Representation of Witt Vectors by Formal Power Series and its Applications

Kiyomi KANESAKA and Koji SEKIGUCHI

Sophia University
(Communicated by Y. Kawada)

Introduction

In this paper we consider a representation of Witt vectors and its application to the Inaba theory of the construction of Galois extensions of a field of characteristic p and to the explicit formula for the residue vectors in the formal power series field.

E. Artin and O. Schreier characterized any cyclic extension L of order p of a field K of characteristic p>0 by a root α of the equation $x^p=x+\mu$: $L=K(\alpha)$. Thereafter E. Witt [10] has extended this method to any cyclic p-extension L of K by considering Witt vectors: $L=K(\alpha)$, $\alpha^p=\alpha+\mu$. On the other hand, E. Inaba [4, 5, 6] expressed any finite Galois extension L of K of characteristic p by the matrix equation of the type $X^p=MX$, $M\in GL_m(K)$. We define in §1 an isomorphism f_u of the additive group $W_\infty(K)$ of Witt vectors into the multiplicative 1-unit group of the formal power series ring K[[t]]: $f_u(\alpha+\alpha')=f_u(\alpha)\cdot f_u(\alpha')$.* As an application we consider in §2 the relation between the Witt theory and the Inaba theory.

Y. Kawada and I. Satake [7] applied the residue vectors defined in Witt [10] to the class formation theory over a formal power series field K in one variable with a finite constant field. In §3 we calculate the residue vectors by the use of the mapping f_u defined in §1. Using these results, we consider in §4 the orthogonal pairings and the duality defined by residue vectors. In §5 we consider the formal power series field K in one variable with a finite constant field and the cyclic extension field L of order p^n over K. We calculate the ramification index and the conductor of L over K.

The authors wish to express their thanks to Professor Yukiyosi

Received May 12, 1978 Revised July 1, 1979

^{*} See also Dieudonné [1] and Whaples [8].

Kawada and Mr. Teluhiko Hilano.

- Isomorphism of the additive group of Witt vectors into the multiplicative unit group of the formal power series ring.
- 1.1. Let p be a prime number, I_p the p-adic valuation ring of the rational numbers field Q and Q[[x]] the formal power series ring over Q. Then we define

(1.1)
$$G(x) = \exp\left(\sum_{i=0}^{\infty} \frac{1}{p^i} x^{p^i}\right) \in Q[[x]].$$

The coefficients $d_n(n \in \mathbb{Z})$ of x^n of G(x) satisfy the following recursive relations:

(1.2)
$$\begin{cases} d_n = 0 & (n < 0) \\ d_0 = 1 & \\ d_n = \frac{1}{n} \sum_{i=0}^{\infty} d_{n-p^i} & (n > 0) \end{cases}.$$

Taking the formal derivation of (1.1), we have Proof.

$$G'(x) = \left(\sum_{i=0}^{\infty} \frac{1}{p^i} x^{p^i}\right)' G(x)$$
.

Hence

(1.3)
$$\sum_{n=1}^{\infty} n d_n x^{n-1} = \left(\sum_{i=0}^{\infty} x^{p^{i-1}}\right) \left(\sum_{n=0}^{\infty} d_n x^n\right).$$

Comparing the coefficients of x^{n-1} in both sides of (1.3), we obtain

$$nd_n = d_{n-1} + d_{n-p} + d_{n-p^2} + \cdots$$
 Q.E.D.

All the coefficients of G(x) are contained in I_p , i.e., LEMMA 2. $G(x) \in I_p[[x]].^{*}$

PROOF. We shall show $d_n \in I_p$ by induction on n. By (1.2), it is sufficient to show $d_n \in I_p$ for $n \ge 1$ satisfying $p \mid n$. By (1.1), we have

$$G(x)^p = \exp\left(p\sum_{i=0}^{\infty}\frac{1}{p^i}x^{p^i}\right)$$
.

Hence

$$\frac{(1.4)}{\text{*" We owe Mr. T. Hilano for this proof.}} G(x)^p \!=\! G(x^p) \exp{(px)} \;.$$

Comparing the coefficients of x^n in both sides of (1.4), we obtain

$$pd_n + p \cdot f(d_0, \cdots, d_{n-1}) + d_{n/p}^p = d_{n/p} + p \sum_{i+pj=n, i \geq 1} \frac{p^{i-1}}{i!} d_j$$
,

where $f(d_0, \dots, d_{n-1})$ is a polynomial of d_0, \dots, d_{n-1} with integer coefficients. Hence

$$d_n = -f(d_0, \dots, d_{n-1}) - \frac{1}{p}(d_{n/p}^p - d_{n/p}) + \sum_{\substack{i+p,j=n\\i>0}} \frac{p^{i-1}}{i!}d_j$$
.

Since $d_{n/p}^p - d_{n/p} \in pI_p$ and $p^{i-1}/i! \in I_p$, by our assumption we have $d_n \in I_p$. Q.E.D

Let D be an integral domain containing I_p , t an indeterminate element over D, $W_{\infty}(D)$ the ring of Witt vectors of infinite length over D and $U^{(1)}(D[[t]])$ the 1-unit group of D[[t]]: $U^{(1)}(D[[t]]) = 1 + tD[[t]]$. For any element $u \in tD[[t]]$ and any Witt vector $X = (X_0, X_1, \cdots) \in W_{\infty}(D)$, we define

$$\mathfrak{F}_{u}(X) = \prod_{j=0}^{\infty} G(X_{j}u^{p^{j}}).$$

 $\mathfrak{F}_{u}(X)$ belongs to $U^{(1)}(D[[t]])$ by Lemma 2.

LEMMA 3.

(1.6)
$$\mathfrak{F}_{u}(X) = \exp\left(\sum_{i=0}^{\infty} \frac{X^{(i)}}{p^{i}} u^{p^{i}}\right)$$

where $X^{(i)}$ is the i-th ghost component of X: $X^{(i)} = \sum_{j=0}^{i} p^{j} X_{j}^{p^{i-j}}$. (See Witt [10].)

PROOF.

$$\begin{split} \mathfrak{F}_{u}(X) &= \prod_{j=0}^{\infty} G(X_{j} u^{p^{j}}) = \prod_{j=0}^{\infty} \exp\left(\sum_{i=0}^{\infty} \frac{1}{p^{i}} (X_{j} u^{p^{j}})^{p^{i}}\right) \\ &= \exp\left(\sum_{j=0}^{\infty} \sum_{i=j}^{\infty} p^{j-i} X_{j}^{p^{i-j}} u^{p^{i}}\right) \\ &= \exp\left(\sum_{i=0}^{\infty} \sum_{j=0}^{i} p^{j-i} X_{j}^{p^{i-j}} u^{p^{i}}\right) \\ &= \exp\left(\sum_{i=0}^{\infty} \frac{X^{(i)}}{p^{i}} u^{p^{i}}\right). \end{split} \qquad Q.E.D.$$

PROPOSITION 1. The mapping \mathfrak{F}_u $(u \neq 0)$ is an isomorphism of the additive group of $W_{\infty}(D)$ into the multiplicative group $U^{(1)}(D[[t]])$.

PROOF. By (1.6), we have

$$egin{aligned} & \mathfrak{F}_u(X+X') = \exp\left(\sum_{i=0}^\infty rac{(X+X')^{(i)}}{p^i} u^{p^i}
ight) \ &= \exp\left(\sum_{i=0}^\infty rac{X^{(i)} + X'^{(i)}}{p^i} u^{p^i}
ight) \ &= \mathfrak{F}_u(X)\mathfrak{F}_u(X') \qquad \text{for} \quad X, \ X' \in W_\infty(D) \ . \end{aligned}$$

If $\mathfrak{F}_u(X)=1$, then $\sum_{i=0}^{\infty} (X^{(i)}/p^i)u^{p^i}=0$. Hence we have X=0. Q.E.D.

Moreover, we have

$$\mathfrak{F}_{u}(VX) = \mathfrak{F}_{up}(X)$$

where $VX=(0, X_0, X_1, \cdots)$ for $X=(X_0, X_1, \cdots) \in W_{\infty}(D)$. For, we have

$$\mathfrak{F}_{u}(VX) = \prod_{j=0}^{\infty} G((VX)_{j}u^{p^{j}})$$

$$= \prod_{j=1}^{\infty} G(X_{j-1}(u^{p})^{p^{j-1}})$$

$$= \mathfrak{F}_{u^{p}}(X).$$

For any integer i, choose a positive integer m such that $i < p^m$. Then for $X = (X_0, X_1, \cdots) \in W_{\infty}(D)$ we define

$$h_{i}(X) = \sum_{i_{0}} d_{i_{0}} \cdots d_{i_{m-1}} X_{0}^{i_{0}} \cdots X_{m-1}^{i_{m-1}}$$

where the summation is extended over all systems $\{i_0, \dots, i_{m-1}\}$ of integers satisfying $i_0 + i_1 p + \dots + i_{m-1} p^{m-1} = i$. Since $d_n = 0$ for n < 0, we can verify that h_i is unchanged when we change m under the condition $i < p^m$ for fixed i. Further $h_n(X) = 0$ (n < 0), $h_0(X) = 1$ and $h_1(X) = X_0$. Then we have obviously by (1.5)

(1.9)
$$\mathfrak{F}_{u}(X) = \sum_{i=0}^{\infty} h_{i}(X)u^{i}.$$

Hence we have

$$\mathfrak{F}_{u}(X) \equiv 1 + X_{0}u \pmod{u^{2}}.$$

By Proposition 1 and (1.9) we can easily see that

(1.11)
$$h_i(X+X') = \sum_{j=0}^{i} h_j(X) h_{i-j}(X')$$
 for $X, X' \in W_{\infty}(D)$.

