# On Unimodal Linear Transformations and Chaos II

Shunji ITO, Shigeru TANAKA and Hitoshi NAKADA

Tsuda College and Keio University

#### Introduction

In part II we consider the general unimodal linear transformations, that is, a family of maps from [0,1] into itself which take the extremum at c for some  $c \in (0,1)$  and are linear on each intervals [0,c] and [c,1]. It is not difficult to show that, except for some trivial exceptions, the consideration of the general unimodal linear transformations defined above can be reduced to that of the special class  $\{f_{a,b}; b>1, ab>1, ab>1, a+b\geq ab\}$  defined in the following way:

$$f_{a,b}(x) = \left\{egin{array}{ll} ax + rac{a+b-ab}{b} & ext{for} & 0 \leq x \leq 1 - rac{1}{b} \ -b(x-1) & ext{for} & 1 - rac{1}{b} \leq x \leq 1 \end{array}
ight..$$

In the cases which will be discussed below there will appear phenomena called "window" and "islands", which did not occur in the case a=b of part I. Let us explain these cases, dividing the case b=4 into several classes according to the behavior of the corresponding  $f_{a,b}$ .

1) The case of 0 < a < 1/4 (that is, the case of ab < 1).

In this case, there exists a unique periodic orbit with period 2 and all points except the fixed point approach this periodic orbit. So this class is a stable class, and we omit this class from further consideration.

2) The case of a=1/4 (that is, the case of ab=1).

Let  $A_0=[0,3/4]$  and  $A_1=[13/16,1]$ , then we have  $f_{a,b}A_0=A_1$ ,  $f_{a,b}A_1=A_0$ , and  $f_{a,b}^4|_{A_i}$  is the identity map on  $A_i(i=0,1)$  and every orbit starting from  $(3/4,13/16)-\{4/5\}$  enters into  $A_0\cup A_1$ . So, this class is also stable.

3) The case of  $1/4 < a \le 4/15$  (that is, the case of ab > 1,  $(a+b-ab)/b \ge b/(b+1)$ ).

There exist a natural number m and intervals  $A_0$ ,  $A_1$ ,  $\cdots$ ,  $A_{2^m-1}$  such that  $f_{a,b}A_i = A_{i+1}$  for  $0 \le i \le 2^m - 2$  and  $f_{a,b}A_{2^m-1} = A_0$ , and every orbit starting from  $[0,1] - \bigcup_{i=0}^{2^m-1} A_i$  (except the fixed point of  $f_{a,b}^{2^m}$ ) enters into

 $\bigcup_{i=0}^{2^m-1} A_i$ . In this case,  $f_{a,b}$  has an invariant measure (absolutely continuous with respect to the Lebesgue measure) whose support is equal to  $\bigcup_{i=0}^{2^m-1} A_i$ , and, with respect to this measure,  $f_{a,b}$  is ergodic but not weakly mixing. But  $f_{a,b}^{2^m}|_{A_i}$  is weak Bernoulli. And  $f_{a,b}$  has period  $2^m \times \text{odd } (\neq 1)$  as the maximal period (in the sense of Šarkovskii [8]). We denote by  $D_0$  the domain of parameters (a, b) with above properties. (See Figure 1.)

4) The case of  $4/15 < a \le 1/3$  (that is, the case of  $b/(b+1) > (a+b-ab)/b \ge 1$ -1/b).

In the case a=1/3,  $f_{a,b}$  has period 3 as the maximal period. The interval 4/15 < a < 1/3 can be divided into sub-intervals  $a_m \le a < a_{m-1}$ , in which  $f_{a,b}$  has period 2m+1 as the maximal period, for  $m \ge 2$ . For a in



each of these intervals,  $f_{a,b}$  has an invariant measure (absolutely continuous with respect to the Lebesgue measure) whose support is equal to [0, 1], and with respect to this measure,  $f_{a,b}$  is weak Bernoulli. We denote by  $D_1$  the domain of parameters with these properties.

These cases mentioned above are essentially the same as those of part I (a=b); that is, case 3) (resp. case 4)) corresponds to the case  $1 < a \le \sqrt{2}$  (resp.  $\sqrt{2} < a \le (\sqrt{5} + 1)/2$ ) of part I. But as we mention in the following, phenomena quite different from those for the case a=b will appear in general.

5) The case of  $1/3 < a \le 1/2$  (that is, the case of  $a^2b \le 1$ , (a+b-ab)/b < 1-1/b). In this case, there exists a stable periodic orbit with period 3 and almost all orbits approach this periodic orbit, and so  $f_{a,b}$  does not have an absolutely continuous invariant measure. We call this case "window".

The topological entropy of  $f_{a,b}$  is equal to  $\log (\sqrt{5} + 1)/2$  in this case. We denote this domain of parameters by  $D_2^{(1)}$ . (The case a=1/2 is a little bit different, but essentially the same as mentioned above.) (See Figure 2.)

6) The case of  $1/2 < a \le (1+\sqrt{257})/32$  (that is, the case of  $a^2b > 1$ ,  $a+b \ge a^2b^2$ , (a+b-ab)/b < 1-1/b).

In this case there exist sub-intervals  $J_0$ ,  $J_1$ ,  $J_2$  of [0, 1] which satis-



FIGURE 2

fy that  $f_{a,b}J_i=J_{i+1}$  for  $i=0, 1, f_{a,b}J_2=J_0$  and almost all orbits starting from  $[0,1]-\bigcup_{i=0}^2J_i$  enter into  $\bigcup_{i=0}^2J_i$ . And  $f_{a,b}$  has an absolutely continuous invariant measure whose support is equal to  $\bigcup_{i=0}^2J_i$ . With respect to this measure,  $f_{a,b}$  is ergodic but not weakly mixing. In this sense these intervals  $J_i$  behave like islands of stability. So, we will call this case "islands". On the other hand, in  $[0,1]-\bigcup_{i=0}^2J_i$  there exists an uncountable subset B of Lebesgue measure 0, invariant under  $f_{a,b}$ , on which  $f_{a,b}$  behaves chaotically. In this case the topological entropy of  $f_{a,b}$  is also equal to  $\log(\sqrt{5}+1)/2$ . We denote this case by  $D_2^{(2)}$ . (See Figure 3.)

7) The case of  $(1+\sqrt{257})/32 < a < 4/3$  (that is, the case of  $a+b < a^2b^2$ , (a+b-ab)/b < 1-1/b).

