TOKYO J. MATH. VOL. 3, No. 1, 1980

Topological Powers and Reduced Powers

Makoto TAKAHASHI

Waseda University (Communicated by H. Sunouchi)

Introduction

In this paper, we shall deal with first order structures associated to a fixed first order language L with equality. For the sake of simplicity we assume that L has neither individual constant symbols nor function
symbols. Also, we shall use standard model-theoretic potions in Chang Also, we shall use standard model-theoretic notions in Chang-Keisler [1]. Let M be a first order L-structure and I be a topological
space. Then the topological power of M by I denoted by $M^{(I)}$ is the space. Then the topological power of M by I, denoted by $M^{(I)}$, is the substructure of the direct power M^{I} , whose universe is the set of all the continuous functions from I to the universe $|M|$ of M , where we assume that $|M|$ is endowed with the discrete topology. Topological powers of M are L-structures of the form $M^{(I)}$ for some topological space I; Boolean topological powers of M are L-structures of the form $M^{(I)}$ for some Boolean space I.

Using these notions our main result can be expressed as follows:

THEOREM. Every topological power of a first order L-structure M is elementarily equivalent to a reduced power of M , and every reduced power of M is elementarily equivalent to a Boolean topological power of M .

From this theorem we have the following corollary.

COROLLARY 1. The following three conditions are equivalent for any sentence φ in L .

1) Every reduced power of a model of φ is also a model of φ .

2) Every topological power of a model of φ is also a model of φ .

3) Every Boolean topological power of a model of φ is also a model of φ .

On the other hand, any topological power of M can be considered as Received September 10, 1979

142 MAKOTO TAKAHASHI

global sections of a constant M-sheaf and vice versa (cf. [2]). A sentence φ in L is said to be a global section sentence (respectively, CS-sentence, BCS-sentence) if φ is preserved under sheaves of L-structures (resp. constant sheaves, constant sheaves over Boolean spaces). See section 3 below for details. Therefore we obtain the following Corollary 1' fron Corollary 1.

COROLLARY 1'. The following three conditions are equivalent for any sentence φ in $L.$

1) φ is a reduced power sentence.

- 2) φ is a CS-sentence.
- 3) φ is a BCS-sentence.

By using Corollary 1' and Proposition 6.2.6 (ii) in Chang-Keisler [1], we have the following result:

COROLLARY 2. Every global section sentence is equivalent to a Horn sentence.

Corollary 2 is an affirmative answer to the Mansfield's problem [5]. Noted that this Corollary 2 has been already obtained by Volger [7].

In section 1 of this paper we shall state a Feferman-Vaught type theorem and its immediate consequence due to Volger in [6]. By using this fact, we shall give a proof of our theorem in section 2. In section 3, we shall discuss some relationship which exists between topological powers and global sections of sheaves of L-structures, where Corollary 1' and Corollary 2 will be proved.

$\S 1.$ Fefermen-Vaught type theorem.

Throughout section ¹ and section 2, every universe of an L-structure is nonempty. In the following a Boolean valued L-structure \mathfrak{M} consists of $\langle |\mathfrak{M}|, \mathfrak{M}_{B}, [\![\varphi]\!]_{\mathfrak{M}} (\varphi\in \text{Form }(L))\rangle$, where $|\mathfrak{M}|$ is an universe, \mathfrak{M}_{B} is a Boolean algebra, and for every L-formula $\varphi(x_{1}, \ldots, x_{n})$, $[\![\varphi]\!]_{\mathbb{R}}$ is a funcbooten algebra, and for every *E*-formula $\varphi(x_1, \dots, x_n)$, $\varphi_{\mathbb{M}_{\mathbb{R}}}$ is a tion from \mathfrak{M}^* into \mathfrak{M}_{B} which satisfies Equality Axioms and satisfies

$$
\begin{aligned}\n[\varphi \vee \psi]_{\mathbb{R}} &= [\varphi]_{\mathbb{R}} + [\psi]_{\mathbb{R}}, \\
[\varphi \wedge \psi]_{\mathbb{R}} &= [\varphi]_{\mathbb{R}} \cdot [\psi]_{\mathbb{R}}, \\
[\nabla \varphi]_{\mathbb{R}} &= \sim [\varphi]_{\mathbb{R}}, \\
[\nabla x \varphi(x)]_{\mathbb{R}} &= \bigwedge_{f \in [\mathbb{R}]} [\varphi(f)]_{\mathbb{R}},\n\end{aligned}
$$

$$
\llbracket \exists x \varphi(x) \rrbracket_{\mathfrak{m}} = \bigvee_{f \in \mathfrak{m}} \llbracket \varphi(f) \rrbracket_{\mathfrak{m}}.
$$

