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Compact Homomorphisms on Function Algebras
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In \S 1 we give some characterizations of compact (resp. weakly com-
pact) homomorphisms on function algebras. We also discuss when weakly
compact homomorphisms on function algebras become compact. In \S 2
we deal with the compactness of some linear operators, in particular, of
composition operators on $H^{\infty}(D)$ as an application of \S 1.

\S 1. Compact homomorphisms on function algebras.

Let $E$ and $F$ be Banach spaces and $\varphi$ be a linear operator of $E$ to
F. $\varphi$ is called a compact (resp. weakly compact) operator if, for the unit
ball $S$ of $E,$ $\varphi(S)$ is relatively compact (resp. relatively weakly compact)
in $F$. We will consider compact (resp. weakly compact) homomorphisms
from $A$ to $B$ , that is, compact (resp. weakly compact) operators which
are homomorphisms, when $A$ and $B$ are function algebras. We say $A$

is a function algebra on a compact Hausdorff space $X$ if $A$ is a uniformly
closed subalgebra of $C(X)$ that contains the constants and separates
points of $X$. The family $\{X_{i}\}i_{=0}^{\iota}$ of subsets of a topological space $X$ is
said to be a partition of $X$ if $X=\bigcup_{i=0}^{n}X_{l}$ and $X_{i}$ are mutually disjoint,
closed and open subsets of $X$ for $i=0,1,2,$ $\cdots,$ $n$ . By $A^{*}$ and $M_{A}$ we
denote the dual space and the maximal ideal space of a function algebra
$A$ respectively. We put $\hat{f}(m)=m(f)$ for $f\in A,$ $m\in M_{A}$ .

We begin with characterizations of compact homomorphisms and
weakly compact homomorphisms on function algebras (cf. [10]).

THEOREM 1.1. Let $A$ be a function algebra and $B$ be a function
algebra on a compact Hausdorff space X. Suppose that $\varphi$ is a linear
operator from $A$ to B. Then we have

(a) $\varphi$ is a continuous homomorphism if and only if there is a con-
tinuous map $\tau$ of $X$ to M. $U\{0\}$ with respect to the topology $\sigma(A^{*}, A)$

such that
$(\varphi f)(x)=\hat{f}(\tau x)$ , $f\in A$ and $x\in X$ ,
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where we put $\hat{f}(\tau x)=0$ for $fe$ $A$ when $\tau x=0$ .
(b) $\varphi$ is a compact homomorphism if and only if there are a par-

tition $\{X_{i}\}_{=0}$ of $X$, a family $\{P_{i}\}_{i=1}$ of Gleason parts of $A$ and a con-
tinuous map $\tau_{i}$ of $X_{i}$ to $P$ for each $i(i=1,2, \cdots, n)$ with respect to
the norm topology of $A^{*}$ such that

$(*)$ $(\varphi f)(x)=\{\wedge$

$f(\tau_{i}x)$ , $f\in A$ and $x\in X_{i}$ $1\leqq i\leqq n$

$0$ , $fe$ $A$ and $xeX_{0}$ .
(c) Let $X$ be a compact metric space. Then $\varphi$ is a weakly compact

homomorphism if and only if there are $\{X_{l}\}_{:=0},$ $\{P_{i}\}_{1=1}^{l}$ as the above (b) and
a continuous map $\tau_{i}$ of $X_{i}$ to $P$ with respect to the topology $\sigma(A^{*}, A^{**})$

that satisfies $(*)$ for each $i,$ $i=1,2,$ $\cdots,$ $n$ .
PROOF. (a) If $\varphi$ is a continuous homomorphism from $A$ to $B$ , then

$\varphi$ may be regarded as a continuous linear operator from $A$ to $C(X)$ and
so there is a continuous map $\tau$ of $X$ to $A^{*}$ with respect to the topology
$\sigma(A^{*}, A)$ such that $(\varphi f)(x)=\tau x(f)$ for feA and xeX (cf. [1] [2] [9]).
Here $\tau x\in M_{A}\cup\{0\}$ for any $xeX$. In fact, we know that $\tau x$ is a complex
homomorphism of $A:\tau x(f_{1}f_{2})=(\varphi f_{1}f_{2})(x)=(\varphi f_{1})(x)(\varphi f_{2})(x)=\tau x(f_{1})\tau x(f_{2})$ for
any $f_{1},$ $f_{2}eA$ . Conversely, if $\tau$ is a continuous map of $X$ to $M_{A}\cup\{0\}$ such
that $(\varphi f)(x)=\hat{f}(\tau x)$ for feA and $xeX$, then it is clear that $\varphi$ is a con-
tinuous homomorphism from $A$ to $B$ .