In this case truly chaotic phenomenon appears, that is,  $f_{a,b}$  has period 3, and has an absolutely continuous invariant measure with its support [0, 1] and with respect to this measure,  $f_{a,b}$  is weak Bernoulli.

The Table 1 summarizes these phenomena mentioned above.

As we have indicated in the remarks above we see that these unimodal linear transformations (though they represent quite simple models)



FIGURE 3

Table 1

|                                | maximal period          | topological<br>entropy      | support of $h_{a,b}(x)$ (cf. [5], [9])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $egin{aligned} & 	ext{ergodicity w. r. t.} \ & h_{a,b}(x) dx \end{aligned}$ |
|--------------------------------|-------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| $D_0^{(m)}$                    | $2^m \times \text{odd}$ |                             | $A_0 \cup A_1 \cup \cdots \cup A_{2^m-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ergodic but<br>not weakly mixing                                            |
| $\partial D_0$                 | 6                       | $\log \sqrt{2}$             | [0,1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ergodic but<br>not weakly mixing                                            |
| $D_1^{(2m+1)}$                 | 2m+1                    |                             | [0,1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | weak Bernoulli                                                              |
| $\partial D_1$                 | 3                       | $\log \frac{1+\sqrt{5}}{2}$ | [0,1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | weak Bernoulli                                                              |
| $\mathring{D}_{\pmb{k}}^{(1)}$ | 3                       | $\log \gamma_k$             | there exists no a.c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | invariant measure                                                           |
| $\partial D_{k}^{(1)}$         | 3                       | $\log \gamma_k$             | $J_0 \cup J_1 \cup \cdots \cup J_k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | not ergodic                                                                 |
| $\mathring{D}_{k}^{(2)}$       | 3                       | $\log \gamma_k$             | $J_0 \cup J_1 \cup \cdots \cup J_k$ or $J_i \cup J_i \cup J_i \cup J_i$ $J_i \cup J_i \cup J_i$ | ergodic but<br>not weakly mixing                                            |
| $\partial D_{k}^{(2)}$         | 3                       | $\log \gamma_k$             | $J_0 \cup J_1 \cup \cdots \cup J_k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ergodic but<br>not weakly mixing                                            |
| $D_k^*$                        | 3                       |                             | [0,1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | weak Bernoulli                                                              |
| D*                             |                         |                             | [0,1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | weak Bernoulli                                                              |

show much complicated behavior. (cf. [6], [7].)

Finally, we explain the organization of this paper. In § 1, we will

divide the domain of parameters into several subdomains for the sake of subsequent discussions. In § 2, we will treat the cases of "window" and "islands", which are the characteristic features of the cases in discussion. In § 3, we will give the explicit form of the density function of an absolutely continuous invariant measure of  $f_{a,b}$  (cf. [3]), and investigate the ergodicity of  $f_{a,b}$  with respect to this measure.

### §1. Definitions and fundamental properties.

In part II, we consider the transformation  $f_{a,b}$  on [0, 1] defined by

$$(1) \hspace{1cm} f_{a,b}(x) = egin{cases} ax + rac{a+b-ab}{b} & ext{ for } & 0 \leq x \leq 1 - rac{1}{b} \ -b(x-1) & ext{ for } & 1 - rac{1}{b} \leq x \leq 1 \ , \end{cases}$$

for a pair of parameters (a, b) which satisfies b>1, ab>1, and  $a+b \ge ab$ . We notice that b/(b+1) is a fixed point of  $f_{a,b}$  for any (a, b).

Let us define the fundamental partition  $\{I_0, I_1\}$  of  $f_{a,b}$  in the same manner as in part I, that is, let  $I_0 = [0, 1-1/b]$  and  $I_1 = (1-1/b, 1]$  in the case when, for some natural number  $n, f_{a,b}^n(0) = 0, f_{a,b}^i(0) \neq 0$  for  $1 \leq i \leq n-1$  and the number

(2) 
$$k = \# \left\{ i; \ 0 \le i \le n-2, \ f_{a,b}^{i}(0) > 1 - \frac{1}{h} \right\}$$

is odd, and let  $I_0 = [0, 1-1/b)$  and  $I_1 = [1-1/b, 1]$  otherwise.

The reason why we define the fundamental partition in two different ways is, as in part I, that we can prove the following Theorem 1.1 by using this  $\{I_0, I_1\}$ , and that this distinction is convenient for representation of  $f_{a,b}$  by a symbolic dynamical system. But to consider measure theoretical problems, the difference of the fundamental partitions in the two cases are not essential.

Let us represent  $f_{a,b}$  by a symbolic dynamical system. Let us define the space  $\Omega$ , the shift operator  $\sigma$  on  $\Omega$  and the order relation in  $\Omega$  as in part I. Let  $\pi_{a,b}$  be a map from [0,1] into  $\Omega$  defined by

(3) 
$$\pi_{a,b}(x)(n) = j$$
, if  $f_{a,b}^n(x) \in I_j$   $(j=0 \text{ or } 1)$ .

Let  $Y_{a,b} = \pi_{a,b}[0, 1]$  and let  $X_{a,b}$  be the closure of  $Y_{a,b}$ . Then we can prove the following theorem in the same way as in the proof of Theorem 3.1 of part I.

THEOREM 1.1. We can characterize  $X_{a,b}$  as follows:

$$(4) X_{a,b} = \{ \omega \in \Omega; \ \sigma^n \omega \ge \omega_{a,b}^0 \ \text{for every} \ n \ge 0 \},$$

where we denote by  $\omega_{a,b}^x$  the image of x under  $\pi_{a,b}$ .

Now we divide the domain  $D=\{(a, b); b>1, ab>1, a+b \ge ab\}$  into subdomains depending on the behavior of  $f_{a,b}$ . Let

(5) 
$$D_0 = \left\{ (a, b) \in D; \frac{a+b-ab}{b} \ge \frac{b}{b+1} \right\},$$

(6) 
$$D_1 = \left\{ (a, b) \in D; \ \frac{b}{b+1} > \frac{a+b-ab}{b} \ge 1 - \frac{1}{b} \right\}.$$

In  $D_0 \cup D_1$  we have

(7) 
$$\omega_{a,b}^{0}(0) = 0, \, \omega_{a,b}^{0}(1) = 1$$
,

that is,  $f_{a,b}(0) \in I_1$ . For  $k \ge 2$  let

(8) 
$$D_k = \{(a, b) \in D; a < 1, 1 + a^{-1} + \dots + a^{-(k-1)} < b \le 1 + a^{-1} + \dots + a^{-k}\}$$
.

