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Compact Homomorphisms on Function Algebras
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Waseda University

In §1 we give some characterizations of compact (resp. weakly com-
pact) homomorphisms on function algebras. We also discuss when weakly
compact homomorphisms on function algebras become compact. In §2
we deal with the compactness of some linear operators, in particular, of
composition operators on H*(D) as an application of §1.

§1. Compact homomorphisms on function algebras.

Let E and F' be Banach spaces and @ be a linear operator of E to
F. @ is called a compact (resp. weakly compact) operator if, for the unit
ball S of E, ®(S) is relatively compact (resp. relatively weakly compact)
in F. We will consider compact (resp. weakly compact) homomorphisms
from A to B, that is, compact (resp. weakly compact) operators which
are homomorphisms, when 4 and B are function algebras. We say A
is a function algebra on a compact Hausdorff space X if A is a uniformly
closed subalgebra of C(X) that contains the constants and separates
points of X. The family {X,}7, of subsets of a topological space X is
said to be a partition of X if X=?, X, and X, are mutually disjoint,
closed and open subsets of X for 7=0,1,2, ---,n. By A* and M, we
denote the dual space and the maximal ideal space of a function algebra
A respectively. We put f(m)zm(f) for fe A, meM,.

We begin with characterizations of compact homomorphisms and
weakly compact homomorphisms on function algebras (ef. [10]).

THEOREM 1.1. Let A be a function algebra and B be a function
algebra on a compact Hausdorff space X. Suppose that @ is a linear
operator from A to B. Then we have

(a) @ i8 a continuous homomorphism if and only if there is a con-
tinuous map v of X to M,U{0} with respect to the topology o(A*, A)
such that

(@f)(@)=f(zx), feA and zecX,
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where we put f(z'a:)-—:O for fe A when 7x=0.

(b) @ is a compact homomorphism if and only if there are a par-
tition {X.}ioo of X, a family {P}:, of Gleason parts of A and a con-
tinuous map 7, of X, to P, for each 1 (1=1,2, ---, n) with respect to
the norm topology of A* such that

Ffecax), feA and zeX, 1<i<n

(+) @H@=14 feA and zeX,.

(¢) Let X be a compact metric space. Then @ is a weakly compact
homomorphism if and only if there are {X )i, {P}:-, as the above (b) and
a continuous map v, of X, to P, with respect to the topology o(A*, A**)
that satisfies (x) for each %, 1=1,2, ---, n.

Proor. (a) If @ is a continuous homomorphism from A to B, then
®» may be regarded as a continuous linear operator from A to C(X) and
so there is a continuous map 7z of X to A* with respect to the topology
o(A*, A) such that (@f)(@)=txz(f) for fe A and xe X (ef. [1] [2] [9]).
Here zx € M,U{0} for any x € X. In fact, we know that 7z is a complex
homomorphism of A: zx(f.f2) = (Pfifo)(®) =(Pf) @)X Pf)(®)=T2(f)r(f,) for
any f, f;€A. Conversely, if ¢ is a continuous map of X to M, U {0} such
that (@f)(x)=f(rx) for fe A and ze X, then it is clear that @ is a con-
tinuous homomorphism from A to B.

(b) Let @ be a compact homomorphism from A to B. Then @ be-
comes a compact operator from A to C(X). So there is a continuous
map 7 of X to A* with respect to the norm topology of A* such that
(q>f)(x)=f(z'a:) for fe A and x€ X (cf. [1] [2] [9]). In the same way as
in (a), we see 7(X)cM,U{0}. Now let P, and P, be distinct Gleason
parts of A. If m, is in P, and m, is in P,, then ||m,—m,|=sup {{m.(f)—
my()l: f€ A, | fll<1}=2. Since z(X) is compact with respect to the norm
topology of A*, there is a finite family {P,};_, of Gleason parts of A such
that (X)cP,UP,U --- UP,U{0}. Here we put X,=7z%(P) for i=
1,2, ---, nand X,=7"'({0}). Then {X};, is a partition of X. If we put
T:=T|x,, the restriction of = to X,, for i=1,2, ---, n, {X;}i, {P}:. and
{z)i-. are what we need. The converse is clear.