LEMMA 4. For $u \neq 0$ $m \geq 1$ and $n \geq 0$, the following two conditions are equivalent:

- (i) $m \leq p^n \text{ ord } u$
- $(\ \ ii \) \ \ \mathfrak{F}_u(V^nW_{\infty}(D)) \subset U^{(m)}(D[[t]]) \ where \ \ U^{(m)}(D[[t]]) = 1 + t^mD[[t]].$

PROOF. By (1.7) and (1.10), we have

$$\mathfrak{F}_{u}(V^{n}X) = \mathfrak{F}_{u^{p}}(X) = 1 + X_{0}u^{p^{n}} + \cdots$$

Hence (i) and (ii) are equivalent.

COROLLARY. \mathfrak{F}_u is a continuous mapping from $W_{\infty}(D)$ into $U^{(1)}(D[[t]]).$

1.2. Let K be a field of characteristic p, F_p the prime field of K and t an indeterminate element over K. We denote by $U^{(1)}(K[[t]])$ the 1-unit group of K[[t]]. For any element $u \in tK[[t]]$ and any Witt vector $\alpha = (\alpha_0, \alpha_1, \cdots) \in W_{\infty}(K)$, we define

$$(1.1)' \qquad \qquad \overline{G}(x) = \sum_{n=0}^{\infty} \overline{d}_n x^n \in \mathbf{F}_p[[x]] \quad \text{for } \overline{d}_n = d_n \pmod{p} \in \mathbf{F}_p$$

and

$$(1.5)' \qquad \qquad \mathfrak{f}_{\scriptscriptstyle u}(\alpha) = \prod_{\scriptscriptstyle j=0}^{\scriptscriptstyle \infty} \bar{G}(\alpha_{\scriptscriptstyle j} u^{\scriptscriptstyle p^{\scriptscriptstyle j}}) \in U^{\scriptscriptstyle (1)}(K[[t]]).$$

PROPOSITION 1'. The mapping f_u ($u \neq 0$) is an isomorphism of the additive group of $W_{\infty}(K)$ into the multiplicative group $U^{(1)}(K[[t]])$.

PROOF. Let D be an arbitrary integral domain containing I_p such that there exists a ring homomorphism π of D onto K. For $X=(X_0,\,X_1,\,\cdots)\in W_\infty(D)$ we define $W_\infty(\pi)(X)=(\pi X_0,\,\pi X_1,\,\cdots)\in W_\infty(K)$, and for $Y=\sum_{i=0}^\infty Y_it^i\in D[[t]]$ we define $\pi_t(Y)=\sum_{i=0}^\infty \pi(Y_i)t^i\in K[[t]]$. Then we have the following commutative diagram:

$$(1.12) W_{\infty}(D) \xrightarrow{\mathfrak{F}_{u}} U^{(1)}(D[[t]])$$

$$W_{\infty}(\pi) \downarrow \qquad \qquad \downarrow \pi_{t}$$

$$W_{\infty}(K) \xrightarrow{\mathfrak{f}_{u}} U^{(1)}(K[[t]])$$

If $\mathfrak{f}_u(\alpha)=1$, then $\pi_t\circ\mathfrak{F}_u(X)=1$ for any Witt vector $X\in W_\infty(D)$ such that $W_\infty(\pi)(X)=\alpha$. By (1.9) we have $h_i(X)\in \operatorname{Ker}\pi$ for $i\geq 1$ and so $X_j\in \operatorname{Ker}\pi$ for $j\geq 0$. Therefore we obtain $\alpha=0$. Hence \mathfrak{f}_u is an into-isomorphism.

By (1.7), (1.9), (1.10), Lemma 4, Corollary and (1.12) we have

$$\mathfrak{f}_{u}(V\alpha) = \mathfrak{f}_{up}(\alpha)$$

$$\mathfrak{f}_{u}(\alpha) = \sum_{i=0}^{\infty} \bar{h}_{i}(\alpha) u^{i}$$

$$(1.10)' \qquad \qquad \mathsf{f}_{u}(\alpha) \equiv 1 + \alpha_{0} u \pmod{u^{2}} .$$

LEMMA 4'. For $u \neq 0$, $m \geq 1$ and $n \geq 0$, the following two conditions are equivalent:

- (i) $m \leq p^n \text{ ord } u$
- (ii) $\int_{u} (V^{n} W_{\infty}(K)) \subset U^{(m)}(K[[t]]).$

COROLLARY'. f_u is a continuous mapping from $W_{\infty}(K)$ into $U^{(1)}(K[[t]])$.

Moreover, we have

(1.13)
$$f_u(\alpha\alpha) = f_u(\alpha)^a \quad \text{for} \quad \alpha \in W_{\infty}(F_p), \ \alpha \in W_{\infty}(K) \ .$$

Since $f_u(n\alpha) = f_u(\alpha)^n$ holds for $n \in \mathbb{Z}$, by Proposition 1' and f_u is continuous, we have (1.13).

- §2. Application to the Inaba theory on the construction of Galois extensions.
- 2.1. The isomorphic representation of the additive group of Witt vectors of length n by matrices.

We denote by $W_n(K)$ the ring of Witt vectors of length n over a field K of characteristic p>0. Then we have the ring-isomorphism

$$(2.1) W_n(K) \cong W_{\infty}(K)/V^n W_{\infty}(K)$$

where $V\alpha = (0, \alpha_0, \alpha_1, \cdots)$ for $\alpha = (\alpha_0, \alpha_1, \cdots) \in W_{\infty}(K)$. For $m \ge 2$ consider the set

$$B_{m}(K) = \left\{ B \in M_{m}(K) \middle| B = \begin{pmatrix} 1 & b_{1} & b_{2} & \cdots & b_{m-1} \\ \ddots & \ddots & \ddots & \vdots \\ & \ddots & \ddots & b_{2} \\ & 0 & \ddots & b_{1} \\ & & & 1 \end{pmatrix} \right\}.$$

Then $B_m(K)$ is a subgroup of $GL_m(K)$. We denote such a matrix $B \in B_m(K)$ by $B = [1, b_1, b_2, \dots, b_{m-1}]$. Put

$$U^{(i)} = U^{(i)}(K[[t]]) = 1 + t^i K[[t]]$$
 for $i \ge 1$.

Then we have the group-isomorphism

$$(2.2) \varphi: B_{\mathfrak{m}}(K) \cong U^{(1)}/U^{(m)}$$

where $B=[1, b_1, b_2, \dots, b_{m-1}] \in B_m(K)$ is mapped to the residue class containing $1+b_1t+b_2t^2+\dots+b_{m-1}t^{m-1} \in U^{(1)}$ by φ .

LEMMA 5. For $u \in tK[[t]]$, $n \ge 1$ and $m \ge 1$ satisfying $(\text{ord } u)p^{n-1} + 1 \le m \le (\text{ord } u)p^n$, we can define the mapping $f_u^{(n)}$ satisfying the following commutative diagram:

$$(2.3) \qquad W_{\infty}(K) \xrightarrow{f_{u}} U^{(1)}(K[[t]])$$

$$\downarrow \text{canonical}$$

$$W_{n}(K) \xrightarrow{f_{u}^{(n)}} B_{m}(K)$$

where f_u is the mapping defined by (1.5)' in §1. Moreover, the mapping $f_u^{(n)}$ is injective. Hence the mapping $f_u^{(n)}$ is an isomorphism of the additive group of $W_n(K)$ into the multiplicative group $B_m(K)$.

PROOF. By Lemma 4', we have $\int_u (V^n W_{\infty}(K)) \subset U^{(m)}$. Hence we can define the mapping $\int_u^{(n)}$ with the above property. It is clear that $\int_u^{(n)}$ is injective if $(\text{ord } u)p^{n-1}+1 \leq m$. Q.E.D.

2.2. Relation between the Witt theory and the Inaba theory.

In this section we shall consider the relation between the Witt theory [10] and the Inaba theory [4, 5, 6] by the use of the mapping $\mathfrak{f}_u^{(n)}$ defined by (2.3). In the Witt theory we have the following theorem:

THEOREM (*). Let K be a field of characteristic p>0, $L\supset K$ an abelian extension whose Galois group $G=\operatorname{Gal}(L|K)$ is cyclic of order p^n and χ an isomorphic representation of G onto $W_n(F_p)$. Then there exists a vector $\alpha=(\alpha_0, \alpha_1, \cdots, \alpha_{n-1})\in W_n(L)$ such that $\mathfrak{S}_w\alpha=P\alpha-\alpha=\mu\in W_n(K)$, $L=K(\alpha)$ and $\sigma\alpha=\alpha+\chi(\sigma)$ for $\sigma\in G$, where $\sigma\alpha=(\sigma\alpha_0, \sigma\alpha_1, \cdots, \sigma\alpha_{n-1})$, $P\alpha=(\alpha_0^p, \alpha_1^p, \cdots, \alpha_{n-1}^p)$ and $K(\alpha)=K(\alpha_0, \alpha_1, \cdots, \alpha_{n-1})$.