The relation  $1+a^{-1}+\cdots+a^{-(k-1)} < b \le 1+a^{-1}+\cdots+a^{-k}$  is equivalent to

(9) 
$$f_{a,b}^{i}(0) \in I_{0} \text{ for } 1 \leq i \leq k-1, \quad f_{a,b}^{k}(0) \in I_{1}.$$

We divide  $D_k$  into three subdomains as follows:

$$(10) D_k^{(1)} = \{(a, b) \in D_k; a^k b \leq 1\},$$

(11) 
$$D_k^{(2)} = \{(a, b) \in D_k; a^k b > 1, a + b \ge a^k b^2\}$$
,

$$(12) D_{k}^{*} = D_{k} - (D_{k}^{(1)} \cup D_{k}^{(2)}).$$

And finally, let

(13) 
$$D^* = \left\{ (a, b) \in D; a > 1, \frac{a+b-ab}{b} < \frac{b}{b+1} \right\}.$$

(See Figure 4.)

In the remainder of this section, we sub-divide  $D_0$  and  $D_1$  further, and investigate the behavior of  $f_{a,b}$  in detail. The results for these domains  $D_0$  and  $D_1$  are essentially the same as those for the case  $1 < a \le (1+\sqrt{5})/2$  of part I. So, with each result, we mention the corresponding result of part I and omit the proof. First of all we notice that  $f_{a,b}$  has no periodic point of odd period (except the fixed point



b/(b+1)) in the case  $D_0$ , which follows from the relation

(14) 
$$f_{a,b} \left[ 0, \frac{b}{b+1} \right] = \left[ \frac{b}{b+1}, 1 \right], f_{a,b} \left[ \frac{b}{b+1}, 1 \right] = \left[ 0, \frac{b}{b+1} \right].$$

LEMMA 1.1 (Lemmas 2.1 and 2.2 of part I). Let  $(a, b) \in D_0$  and let  $A_0 = [f_{a,b}(0), 1]$  and  $A_1 = [0, f_{a,b}^2(0)]$ . Then  $f_{a,b}A_0 = A_1, f_{a,b}A_1 = A_0$ ,

and  $f_{a,b}^2|_{A_j}(j=0 \text{ or } 1)$  is linearly conjugate to  $f_{b^2,ab}$ , that is, there exists a linear isomorphism  $\varphi$  from  $A_j$  onto [0,1] such that  $\varphi \circ f_{a,b}^2 \circ \varphi^{-1} = f_{b^2,ab}$ .

Let us define the numbers p(m) for  $m \ge 1$  inductively as follows:

(16) 
$$\begin{cases} p(1) = 1, \\ p(m) = \begin{cases} 2p(m-1) & \text{if } m \text{ is even} \\ 2p(m-1) - 1 & \text{if } m \text{ is odd} \end{cases}$$

For  $m \ge 1$  let

(17) 
$$D_0^{(m)} = \{(a, b) \in D_0; a^{p(m)}b^{p(m+1)} \leq a + b < a^{p(m+1)}b^{p(m+2)}\}.$$

Then we have

THEOREM 1.2. (Theorem 2.3 of part I. Also see (63).)

- (i) If  $(a, b) \in D_0^{(m)}$ , then  $f_{a,b}$  has no periodic point with period  $2^k \times odd$  for  $0 \le k < m$ .
- (ii)  $(a, b) \in D_0^{(m)}$  implies  $(b^2, ab) \in D_0^{(m-1)}$  for  $m \ge 2$  and  $(a, b) \in D_0^{(1)}$  implies  $(b^2, ab) \in D^*$ .

We note the following facts concerning the location of  $D_0^{(m)}$  in  $D_0$ . First of all, the curve  $a+b=ab^2$  (which is a part of the boundary of  $D_0$ , and equivalent to (a+b-ab)/b=b/(b+1)) does not intersect the curves ab=1 and b=1. The curve  $a+b=a^{p(m)}b^{p(m+1)}$  intersects the curve ab=1 at  $(\rho_{1,m}^{-1}, \rho_{1,m})$  and meets the line b=1 at  $(\rho_{2,m}, 1)$ , where  $\rho_{1,m}(\rho_{2,m})$  is the maximal root of the equation  $b^{p(m+1)-p(m)+1}-b^2-1=0$  ( $a^{p(m)}-a-1=0$ , respectively). We also notice that  $\rho_{1,m}$  and  $\rho_{2,m}$  are decreasing to 1 as  $m\to\infty$ . For  $m\ge 1$ , let

(18)  $D_1^{(2m+1)} = \{(a, b) \in D_1; ab^{2m} - b^{2m-1} - ab^{2m-2} - 1 \ge 0, ab^{2m-2} - b^{2m-3} - ab^{2m-4} - 1 < 0\}$ 

Then we have

THEOREM 1.3 (Theorem 2.2 of part I). If  $(a, b) \in D_1^{(2m+1)}$ , then the maximal period (in the sense of Šarkovskii) of  $f_{a,b}$  is 2m+1.

## § 2. The case of "window" and "islands".

In this section, we show that the fundamental partition is not a generator of  $f_{a,b}$  if and only if  $(a,b) \in \bigcup_{k=2}^{\infty} D_k^{(1)}$ , and show that  $D_k^{(1)}$  is the case of "window" and  $D_k^{(2)}$  is the case of "islands".

Let  $(a, b) \in D_k$  for some k and let

(19) 
$$x_0 = 1 - \frac{1}{b} - \frac{1}{ab} - \cdots - \frac{1}{a^{k-1}b};$$

then we can easily show that  $x_0 \ge 0$ ,  $f_{a,b}^i(x_0) \in I_0$  for  $0 \le i \le k-2$  and  $f_{a,b}^{k-1}(x_0) = 1-1/b$ . In the case  $(a,b) \in D_k^{(1)}$ , we have

(20) 
$$f_{a,b}^k(0) \in I_1$$
,  $f_{a,b}^{\kappa+1}(0) \in I_0$  and  $f_{a,b}^{k+1}(0) \leq x_0$ .