Let \mathfrak{M} be a Boolean valued L-structure. The two-valued reduct $\widetilde{\mathfrak{M}}$ of \mathfrak{M} is given by $\langle |\mathfrak{M}|, {\{\widetilde{R}_{\zeta} | R_{\zeta} \text{ is a relation symbol in } L\}} \rangle$ where $\widetilde{\mathfrak{M}} \models$ $R_{\zeta}(f_{1}, \ldots, f_{n})$ if and only if $\llbracket R_{\zeta}(f_{1}, \ldots, f_{n})\rrbracket = 1$. Hence $\widetilde{\mathfrak{M}}$ is an L-struc-
ture.

A Boolean valued L-structure \mathfrak{M} satisfies the maximum principle if for any L-formula $\varphi(x, x_{1}, \ldots, x_{n})$ and for any $f_{1}, \ldots, f_{n} \in |\mathfrak{M}|$, there for any L-formula $\varphi(x, x_1, \dots, x_n)$ and for any $f_1, \dots, f_n \in |\mathfrak{M}|$, there exists $f\in|\mathfrak{M}|$ such that

$$
\llbracket \exists x \mathcal{P}(x, f_1, \cdots, f_n) \rrbracket_{\mathfrak{m}} = \llbracket \mathcal{P}(f, f_1, \cdots, f_n) \rrbracket_{\mathfrak{m}}.
$$

A Boolean valued L-structure \mathfrak{M} satisfies the finite completeness property if for any $b \in \mathfrak{M}_B$ and any $a_1, a_2 \in |\mathfrak{M}|$, there exists $a \in |\mathfrak{M}|$ such that $\llbracket a=a_{1}\rrbracket\geq b$ and $\llbracket a=a_{2}\rrbracket\geq-b$, and satisfies the almost two-valuedness property if $\llbracket \varphi \rrbracket = 1$ or $\llbracket \varphi \rrbracket = 0$ for any L-sentence φ .

Let L_{BA} be the first order language of Boolean algebras.

FEFERMAN-VAUGHT TYPE THEOREM ([3], [5], [6]). For any L-sentence φ , there exists a sequence $\langle\Phi(\zeta_{1}, \ldots, \zeta_{m});\theta_{1}, \ldots, \theta_{m}\rangle$ where $\Phi(\zeta_{1}, \ldots, \zeta_{m})$ is an L_{BA} -formula and $\theta_{1}, \dots, \theta_{m}$ are L-sentences, such that for any Boolean valued L-structure $\mathfrak M$ satisfying the maximum principle and the finite completeness property, we have $\widetilde{M} \models \varphi$ if and only if $\mathfrak{M}_B \models \Phi([\![\theta_1]\!], \cdots, [\![\theta_m]\!]).$

The following corollary is an immediate consequence of above Feferman-Vaught type theorem.

COROLLARY. Let \mathfrak{M} , \mathfrak{M}' be any Boolean valued L-structures which satisfy the maximum principle, the finite completeness property and the almost two-valuedness property. Suppose that $\mathfrak{M}_B = \mathfrak{M}'_B$ and suppose that \mathfrak{w} \equiv \mathfrak{w} . for every L-sentence φ [φ]_n=1 if and only if [φ]_n_i=1. Then we have

§2. A proof of the theorem.

LEMMA 1. For any L-structure M and any topological space I , $\mathfrak{M}^{(I)}=\left\langle\right|M^{(I)}|, \ C(I), \ \llbracket \varphi(f_{1}, \ \cdots, f_{n})\rrbracket_{\mathfrak{M}^{(I)}}=\{i\in I\mid M\models\varphi(f_{1}(i), \ \cdots, f_{n}(i))\}\rangle$

is a $C(I)$ -valued L-structure which satisfies the maximum principle, the finite completeness property and the almost two-valuedness property where $C(I)$ is the Boolean algebra of all clopen subsets of I. And twovalued reduct $\widetilde{\mathfrak{M}}^{(I)}$ of $\mathfrak{M}^{(I)}$ coincides with $\mathbf{M}^{(I)}$.