On the other hand, in the Inaba theory we have the following theorem:

THEOREM (**). Let K be a field of characteristic p>0, $L\supset K$ a finite Galois extension whose Galois group is $G=\operatorname{Gal}(L|K)$ and Λ an isomorphic representation of G into $GL_m(F_p)$. Then there exists a matrix $A=(a_{ij})\in GL_m(L)$ such that $\wp_IA=PA\cdot A^{-1}=M\in GL_m(K)$, L=K(A) and $\sigma A=A\cdot \Lambda(\sigma)$ for $\sigma\in G$, where $\sigma A=(\sigma a_{ij})$, $PA=(a_{ij}^p)$, and $K(A)=K(a_{11},\cdots,a_{1j},\cdots,a_{1j},\cdots,a_{mm})$.

When $L\supset K$ is a cyclic extension of order p^n and the range of Λ in

Theorem (**) is $B_m(F_p)$ where $p^{n-1}+1 \le m \le p^n$, we shall consider the relation between Theorem (*) and Theorem (**).

Theorem (*)⇒Theorem (**)

Let $L\supset K$ be a cyclic extension of order p^n and Λ an isomorphic representation of G into $B_m(F_p)$. For a generator σ_0 of G, we put

$$\Lambda(\sigma_0) = [1, \lambda_1, \dots, \lambda_{m-1}]$$
 and $l = \min\{i \ge 1 \mid \lambda_i \ne 0\}$.

Since the order of $\Lambda(\sigma_0)$ is p^n , we have $l\cdot p^{n-1} < m$. We determine an isomorphic representation \mathcal{X} of the cyclic group of order p^n such that $\mathcal{X}(\sigma_0)=1\in W_n(F_p)$. Then by Theorem (*), there exists a vector $\alpha\in W_n(L)$ such that $\mathfrak{S}_u\alpha=\mu\in W_n(K)$, $L=K(\alpha)$ and $\sigma_0\alpha=\alpha+1$. On the other hand, the mapping \overline{G} defined by (1.1)' of $tF_p[[t]]$ to $U^{(1)}(F_p[[t]])$ is bijective. Hence there is an element $u\in tF_p[[t]]$ such that $\Lambda(\sigma_0)=\overline{G}(u)$ mod $U^{(m)}=\mathfrak{f}_u^{(n)}(1)$. Since ord u=l, by Lemma 5, the mapping $\mathfrak{f}_u^{(n)}$ is an isomorphism. If we put $\mathfrak{f}_u^{(n)}(\alpha)=A\in B_m(L)$ and $\mathfrak{f}_u^{(n)}(\mu)=M\in B_m(K)$, then $\mathfrak{F}_IA=M$, L=K(A) and $\sigma A=A\cdot\Lambda(\sigma)$ for $\sigma\in G$.

Theorem (**) ⇒ Theorem (*)

Let $L\supset K$ be a cyclic extension of order p^n and χ an isomorphic representation of G onto $W_n(F_p)$. Then there exists a generator σ_0 of G such that $\chi(\sigma_0)=1$. For $p^{n-1}+1\leq m\leq p^n$, we define the mapping $\Lambda=\mathfrak{f}_t^{(n)}\circ\chi$ of G into $B_m(F_p)$. Then the mapping Λ is an isomorphic representation of G and $\Lambda(\sigma_0)=[1,\overline{d}_1,\overline{d}_2,\cdots,\overline{d}_{m-1}]$ where d_1,d_2,\cdots are defined by (1.2) in §1 and $\overline{d}_n=d_n\pmod{p}\in F_p$. By Theorem (**) there exists a matrix $A\in B_m(L)$ such that $\mathfrak{F}_IA=M\in B_m(K)$, L=K(A) and $\sigma A=A\cdot\Lambda(\sigma)$ for $\sigma\in G$. Now if we put A'=AC for $C\in B_m(K)$, then $\mathfrak{F}_IA'=M'\in B_m(K)$, L=K(A') and $\sigma A'=A'\cdot\Lambda(\sigma)$ for $\sigma\in G$. On the other hand, in Galois cohomology theory we have the following lemma:

LEMMA (*). Let $L\supset K$ be a finite Galois extension whose Galois group is $G=\operatorname{Gal}(L|K)$. Then the 1-cohomology group of G over $W_n(L)$ is trivial:

$$H^{1}(G, W_{n}(L)) = 0$$
 (see Witt [9]).

Since χ is an isomorphism of G onto $W_n(F_p)$, by Lemma (*), there exists a vector $\alpha \in W_n(L)$ such that $\chi(\alpha) = \sigma(\alpha) - \alpha$ for $\sigma \in G$. In particular, since $\chi(\sigma_0) = 1$, $\sigma_0(\alpha) = \alpha + 1$.

LEMMA 6. For $1 \le l \le m-1$ there exists a matrix $C(l) \in B_m(K)$ such that $A \cdot C(l) = [1, \bar{h}_1(\alpha), \bar{h}_2(\alpha), \dots, \bar{h}_l(\alpha), a'_l, \dots]$ where h_i is defined by (1.8) in §1.

PROOF. We shall prove the existence of C(l) by induction on l. In case l=1 by $\sigma_0 A = A \cdot \Lambda(\sigma_0)$, we have $\sigma(a_1 - \bar{h}_1(\alpha)) = a_1 - \bar{h}_1(\alpha)$. Namely, there exists an element $c_1 \in K$ such that $\bar{h}_1(\alpha) = a_1 + c_1$. Hence put $C(1) = [1, c_1, 0, \cdots, 0] \in B_m(K)$, we have $A \cdot C(1) = [1, \bar{h}_1(\alpha), a'_2, \cdots]$. Let us assume that this lemma is valid for l-1. Then there exists $C(l-1) \in B_m(K)$ such that $A \cdot C(l-1) = [1, \bar{h}_1(\alpha), \cdots, \bar{h}_{l-1}(\alpha), a'_l, \cdots]$. Put $A' = A \cdot C(l-1)$. Since $\sigma_0 A' = A' \cdot \Lambda(\sigma_0)$ and $\bar{h}_l(\alpha + 1) = \sum_{j=0}^{l} \bar{h}_j(\alpha) \bar{h}_{l-j}(1)$ by (1.11), we have $\sigma(a'_l - \bar{h}_l(\alpha)) = a'_l - \bar{h}_l(\alpha)$. Hence there exists an element $c_l \in K$ such that $\bar{h}_l(\alpha) = a'_l + c_l$. Now if we put $C(l) = C(l-1)[1, 0, \cdots, 0, c_l, 0, \cdots, 0]$, then

we have $A \cdot C(l) = [1, \overline{h}_1(\alpha), \overline{h}_2(\alpha), \dots, \overline{h}_l(\alpha), \alpha'_{l+1} \dots]$. In particular, if we put C(m-1) = C, then we have $AC = [1, \overline{h}_1(\alpha), \overline{h}_2(\alpha), \dots, \overline{h}_{m-1}(\alpha)] = \mathfrak{f}_{l}^{(n)}(\alpha)$. Hence we have $\mathscr{G}_w \alpha = \mu \in W_n(K)$, $L = K(\alpha)$ and $\sigma \alpha = \alpha + \chi(\sigma)$ for $\sigma \in G$.

Q.E.D.

SIMPLE EXAMPLES.

1. If $L\supset K$ is cyclic of order p and $\Lambda(\sigma_0)=[1, 1, 1/2!, \dots, 1/(p-1)!]\in B_p(F_p)$ where σ_0 is a generator of G, then we have

$$\begin{cases} M = \left[1, \, \mu_0, \frac{\mu_0^s}{2!}, \, \cdots, \, \frac{\mu_0^{p-1}}{(p-1)!}\right] \in B_p(K) \\ A = \left[1, \, \alpha_0, \frac{\alpha_0^s}{2!}, \, \cdots, \, \frac{\alpha_0^{p-1}}{(p-1)!}\right] \in B_p(L) \end{cases}$$

where $\alpha_0^p = \alpha_0 + \mu_0$ and $\sigma_0 \alpha_0 = \alpha_0 + 1$.

2. If $L\supset K$ is cyclic of order p^n and $\Lambda(\sigma_0)=[1, \overline{d}_1, \overline{d}_2, \cdots, \overline{d}_{m-1}]\in B_m(F_p)$ where σ_0 is a generator of G and $p^{n-1}+1\leq m\leq p^n$, then we have

$$M = [1, \bar{h}_1(\mu), \bar{h}_2(\mu), \dots, \bar{h}_{m-1}(\mu)] \in B_m(K)
A = [1, \bar{h}_1(\alpha), \bar{h}_2(\alpha), \dots, \bar{h}_{m-1}(\alpha)] \in B_m(L)$$

where $\wp_w \alpha = \mu$ and $\sigma_0 \alpha = \alpha + 1$.

REMARK. If $m=p^n$, then $\{1, \bar{h}_1(\alpha), \bar{h}_2(\alpha), \dots, \bar{h}_{p^n-1}(\alpha)\}$ is a base of L over $K: L = \bigoplus_{i=0}^{p^n-1} K\bar{h}_i(\alpha)$.

§3. Calculation of the residue vectors.

Let D be an integral domain of characteristic 0 and t an indeterminate element over D. For $Y \in D((t))$, $Y \neq 0$ and $Z \in W_{\infty}(D((t)))$, the residue vector (Y, Z) is defined as

$$(3.1) (Y, Z)^{(n)} = \operatorname{res}\left(\frac{dY}{Y}Z^{(n)}\right) (n \ge 0)$$

where $Z^{(n)}$ and $(Y, Z)^{(n)}$ are *n*-th ghost components of Z and (Y, Z), respectively (see Witt [10]).