On the other hand in the case  $(a, b) \in D_k^{(2)}$ , we have

$$(21) \quad \begin{cases} f_{a,b}^k(0) \in I_1 \text{ , } & f_{a,b}^{k+1}(0) \in I_0 \text{ , } & x_0 \!<\! f_{a,b}^{k+1}(0) \!<\! f_{a,b}(x_0) \text{ ,} \\ f_{a,b}^i(0) \in I_0 \text{ for } k\!+\!2 \!\leq\! i \!\leq\! 2k\!-\!1 \text{ , } & f_{a,b}^{2k}(0) \in I_1 \text{ and } f_{a,b}^{2k+1}(0) \!\geq\! f_{a,b}^k(0) \text{ .} \end{cases}$$

THEOREM 2.1. The fundamental partition of  $f_{a,b}$  is a generator of  $f_{a,b}$  if and only if  $(a, b) \notin \bigcup_{k=2}^{\infty} D_k^{(1)}$ .

PROOF. Let  $(a,b) \in D_k^{(1)}$  for some k, then from (20) we obtain that  $f_{a,b}^{k+1}[0,x_0] \subset [0,x_0]$  and that any  $x \in [0,x_0)$  has the same symbolic representation  $\pi_{a,b}(x) = 0 \cdots 0 1$  with period k+1. So  $\{I_0,I_1\}$  is not a generator. Let  $(a,b) \in D_0 \cup D_1$ . If  $\pi_{a,b}(x) = \pi_{a,b}(x')$  for some  $x \neq x'$ , then we can show that  $|f_{a,b}^{2i}(x) - f_{a,b}^{2i}(x')| \geq (ab)^i |x-x'|$  for every  $i \geq 0$ , which contradicts the inequality ab > 1. And so  $\{I_0,I_1\}$  is a generator in these cases. Next let  $(a,b) \in D_k^{(2)} \cup D_k^*$  for some  $k \geq 2$ . If  $\pi_{a,b}(x) = \pi_{a,b}(x')$  for some  $x \neq x'$ , then we can show as above that  $|f_{a,b}^{(k+1)i}(x) - f_{a,b}^{(k+1)i}(x')| \geq (a^k b)^i |x-x'|$  for every  $i \geq 0$ , which contradicts the inequality  $a^k b > 1$ . So  $\{I_0,I_1\}$  is a generator. In the case of  $D^*$ , it is clear that  $\{I_0,I_1\}$  is a generator.

Now let us investigate the case  $D_k^{(1)} \cup D_k^{(2)}$  more precisely. In the remainder of this section we assume that  $(a, b) \in D_k^{(1)} \cup D_k^{(2)}$ . Let

$$\begin{cases} x^* = \frac{a^{k-1}b^2 - a^{k-1}b - a^{k-2}b - \dots - a^2b - ab - b}{a^{k-1}b^2 - 1}, \\ x_* = \frac{a^kb - a^k - a^{k-1} - \dots - a^2 - a}{a^kb + 1}. \end{cases}$$

We can easily show that  $x^*>x_0>x_*$  and that  $x^*$  and  $x_*$  are periodic points of  $f_{a,b}$  with period k+1 with the following symbolic representations:

(23) 
$$\pi_{a,b}(x^*) = \dot{0}0 \cdots 01\dot{1}$$
,  $\pi_{a,b}(x_*) = \dot{0}0 \cdots 00\dot{1}$ .

LEMMA 2.1. Let  $C_0=[0, x^*]$ , then  $f_{a,b}^iC_0$   $(0 \le i \le k)$  are disjoint and  $f_{a,b}^{k+1}C_0=C_0$ .

PROOF. From (9) we obtain

(24) 
$$f_{a,b}^{k}(0) = \frac{a^{k} + a^{k-1} + \cdots + a^{2} + a + b - a^{k}b}{b},$$

and by the definition of  $x^*$  we obtain

(25) 
$$f_{a,b}^{k}(x^{*}) = 1 - \frac{a^{k-1}b - a^{k-1} - a^{k-2} - \cdots - a^{2} - a - 1}{a^{k-1}b^{2} - 1}.$$

And so we obtain

$$(26) f_{a,b}^{k}(0) - f_{a,b}^{k}(x^{*}) = \frac{a^{k-2}(b-1-a^{-1}-\cdots-a^{-(k-1)})(a+b-a^{k}b^{2})}{b(a^{k-1}b^{2}-1)} \ge 0.$$

If we notice that  $f_{a,b}^{k-1}C_0\ni 1-1/b$ , then we can show that  $f_{a,b}^kC_0=[f_{a,b}^k(x^*),1]$ , which completes the proof.

Let  $\alpha$ ,  $\beta$  be a pair of real numbers which satisfy  $\alpha > 1$ ,  $\beta > 0$  and  $1/\alpha + 1/\beta \le 1$ . We denote by  $g_{\alpha,\beta}$  the map from [0,1] into itself defined by

(27) 
$$g_{\alpha,\beta}(x) = \begin{cases} \alpha x & \text{for } 0 \leq x \leq \frac{1}{\alpha} \\ -\beta x + \frac{\alpha + \beta}{\alpha} & \text{for } \frac{1}{\alpha} \leq x \leq 1 \end{cases}.$$

Then we have

LEMMA 2.2. (i) If  $\beta < 1$ , then any orbit of  $g_{\alpha,\beta}$  approaches the fixed point  $(\alpha + \beta)/\alpha(\beta + 1)$  of  $g_{\alpha,\beta}$ .

(ii) If  $\beta=1$ , then every point of  $[1/\alpha, 1]-\{(\alpha+\beta)/\alpha(\beta+1)\}$  is periodic point with period 2 and, for any  $x \in (0, 1/\alpha)$ ,  $g_{\alpha, \beta}^{n}(x) \in [1/\alpha, 1]$  for some n.

(iii) If  $\beta > 1$ , then  $g_{\alpha,\beta}|_{[(\alpha+\beta-\alpha\beta)/\alpha,1]}$  is linearly conjugate to  $f_{\alpha,\beta}$  and, for any  $x \in (0, (\alpha+\beta-\alpha\beta)/\alpha), g_{\alpha,\beta}^n(x) \in [(\alpha+\beta-\alpha\beta)/\alpha, 1]$  for some n.

PROOF. All assertions are clear from the definition of  $g_{\alpha,\beta}$ .

LEMMA 2.3.  $f_{a,b}^{k+1}|_{C_0}$  is linearly conjugate to  $g_{a^{k-1}b^2,a^kb}$ .

PROOF. It is clear if we notice that  $f_{a,b}^{k-1}C_0 \ni 1-1/b$ .

LEMMA 2.4. Denote by  $\lambda$  the Lebesgue measure on [0, 1]. Then we have  $\lambda(\bigcup_{n=0}^{\infty} f_{a,b}^{-n}C_0)=1$ .