144 MAKOTO TAKAHASHI

PROOF. For any $f_{1}, \dots, f_{n} \in |M^{(I)}|$, $U_{i}=f_{1}^{-1}(f_{1}(i))\cap\dots\cap f_{n}^{-1}(f_{n}(i))$ is a clopen subset of I. Since we have $I_{0}=\{i\in I|\,M\models\varphi(f_{1}(i), \cdots, f_{n}(i))\}=\bigcup_{i\in I_{0}}U_{i},$ and $I_{1}=\{i\in I|M\models \textit{mod}(f_{1}(i), \ldots, f_{n}(i))\}=\bigcup_{i\in I_{1}}U_{i}, I_{0}=\llbracket \varphi(f_{1},\ldots,f_{n})\rrbracket$ is a clopen subset of *I*. $[\![\varphi \vee \psi]\!] = [\![\varphi]\!] + [\![\psi]\!]$, $[\![\varphi \wedge \psi]\!] = [\![\varphi]\!] \cdot [\![\psi]\!]$, and $[\![\mathcal{7}\varphi]\!] = \sim [\![\varphi]\!]$ are easily shown. And, since $\llbracket \forall x \varphi(x) \rrbracket$ and $\llbracket \exists x \varphi(x) \rrbracket$ are clopen subsets of I, we have $[\![\forall x \varphi(x)]\!] = \bigwedge_{f \in [M^{(I)}]} [\![\varphi(f)]\!]$, $[\![\exists x \varphi(x)]\!] = \bigvee_{f \in [M^{(I)}]} [\![\varphi(f)]\!]$. Ot viously $\mathfrak{M}^{(I)}$ satisfies Equality Axioms. Therefore $\mathfrak{M}^{(I)}$ is a $C(I)$ -valued L-structure.

For every $i\in I$, if $M\models \exists x\varphi(x, f_{1}(i), \cdots, f_{n}(i)),$ then fix a_{i} such that $M \vDash \varphi(a_{i}, f_{1}(i), \dots, f_{n}(i)),$ otherwise fix $a_{i} \in |M|$, arbitrarily. We define the relation \sim on I as follows: $i\sim i^{\prime}$ $(i, i^{\prime} \in I)$ if and only if $f_{1}(i)=f_{1}(i^{\prime})$ $f_{\pi}(i) = f_{\pi}(i^{\prime})$. This is an equivalence relation. Let $\{i_{\alpha}\}_{\alpha}$ be the represer tatives of the equivalence classes. We define $h: I\rightarrow |M|$ as follows; for any $i\in I$, $h(i)=a_{i_{\alpha}}$ if and only if $i\sim i_{\alpha}$. For any $M'\subset|M|$, we hav $h^{-1}(M^{\prime})=\bigcup_{a_{i_{\alpha}}\in M^{\prime}}U_{i_{\alpha}}.$ Hence h is continuous. Considering that $M\models$ $\exists x\not\!\varphi(x, f_{1}(i), \cdots, f_{n}(i))$ if and only if $M\!\vDash\!\varphi(h(i), f_{1}(i), \cdots, f_{n}(i)),$ we hav $\llbracket \exists x\not\varphi(x, f_{1}, \cdots, f_{n})\rrbracket = \llbracket \varphi(h, f_{1}, \cdots, f_{n})\rrbracket.$ Therefore $\mathfrak{M}^{(I)}$ satisfies the maxi mum principle. It is easy to show that $\mathfrak{M}^{(I)}$ satisfies the finite completeness property and the almost two-valuedness property. From th definition of two-valued reduct $\widetilde{\mathfrak{M}}^{(I)}$ of $\mathfrak{M}^{(I)}$, $\widetilde{\mathfrak{M}}^{(I)}$ coincides with $M^{(I)}$.

Let M be an L-structure, X be an nonempty set and F be a filter on X. We can regard the reduced power M^{X}/F as a Boolean valued L structure \mathfrak{M}^{X}/F in the usual way; i.e., $|\mathfrak{M}^{X}/F|=|M^{X}/F|,$ $(\mathfrak{M}^{X}/F)_{B}=2^{X}/F$ and for any L-formula $\varphi(x_{1}, \ldots, x_{n}),$

 $\llbracket \varphi([f_{1}], \ \cdots, \ [f_{\texttt{n}}])\rrbracket_{\mathfrak{m}^{X}/F} = [\{x\in X\, |\, M|\!\vDash\! \varphi(f_{1}(i), \ \cdots, f_{\texttt{n}}(i))\}]_{F} \;,$

where $[X']_{F}$ is an equivalence class of a characteristic function of $X'\subset X$. It is easy to show that the following Lemma 2 holds.

LEMMA 2. For any L-structure M , any nonempty set X and any filter on X, \mathfrak{M}^{x}/F satisfies the maximum principle, the finite completeness property and the almost two-valuedness property. And two-valued reduct $\widetilde{\mathfrak{M}}^{X}/F$ of \mathfrak{M}^{X}/F coincides with M^{X}/F .

