*=C*xt*x U®. By the relation (1.5)
we have

fi(a(@) =11 G(a(), &)

where G is defined by (1.1 in §1. Hence for any e UY, we can
determine the components a(j), € C inductively such that

r= II f.i(a(s)) . Q.E.D.

(7yP)=1
j=1
PROPOSITION 3. The additive group W (K) is decomposed as
(3.3) W(K)=W.(CIIIND W.C)
(D & W.OPE™)

e=0 (m,p)=1
m=1

o(@ V(7B W)

(m,p)=1
m1

where M means the closure of the subset M of the topological group
W.(K), the sum @ means the usual direct sum and the sum @ means
the direct sum as topological groups.

ProOF. It is clear that W.(K)= W, (tC [[EIDD W.(C[t™]). Moreover,
WACE™ D=3 3 VA(W.OH™) -

Hence the additive group W.(K) is the sum of the additive groups of
the right-hand side. We shall next show the uniqueness of the expres-
sion. D Dmpr—rmzs Wl C)PE ™ = {0 Simes,im,m=1 b(e, m)P*{t7"}|b(e, m) €
Woo(C) lime b(e’ m)zlimm—wo b(e’ m)=0} a'nd @mkl,(m,p)=1 Woo(C){t_m}:
(30 1 mm—r BM){E™} | b(m) € W(C), lim,, .., b(m)=0}. Put
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BO+3 3 bemPi+3S 3 VG, mih=0
( (

m=1 1
m,p)=1 ) =1

m,

3

where b(0), b(e, m), (i, m)e W_(C) and lim,, .., b(e, m)=Ilim,_.., b(e, m)=
lim,, .. b'(¢, m)=0. Comparing each component, we obtain that all
components b(0), b(e, m), b’(i, m) are 0. Q.E.D.

THEOREM 1. Let C be a field of characteristic >0 and K=C((t)).
Then we can calculate the residue vectors by using Propositions 2 and 3
as follows. Let ac K* and Bc W.(K) be

(a=eXt x (,-1;>I=1 fei(a(9))
j=21

o

B=7+b0)+3, 3 ble, mP't™+3 S VG, m)t—h
{ e=0

m=1 i=1 m=
(m,p)=1 (
*

where ce C*,l € Z, a(j) € W..(C), vy € W.(tC[[¢]]), b(0), b(e, m), b'(¢, m) € W_(C)
and lim,_, b(e, m)=lim,, .. b(e, m)=lim,,__ b’'(e, m)=0. Then we have

¢e=0 m=1
(m,p)=1

(@, B)=1(0)+3, 3 mble, m)P°a(m)+g i;, mVi(a(m) - b'(3, m)) .

PROOF. If aeC*, then we have (a, 8)=0 for any 8e W.(K). And
if ge W.(CI[t]]), then we have (a, 8)=0 for any a€ K*. By the
properties (i)~ (v) of the residue vectors, it is sufficient to calculate four
combinations:

¢, @¢{E"Y, (i@, and (i), £

where ae W.(C) and (4, p)=(m,p)=1. It is clear that (¢, 1)=1,
@, {t™"})=0 and (f.i(a), 1)=0. Moreover, by Lemma 7 we have

Jja (m=j)

0 (m=3). Q.E.D.

We denote by (a, B8), € W,(C) the residue vector of the length n for
ac K> and e W,(K). Similarly we can calculate (@, B)a.

(feia), {t7"hH= {

S4. Orthogonal pairing and duality.

4.1. Let C=F, (g=p’, f=1) be a finite field of characteristic » with
q elements, K the formal power series field with the coefficient field F,
and an indeterminate element t: K= F,((t)). Since F, is a cyclic extension
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of degree f over F,, the trace Tr from W_(F,) to W_(F,) is defined as
(4.1) Tr(e)= >, (g¢, 0c, ---)e W (F,)

aeGal(t'q[i‘p)

for ¢=(cy, ¢, ---) € W (F,). We define
(4.2) (a, B)=Tr (a, B) € W (F,)

for a¢ ¢ K%, Be W_(K). Since the trace (4.1) is a continuous homomor-
phism of the additive group, the multiplicative group K> and the additive
group W._(K) are paired to W_(F,) by (4.2). Similarly the trace Tr
from W,(F,) to W,(F,) is defined as