PROOF. Let

(28) 
$$C_1 = f_{a,b}^{-1} C_0$$
,  $C_2 = f_{a,b}^{-1} C_1$ ,  $C_j = f_{a,b}^{-1} C_{j-1} \cap I_0$  for  $3 \le j \le k$ .

We can easily show that these sets are disjoint and

(29) 
$$\begin{cases} \lambda(C_0) = \frac{b(a^{k-1}b - a^{k-1} - a^{k-2} - \dots - a - 1)}{a^{k-1}b^2 - 1}, \\ \lambda(C_1) = \frac{1}{b}\lambda(C_0), \quad \lambda(C_2) = \frac{a+b}{ab}\lambda(C_1), \\ \lambda(C_j) = \frac{1}{a^{j-2}}\lambda(C_2) \quad \text{for} \quad 3 \leq j \leq k. \end{cases}$$

Let us define intervals  $C(a_0, a_1, \dots, a_n)$  for  $n \ge 0$  and for sequences  $(a_0, a_1, \dots, a_n)$  of 0 and 1 inductively as follows:

(30) 
$$C(a_0) = f_{a,b}^{-1} \left( \bigcup_{j=2}^k C_j \right) \cap I_{a_0} ,$$

$$C(a_0, a_1, \dots, a_n) = f_{a,b}^{-1} C(a_0, a_1, \dots, a_{n-1}) \cap I_{a_n} .$$

Then we have

(31) 
$$\bigcup_{n=0}^{\infty} f_{a,b}^{-n} C_0 = \bigcup_{n=0}^{\infty} \bigcup_{(a_1,a_2,\dots,a_n) \in \mathcal{Q}_n^*} C(1, a_1, a_2, \dots, a_n) \cup \left(\bigcup_{j=0}^k C_j\right)$$

where  $\Omega_n^*$  is the set of all sequences  $(a_1, a_2, \dots, a_n)$  such that each  $a_i$  is equal to 0 or 1 and that no more than k 0's appear consecutively. Moreover the sets appearing in the union of the right-hand side of (31) are disjoint. For each  $(a_1, a_2, \dots, a_n) \in \Omega_n^*$ ,

(32) 
$$\lambda(C(1, a_1, a_2, \dots, a_n)) = a^{-n(0)} b^{-n(1)-1} \lambda\left(\bigcup_{j=2}^k C_j\right),$$

where  $n(1) = \sum_{i=1}^{n} a_i$  and n(0) = n - n(1). So it follows that

$$(33) \quad \lambda \left( \bigcup_{n=0}^{\infty} \bigcup_{(a_{1}, a_{2}, \dots, a_{n}) \in \Omega_{n}^{*}} C(1, a_{1}, a_{2}, \dots, a_{n}) \right)$$

$$= \sum_{m=1}^{\infty} \sum_{\substack{m_{0}, m_{1}, \dots, m_{k-1} \geq 0 \\ m_{0} + m_{1} + \dots + m_{k-1} = m}} \frac{m!}{m_{0}! \, m_{1}! \, \dots m_{k-1}!} a^{-m_{1} - 2m_{2} - \dots - (k-1)m_{k-1}} b^{-m} \lambda \left( \bigcup_{j=2}^{k} C_{j} \right)$$

$$= \sum_{m=1}^{\infty} (1 + a^{-1} + a^{-2} + \dots + a^{-(k-1)})^{m} b^{-m} \lambda \left( \bigcup_{j=2}^{k} C_{j} \right).$$

Using (29) and (30) we obtain

$$(34) \quad \lambda \left( \bigcup_{n=0}^{\infty} f_{a,b}^{-n} C_0 \right) = \lambda(C_0) + \lambda(C_1) + \lambda \left( \bigcup_{j=2}^{k} C_j \right) \frac{1}{1 - (1 + a^{-1} + a^{-2} + \dots + a^{-(k-1)})b^{-1}}$$

$$= 1$$

Theorem 2.2. In the case of  $D_k^{(1)}$ , almost all points of [0, 1] are

asymptotically periodic. Especially, in the case  $a^*b < 1$ , almost all (with respect to the Lebesgue measure) orbits approach the periodic orbit starting from  $x_*$ .

PROOF. This theorem follows from Lemmas 2.1, 2.2 ((i) and (ii)), 2.3 and 2.4.

THEOREM 2.3. In the case of  $D_k^{(2)}$ , let  $J_j = [f_{a,b}^j(0), f_{a,b}^{k+j+1}(0)]$  for  $0 \le j \le k-1$  and  $J_k = [f_{a,b}^k(0), 1]$ . Then we have

- (i)  $J_i \subset f_{a,b}^i C_0$  for  $0 \le j \le k$ , and so  $J_i$ 's are disjoint.
- (ii)  $f_{a,b}J_j = J_{j+1}$  for  $0 \le j \le k-1$  and  $f_{a,b}J_k = J_0$ .
- (iii)  $f_{a,b}^{k+1}|_{J_j}$  is linearly conjugate to  $f_{a^{k-1}b^2,a^kb}$ .
- (iv) For almost all  $x \in [0, 1] \bigcup_{j=0}^k J_j$ ,  $f_{a,b}^n(x) \in \bigcup_{j=0}^k J_j$  for some n.

PROOF. (i)~(iii) follow from Lemmas 2.1, 2.2 ((iii)), 2.3 and 2.4. To prove (iv) it is sufficient to show that, for all  $x \in (f_{a,b}^{k+1}(0), x^*)$ ,  $f_{a,b}^n(x) \in J_0$  for some n. But this is easy to see if we notice that  $|f_{a,b}^{k+1}(x)-x^*|=a^{k-1}b^2|x-x^*|$  and  $a^kb>1$ .

Next, we give a proposition concerning  $(a^{k-1}b^2, a^kb)$ .

PROPOSITION 2.1. Let  $(a, b) \in D_k^{(2)}$ . If  $a+b < a^{2k}b^3$ , then  $(a^{k-1}b^2, a^kb) \in D_1 \cup D^*$ . On the other hand, if  $a+b \ge a^{2k}b^3$ , then  $(a^{k-1}b^2, a^kb) \in D_0^{(1)}$ .