THEOREM. Every topological power of an L -structure M is elemen $tarily equivalent to a reduced power of M, and every reduced power of$ M is elementarily equivalent to a Boolean topological power of M .

PROOF. For any topological space I , there exists an nonempty se X and a filter F on X such that $C(I)=2^{X}/F$. From Lemma 1 and Lemma 2. $\mathfrak{M}^{(I)}$ and \mathfrak{M}^{X}/F are Boolean valued L-structures which satisfy the

maximum principle, the finite completeness property and the almost twovaluedness property. And for any L-sentence φ , the conditions $[\![\varphi]\!]_{\mathfrak{m}^{(I)}}=1$, $M\models \varphi$ and $[\![\varphi]\!]_{\mathbf{w}^{X}/F}=1$ are mutually equivalent. Therefore, from Corollary of Feferman-Vaught type theorem, we have $\widetilde{\mathfrak{M}}^{(I)}\equiv\widetilde{\mathfrak{M}}^{X}/F$. Hence $M^{(I)}\equiv$ M^{X}/F from Lemma 1 and Lemma 2. For any nonempty set X and any filter F on X, from Stone representation theorem, we have $C((2^{X}/F)^{*})\cong$ $2^{X}/F$, where $(2^{X}/F)^{*}$ is the dual space of $2^{X}/F$. From Lemma 1, Lemma 2 and Corollary of Feferman-Vaught type theorem, $\widetilde{\mathfrak{M}}^{((2^X/F)^*)}\equiv\widetilde{\mathfrak{M}}^{X}/F.$ Hence we get $M^{((2^X/F)^*)}\!\equiv\! M^{X}/F.$

$\S 3.$ Sheaves of L-structures.

In this section, we admit the empty L-structure. Most of our notations and definitions are taken from Ellerman $[4]$. Let I be a topological space. We can regard the set $\mathcal{O}(I)$ of open subsets of I as a category in the usual way, i.e., the objects of $\mathcal{O}(I)$ are the open subsets of I , and $\mathcal{O}(I)$ has one morphism from u to v if and only if $u\subset v$. Let M_{L} be the category of L-structures and homomorphisms (not necessary onto). ^A functor $P: \mathcal{O}(I)^{op} \rightarrow M_{L}$ (i.e., a contravariant functor from $\mathcal{O}(I)$ to M_{L}) is called a presheaf of L-structures and denoted by (I, P) . A presheaf of L-structures (I, P) is a sheaf of L-structures if the following conditions are satisfied:

(1) For any open set u, any open covering $\{u_{\alpha}|\alpha\in A\}$ of u and any family $\{a_{\alpha}|\alpha \in A\}$ satisfying the condition $a_{\alpha} \in |P(u_{\alpha})|$ for every $\alpha \in A$, if $P_{u_{\alpha}\alpha}^{u_{\alpha}}(a_{\alpha})=P_{u_{\alpha}\alpha}^{u_{\beta}}(a_{\beta})$ for any $\alpha, \beta \in A$, then there exists exactly one $a \in |P(u)|$ such that $P_{u_{\alpha}}^{u}(a)=a_{\alpha}$ for every $\alpha \in A$.

(2) For any atomic relation $R(x_{1}, \cdots, x_{n})$, any open set u , any open covering $\{u_{\alpha}\}\alpha\in A\}$ of u and any $a_{1}, \cdots, a_{n}\in|P(u)|$, if $P(u_{\alpha})\in R(P^{\text{u}}_{\alpha}(a_{1}),$, $P_{u_{\alpha}}^{u}(a_{n})$ for every $\alpha \in A$, then $P(u)\vDash R(a_{1}, \ldots, a_{n}).$

Let (I, P) be a sheaf of L-structures. We define the stalk of P at $i \in I$ to be the direct limit $P_{i}=\lim_{\kappa \in I}P(u)$. For any atomic relation $R(x_{1}, \ldots, x_{n})$ and $b_{1}, \ldots, b_{n} \in P_{i}$, we have $P_{i} \models R(b_{1}, \ldots, b_{n})$ if and only if there exists $u \ni i$ and $a_{1}, \cdots, a_{n} \in |P(u)|$ such that $P_{i}^{u}(a_{k}) = b_{k}$ for $k=1, \cdots, n$ and that $P(u) \models R(a_{1}, \ldots, a_{n})$, where P_{i}^{u} is the canonical map from $P(u)$ into P_{i} . Let (I, P) be a sheaf of L-structures. $P(I)$ is said to be global sections of (I, P) .