LEMMA 7. Let D contain I_p , $j \ge 1$, $m \ge 1$ and (j, p) = (m, p) = 1. Let $Y = \mathcal{F}_{t,j}(X)$ for $X \in W_{\infty}(D)$ where $\mathcal{F}_{t,j}$ is defined by (1.5) and $Z = \{t^{-m}\} = (t^{-m}, 0, 0, \cdots)$. Then we have

$$(Y, Z) = \begin{cases} jX & (m=j) \\ 0 & (m \neq j) \end{cases}$$

PROOF. Using the formula (1.6) we have

$$\frac{d\mathfrak{F}_{u}(X)}{du} = \left(\sum_{i=0}^{\infty} X^{(i)} u^{p^{i-1}}\right) \cdot \mathfrak{F}_{u}(X).$$

Therefore

$$\frac{1}{Y}\frac{dY}{dt} = \frac{1}{Y}\frac{dY}{dt^{j}}\frac{dt^{j}}{dt} = \left(\sum_{i=0}^{\infty} X^{(i)}(t^{j})^{p^{i}-1}\right) \cdot jt^{j-1} = \sum_{i=0}^{\infty} jX^{(i)}t^{jp^{i}-1}$$

and $Z^{(n)} = t^{-mp^n}$. Hence we have

$$egin{aligned} & (Y,\,Z)^{(n)} \! = \! \mathrm{res} \Big(Z^{(n)} \! rac{d\,Y}{Y} \Big) \! = \! \mathrm{res} \Big(\sum_{i=0}^{\infty} j X^{(i)} t^{jp^i - m\,p^{n-1}} \! dt \Big) \ &= \! egin{aligned} j X^{(n)} & (m \! = \! j) \ 0 & (m \! \neq \! j) \end{aligned} .$$

This proves our result.

Q.E.D.

Let C be a field of characteristic p and K the formal power series field in one variable t over the field C: K = C((t)). We denote by K^{\times} the multiplicative group of K. For $\alpha \in K^{\times}$ and $\beta \in W_{\infty}(K)$ the residue vector $(\alpha, \beta) \in W_{\infty}(C)$ is defined and satisfies the following properties: Let $\alpha, \alpha' \in K^{\times}$, $\beta, \beta' \in W_{\infty}(K)$. Then

- (i) $(\alpha\alpha', \beta) = (\alpha, \beta) + (\alpha', \beta)$
- (ii) $(\alpha, \beta + \beta') = (\alpha, \beta) + (\alpha, \beta')$
- (iii) $(\alpha, c\beta) = c(\alpha, \beta)$ for $c \in W_{\infty}(C)$
- (iv) $(\alpha, V\beta) = V(\alpha, \beta)$
- (\mathbf{v}) $(\alpha, P\beta) = P(\alpha, \beta)$

where $V\beta = (0, \beta_0, \beta_1, \cdots)$ and $P\beta = (\beta_0^p, \beta_1^p, \cdots)$ for $\beta = (\beta_0, \beta_1, \cdots) \in W_{\infty}(K)$ (see Witt [10]). Hence by the continuity of (α, β) and the properties (i), (ii), the multiplicative group K^{\times} and the additive group of $W_{\infty}(K)$ are

paired to $W_{\infty}(C)$. In order to calculate the residue vector (α, β) for any $\alpha \in K^{\times}$ and $\beta \in W_{\infty}(K)$, we consider the decomposition of K^{\times} and $W_{\infty}(K)$ as follows.

PROPOSITION 2. The multiplicative group K^{\times} is decomposed as

$$(3.2) K^{\times} = C^{\times} \times t^{\mathbf{z}} \times \prod_{\substack{(j,p)=1\\ j \geq 1}} f_{t^{j}}(W_{\infty}(C))$$

where $t^z = \{t^i | l \in \mathbb{Z}\}$ and the infinite product of $f_{t^j}(W_{\infty}(C))$ $((j, p) = 1, j \ge 1)$ means the direct product as topological groups.

PROOF. It is obvious that $K^{\times}\!=\!C^{\times}\!\times\!t^{z}\!\times\!U^{\text{\tiny{(1)}}}.$ By the relation (1.5)' we have

$$\mathfrak{f}_{t^j}\!\left(a(j)
ight) = \prod_{
u=0}^\infty ar{G}(a(j)_
u \, t^{j \, p^
u})$$

where \bar{G} is defined by (1.1)' in §1. Hence for any $\lambda \in U^{(1)}$, we can determine the components $a(j)_{\nu} \in C$ inductively such that

$$\lambda = \prod_{\substack{(j,j)=1\\i\neq j}} \mathfrak{f}_{t^j}(a(j))$$
. Q.E.D.

PROPOSITION 3. The additive group $W_{\infty}(K)$ is decomposed as

$$(3.3) W_{\infty}(K) = W_{\infty}(tC[[t]]) \oplus W_{\infty}(C)$$

$$\oplus \left(\bigoplus_{e=0}^{\infty} \bigoplus_{\substack{(m,p)=1\\m \ge 1}} W_{\infty}(C)P^{e}\{t^{-m}\} \right)$$

$$\oplus \left(\bigoplus_{i=1}^{\infty} V^{i} \left(\bigoplus_{\substack{(m,p)=1\\m \ge 1}} W_{\infty}(C)\{t^{-m}\} \right) \right)$$

where \overline{M} means the closure of the subset M of the topological group $W_{\infty}(K)$, the sum \bigoplus means the usual direct sum and the sum \bigoplus means the direct sum as topological groups.

PROOF. It is clear that $W_{\infty}(K) = W_{\infty}(tC[[t]]) \bigoplus W_{\infty}(C[t^{-1}])$. Moreover,

$$W_{\infty}(C[t^{-1}]) = \sum_{i=0}^{\infty} \sum_{m=0}^{\infty} V^{i}(W_{\infty}(C)\{t^{-m}\})$$
 .

Hence the additive group $W_{\infty}(K)$ is the sum of the additive groups of the right-hand side. We shall next show the uniqueness of the expression. $\bigoplus_{e=0}^{\infty}\bigoplus_{(m,p)=1,m\geq 1}\overline{W_{\infty}(C)}P^{e}\{t^{-m}\}=\{\sum_{e=0}^{\infty}\sum_{m=1,(m,p)=1}^{\infty}b(e,m)P^{e}\{t^{-m}\}|b(e,m)\in W_{\infty}(C)\lim_{e\to\infty}b(e,m)=\lim_{m\to\infty}b(e,m)=0\}\quad\text{and}\quad\bigoplus_{m\geq 1,(m,p)=1}\overline{W_{\infty}(C)}\{t^{-m}\}=\{\sum_{m=1,(m,p)=1}^{\infty}b(m)\{t^{-m}\}|b(m)\in W_{\infty}(C),\lim_{m\to\infty}b(m)=0\}.\quad \text{Put}$

$$b(0) + \sum_{e=0}^{\infty} \sum_{\substack{m=1 \ (m,p)=1}}^{\infty} b(e, m) P^{e}\{t^{-m}\} + \sum_{i=1}^{\infty} \sum_{\substack{m=1 \ (m,p)=1}}^{\infty} V^{i}(b'(i, m)\{t^{-m}\}) = 0$$

where b(0), b(e, m), $b'(i, m) \in W_{\infty}(C)$ and $\lim_{m\to\infty} b(e, m) = \lim_{e\to\infty} b(e, m) = \lim_{m\to\infty} b'(i, m) = 0$. Comparing each component, we obtain that all components b(0), b(e, m), b'(i, m) are 0. Q.E.D.

THEOREM 1. Let C be a field of characteristic p>0 and K=C((t)). Then we can calculate the residue vectors by using Propositions 2 and 3 as follows. Let $\alpha \in K^{\times}$ and $\beta \in W_{\infty}(K)$ be

$$\begin{cases} \alpha = c \times t^{l} \times \prod_{\substack{(j \ p) = 1 \\ j \ge 1}} \mathfrak{f}_{t^{j}}(a(j)) \\ \beta = \gamma + b(0) + \sum_{e=0}^{\infty} \sum_{\substack{m=1 \\ (m,p) = 1}}^{\infty} b(e, m) P^{e}\{t^{-m}\} + \sum_{i=1}^{\infty} \sum_{\substack{m=1 \\ (m,p) = 1}}^{\infty} V^{i}(b'(i, m)\{t^{-m}\}) \end{cases}$$

where $c \in C^{\times}$, $l \in \mathbb{Z}$, $a(j) \in W_{\infty}(C)$, $\gamma \in W_{\infty}(tC[[t]])$, b(0), b(e, m), $b'(i, m) \in W_{\infty}(C)$ and $\lim_{e \to \infty} b(e, m) = \lim_{m \to \infty} b(e, m) = \lim_{m \to \infty} b'(i, m) = 0$. Then we have

$$(\alpha, \beta) = lb(0) + \sum_{e=0}^{\infty} \sum_{\substack{m=1 \ (m,p)=1}}^{\infty} mb(e, m) P^{e}a(m) + \sum_{i=1}^{\infty} \sum_{\substack{m=1 \ (m,p)=1}}^{\infty} m V^{i}(a(m) \cdot b'(i, m))$$
.