4.3) Tr(e)= >, (g¢, -+, 00, ;)€ W, (F,)

o€ Gal(r'qli'p)

for ¢=(c, ¢, -+, C._) € WL (F,). And we define
(4'4) <a7 B>%:Tr (a’ B)ln € Wn(FP)

for ae K*, Be W.(K). By (4.4), the multiplicative group K* and the
additive group W,(K) are paired to W,(F,). We shall calculate the
residue vectors (a, 8> for any a¢c K* and g€ W_(K). Since F, is a
cyclic extension of degree f over F,, the additive group of W_(F,) is a
free abelian group of rank f over W_(F,). Let {a(l), a(2), ---, a(f)} be
a base of W_(F,) over W_(F,) and {B(1), B(2), - -+, B(f)} the complementary
base of {a(l), ---, a(f)} such that ‘

(4.5) Tr (ak)-Bh) =8,  k, h=1,2, .-+, f

where Tr is defined by (4.1). In particular, we choose a(l)=1 so that
Tr e1)=1, Tr B(h)=0 (h=2,3, ---, f) hold. Since the field of quotients
K of W_(F,) is an unramified extension of degree f over the field of
quotients @, of W_(F,), {B(Q), ---, B(f)} is a base of W_(F,) over W_(F,).
By Proposition 2, the multiplicative group K* is decomposed as

S
(4.6) K*=F;xt*x TI lfu‘(Woo(l”p)a(/’ﬂ))-

(7 p)=1 k=
jz1

And by Proposition 3, the additive group W_(K) is decomposed as
' f .
@ W.(K)= WFIIDD(D WF,)8h)

oo

(D O D WF)PEWE™)

e=0 (m,p)=1 h=1

(@ v( @ & W.FBmE™)) .

(m,p)=1 h=
m21
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THEOREM 2. Let K be the formal power series field with the
coefficient field F, and an indeterminate element t. Then we can
calculate the residue vectors (4.2) by using (4.6) and (4.7) as follows.
Let ac K* and Be W_(K) be

j aze-t I 11 fu(ali, Bt

o

=7+ mem+ 5 5 38, m, P EWE)

m=1
(m,p)=1

+3 S VG, m, hVHERE™ ,

m=1 h=1
(m,p)=1

where ce qu, le Z, a(j, k) € Woo(Fﬂ)’ RAS Wco(th[[t]])v b(h)9 b(e; m, h):
b'(i,m,h) € W.(F,) and lim,_, b(e,m,h)=1im,, .., b(e,m,h)=1im,, ., b’'(i,m,h)=0
Then we have

-,
I
A

S, S ma(m, h)b(e, m, h)

m=1 k=
(m,p)=1

i ﬁ mp‘a(m, kb'(i, m, h) .

=1

)=

Me

(e, 87 =1b(1)+

£
I

-3

-

Ms

+

.
A"‘

PrROOF. By Theorem 1, we have

(@ @)= SmBM+3, 3, m 3yb(e, m, HP'AWP(F, alm, k)

=0 1
)=1

+3 5 mV(kz:‘, a(m, K)a(k) - gf, b, m, h)ﬁ(h)) .
(m,p)=1

By (4.5) we have

®
3
1

(m

)

(@, BY=Tr (a, B) =)+, 3 5 ma(m, Wbie, m, b
+3, 3 S mpta(m, W¥G, m, k). QE.D.

4.2. Let K=F,((t)) be the formal power series field (¢g=p’, f=1).
We shall consider two pairings {, ) and {, ), defined by (4.2) and (4.4).

(I) On the pairing {,) defined by (4.2).

We denote by B the annihilator of the pairing (, ).

THEOREM 3.
(i) The additive group W (K) is decomposed as
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(4.8) WL (K) =9 W.(K)DW..(F,)3(1)DL2.

where 2. s the closure of Dm,»=1.mz1 WL (FH){t™} in W (K), ie., 2.=
(B=% 1 impr=1 D(M){Et™™} | (M) € W (F,), lim,,_.. b(m)=0} and @¢=P—1.
(i) {B(Wm(-’f))=F;<
B(K*)=9W.(K)
Hence we have an orthogonal pairing

(4.9) (G0 (X UMy X (W(FQp)BLDR2G) — W (F,) -
(iii) Let ae K* and g€ W (K)
{a=c -t IJI 11 fes(a(y, K)alk))

B=9()+bOBM+ 3, 3 b(m, HAR)E™)

where ce F}, le Z, a(j, k) e W(F,), Y€ W(K), b0), b(m, h) e W.(F,) and
lim,,_. b(m, h)=0.
Then

(a, BY=1O+ 3 éma(m, hyb(m, k) .
m,p)=1

(

Proor. (i) It is obvious that
W.AF[[tI)=9¢W.CF,[[t]) and W.(F,)=%W.(F,)®W.(F,)81) .
Hence it is sufficient to prove
W AT F [t D=9 W.(TF, [t )DL, .