PROOF. By definitions of  $D_1$ ,  $D^*$  and  $D_0^{(1)}$ , we can easily show that  $(a^{k-1}b^2, a^kb) \in D_1 \cup D^*$  if and only if  $a+b < a^{2k}b^3$  and that  $(a^{k-1}b^2, a^kb) \in D_0^{(1)}$  if and only if  $a^{2k}b^3 \le a+b < a^{4k-1}b^6$ . But it is clear that  $a+b < a^{4k-1}b^6$  follows from  $(a, b) \in D_k^{(2)}$ , so we have Proposition 2.1.

REMARK. It is evident that  $f_{a,b}$  has a periodic point with period 3 in the case  $D-(D_0 \cup D_1)$ . So, Theorem 2.2 shows that  $D_k^{(1)}$  is the case of "window" and Theorem 2.3 shows that  $D_k^{(2)}$  is the case of "islands".

Finally, we will give a result concerning the topological entropy in the case  $D_k^{(1)} \cup D_k^{(2)}$ . Let  $\gamma_k$  be the maximal root of the equation  $\gamma^k - \gamma^{k-1} - \cdots - \gamma - 1 = 0$ . We can easily show that  $1 < \gamma_k < 2$  and  $\gamma_k$  increases to 2 as  $k \to \infty$ .

THEOREM 2.4 (cf. [2]). The topological entropy of  $f_{a,b}$  is equal to  $\log \gamma_k$  for the case of  $D_k^{(1)} \cup D_k^{(2)}$ .

PROOF. Denote by  $h_{top}(f_{a,b})$  the topological entropy of  $f_{a,b}$  and denote by  $N_{a,b}^{(n)}$  the number of  $f_{a,b}$ -admissible words of length n, that is,

(35)  $N_{a,b}^{(n)} = \#\{(a_0, a_1, \dots, a_{n-1}); \pi_{a,b}(x)(i) = a_i \text{ for } 0 \leq i \leq n-1, \text{ for some } x\}$ .

It is well known that  $h_{\text{top}}(f_{a,b}) = \lim_{n \to \infty} (1/n) \log N_{a,b}^{(n)}$ . We can easily show that

(36) 
$$\pi_{a,b}(0)(i) = 0 \quad \text{for} \quad 0 \leq i \leq k-1, \qquad \pi_{a,b}(0)(k) = 1$$
 and 
$$\pi_{r_b,r_b}(0) = \dot{0}0 \cdots 01\dot{1} = \pi_{a,b}(x^*).$$

And therefore  $X_{a,b} \supseteq X_{r_k,r_k}$ , which implies  $h_{\text{top}}(f_{a,b}) \ge h_{\text{top}}(f_{r_k,r_k}) = \log \gamma_k$ . But it is easy to see by virtue of Lemma 2.1 that

$$(37) \quad X_{a,b} - X_{\gamma_b,\gamma_b} = \{\omega \in X_{a,b}; \ \sigma^n \omega = \pi_{a,b}(x) \quad \text{for some } n \text{ and some } x \in C_0\}$$

and  $\pi_{a,b}(x) = 00 \cdots 0*100 \cdots 0*1 \cdots$  for every  $x \in C_0$ . So we get

(38) 
$$N_{ab}^{(n)} \leq \sum_{m=0}^{n} N_{\gamma_k \gamma_k}^{(n-m)} 2^{[m/(k+1)]+1} \leq C \gamma_k^n.$$

The last inequality follows from the inequality  $N_{r_k,r_k}^{(n)} \leq C' \gamma_k^n$ , which has been shown in § 4 of part I. So we obtain  $h_{\text{top}}(f_{a,b}) \leq \log \gamma_k$ , which completes the proof.

§ 3.  $f_{a,b}$ -expansion and the density of invariant measure.

In this section we consider the case when the fundamental partition is a generator, that is, the case  $D-(\bigcup_{k=2}^{\infty} D_k^{(1)})$ .

Let us define  $N_0(x, n)$  and  $N_1(x, n)$  for  $x \in [0, 1]$  and  $n \ge 0$  by

(39) 
$$N_{j}(x, n) = \begin{cases} 1 & \text{if } n = 0 \\ \sharp \{i; \ 0 \leq i \leq n - 1, \ \omega_{a,b}^{x}(i) = j \} \end{cases} \quad \text{if } n \geq 1.$$

Then we have

LEMMA 3.1  $(f_{a,b}$ -expansion). If  $(a,b) \in D - (\bigcup_{k=2}^{\infty} D_k^{(1)})$ , then we have the so-called  $f_{a,b}$ -expansion for  $x \in [0,1]$  as follows

(40) 
$$x = 1 - \frac{1}{b} \sum_{n=0}^{\infty} \left( \frac{1}{a} \right)^{N_0(x,n)} \left( -\frac{1}{b} \right)^{N_1(x,n)} ,$$

where the sum in the right-hand side converges absolutely.

PROOF. Let us define  $\varepsilon(j)$  and  $\delta(j)$  for j=0 or 1 by

(41) 
$$\varepsilon(j) = \begin{cases} \frac{1}{a} & \text{for } j = 0 \\ -\frac{1}{b} & \text{for } j = 1 \end{cases},$$

(42) 
$$\delta(j) = \begin{cases} 1 & \text{for } j=0 \\ 0 & \text{for } j=1 \end{cases}.$$

Then it follows from (1) that

(43) 
$$x = \varepsilon(\omega_{a,b}^{x}(0)) f_{a,b}(x) + 1 - \frac{a+b}{ab} \delta(\omega_{a,b}^{x}(0)) .$$

By using (43) successively we obtain, for any natural number N,

$$(44) \quad x = \sum_{n=0}^{N-1} \left(1 - \frac{a+b}{ab} \, \delta(\omega_{a,b}^x(n))\right) \prod_{i=0}^{n-1} \varepsilon(\omega_{a,b}^x(i)) + \prod_{i=0}^{N-1} \varepsilon(\omega_{a,b}^x(i)) f_{a,b}^{N+1}(x) \ .$$

It is easy to see that

$$egin{align} &-rac{a+b}{ab}\delta(\omega_{a,b}^x(n))\prod\limits_{i=0}^{n-1}arepsilon(\omega_{a,b}^x(i))+\prod\limits_{i=0}^narepsilon(\omega_{a,b}^x(i))\ &=-rac{1}{b}\prod\limits_{i=0}^{n-1}arepsilon(\omega_{a,b}^x(i))=-rac{1}{b}igg(rac{1}{a}igg)^{N_0(x,n)}igg(-rac{1}{b}igg)^{N_1(x,n)}\ , \end{split}$$

and so we get (40) by letting N go to infinity in (44). The absolute convergence is proved as follows. In the case  $D_k^{(2)} \cup D_k^*$ ,  $\pi_{a,b}(x)$  has no consecutive 0's of length longer than k for any  $x \in [0, 1]$ ; so by using the inequality  $a^kb>1$  we obtain the absolute convergence. We can show this in the same manner in the case  $D_0 \cup D_1 \cup D^*$ .