PROOF. If $\alpha \in C^{\times}$, then we have $(\alpha, \beta) = 0$ for any $\beta \in W_{\infty}(K)$. And if $\beta \in W_{\infty}(tC[[t]])$, then we have $(\alpha, \beta) = 0$ for any $\alpha \in K^{\times}$. By the properties (i) \sim (v) of the residue vectors, it is sufficient to calculate four combinations:

$$(t, 1)$$
, $(t, \{t^{-m}\})$, $(f_{t}(a), 1)$ and $(f_{t}(a), \{t^{-m}\})$

where $a \in W_{\infty}(C)$ and (j, p) = (m, p) = 1. It is clear that (t, 1) = 1, $(t, \{t^{-m}\}) = 0$ and $(f_t, (a), 1) = 0$. Moreover, by Lemma 7 we have

$$(\mathfrak{f}_{t^{j}}(a), \{t^{-m}\}) = \begin{cases} ja & (m=j) \\ 0 & (m \neq j) \end{cases}$$
 Q.E.D.

We denote by $(\alpha, \beta)_n \in W_n(C)$ the residue vector of the length n for $\alpha \in K^{\times}$ and $\beta \in W_n(K)$. Similarly we can calculate $(\alpha, \beta)_n$.

§4. Orthogonal pairing and duality.

4.1. Let $C=F_q$ $(q=p^f, f \ge 1)$ be a finite field of characteristic p with q elements, K the formal power series field with the coefficient field F_q and an indeterminate element $t: K=F_q((t))$. Since F_q is a cyclic extension

of degree f over F_p , the trace Tr from $W_{\infty}(F_q)$ to $W_{\infty}(F_p)$ is defined as

(4.1)
$$\operatorname{Tr}(c) = \sum_{\sigma \in \operatorname{Gal}(F_{g} | F_{y})} (\sigma c_{0}, \sigma c_{1}, \cdots) \in W_{\infty}(F_{p})$$

for $c = (c_0, c_1, \cdots) \in W_{\infty}(F_q)$. We define

$$\langle \alpha, \beta \rangle = \operatorname{Tr}(\alpha, \beta) \in W_{\infty}(F_{p})$$

for $\alpha \in K^{\times}$, $\beta \in W_{\infty}(K)$. Since the trace (4.1) is a continuous homomorphism of the additive group, the multiplicative group K^{\times} and the additive group $W_{\infty}(K)$ are paired to $W_{\infty}(F_p)$ by (4.2). Similarly the trace Tr from $W_n(F_q)$ to $W_n(F_p)$ is defined as

(4.3)
$$\operatorname{Tr}(c) = \sum_{\sigma \in \operatorname{Gal}(F_{\sigma}|F_{n})} (\sigma c_{0}, \cdots, \sigma c_{n-1}) \in W_{n}(F_{p})$$

for $c=(c_0, c_1, \cdots, c_{n-1}) \in W_n(F_q)$. And we define

$$\langle \alpha, \beta \rangle_n = \operatorname{Tr} (\alpha, \beta)_n \in W_n(F_p)$$

for $\alpha \in K^{\times}$, $\beta \in W_n(K)$. By (4.4), the multiplicative group K^{\times} and the additive group $W_n(K)$ are paired to $W_n(F_p)$. We shall calculate the residue vectors $\langle \alpha, \beta \rangle$ for any $\alpha \in K^{\times}$ and $\beta \in W_{\infty}(K)$. Since F_q is a cyclic extension of degree f over F_p , the additive group of $W_{\infty}(F_q)$ is a free abelian group of rank f over $W_{\infty}(F_p)$. Let $\{\alpha(1), \alpha(2), \cdots, \alpha(f)\}$ be a base of $W_{\infty}(F_q)$ over $W_{\infty}(F_p)$ and $\{\beta(1), \beta(2), \cdots, \beta(f)\}$ the complementary base of $\{\alpha(1), \cdots, \alpha(f)\}$ such that

(4.5)
$$\operatorname{Tr}(\alpha(k)\cdot\beta(h)) = \delta_{kh} \qquad k, h=1, 2, \dots, f$$

where Tr is defined by (4.1). In particular, we choose $\alpha(1)=1$ so that Tr $\beta(1)=1$, Tr $\beta(h)=0$ $(h=2,3,\cdots,f)$ hold. Since the field of quotients K of $W_{\infty}(F_q)$ is an unramified extension of degree f over the field of quotients Q_p of $W_{\infty}(F_p)$, $\{\beta(1), \cdots, \beta(f)\}$ is a base of $W_{\infty}(F_q)$ over $W_{\infty}(F_p)$. By Proposition 2, the multiplicative group K^{\times} is decomposed as

(4.6)
$$K^{\times} = F_q^{\times} \times t^z \times \prod_{\substack{(j \mid p) = 1 \\ j \mid j \geq 1}} \prod_{k=1}^f f_{t^j}(W_{\infty}(F_p)\alpha(k)).$$

And by Proposition 3, the additive group $W_{\infty}(K)$ is decomposed as

$$(4.7) W_{\infty}(K) = W_{\infty}(tF_{q}[[t]]) \oplus \left(\bigoplus_{h=1}^{f} W_{\infty}(F_{p})\beta(h) \right) \\ \oplus \left(\bigoplus_{e=0}^{\infty} \bigoplus_{(m,p)=1}^{f} \bigoplus_{h=1}^{f} W_{\infty}(F_{p})P^{e}(\beta(h)\{t^{-m}\}) \right) \\ \oplus \left(\bigoplus_{i=1}^{\infty} V^{i} \left(\bigoplus_{\substack{(m,p)=1\\m \geq 1}} \bigoplus_{h=1}^{f} W_{\infty}(F_{p})\beta(h)\{t^{-m}\} \right) \right).$$

THEOREM 2. Let K be the formal power series field with the coefficient field \mathbf{F}_q and an indeterminate element t. Then we can calculate the residue vectors (4.2) by using (4.6) and (4.7) as follows. Let $\alpha \in K^{\times}$ and $\beta \in W_{\infty}(K)$ be

$$\begin{cases} \alpha = c \cdot t^{i} \cdot \prod_{\substack{j=1 \ (j,p)=1}}^{\infty} \prod_{k=1}^{f} \mathfrak{f}_{t^{j}}(\alpha(j,k)\alpha(k)) \\ \beta = \gamma + \sum_{h=1}^{f} b(h)\beta(h) + \sum_{e=0}^{\infty} \sum_{\substack{m=1 \ (m,p)=1}}^{\infty} \sum_{h=1}^{f} b(e,m,h)P^{e}(\beta(h)\{t^{-m}\}) \\ + \sum_{i=1}^{\infty} \sum_{\substack{m=1 \ (m,p)=1}}^{\infty} \sum_{h=1}^{f} b'(i,m,h)V^{i}(\beta(h)\{t^{-m}\}) \end{cases} ,$$

where $c \in F_q^{\times}$, $l \in \mathbb{Z}$, $a(j, k) \in W_{\infty}(F_p)$, $\gamma \in W_{\infty}(tF_q[[t]])$, b(h), b(e, m, h), $b'(i, m, h) \in W_{\infty}(F_p)$ and $\lim_{\epsilon \to \infty} b(e, m, h) = \lim_{m \to \infty} b(e, m, h) = \lim_{m \to \infty} b'(i, m, h) = 0$. Then we have

$$\begin{split} \langle \alpha, \, \beta \rangle = & \, lb(1) + \sum_{e=0}^{\infty} \sum_{\substack{m=1 \ (m,p)=1}}^{\infty} \sum_{h=1}^{f} ma(m, \, h)b(e, \, m, \, h) \\ & + \sum_{i=1}^{\infty} \sum_{\substack{m=1 \ (m,p)=1}}^{\infty} \sum_{h=1}^{f} mp^{i}a(m, \, h)b'(i, \, m, \, h) \; . \end{split}$$

PROOF. By Theorem 1, we have

$$(\alpha, \beta) = l \cdot \sum_{h=1}^{f} b(h)\beta(h) + \sum_{e=0}^{\infty} \sum_{\substack{m=1 \ (m,p)=1}}^{\infty} m \sum_{h=1}^{f} b(e, m, h) P^{e}\beta(h) P^{e} \left(\sum_{k=1}^{f} a(m, k)\alpha(k) \right)$$

$$+ \sum_{i=1}^{\infty} \sum_{\substack{m=1 \ (m,p)=1}}^{\infty} m V^{i} \left(\sum_{k=1}^{f} a(m, k)\alpha(k) \cdot \sum_{k=1}^{f} b(i, m, h)\beta(h) \right).$$

By (4.5) we have

$$\langle \alpha, \beta \rangle = \operatorname{Tr}(\alpha, \beta) = lb(1) + \sum_{e=0}^{\infty} \sum_{m=1}^{\infty} \sum_{h=1}^{f} ma(m, h)b(e, m, h)$$

 $+ \sum_{i=1}^{\infty} \sum_{m=1}^{\infty} \sum_{h=1}^{f} mp^{i}a(m, h)b'(i, m, h)$. Q.E.D.

- 4.2. Let $K=F_q((t))$ be the formal power series field $(q=p^f, f \ge 1)$. We shall consider two pairings \langle , \rangle and \langle , \rangle_n defined by (4.2) and (4.4).
 - (I) On the pairing \langle , \rangle defined by (4.2).

We denote by **B** the annihilator of the pairing \langle , \rangle .

THEOREM 3.