(c) Let @ be a weakly compact homomorphism from A to B. Then
there is a continuous map 7 of X to M, U {0} with respect to the topology
o(A*, A**) such that (@f)(x)=f(zx) for fe A and xe€ X. Now we have
to show that z(X) is contained in P,UP,U --- UP, U{0} for a finite
family {P/}r, of Gleason parts of A. Suppose otherwise. Then there
exist distinct Gleason parts P, with P,Nz(X)#=@ (n=1,2, ---). Take
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m, in P,N7t(X) and choose x, in 7-'(m,), and thus we can obtain a se-
quence {z,} in X. As X is a compact metric space, there is a subsequence
{x,,} of {x,} such that w, converges to some point z, in X. We can
assume without loss of generality that x, converges to x,. As 7 is con-
tinuous, m,=rtx, converges to rx,. Since M, is closed, 7w, is in M,. So
zx, is contained in some Gleason part P,. Now we can assume that
P,+P, for n=1,2, --- and P,#P, for n+m. As m, is in P, and 7z,
is in P,, we may choose a family {f,} of functions in A such that

”f»||<1 ’ f'n(mln):O ’
and

fAn(Txo)———‘l—S” , O<€n<—;t_2_ ('n:l, 2’ . .) .

Put g,=f,f.--- f. in A. Then

Gu(t2)=(1—&) (1—¢) --- (1—¢,)
G.(m)=0 (1=m)
and

HgnH<1 ('n=1, 2, 37 "') .

As @ is weakly compact and ||g,||<1 for n=1,2, 3, ---, {Pg,} is relatively
weakly compact. Hence there is a subsequence {pg,,} of {®g,} such that
®g., converges pointwise to some h in C(X) ([1]). We here have

(PI.) @) =G (m)=0, 1=,
(PG ) (@0) =T (TH) =1 —&) (1 —6,) - -+ (1 —&,,) -

Thus h(x;)=0 for i=1,2,8, --- and h(x))=(1—¢,) (1—¢,) - - -, where 0<¢,<
1/m2. As 3 e,<co, h(x,)#0. But h(x,) converges to h(x,) and h(x,)=0 for
i=1,2,8, ---. This is absurd. So there is a family {P}, such that
7(X) is contained in P,UP,U --- UP, U{0}. Next we show that z=(P)
is closed in X. Put P=P, Let a sequence {z,} be in z7'(P) such that
x, converges to x,. Then 7z, is in P and 7z, converges to tx,. As M,
is closed, zz, must be in M,. So there is a Gleason part P, such that
tx, is in P,. If P is different from P,, we can construct {f,}, {g.} in the
same way as above and this induces a contradiction. Consequently, x,
is in z7%(P). When we put X,=7"(P,) and X,=77*({0}), {X}i2, is a par-
tition of X. So (¢) can be proved in the same way as in (b).

REMARK. Compact homomorphisms on disc algebras were discussed
in [7].



108 SHUICHI OHNO AND JUNZO WADA

Next we consider when weakly compact homomorphisms from A to
B become compact. If A=C(Y), Y is a compact Hausdorff space, and
B is a function algebra on a compact metric space, then P, consists of
a single point in Theorem 1.1.(¢c). So in this case weakly compact homo-
morphisms are always compact.

Let now A be a function algebra and P be a non-trivial Gleason
part of A. A map p of a polydisc D* (a disc if n=1) into P is said to
be analytic if fop is an analytic function on D* for all feA. We say
that P has the condition (a) if P satisfies the following condition; (com-
pare [6; Chap. 4, Theorem 18))

(a) for any x in P, there are some open meighborhood Ux) of
z in P and an analytic map © which i3 a homeomorphism
Jrom a polydisc D* (n=1, n depends upon U(x)) onto Ux).