(b) Let $\varphi$ be a compact homomorphism from $A$ to $B$ . Then $\varphi$ be-
comes a compact operator from $A$ to $C(X)$ . So there is a continuous
map $\tau$ of $X$ to $A^{*}$ with respect to the norm topology of $A^{*}$ such that
$(\varphi f)(x)=\hat{f}(\tau x)$ for $f\in A$ and $xeX$ (cf. [1] [2] [9]). In the same way as
in (a), we see $\tau(X)\subset M_{4}\cup\{0\}$ . Now let $P_{1}$ and $P_{2}$ be distinct Gleason
parts of $A$ . If $m_{1}$ is in $P_{1}$ and $m_{2}$ is in $P_{2}$ , then $||m_{1}-m_{2}||=\sup\{|m_{1}(f)-$

$m_{2}(f)|:f\in A,$ $\Vert$fll $<1$} $=2$ . Since $\tau(X)$ is compact with respect to the norm
topology of $A^{*}$ , there is a finite family $\{P_{i}\}_{i^{*}=1}$ of Gleason parts of $A$ such
that $\tau(X)\subset P_{1}\cup P_{2}\cup\cdots\cup P,$ $\cup\{0\}$ . Here we put $X=\tau^{-1}(P_{i})$ for $i=$

$1,2,$ $\cdots,$ $nandX_{0}=\tau^{-1}(\{0\})$ . Then $\{X_{i}\}_{i=0}$ is a partition of $X$. If we put
$\tau_{i}=\tau|_{x_{i}}$ , the restriction of $\tau$ to $X_{i}$ , for $i=1,2,$ $\cdots,$ $n,$ $\{X_{\iota}\}_{i=0},$ $\{P\}_{=1}$ and
$\{\tau_{i}\}_{l=1}$ are what we need. The converse is clear.

(c) Let $\varphi$ be a weakly compact homomorphism from $A$ to $B$ . Then
there is a continuous map $\tau$ of $X$ to $M_{4}\cup\{0\}$ with respect to the topology
$\sigma(A^{*}, A^{**})$ such that $(\varphi f)(x)=\hat{f}(\tau x)$ for feA and $xeX$. Now we have
to show that $\tau(X)$ is contained in $P_{1}\cup P_{2}\cup\cdots\cup P_{*0}\cup\{0\}$ for a finite
family $\{P\}_{i=1}0$ of Gleason parts of $A$ . Suppose otherwise. Then there
exist distinct Gleason parts $P$ with $P.\cap\tau(X)\neq\emptyset(n=1,2, \cdots)$ . Take
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$m_{n}$ in $P_{f*}\cap\tau(X)$ and choose $x_{n}$ in $\tau^{-1}(m_{n})$ , and thus we can obtain a se-
quence $\{x, \}$ in $X$. As $X$ is a compact metric space, there is a subsequence
$\{x_{n_{i}}\}$ of $\{x_{n}\}$ such that $x_{n_{i}}$ converges to some point $x_{0}$ in $X$. We can
assume without loss of generality that $x_{n}$ converges to $x_{0}$ . As $\tau$ is con-
tinuous, $m.=\tau x$. converges to $\tau x_{0}$ . Since $M_{A}$ is closed, $\tau x_{0}$ is in $M_{A}$ . So
$\tau x_{0}$ is contained in some Gleason part $P_{0}$ . Now we can a8sume that
$P_{n}\neq P_{0}$ for $n=1,2,$ $\cdots$ and $P_{n}\neq P_{m}$ for $n\neq m$ . As $m_{n}$ is in $P_{n}$ and $\tau x_{0}$

is in $P_{0}$ , we may choose a family $\{f_{n}\}$ of functions in $A$ such that

$\Vert f_{n}\Vert<1$ , $\hat{f},$ $(m_{n})=0$ ,
and

$\hat{f}_{n}(\tau x_{0})=1-\epsilon_{n}$ , $0<\epsilon_{n}<\frac{1}{n^{2}}$ $(n=1,2, \cdots)$ .

Put $g_{n}=f_{1}f_{2}\cdots f_{n}$ in $A$ . Then

$\hat{g}_{n}(\tau x_{0})=(1-\epsilon_{1})(1-\epsilon_{2})\cdots(1-\epsilon_{n})$

$\hat{g}_{n}(m_{i})=0$ $(i\leqq n)$

and
$||g,$ $||<1$ $(n=1,2,3, \cdots)$ .