(i) The additive group $W_{\infty}(K)$ is decomposed as

$$(4.8) W_{\infty}(K) = \wp W_{\infty}(K) \oplus W_{\infty}(F_{p}) \beta(1) \oplus \Omega_{\infty}$$

where Ω_{∞} is the closure of $\bigoplus_{(m,p)=1,m\geq 1} W_{\infty}(F_q)\{t^{-m}\}$ in $W_{\infty}(K)$, i.e., $\Omega_{\infty} = \{\beta = \sum_{m=1,(m,p)=1}^{\infty} b(m)\{t^{-m}\} \mid b(m) \in W_{\infty}(F_q), \lim_{m\to\infty} b(m) = 0\}$ and g = P-1.

$$(ext{ii}) egin{array}{c} oldsymbol{B}(W_{\infty}(K)) = oldsymbol{F}_q^{\times} \ oldsymbol{B}(K^{\times}) = oldsymbol{arphi} W_{\infty}(K) \ \end{array}$$

Hence we have an orthogonal pairing

$$(4.9) \qquad \langle , \rangle : (t^{z} \times U^{(1)}) \times (W_{\infty}(F_{p})\beta(1) \oplus \Omega_{\infty}) \longrightarrow W_{\infty}(F_{p}).$$

(iii) Let $\alpha \in K^{\times}$ and $\beta \in W_{\infty}(K)$

$$\begin{cases} \alpha = c \cdot t^{l} \cdot \prod_{j} \prod_{k} f_{t^{j}}(a(j, k)\alpha(k)) \\ \beta = \mathcal{G}(\gamma) + b(0)\beta(1) + \sum_{m=1}^{\infty} \sum_{k=1}^{f} b(m, k)\beta(k) \{t^{-m}\} \end{cases}$$

where $c \in F_q^{\times}$, $l \in \mathbb{Z}$, $a(j, k) \in W_{\infty}(F_p)$, $\gamma \in W_{\infty}(K)$, b(0), $b(m, h) \in W_{\infty}(F_p)$ and $\lim_{m \to \infty} b(m, h) = 0$.

Then

$$\langle \alpha, \beta \rangle = lb(0) + \sum_{\substack{m=1 \ (m,p)=1}}^{\infty} \sum_{h=1}^{f} ma(m,h)b(m,h)$$
.

PROOF. (i) It is obvious that

$$W_{\infty}(tF_q[[t]]) = \wp W_{\infty}(tF_q[[t]])$$
 and $W_{\infty}(F_q) = \wp W_{\infty}(F_q) \bigoplus W_{\infty}(F_p)\beta(1)$.

Hence it is sufficient to prove

$$W_{\infty}(t^{-1}F_q[t^{-1}]) = \wp W_{\infty}(t^{-1}F_q[t^{-1}]) \bigoplus \Omega_{\infty}$$
.

Since $W_{\infty}(t^{-1}F_q[t^{-1}])$ is closed in $W_{\infty}(K)$, $W_{\infty}(t^{-1}F_q[t^{-1}])$ contains $\emptyset W_{\infty}(t^{-1}F_q[t^{-1}]) \bigoplus \Omega_{\infty}$. Conversely, for any $e \ge 0$, $m \ge 1$, (m, p) = 1, $h = 1, 2, \dots, f$, we have

$$P^{e}(\beta(h)\{t^{-m}\}) = \wp\left(\sum_{i=0}^{e-1} P^{i}(\beta(h)\{t^{-m}\})\right) + \beta(h)\{t^{-m}\}$$
 .

Hence

$$\bigoplus_{s=0}^{\infty}\bigoplus_{(m,p)=1\atop m>1}\bigoplus_{h=1}^{f}W_{\infty}(\pmb{F}_p)P^s(\beta(h)\{t^{-m}\})\subset \mathscr{O}W_{\infty}(t^{-1}\pmb{F}_q[t^{-1}])+\varOmega_{\infty}\ .$$

For any

$$eta \in \bigoplus_{k=1}^{\infty} \bigoplus_{h=1}^{f} W_{\infty}(F_p) V^i(eta(h)\{t^{-m}\})$$

such that

$$eta \! = \! \sum\limits_{i=1}^{\infty} \sum\limits_{\substack{m=1 \ (m,n)=1}}^{m_i} \sum\limits_{h=1}^{f} b'(i,\,m,\,h) \, V^i(eta(h)\{t^{-m}\})$$
 ,

we put

$$\beta(i) = \sum_{m=1}^{m_i} \sum_{h=1}^{f} b'(i, m, h) \beta(h) \{t^{-m}\} \in \bigoplus_{m} W_{\infty}(F_q) \{t^{-m}\}$$
.

Then we have $\beta = \sum_{i=1}^{\infty} V^i(\beta(i))$. Put $\beta'(i) = \beta(i) + P\beta(i) + \cdots + P^{i-1}\beta(i) \in W_{\infty}(t^{-1}F_q[t^{-1}])$ then $\varphi(\beta(i)) = P^i(\beta(i)) - \beta(i)$. Hence

$$V^i(eta(i)) = V^i P^i(eta(i)) - V^i \wp(eta'(i)) = p^i eta(i) - \wp(V^i eta'(i))$$
 .

Therefore we have

$$\begin{split} \beta = & \sum_{i=1}^{\infty} \ V^i(\beta(i)) = \sum_{i=1}^{\infty} \ p^i \beta(i) - \sum_{i=1}^{\infty} \ \wp(\ V^i(\beta'(i))) \\ = & \wp\Big(- \sum_{i=1}^{\infty} \ V^i(\beta'(i)) \Big) + \sum_{i=1}^{\infty} \ p^i \beta(i) \\ \in & \wp(\ W_{\infty}(t^{-1}\pmb{F}_{\boldsymbol{g}}[t^{-1}])) \bigoplus \Omega_{\infty} \ . \end{split}$$

- (ii) We shall prove that $B(W_{\infty}(K)) = F_q^{\times}$. For $\alpha \in B(W_{\infty}(K))$ we can express $\alpha = c \cdot t^l \cdot \prod_j \prod_k \mathfrak{f}_{t^j}(a(j,k)\alpha(k))$ by (4.6). Since $\langle \alpha, \beta(1) \rangle = l$ and $\langle \alpha, \beta(h) \{ t^{-m} \} \rangle = ma(m,h)$ by Theorem 2, we have l = 0 and a(m,h) = 0. Hence $\alpha = c \in F_q^{\times}$. It is obvious that $B(W_{\infty}(K))$ contains F_q^{\times} . We shall prove that $B(K^{\times}) = \emptyset W_{\infty}(K)$. For $\beta \in \emptyset W_{\infty}(K)$ there exists $\gamma \in W_{\infty}(K)$ such that $\beta = \emptyset \gamma$. Since $\langle \alpha, \beta \rangle = \langle \alpha, \emptyset \gamma \rangle = \emptyset \langle \alpha, \gamma \rangle = 0$ for all $\alpha \in K^{\times}$, we have $\beta \in B(K^{\times})$. By Theorem 2 and (i), it is obvious that $B(K^{\times})$ contains $\emptyset W_{\infty}(K)$.
 - (iii) The proof is clear by Theorem 2.

Q.E.D.

(II) On the pairing \langle , \rangle_n defined by (4.4). We denote by B_n the annihilator of the pairing \langle , \rangle_n .

THEOREM 4.

(i) The additive group $W_n(K)$ is decomposed as

$$(4.10) W_n(K) = \mathscr{O}W_n(K) \oplus W_n(F_p)\widetilde{\beta}(1) \oplus \Omega_n$$

where $\Omega_n = \bigoplus_{(m,p)=1,m\geq 1} W_n(\mathbf{F}_q)\{t^{-m}\}^{\sim}$ and $\widetilde{\beta} = (\beta_0, \beta_1, \dots, \beta_{n-1}) \in W_n(K)$ for $\beta = (\beta_0, \beta_1, \dots) \in W_{\infty}(K)$.

(ii)
$$\begin{cases} B_n(W_n(K)) = (K^{\times})^{p^n} \\ B_n(K^{\times}) = \mathcal{C}W_n(K) \end{cases}$$

Hence we have an orthogonal pairing

$$(4.11) \qquad \langle , \rangle_n : K^{\times}/(K^{\times})^{p^n} \times (W_n(F_p)\widetilde{\beta}(1) \oplus \Omega_n) \longrightarrow W_n(F_p) .$$

(iii) Let $\alpha \in K^{\times}$ and $\beta \in W_n(K)$ be

$$\begin{cases} \alpha = c \cdot t^{l} \cdot \prod_{j} \prod_{k} \mathfrak{f}_{t^{j}}(a(j, k)\alpha(k)) \\ \beta = \mathscr{D}(\gamma) + b(0)\widetilde{\beta}(1) + \sum_{m} \sum_{k} b(m, k)\widetilde{\beta}(k)\{\widetilde{t}^{-m}\} \end{cases}$$

 $where \ c \in \pmb{F}_q^{\times}, \ l \in \pmb{Z}, \ a(j,k) \in W_{\infty}(\pmb{F}_p), \ \gamma \in W_{\mathfrak{n}}(K), \ b(0), \ b(\pmb{m},h) \in W_{\mathfrak{n}}(\pmb{F}_p).$ Then

$$\langle \alpha, \beta \rangle_n = lb(0) + \sum_{m} \sum_{h} m \widetilde{\alpha}(m, h) b(m, h)$$
.

PROOF. (i) The proof is similar to that of Theorem 3 (i).