EXAMPLES. (1) Let A be the disc algebra or the polydisc algebra
A(D?. Then any non-trivial Gleason part for A satisfies ().

(2) Let I' be the unit circle in C and X be the cartesian product
of I' and I=[0,1]. Let A be the function algebra on X generated by
polynomials in ¢ and 2z, where t€[0,1] and z€ . Then any non-trivial
Gleason part for A has the property (a).

THEOREM 1.2. Suppose A is a function algebra and any non-trivial
Gleason part P for A satisfies (a). Let B be a function algebra on a
compact melric space X. Then any weakly compact homomorphism Jfrom
A to B is compact.

PROOF. Let ¢ be a weakly compact homomorphism from A to B.
Then, by Theorem 1.1.(c), there are a partition (X}, a family {P}r_,
of Gleason parts of A and a continuous map z, of X, to P, with respect
to the topology o(A*, A**) for each i=1 which satisfies () in Theorem
1.1.(b). Now if it would be showed that the identity map 4 of P, onto
itself with respect to the norm topology of A* is continuous, ¢ should
be compact by Theorem 1.1.(b). Hence we only show the continuity of
4. Let P=P, be the non-trivial Gleason part and m, be in P. By (a),
there are a neighborhood U(m,) and an analytic map o of D" onto U(m,)
that is homeomorphic. Since p~*(m,) is in D*, for any >0 there is a
neighborhood V of p~*(m,) in D* such that

|f(2) —f(p~"(m)| <e

for any zeV and any function f which is analytic on D* with ||f|<1.
Here p(V) is a neighborhood of m, in P and for any m=p(z) in o(V)



COMPACT HOMOMORPHISMS 109

||m —m,|| =sup {|G(m) —§(m,)|: g € 4, ||g]| <1}
<sup {|f(z) —f(p~"(m,))|: f is analytic on D", | f|| <1}
€.

IA |

Hence +r is continuous.

Let X be a metric space or a locally compact Hausdorff space. By
C.(X) we denote the topological algebra of continuous functions on X
with the topology of uniform convergence on compact subsets in X. Let
® be a linear operator from a normed space K to C,(X). Then o is
compact if and only if there is a continuous map z of X to the dual
space E* of E with the norm topology such that (pu)(x)=7x(u) for u € E,
xe X ([2], [9: Theorem 1]). We obtain the following in the same way
as in the proof of Theorem 1.1.

COROLLARY 1.83. Let @ be a linear operator from a function algebra
A to C(X). Then @ i3 a compact homomorphism if and only if there
are a partition {X,}r—, of X, a family {P}r., of Gleason parts for A and
a continuous map 7, of X, to P, (with respect to the morm topology inm
A*) for any 1=1 which satisfies () in Theorem 1.1.(b).

§2. Examples of compact homomorphisms on function algebras.

(1) Restrictions to Gleason parts.

Let A be a function algebra and P be a non-trivial Gleason part of
A. For any f in A, we define cpf-—-f |- Then the linear operator ¢ from
A to C,(P) is a continuous homomorphism. We assume that P is metric
or locally compact as a subspace of M, and m in P has a unique representing
measure.

THEOREM 2.1. Suppose P satisfies the assumptions above. Then @
18 compact if and only if there is an analytic map of a unit open disc
D onto P that is homeomorphic.

ProOF. If there is an analytic map of D onto P that is homeomor-
phic, the identity map ¢ of P onto P with the norm topology of A* is
continuous as in the proof of Theorem 1.2. Now (@f) (@) =F(x)=F(i(x))
for fe Aand xe P. By Corollary 1.3, @ is a compact homomorphism from
A to C,(P). Conversely, assume @ is compact. Since m in P has a unique
representing measure, there is an analytic map p of D onto P ([3: Chap.
6, Theorem 7.2]; [6: Chap. 6, Theorem 24]). So it is sufficient to show
that p is homeomorphic. For s, te€D, let
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It —3||=sup {|g(t) —g(3)|: g € A(D), |lg||<1}

where A(D) is the disc algebra. For m, m,c P, we put

|lm, —m.l| =sup {|f(m,) —fim.)|: fe A, ||f]| <1} .
Then the following is proved (cf. [5]):

le® —p@)ll=lit—sll for ¢ seD.