Let M be an L-structure and I be a topological space. We define \ast constant M-sheaf (I, M) as follows: The universe $|M(u)|$ of $M(u)$ is the set of all continuous functions from u to the universe $|M|$ of M (where we consider that $|M|$ has the discrete topology), for every $u \in \mathcal{O}(I)$. The restriction maps M^* ; $|M(u)|\rightarrow|M(v)|$ ($v\subset u$) are defined by $M_{v}^{u}(f)=f\upharpoonright v$.

146 MAKOTO TAKAHASHI

If $R(x_{1}, \ldots, x_{n})$ is an atomic relation and $f_{1}, \ldots, f_{n} \in |M(u)|$, then $M(u) \vDash$ $R(f_{1}, \ldots, f_{n})$ if and only if for all $i \in u$ $M \models R(f_{1}(i), \ldots, f_{n}(i))$. We remark that every stalk of a constant M-sheaf is isomorphic to M , and for any nonempty L-structure M and any topological space I , global section $M(I)$ of a constant M-sheaf (I, M) is nonempty and coincides with topological power $M^{(I)}$. Constant sheaves (over Boolean spaces) are sheave of L-structures of the form (I, M) for some topological space (Boolean space) I and L -structure M .

Let K be a class of sheaves of L-structures. An L-sentence φ is preserved under K if and only if for any $(I, P) \in K$, the conditions $\{i \in I | P_i \models \varphi\}=I \text{ and } |P(I)| \neq \phi \text{ imply } P(I)\models\varphi. \text{ Let } S \text{ (resp. CS, BCS) }$ b the class of all sheaves of L-structures (resp. constant sheaves, constar sheaves over Boolean spaces). An L-sentence φ is said to be a global section sentence (resp. CS-sentence BCS-sentence) if φ is preserved under S (resp. CS , BCS).

COROLLARY 1'. For any L-sentence φ the following three conditions are equivalent.

- 1) φ is a reduced power sentence.
- 2) φ is a CS-sentence.
- 3) φ is a BSC-sentence.

PROOF. Let φ be a reduced power sentence. From Corollary 1, for any nonempty L-structure M and any topological space I, if $M \models \varphi$, the $M^{(I)}\models\varphi$. Therefore for any constant sheaf (I, M) , if $M\models\varphi$ and $|M|\neq\varphi$ then $M(I) \vDash \varphi$. Hence φ is a CS-sentence. Thus, 1) implies 2). Obviousl 2) implies 3). Then, the proof will be complete if we will show that 3) implies 1). Let φ be a BCS-sentence. Let M be a nonempty L-structure, X be a nonempty set, and F be a filter on X . The universe $M(2^{X}/F)^{*}$ of global sections of the constant M-sheaf $((2^{X}/F)^{*}, M)$ is nonempty. So the relation $M\models \varphi$ implies $M((2^X/F)^*)\models\varphi$. Hence, from Corollary 1, $M \vDash \varphi$ implies $M^{x}/F\vDash \varphi$. So φ is a reduced power sentence

COROLLARY 2. Every global section sentence is equivalent to a Horn sentence.

PROOF. Since a global section sentence is a CS-sentence and also a finite direct product sentence, a global section sentence is a reduced power sentence and also a finite direct product sentence. If an L sentence φ is a reduced power sentence and a finite direct product sentence, then φ is a reduced product sentence (see Proposition 6.2.6 (ii) in Chang-Keisler [1]). Hence a global section sentence is a reduced produc

sentence. Therefore a global section sentence is equivalent to a Horn sentence.

Corollary 2 is an affirmative solution of Mansfield's problem [5]. In [7] H. Volger gave a characterization of the global section sentence.

References

- [1] C. C. CHANG and H. J. KEISLER, Model Theory, North Holland, Amsterdam, 1973.
- [21 S. D. COMER, Elementary properties of structures of sections, Bol. Soc. Mat. Mexicana, Ser. 2, 19 (1974), 78-85.

[3] E. ELLENTUCK, Boolean valued rings, Fund. Math., 96 (1977), 67-86.

- [4] D. P. ELLERMAN, Sheaves of structures and generalized ultraproducts, Ann. Math. Logic, 7 (1974), 163-195.
- [5] R. MANSFIELD, Sheaves and normal submodels, J. Symbolic Logic, 42 (1977), 241-250.

[6] H. VOLGER, The Feferman Vaught theorem revisited, Colloq. Math., 36 (1976), 1-11.

[71 H. VOLGER, Preservation theorems for limits of structures and global sections of sheaves of structures, Math. Z., 166 (1979), 27-53.

> Present Address: DEPARTMENT OF MATHEMATICS SCHOOL OF SCIENCES AND ENGINEERINGS WASEDA UNIVERSITY NISHIOKUBO, SHINJUKU-KU, TOKYO 160