Since W (t'F,[t™]) is eclosed in W.(K), W.¢7'FJt™']) contains
eW. (tF,[t7])PL2,.. Conversely, for any e=0, m=1l, (m, p)=1, h=
1,2, ..., f, we have

PBME D =9(S P@BIE™D)+BM0E™ .

Hence
D @ & WF)PEWE )W FID+2. .
For any -
8OO WF)VEHmE™
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such that
o0 mq S
B=3 3 3G, m HV@EmE™,
(m,p)=1
we put

B)=3, Sb/G, m, AW} € @ WFit~™ .

Then we have 8=3, Vi(8()). Put 8'(i)=8G)+PB3)+---+P8%)e
W7 F [t7*]) then @(B8(2))=P*(B(1))—B(¢). Hence

VA8 = V*PHBE) — V'e(8' (1) =80 — (V' B W) -
Therefore we have
B=3, V(B@)=3, p'86)— 3, §(V(B'G))
=g(—3% V(E'@)+E p80)
& QW (t F It ))BL. .

(ii) We shall prove that B(W_(K))=F}. For aec B(W_(K)) we can
express a=c-t'-[]; I, f.(a(d, k)a(k)) by (4.6). Since <{a, B1))=1 and
(a, B(h){t™™})=ma(m, h) by Theorem 2, we have [=0 and a(m, h)=0.
Hence a=ce Fy. It is obvious that B(W_(K)) contains F}. We shall
prove that B(K*)=¢W_(K). For Be9W._(K) there exists v € W_(K) such
that B=gy. Since {(a, B> =<(a, ¢7v)=¢{a, ¥>=0 for all ac K*, we have
BeB(K*). By Theorem 2 and (i), it is obvious that B(K*) contains
W (K).

(iii) The proof is clear by Theorem 2. Q.E.D.

(II) On the pairing <, >, defined by (4.4).
We denote by B, the annihilator of the pairing (, >..

THEOREM 4.
(i) The additive group W,(K) is decomposed as
(4.10) W.(K)=9 W (K)DW,.(F,)B81)DL.

where ‘ane(m,p)=1.m21 W“(Fq){t—m}~ and §=(60’ B -, Bn——l) € W'n(K) fOIr
B:(IBO’ :817 '")G Ww(K). "
(ii) {B..(W,.<K)>=<KX>’

B(K\)=9W.K).
Hence we have an orthogonal pairing
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(4.11) (o dat KX X (WEBOS2)— WF,) .
(ili) Let e € K* and Be W,(K) be
a=c- ¢TI I fu(als, K)arlh)
B=601)+bOBWD) + 3 . b(m, WEW(E ™}

where ce F}, leZ, a(j, k)e W.(F,), ve WLK), b0), b(m,h)e W,(F,).
Then

{a, B),,=lb(0)+§m] Xh} md(m, h)b(m, h) .

PROOF. (i) The proof is similar to that of Theorem 3 (i).
(ii) We shall prove that B,(W,.(K))=(K*)*". For ae B, (W,(K)) we
can express ‘

a=c-tt- I;I IkI fii(a(d, k)ak))

by (4.6). Since {a, E(i)),,=l-1,, and {a, BM){T ™}, =ma(m, h) by Theorem
2, we have »"|l and »"|a(m, h). Hence

ae Pyt X IT (0" WA FQ)=(K*P" .

It is obvious that B,(W,(K)) contains (K*)*". The proof of B,(K*)=
@W,.(K) is similar to that of Theorem 3.
(iii) The proof is clear by Theorem 2. Q.E.D.

4.3. We shall consider the duality of two pairings {,) and <, ).
defined by (4.9) and (4.11) respectively.

ASSERTION (I). On the orthogonal pairing <, ) defined by (4.9).

(i) For any continuous homomorphism @:t*x UM — W (F,), there
exists an element Be W.(F,B1)PLR, such that pla)=<a, B> for ae
tZPx U™,

(ii) For any continuous homomorphism : W (F,)BL)DR.— W.(F,)
with (B()) € Z, there exists an element act?’xX U™ such that (B)=

{a, B> for Be W.(F,)B(1)DY..