As @ is compact, there is a continuous map 7 of P to M,U{0} with the
norm topology of A* such that (¢f)(®)=f(rx) for S in A and = in P.
On the other hand, (@f)(x)=f(x). It implies zz=2 for # in P and 7 is
the identity map. So the map z of P onto P with the norm topology
of A* is continuous. Thus by this and the isometric property of p, o
is continuous and p is a homeomorphism.

(2) Composition operators on H>(D).

We here consider compact composition operators on H<(D) as an
application of §1. Let D be a domain in C and H=(D) be the algebra
of bounded analytic functions on D with the supremum norm. We assume
that the functions in H=(D) separate points on D. For an analytic funec-
tion ¢ from D to D the composition operator C, on H>(D) is defined by
Cy(f)=fo9p for fe H*(D). A composition operator C, is a continuous
homomorphism on H=(D). Let M be the maximal ideal space of H=(D).
Then H=(D)", the image of H>=(D) by the Gelfand transform, can be
regarded as a function algebra A on M. So C, may be considered as a
continuous homomorphism from A to A. We deal with the case where
C; is compact. Suppose C, is compact. It follows from Theorem 1.1(b)
that there are a partition {X;}i, of M, a family {P};, of Gleason parts
for A and a continuous map z; of X, to P, equipped with the norm
topology of A* such that C,(f)@)=f(rx) for fe A, zeX, (4=1) and
Ci(f)(x)=0 for fe A, xe X,. Since {X,};, is a partition of M and M is
a connected set, X,=M for some i. It is clear that i=1, since H=(D)
contains the constant function 1. Put z=7, and P=P,. Then f(¢(x))=
Ci(f)@)=f(zx) for xe D and fe A. From this ¢(x)=7x for xe€D. So we
have that ¢(D)=7(D)ct(M)cP. Hence we obtain the following.

THEOREM 2.2. C; 18 compact if and only if ¢ can be extended to a
continuous map v from M to P with respect to the morm topology of
A*.

PrROOF. The “only if” part of the theorem was already proved.
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Conversely, if ¢ can be extended to = from M to P, we put T'(f)(x)=f(zx)
(weM, feA). Then T is a compact homomorphism from A to C(M).
Since M>D and T(g)(x)=g(¢(x))=C,(g)(x) (x €D, ge H*(D)), C, is a com-
pact homomorphism from H<=(D) to H=(D).

Next we take a domain D in the Riemann sphere S%. Let H=(D) be
the algebra of bounded analytic functions on D. We assume that H>(D)
contains non-constant functions. Theorem 2.2 remains true in this case.
The fiber M; over N € D consists of all homomorphisms m € M such that
m(f)=F) for all fe H=(D) which extend analytically to a neighborhood
of . The fiber M; is a peak set for H=(D) if there is some fe H=(D)
whose Gelfand transform f is equal to 1 on M; while |f(m)|<1 for all
me M\M,. See [4] for details on fibers.

From Theorem 2.2, we have the following (cf. [8]).

COROLLARY 2.8. Let the fiber M; is a peak set for H>(D) for any
A in the boundary oD of D. Then C, is compact on H=(D) 1f and only
if ¢(D)"NoD=Q, where ¢(D)” is the closure of (D).

Proor. It is evident that DcP. It is not hard to see that D=P from
the assumptions of the corollary. From this ¢(D)=7(D)ct(M)cP=D.
So ¢(D)”c7(M) since z(M) is compact in D. The converse is clear.
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