Define a function  $h_{a,b}(x)$  on [0, 1] by

(45) 
$$h_{a,b}(x) = \sum_{n=0}^{\infty} \left(\frac{1}{a}\right)^{N_0(0,n)} \left(-\frac{1}{b}\right)^{N_1(0,n)} I_{[f_{a,b}^n(0),1]}(x).$$

By the absolute convergence of (40), we see that  $h_{a,b}(x)$  is a function of bounded variation. Now let us prove that  $h_{a,b}$  is the density of an invariant measure for  $f_{a,b}$ .

LEMMA 3.2. For any Borel set  $A \subset [0, 1]$ , we have

PROOF. It is enough to show that

$$(47) \qquad h_{a,b}(x) = \frac{1}{a} h_{a,b} \left( \frac{1}{a} x - \frac{a+b-ab}{ab} \right) I_{[(a+b-ab)/ab,1]}(x) + \frac{1}{b} h_{a,b} \left( -\frac{1}{b} x + 1 \right).$$

We can show (47) in the same manner as for the proof of Theorem 2.1 in part I.

To prove  $h_{a,b}(x) \ge 0$ , we prepare several lemmas as follows:

LEMMA 3.3 (Li-Yorke [5]). Let an integrable function h(x) on [0, 1] satisfy (46). Denote by P(N, Z) the set of  $x \in [0, 1]$  which satisfies h(x) > 0 < 0, respectively). Then we have that

(48) 
$$f_{a,b}P = P$$
 a.e. and  $f_{a,b}N = N$  a.e.,

where a.e. means almost everywhere with respect to the Lebesgue measure.

PROOF. To simplify the notation, we write f for  $f_{a,b}$  in this proof. From the assumption we have

(49) 
$$\int_{P} h(x)dx = \int_{f^{-1}P} h(x)dx$$

$$= \int_{f^{-1}P\cap P} h(x)dx + \int_{f^{-1}P\cap N} h(x)dx + \int_{f^{-1}P\cap Z} h(x)dx$$

$$\leq \int_{f^{-1}P\cap P} h(x)dx \leq \int_{P} h(x)dx .$$

So we obtain that

(50) 
$$f^{-1}P\supset P$$
 a.e. and  $f^{-1}P\cap N=\emptyset$  a.e.,

which imply that

$$(51) fP \subset P \subset f^{-1}(fP) \subset f^{-1}P.$$

From (46), (50) and (51) it is easy to see that

(52) 
$$0 = \int_{f^{-1}(fP)-fP} h(x)dx$$

$$= \int_{f^{-1}(fP)-P} h(x)dx + \int_{P-fP} h(x)dx$$

$$= \int_{P-fP} h(x)dx ,$$

so we obtain that fP=P a.e. The assertion fN=N a.e. can be proved in the same manner.

LEMMA 3.4. Let h(x) satisfy the same assumption as in Lemma 3.4 and let a Borel set  $B \subset [0, 1]$  satisfy, for some  $n_0$ ,

(53) 
$$f_{a,b}^n B \cap B = \emptyset \quad \text{a.e.} \quad \text{for every} \quad n \ge n_0.$$

Then we have that

$$h(x) = 0 \quad \text{a.e.} \quad x \in B.$$

PROOF. Let  $B_p = \{x \in B; h(x) > 0\}$  and let  $B_p^* = \bigcup_{n=n_0}^{\infty} f_{a,b}^n B_p$ . Then it is easy to show that

$$(55) B_n^* \cap B_n = \emptyset a.e. and f_{a,b}^{-n_0} B_n^* \supset B_n^* \cup B_n.$$

Using (55) and the assumption of lemma, we obtain that

(56) 
$$\int_{B_p^*} h(x)dx = \int_{f_{a,b}^{-n_0}B_p^*} h(x)dx$$

$$\geq \int_{B_p^*} h(x)dx + \int_{B_p} h(x)dx ,$$

which implies  $\int_{B_p} h(x)dx = 0$ , and so we obtain  $B_p = \emptyset$  a.e. We can show that  $B_n = \{x \in B; h(x) < 0\} = \emptyset$  a.e. in the same manner.

LEMMA 3.5. Let  $(a, b) \in D_1 \cup D^* \cup (\bigcup_{k=2}^{\infty} D_k^*)$ . For every interval  $I \subset [0, 1]$  with positive length, there exists an n which satisfies

(57) 
$$f_{a,b}^{n}I=[0,1].$$

PROOF. It is sufficient to prove that  $f_{a,b}^m I \ni b/(b+1)$  for some m, since it is easy to see that  $f_{a,b}^n I = [0, 1]$  for some  $n \ge m$  in this case. We can easily show that if, for some interval J,  $1-1/b \in J$  then

$$|f_{a,b}J| \ge \frac{ab}{a+b}|J| ,$$

where | | denote the length of interval.

In the case  $D_1$ , we have that

(59) 
$$|f_{a,b}^2I| \ge \min \left\{ \frac{ab^2}{a+b}, ab, b^2 \right\} |I| = \frac{ab^2}{a+b} |I|$$

except in the case when

(60) 
$$I \cap f_{a,b}I \ni 1 - \frac{1}{b} \text{ or } f_{a,b}I \cap f_{a,b}^2I \ni 1 - \frac{1}{b}$$

is satisfied. Using (59) repeatedly we get the desired conclusion if we notice that  $ab^2/(a+b)>1$ . (Note that b/(b+1)>(a+b-ab)/b.) In the case of (60), it is easy to see that  $f_{a,b}^2I\ni b/(b+1)$ .

In the case  $D_k^*$ , we have that

(61) 
$$|f_{a,b}^{k+1}I| \ge \min \left\{ \frac{a^k b^2}{a+b}, a^k b, a^{k-1} b^2, \cdots, ab^k, b^{k+1} \right\} |I|$$

$$= \frac{a^k b^2}{a+b} |I|,$$

if at most one interval among  $I, f_{a,b}I, \dots, f_{a,b}^kI$  contains 1-1/b. If  $f_{a,b}^mI$  and  $f_{a,b}^{m+i}I$  contain 1-1/b for some  $0 \le m < m+i \le k$ , then we can show that  $f_{a,b}^{m+i+1}I \ni b/(b+1)$ . Using (61) repeatedly we get the desired conclusion if we notice that  $a^kb^2/(a+b) > 1$  in the case  $D_k^*$ .