(ii) We shall prove that $B_n(W_n(K)) = (K^{\times})^{p^n}$. For $\alpha \in B_n(W_n(K))$ we can express

$$\alpha = c \cdot t^l \cdot \prod_j \prod_k \mathfrak{f}_{t^j}(a(j, k)\alpha(k))$$

by (4.6). Since $\langle \alpha, \widetilde{\beta}(1) \rangle_n = l \cdot 1_n$ and $\langle \alpha, \widetilde{\beta}(h) \{ \widetilde{t}^{-m} \} \rangle_n = m\widetilde{\alpha}(m, h)$ by Theorem 2, we have $p^n | l$ and $p^n | a(m, h)$. Hence

$$lpha \in F_{q^{ imes}}^{\times} t^{p^n \mathbf{Z}} imes \prod_i \mathfrak{f}_{t^j}(p^n \, W_{\scriptscriptstyle \infty}(F_q)) \!=\! (K^{ imes})^{p^n}$$
 .

It is obvious that $B_n(W_n(K))$ contains $(K^{\times})^{p^n}$. The proof of $B_n(K^{\times}) = \wp W_n(K)$ is similar to that of Theorem 3.

- (iii) The proof is clear by Theorem 2. Q.E.D.
- 4.3. We shall consider the duality of two pairings \langle , \rangle and \langle , \rangle_n defined by (4.9) and (4.11) respectively.

ASSERTION (I). On the orthogonal pairing \langle , \rangle defined by (4.9).

- (i) For any continuous homomorphism $\varphi: t^z \times U^{(1)} \to W_{\infty}(F_p)$, there exists an element $\beta \in W_{\infty}(F_p)\beta(1) \oplus \Omega_{\infty}$ such that $\varphi(\alpha) = \langle \alpha, \beta \rangle$ for $\alpha \in t^z \times U^{(1)}$.
- (ii) For any continuous homomorphism $\psi \colon W_{\infty}(F_p)\beta(1) \oplus \Omega_{\infty} \to W_{\infty}(F_p)$ with $\psi(\beta(1)) \in \mathbb{Z}$, there exists an element $\alpha \in t^{\mathbb{Z}} \times U^{(1)}$ such that $\psi(\beta) = \langle \alpha, \beta \rangle$ for $\beta \in W_{\infty}(F_p)\beta(1) \oplus \Omega_{\infty}$.
- PROOF. (i) Put $b(m, h) = m^{-1} \varphi(f_{t^m}(\alpha(h)))$ and $b(m) = \sum_{h=1}^f b(m, h) \beta(h)$. Since φ is a continuous mapping, $\lim_{m \to \infty, (m, p) = 1} b(m) = 0$. If we put $\beta = \varphi(t) \beta(1) + \sum_{m=1, (m, p) = 1}^{\infty} b(m) \{t^{-m}\}$, then $\beta \in W_{\infty}(\mathbf{F}_p) \beta(1) \oplus \Omega_{\infty}$ and $\varphi(\alpha) = \langle \alpha, \beta \rangle$ for all $\alpha \in t^z \times U^{(1)}$.
 - (ii) We put

$$\alpha = t^l \cdot \prod_i \prod_k \mathfrak{f}_{t^j}(a(j, k)\alpha(k))$$

where $l=\psi(\beta(1))\in \mathbb{Z}$ and $a(j,k)=j^{-1}\psi(\beta(k)\{t^{-j}\})\in W_{\infty}(\mathbb{F}_p)$ for $j\geq 1$, (j,p)=1, $k=1,2,\cdots,f$. Then we have $\psi(\beta(1))=\langle\alpha,\beta(1)\rangle$ and $\psi(\beta(k)\{t^{-j}\})=\langle\alpha,\beta(k)\{t^{-j}\}\rangle$ by Theorem 2. Since ψ is a continuous homomorphism, we have $\psi(\beta)=\langle\alpha,\beta\rangle$ for any $\beta\in W_{\infty}(\mathbb{F}_p)\beta(1)\oplus\Omega_{\infty}$. Q.E.D.

ASSERTION (II). On the orthogonal pairing \langle , \rangle_n defined by (4.11). (i) For any continuous homomorphism

$$\varphi : K^{\times}/(K^{\times})^{p^n} \longrightarrow W_n(F_p)$$

there exists an element $\beta \in W_n(F_p)\widetilde{\beta}(1) \oplus \Omega_n$ such that $\varphi(\widehat{\alpha}) = \langle \alpha, \beta \rangle_n$ for $\alpha \in K^{\times}$ where $\widehat{\alpha} = \alpha \mod (K^{\times})^{p^n}$.

(ii) For any homomorphism $\psi \colon W_n(F_p)\widetilde{\beta}(1) \oplus \Omega_n \to W_n(F_p)$ there exists an element $\alpha \in K^{\times}$ such that $\psi(\beta) = \langle \alpha, \beta \rangle_n$ for $\beta \in W_n(F_p)\widetilde{\beta}(1) \oplus \Omega_n$. Since $K^{\times}/(K^{\times})^{p^n}$ is compact, $W_n(K)/\otimes W_n(K)$ is discrete and $W_n(F_p)$ is contained in R/Z, this is a special case of the duality theorem of Pontrjagin.

PROOF. (i) Since φ is a continuous mapping, there exists $m_0 \ge 1$ such that $\varphi(f_{t}(W_{\infty}(F_q))) = 0$ for $j \ge m_0$. We put

$$\beta = b(0)\widetilde{\beta}(1) + \sum_{m=1}^{m_0} \sum_{h=1}^{f} b(m, h)\widetilde{\beta}(h)\{\widetilde{t}^{-m}\}$$

where $b(0) = \varphi(\hat{t}) \in W_n(F_p)$ and $b(m, h) = m^{-1}\varphi(\hat{f}_{t^m}(\alpha(h)))$ for (m, p) = 1, $m \ge 1$, $h = 1, 2, \dots, f$. Then we have $\varphi(\hat{t}) = \langle t, \beta \rangle_n$ and $\varphi(\hat{f}_{t^m}(\alpha(h))) = \langle f_{t^m}(\alpha(h)), \beta \rangle_n$ by Theorem 4 (iii). Since φ is a continuous homomorphism, we have $\varphi(\hat{\alpha}) = \langle \alpha, \beta \rangle_n$ for any $\alpha \in K^{\times}$.

(ii) We put

$$\alpha = t^i \times \prod_i \prod_k f_{t^j}(a(j, k)\alpha(k))$$

where $l \cdot 1_n = \psi(\tilde{\beta}(1)) \in W_n(F_p)$ and $\tilde{\alpha}(j, k) = j^{-1}\psi(\tilde{\beta}(k)\{\tilde{t}^{-j}\})$ for $(j, p) = 1, j \ge 1, k = 1, 2, \dots, f$. Then we have $\psi(\tilde{\beta}(1)) = \langle \alpha, \beta(1) \rangle_n$ and $\psi(\tilde{\beta}(k)\{\tilde{t}^{-j}\}) = \langle \alpha, \beta(k)\{t^{-j}\}\rangle_n$ by Theorem 4 (iii). Since ψ is a homomorphism, we have $\psi(\beta) = \langle \alpha, \beta \rangle_n$ for any $\beta \in W_n(F_p)\tilde{\beta}(1) \oplus \Omega_n$.

Q.E.D.

§5. Arithmetic of local fields of characteristic p.

Let $C=F_q(q=p^f, f\geq 1)$ be a finite field of characteristic p with q elements, K the formal power series field with the coefficient field F_q and an indeterminate element $t: K=F_q((t))$ and L a cyclic extension of order p^n over K. Then there exists a cyclic extension F_{q^d} $(d=p^s, s\geq 0)$ over F_q and $T\in L$ such that $L=F_{q^d}((T))$ and $(t)=(T)^{p^l}$ in $F_{q^d}[[T]]$. Then p^l is called the ramification index of L over K and $d=p^s=[F_{q^d}:F_q]$ is called

the relative degree of L over K. Moreover, let r be the minimum positive integer i such that $U^{(i)} \subset N_{L|K}(L^{\times})$. Then the ideal $(t)^r$ in $F_q[[t]]$ is called the conductor of L over K. On the other hand there exists an element $\beta \in W_n(K)$ such that $L = K(\wp^{-1}\beta)$ by Theorem (*) in §2. Moreover, by Theorem 4 (i) we can choose

$$\beta \in W_n(F_p)\widetilde{\beta}(1) \bigoplus \Omega_n \quad \text{where} \quad \Omega_n = \bigoplus_{(m,p)=1, \, m \geq 1} W_n(F_q)\{\widetilde{t}^{-m}\}$$

and we can express

$$eta = b(0)\widetilde{eta}(1) + \sum_{\substack{m=1 \ (m,n)=1}}^{m_0} \sum_{h=1}^f b(m,h)\widetilde{eta}(h)\{\widetilde{t}^{-m}\} = b(0)\widetilde{eta}(1) + \sum_{m=1}^{m_0} b(m)\{\widetilde{t}^{-m}\}$$
 ,

where b(0), $b(m, h) \in W_n(F_p)$ and $b(m) = \sum_{h=1}^f b(m, h) \widetilde{\beta}(h) \in W_n(F_q)$. For $m \ge 1$, (m, p) = 1 and $b(m) \ne 0$, take the non-negative integer s_m such that $p^{s_m} \mid b(m)$ and $p^{s_{m+1}} \nmid b(m)$. If b(m) = 0, then $s_m = n$. And we put

$$(5.1) l_m = n - s_m.$$

By these constants $l_m(1 \le m \le m_0, (m, p) = 1)$ we shall calculate the ramification index and the conductor of L over K.

THEOREM 5. Let \mathbf{F}_q $(q=p^f, f\geq 1)$ be a finite field of characteristic p with q elements, K the formal power series field: $K=\mathbf{F}_q((t))$ and L a cyclic extension of order p^n over K.