ProOF. (i) Put b(m, h)=m '¢(fm(a(h))) and b(m)=>ii-,b(m, h)B(h).
Since @ is a continuous mapping, lim, .., m,n»= 0(m)=0. If we put 8=
PE)BQL) + S, imm=1 D(mM){E ™}, then e W (F,)BLDL2. and pla)=<a, B>
for all aet?x U™,

(ii) We put

a=t'- T II fu(a(s, k)o(k))
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where l=+(8(1)) € Z and a(j, k)=7""y(Bk){t~%}) € W.(F,) for =1, (j, p)=1,
k=1,2,---,f. Then we have ¥(8(1))=<(a, B(1)> and (BE){t™})=
(a, B(k){t~}) by Theorem 2. Since + is a continuous homomorphism, we
have y(8)=<{a, B) for any Be W_(F,B1)PL.. Q.E.D.

ASSERTION (II). On the orthogonal pairing {, ), defined by (4.11).
(1) For any continuous homomorphism

P: K> [(K>)" —— W, (F,)

there exists an element Be W,(F,)B(1)PR, such that p(@)={a, B>, for
ae K* where &=a mod (K *)*".

(ii) For any homomorphism : W,(F,)E(l)@Qn—»W,,(F,) there exists
an element ac K* such that (8)=<{a, B). for B¢ W,(F,)ﬁ(l)@!),,. Since
K*/(K*)*" i3 compact, W, (K)/9 W .(K) i3 discrete and W.(F,) i8 contained
m R/Z, this is a special case of the duality theorem of Pontrjagin.

PrROOF. (i) Since ¢ is a continuous mapping, there exists m,=>1
such that o(f,/(W_(F,))=0 for j=m, We put

B=bOBM+ 3 3 bim, WARE™)

where b(0)=p(f) e W.(F,) and b(m, h)=m“1¢(f,m(a(h))) for (m, p)=1, m=1,
h=1, 2: ) f- Then we have ¢(£)= <t9 B)n and ¢(ft”'(a(h)))= <ftm(a(h’))' ,8>,,,
by Theorem 4 (iii). Since @ is a continuous homomorphism, we have
p(@)={a, B), for any ae K*.

(ii) We put

a=t'x l;[ II fei(a(d, k)a(k))

where 1-1,=v(B8(1)) € W.(F,) and a(J, k) =34 (B(k){~4}) for (5, p)=1, j=1,
k=1,2, ---,f. Then we have (B(L)=<a, BL)), and (BE){T})=
{a, B(k){t~}>, by Theorem 4 (iii).~ Since « is a homomorphism, we have
¥(B)=<Ka, B>, for any Be W,(F,)B81L)DL,. Q.E.D.

§5. Arithmetic of local fields of characteristic .

Let C=F/(¢=p’, f=1) be a finite field of characteristic p with ¢
elements, K the formal power series field with the coefficient field F,
and an indeterminate element ¢t: K=F,((t)) and L a cyclic extension of
order p" over K. Then there exists a eyclic extension F. F, (d=p*, 8=0)
over F, and T € L such that L=F,:s((T)) and (t)=(T)*' in F,[[T]]. Then p
is called the ramification index of L over K and d=p*=[F,: F,] is called
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the relative degree of L over K. Moreover, let » be the minimum posi-
tive integer i such that U®C N, (L*). Then the ideal (£)" in F,[[¢]] is
called the conductor of L over K. On the other hand there exists an
element @€ W,(K) such that L=K(p'B) by Theorem (*) in §2. More-
over, by Theorem 4 (i) we can choose

ge W, (F)B(1)2, where 2,= @  W(F){Et™}

(m,p)=1,mz1

and we can express

_ mg f _ ~ ~ mo ~
B=bOFD+ 3 3 b(m, WEWE)=00BFD+ 3 bm)E™}
(m,p)=1
where b(0), b(m, h) e W, (F,) and b(m)=>}{-,b(m, h)B(h) € W,.(F,). For
m=1, (m, p)=1 and b(m)=-0, take the non-negative integer s, such that
p°=| b(m) and p»+yb(m). If b(m)=0, then s,=n. And we put

(5.1) ln,=m—8, .

By these constants [.(1<m=m,, (m, p)=1) we shall calculate the ramifi-
cation index and the conductor of L over K.

THEOREM 5. Let F, (g=p’, f=1) be a finite field of characteristic
p with q elements, K the formal power series field: K=F,/((%)) and L a
cyclic extension of order p™ over K.

(i) If we put

(5.2) l=max {l,|1=m=m, (m, p)=1},

where 1, i3 given by (5.1) then p' is the ramification index of L over
K.
(ii) If we put

(56.3) r=max {mp'~'+1|1=m=m, (m,p)=1, 1,21},
them (t)" is the conductor of L over K.