In the case  $D^*$ , we can prove the lemma in the same manner.

THEOREM 3.1. Let  $(a, b) \in D_1 \cup (\bigcup_{k=2}^{\infty} D_k^*) \cup D^*$ . Then  $h_{a,b}$  is the density function of an invariant measure for  $f_{a,b}$  and  $h_{a,b}(x) > 0$  a.e.  $x \in [0, 1]$ .

PROOF. From Lemmas 3.2 and 3.5, it is sufficient to prove that  $h_{a,b}(x) > 0$  on  $[0, \varepsilon]$  for some  $\varepsilon > 0$ . By the definition of  $h_{a,b}$ , we have  $h_{a,b}(0) > 0$ . In the case when 0 is periodic for  $f_{a,b}$ , we have  $h_{a,b}(x) = h_{a,b}(0)$  on  $[0, \varepsilon]$  for sufficiently small  $\varepsilon$ . Otherwise, let  $h_{a,b}(0) = \varepsilon$ . By Lemma 3.1, we have that, for some  $n_0$ ,

(62) 
$$\sum_{n=n_0}^{\infty} \left(\frac{1}{a}\right)^{N_0(0,n)} \left(\frac{1}{b}\right)^{N_1(0,n)} < \frac{s}{2}.$$

So if we pick a positive  $\varepsilon$  satisfying  $\varepsilon < f_{a,b}^n(0)$  for  $1 \le n < n_0$ , we can show  $h_{a,b}(x) > s/2$  on  $[0, \varepsilon]$ .

THEOREM 3.2. Let  $(a, b) \in D_1 \cup (\bigcup_{k=2}^{\infty} D_k^*) \cup D^*$ . Then the dynamical system  $(f_{a,b}, h_{a,b}(x)dx)$  is weak Bernoulli.

PROOF. Using Lemma 3.5, it is easy to see that  $f_{a,b}^2(\text{resp. } f_{a,b}^k, f_{a,b})$  satisfies the condition of Bowen [1] in the case of  $D_1(\text{resp. } D_k^*, D^*)$ . So we can apply the result of Bowen to get the desired conclusion.

Now let us investigate the support of  $h_{a,b}$  in the case  $D_0$ . Let  $(a, b) \in D_0^{(m)}$  for some  $m \ge 1$  and denote by  $A_i$  for  $0 \le i \le 2^m - 1$  the intervals defined by

(63) 
$$A_{i} = \begin{cases} [f_{a,b}^{2^{m+i}}(1), f_{a,b}^{i}(1)] & \text{if } N_{1}(1, i) \text{ is even} \\ [f_{a,b}^{i}(1), f_{a,b}^{2^{m+i}}(1)] & \text{if } N_{1}(1, i) \text{ is odd} \end{cases}.$$

As in part I, we can show that  $A_i$ 's are disjoint and that

(64) 
$$f_{a,b}A_i = A_{i+1}$$
 for  $0 \le i \le 2^m - 2$ ,  $f_{a,b}A_{2^m-1} = A_0$ .

COROLLARY 3.1. Let  $(a, b) \in D_0^{(m)}$  for some  $m \ge 1$ . Then

- (i)  $h_{a,b}$  is the density function of an invariant measure for  $f_{a,b}$  and the support of  $h_{a,b}$  is equal to  $\bigcup_{i=0}^{2^{m-1}} A_i$ .
- (ii) The dynamical system  $(f_{a,b}, h_{a,b}(x)dx)$  is ergodic but not weakly mixing.

PROOF. This corollary follows from Theorems 1.2, 3.1, 3.2, Lemmas 3.2, 3.3, 3.4 and (64).

COROLLARY 3.2. Let  $(a, b) \in D_k^{(2)}$  for some  $k \ge 2$ . Then  $h_{a,b}$  is the density function of an invariant measure for  $f_{a,b}$  and

- (i) if  $a+b < a^{2k}b^3$ , then the support of  $h_{a,b}$  is equal to  $\bigcup_{i=0}^k J_i$ , where  $J_i$  is defined in Theorem 2.3.
- (ii) If  $a+b \ge a^{2k}b^3$ , then the support of  $h_{a,b}$  is equal to  $\bigcup_{i=0}^k (J_{i,1} \cup J_{i,2})$  for some sub-intervals  $J_{i,1}$  and  $J_{i,2}$  of  $J_i(0 \le i \le k)$  which satisfy

(65) 
$$f_{ab}^{k+1}J_{i,1}=J_{i,2} \quad and \quad f_{a,b}^{k+1}J_{i,2}=J_{i,1} .$$

And the dynamical system  $(f_{a,b}, h_{a,b}(x)dx)$  is ergodic but not weakly mixing.

PROOF. This corollary follows from Theorems 2.3, 3.1, 3.2, Lemmas 3.2, 3.3 and 3.4.

#### References

- [1] R. Bowen, Bernoulli maps of the intervals, Israel J. Math., 28 (1977), 161-168.
- [2] L. JONKER and D. A. RAND, A Lower Bound for the Entropy of Certain Maps of the Unit Interval, preprint.
- [3] A. LASOTA and J. A. YORKE, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc., 186 (1973), 481-488.
- [4] T. Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly, 82 (1975), 895-922.
- [5] T. Y. Li and J. A. Yorke, Ergodic transformations from an interval into itself, Trans. Amer. Math. Soc., 235 (1978), 183-192.
- [6] R. M. MAY, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-567.
- [7] R. M. MAY and G. F. OSTER, Bifurcations and dynamic complexity in simple ecological models, Amer. Naturalist, 110 (1976), 573-599.
- [8] P. Stefan, A theorem of Šarkovskii on the existence of periodic orbits of continuous endomorphisms of the line, Comm. Math. Phys. 54 (1977), 237-248.
- [9] G. WAGNER, The ergodic behavior of piecewise monotonic transformations, Z. Wahrscheinlichkeitstheorie und Verw Gebiete, 46 (1979), 317-324.

Present Address:
DEPARTMENT OF MATHEMATICS
TSUDA COLLEGE
TSUDA-MACHI, KODAIRA

Tokyo 187 and DEPARTMENT OF MATHEMATICS KEIO UNIVERSITY HIYOSHI-CHO, KOHOKU-KU, YOKOHAMA 223