(i) If we put

$$(5.2) l=\max\{l_m | 1 \leq m \leq m_0, (m, p)=1\},$$

where l_m is given by (5.1) then p^l is the ramification index of L over K.

(ii) If we put

(5.3)
$$r = \max \{ mp^{l_m-1} + 1 | 1 \le m \le m_0, (m, p) = 1, l_m \ge 1 \}$$

then $(t)^r$ is the conductor of L over K.

PROOF. (i) is easy to prove. We shall prove (ii). By Y. Kawada and I. Satake [7] (XII) p. 376, we have $N_{L|K}(L^{\times}) = B_n(\beta)$ where $B_n(\beta) = \{\alpha \in K^{\times} | \langle \alpha, \beta \rangle_n = 0\}$. Hence it is sufficient to prove that $U^{(r)} \subset B_n(\beta)$ and $U^{(r-1)} \not\subset B_n(\beta)$. For $r \ge 1$, $j \ge 1$ and (j, p) = 1 we define $r_j = \min \{e \ge 0 \mid jp^e \ge r\}$. Then we have

$$U^{(r)} = \prod_{\substack{(j,p)=1 \ j \geq 1}} \mathfrak{f}_{t^j}(V^{r_j}(W_\infty(F_q)))$$
 .

Hence any element $\alpha \in U^{(r)}$ can be expressed as

$$\alpha = \prod_{\substack{(j,p)=1\\i \geq 1}} \prod_{k=1}^f \mathfrak{f}_{t^j}(a(j,k)\alpha(k))$$

where $a(j, k) \in V^{r_j}(W_{\infty}(F_p))$. On the other hand,

$$\beta = b(0)\widetilde{\beta}(1) + \sum_{\substack{(m p)=1 \\ m=1}}^{m_0} \sum_{h=1}^f b(m, h)\widetilde{\beta}(h)\{\widetilde{t}^{-m}\}$$

where $b(m, h) \in V^{n-l_m}(W_n(F_n))$. Since

$$\langle \alpha, \beta \rangle_n = \sum_{m=1}^{m_0} \sum_{h=1}^f m \widetilde{\alpha}(m, h) b(m, h)$$

by Theorem 4 (iii), and $l_m \leq r_m$, we have $\langle \alpha, \beta \rangle_n = 0$. Hence $U^{(r)} \subset B_n(\beta)$. Next we shall show that $U^{(r-1)} \not\subset B_n(\beta)$. Let j be a positive integer such that (j, p) = 1, $l_j \geq 1$ and $r = jp^{l_j-1} + 1$. Then $(r-1)_j = l_j - 1$. Since $b(m) = \sum_{h=1}^{j} b(m, h) \widetilde{\beta}(h)$, there exists $k \in \{1, 2, \dots, f\}$ such that $b(j, k) \notin V^{n-l_j+1}(W_n(F_p))$. If we put $\alpha = \int_{t^j} (p^{l_j-1}\alpha(k))$, then $\alpha \in U^{(r-1)}$ and $\langle \alpha, \beta \rangle_n = jp^{l_j-1}b(j, k) \neq 0$. Hence we have $\alpha \notin B_n(\beta)$. Q.E.D.

For $\beta = (\beta_0, \beta_1, \dots, \beta_{n-1}) \in W_n(K)$ we put

$$K_j = K(\wp^{-1}(\beta_0, \dots, \beta_{j-1}))$$
 $(j=1, 2, \dots, n)$.

Then we have a sequence of fields $K = K_0 \subset K_1 \subset \cdots \subset K_{n-1} \subset K_n = L$, where $K_{j+1} \supset K_j$ $(j=0, 1, \cdots, n-1)$ is a cyclic extension of order p. We shall consider the conductor of K_j over K. For $i=1, 2, \cdots, n$, we put

(5.4)
$$h_i = \max\{m \mid 1 \leq m \leq m_0, (m, p) = 1, l_m = n - i + 1\}$$

where l_m is given by (5.1). If $\{m \mid 1 \leq m \leq m_0, (m, p) = 1, l_m = n - i + 1\} = \emptyset$, then we put

$$h_i=0.$$

By Theorem 5 the conductor $(t)^r$ of L/K is determined by

(5.6)
$$r=1+\max\{h_1p^{n-1}, h_2p^{n-2}, \dots, h_{n-1}p, h_n\}$$
.

If $(t)^{F_j}$ is the conductor of K_i over K, then we have similarly

(5.7)
$$F_{j} = 1 + \max\{h_{1}p^{j-1}, h_{2}p^{j-2}, \dots, h_{j-1}p, h_{j}\}$$
$$= 1 + \max\{p(F_{j-1}-1), h_{j}\}.$$

We can characterize the conductor of the intermediate fields.

THEOREM 6. Let (a_1, a_2, \dots, a_n) be an n-tuple of positive integers a_i . In order that there exists a sequence of fields $K = K_0 \subset K_1 \subset \cdots \subset K_n = L$ such that $L \supset K$ is a totally ramified cyclic extension of order p^n and $(t)^{a_i+1}$ is the conductor of K_i over K it is necessary and sufficient that (a_1, a_2, \dots, a_n) satisfies the following relations:

(5.8)
$$\begin{cases} (i) & (a_i, p) = 1, \\ (ii) & either \ a_i = pa_{i-1}, \ or \ a_i > pa_{i-1}, \ (a_i, p) = 1 \ for \ i = 2, 3, \cdots, n. \end{cases}$$

PROOF. If we put $a_i = F_i - 1$, then by (5.7) we have

(5.9)
$$a_1 = h_1$$
 and $a_i = \max\{pa_{i-1}, h_i\}$ $(i=2, 3, \dots, n)$.

It is obvious that the relation (5.8) is a necessary condition by (5.9). Conversely, let (a_1, a_2, \dots, a_n) be an *n*-tuple with the properties (5.8). If we put $\beta = (t^{-a_1}, t^{-a_2}, \dots, t^{-a_n}) \in W_n(K)$, $L = K(\wp^{-1}\beta)$ and $K_j = K(\wp^{-1}(\beta_0, \beta_1, \dots, \beta_{j-1}))$, $(j=1, 2, \dots, n)$, then by the relation (5.8) the conductor of K_j over K is $(t)^{a_j+1}$. Q.E.D.

REMARK. If $L\supset K$ is not a totally ramified extension in Theorem 6, then we must change the relation (5.8) for the following relations: If the relative degree of L over K is p^* , then

$$\begin{cases} \text{(i)'} & a_1 = a_2 = \dots = a_s = 0, \ (a_{s+1}, \ p) = 1 \\ \text{(ii)'} & \text{either } a_i = pa_{i-1}, \ \text{or } a_i > pa_{i-1}, \ (a_i, \ p) = 1 \ \text{for } i = s+2, \ s+3, \ \cdots, \ n \ . \end{cases}$$

By the above results, we can calculate the ramification numbers and the discriminant ideal of L over K by Hasse's formula (see Hasse [2]). Let v_1, v_2, \cdots be the ramification numbers of L/K, then we have

(5.10)
$$v_{\nu} = a_1 + p(a_2 - a_1) + p^2(a_3 - a_2) + \cdots + p^{\nu-1}(a_{\nu} - a_{\nu-1})$$

$$(\nu = 1, 2, \cdots).$$

Moreover, if δ is the discriminant ideal of L/K, then we have

(5.11)
$$\delta = (t)^{p^{n-l}[(p^{l-1})+v_1(p^{l-1})+(v_2-v_1)(p^{l-1}-1)+\cdots+(v_l-v_{l-1})(p-1)]}$$

where p^l is the ramification index of L over K.

References

- [1] J. DIEUDONNÉ, On the Artin-Hasse exponential series, Proc. Amer. Math. Soc., 8 (1957), 210-214.
- [2] H. HASSE, Führer, Diskriminante und Verzweigungskörper relative-abelscher Zahlkörper,
 J. Reine Angew. Math., 162 (1930), 169-184.

- [3] H. Hasse, Die Gruppe der p^n -primären Zahlen für einen Primteiler p von p, J. Reine Angew. Math., 176 (1937), 174-183.
- [4] E. INABA, On matrix equations for Galois extensions of fields with characteristic p, Natur. Sci. Rep. Ochanomizu Univ., 12 (1961), 26-36.
- [5] E. INABA, On generalized Artin-Schreier equations, Natur. Sci. Rep. Ochanomizu Univ., 13 (1962), 1-13.
- [6] E. INABA, Normal form of generalized Artin-Schreier equations, Natur. Sci. Rep. Ochanomizu Univ., 14 (1963), 1-15.
- [7] Y. KAWADA and I. SATAKE, Class Formations II, J. Fac. Sci. Univ. Tokyo, Sect 1A Math., 7 (1956), 353-389.
- [8] G. Whaples, Generalized local class field theory III, Second form of existence theorem, Structure of analytic groups, Duke Math. J., 21 (1954), 575-581.
- [9] E. Witt, Der Existenzsatz für abelsche Funktionenkörper, J. Reine Angew. Math., 173 (1935), 43-51.
- [10] E. Witt, Zyklische Körper und Algebren der Charakteristik p vom Grad p^n , J. Reine Angew. Math., 176 (1936), 126-140.

Present Address:
DEPARTMENT OF MATHEMATICS
SOPHIA UNIVERSITY
KIOI-CHO, CHIYODA-KU, TOKYO 102