ProOOF. (i) is easy to prove. We shall prove (ii). By Y. Kawada
and I. Satake [7] (XII) p. 876, we have N, (L*)=B,(8) where B,(8)=
{ae K*|{a, B)>,=0}. Hence it is sufficient to prove that U CB,(B) and
U v¢zB,(B8). For r=1, j=1and (4, p)=1 we define r,=min {e=0|jp°=7}.
Then we have

U= T1_fuVAWFD)
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Hence any element a € U™ can be expressed as

a= II_1Ifu(al, Da(®)

where a(j, k) & V"i(W.(F,)). On the other hand,
B=bOBM+ 3% S b(m, WERIE™)
where b(m, h) € V*"'n(W,(F,)). gi_r:ce
(@ BYa=3, 3 mam, hyb(m, b

by Theorem 4 (iii), and l,.<7,., we have {(a, 8),=0. Hence U™ CB,(B).
Next we shall show that U "¢ B,(8). Let j be a positive integer such
that (3, p)=1, l;=1 and r=jp'i'+1. Then (r—1),=I[,—1. Since b(m)=

{-.b(m, K)B(k), there exists ke{l,2, ---, f} such that b,k ¢
Vit (WL(F,). If we put a=f,(p'*a(k)), then e e U™V and (e, B).=
JP'7'b(J, k)*=0. Hence we have a ¢ B,(8). Q.E.D.

For B:‘.(BO’ 181) ) Bn—l) € Wn(K) we put
KizK(@_l(BO’ Tty Bi—l)) (J=1’ 2’ Tty ’n) .

Then we have a sequence of fields K=K, cK,c.---c K, ,cK,=L, where
K;;,,DK; (j=0,1, ---,n—1) is a cyclic extension of order p. We shall
consider the conductor of K; over K. For i=1,2, ---, n, we put

(5.4) h;=max {m|l=m=m, (m, p)=1,1,=n—i+1}

where [,, is given by (5.1). If (m|1=m<m, (m, p)=1 1, =n—i+1}=0Q,
then we put

(5.5) h,=0 .

By Theorem 5 the conductor (¢)” of L/K is determined by
(5.6) r=1+max {hp*", hp"* % -+, hu_D, h,} .

If (t)7s is the conductor of K, over K, then we have similarly

(5.7) F;=1+max {h,p’ ™, h,p*"% ---, h;_,p, h;}
=14+max {p(F,_,—1), h;} .

We can characterize the conductor of the intermediate fields.
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THEOREM 6. Let (a, a, --+, a,) be an n-tuple of positive integers
a,. In order that there exists a sequence of fields K=K,CK,C---CK,=L
such that LDOK is a totally ramified cyclic extension of order p™ and
@)+t 48 the comductor of K, over K it is mecessary and sufficient that
(a, ay, ++-, a,) satisfies the following relations:

(1) (e, P)=1,

5.8 :
6.8 (ii) either a;=pa,_,, or a,>pa;,,, (a, p)=1 for 1=2,8, ---,n .

Proor. If we put a,=F,—1, then by (56.7) we have
(5.9) a,=h, and a,=max {pa,_, h;} (t=2,3, ---, n).

It is obvious that the relation (5.8) is a necessary condition by (5.9).
Conversely, let (a, a,, ---, a,) be an m-tuple with the properties (5.8).
If we put g=(@"", ¢, ---,t7*) € W (K), L=K(97'8) and K;=K(® (B,
B+ Bic)y (4=1,2, ---, n), then by the relation (5.8) the conductor
of K; over K is (t)%+'. Q.E.D.

REMARK. If LDK is not a totally ramified extension in Theorem 6,
then we must change the relation (5.8) for the following relations: If
the relative degree of L over K is p°, then

(i), a1=a2="'=as=0’ (a’s-l'l’ p)=1
(ii)" either a,=pa,_,, or a,>pa;_,, (a, p)=1 for i=s+2, 843, ---, n.

By the above results, we can calculate the ramification numbers
and the discriminant ideal of L over K by Hasse’s formula (see Hasse

[2D. Let v, v, --- be the ramification numbers of L/K, then we have
(56.10) v,=a,+p(a,—a)+p(as—a)+ - -+ Ha,—a,_,)
v=12, :--).

Moreover, if ¢ is the discriminant ideal of L/K, then we have

(5.11) o= (t)p"—’[(p’—1)+v1(p’—1)+(v2—v1) (P! 1=1) oot (g —vy_y ) (P—1)]
where ' is the ramification index of L over K.
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