As $\varphi$ is weakly compact and $||g,$ $\Vert<1$ for $n=1,2,3,$ $\cdots,$
$\{\varphi g.\}$ is relatively

weakly compact. Hence there is a subsequence $\{\varphi g.k\}$ of $\{\varphi g_{n}\}$ such that
$\varphi g.k$ converges pointwise to some $h$ in $C(X)$ ([1]). We here have

$(\varphi g_{k})(x_{i})=\hat{g}_{n_{k}}(m_{i})=0$ , $i\leqq n_{k}$

$(\varphi g_{n_{k}})(x_{0})=\hat{g}k(\tau x_{0})=(1-\epsilon_{1})(1-\epsilon_{2})\cdots(1-\epsilon_{\iota_{k}})$ .
Thus $h(x_{i})=0$ for $i=1,2,3,$ $\cdots$ and $ h(x_{0})=(1-\epsilon_{1})(1-\epsilon_{2})\cdots$ , where $0<e.<$

$1/n^{2}$ . As $\sum\epsilon_{n}<\infty,$ $h(x_{0})\neq 0$ . But $h(x)$ converges to $h(x_{0})$ and $h(x)=0$ for
$i=1,2,3,$ $\cdots$ . This is absurd. So there is a family $\{P_{i}\}_{i=1}^{n_{0}}$ such that
$\tau(X)$ is contained in $P_{1}\cup P_{2}U\cdots UP_{n_{0}}\cup\{0\}$ . Next we show that $\tau^{-1}(P_{i})$

is closed in $X$. Put $P=P_{i}$ . Let a sequence $\{x_{\hslash}\}$ be in $\tau^{-1}(P)$ such that
$x_{n}$ converges to $x_{0}$ . Then $\tau x_{n}$ is in $P$ and $\tau x_{n}$ converges to $\tau x_{0}$ . As $M_{4}$

is closed, $\tau x_{0}$ must be in $M_{A}$ . So there is a Gleason part $P_{0}$ such that
$\tau x_{0}$ is in $P_{0}$ . If $P$ is different from $P_{0}$ , we can construct $\{f_{n}\},$ $\{g_{n}\}$ in the
same way as above and this induces a contradiction. Consequently, $x_{0}$

is in $\tau^{-1}(P)$ . When we put $X_{i}=\tau^{-1}(P_{i})$ and $X_{0}=\tau^{-1}(\{0\}),$ $\{X_{i}\}_{t=0}^{l}0$ is a par-
tition of $X$. So (c) can be proved in the same way as in (b).

REMARK. Compact homomorphisms on disc algebras were discussed
in [7].
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Next we consider when weakly compact homomorphisms from $A$ to
$B$ become compact. If $A=C(Y),$ $Y$ is a compact Hausdorff space, and
$B$ is a function algebra on a compact metric space, then $P_{i}$ consists of
a single point in Theorem l.l.(c). So in this case weakly compact homo-
morphisms are always compact.

Let now $A$ be a function algebra and $P$ be a non-trivial Gleason
part of $A$ . A map $\rho$ of a polydisc $D$“ (a disc if $n=1$) into $P$ is said to
be analytic if $ f\circ\rho$ is an analytic function on $D$“ for all $feA$ . We say
that $P$ has the condition $(\alpha)$ if $P$ satisfies the following condition; (com-
pare [6; Chap. 4, Theorem 18])

$(\alpha)$ for any $x$ in $P$, there are some open neighborhood $U(x)$ of
$x$ in $P$ and an analytic map $\rho$ which is a homeomorphism
from a polydisc $D$“ ($n\geqq 1,$ $n$ depends upon $U(x)$) onto $U(x)$ .

EXAMPLES. (1) Let $A$ be the disc algebra or the polydisc algebra
$A(D^{2})$ . Then any non-trivial Gleason part for $A$ satisfies $(\alpha)$ .

(2) Let $\Gamma$ be the unit circle in $C$ and $X$ be the cartesian product
of $\Gamma$ and $I=[0,1]$ . Let $A$ be the function algebra on $X$ generated by
polynomials in $t$ and $z$ , where $te[0,1]$ and $ ze\Gamma$ . Then any non-trivial
Gleason part for $A$ has the property $(\alpha)$ .

THEOREM 1.2. Suppose $A$ is a function algebra and any non-trivial
Gleason part $P$ for $A$ satisfies $(\alpha)$ . Let $B$ be a function algebra on a
compact metric space X. Then any weakly compact homomorphism from
$A$ to $B$ is compact.

PROOF. Let $\varphi$ be a weakly compact homomorphism from $A$ to $B$ .
Then, by Theorem l.l.(c), there are a partition $\{X_{i}\}_{=0}$ , a family $\{P_{i}\}_{i=1}^{n}$

of Gleason parts of $A$ and a continuous map $\tau$ of $X_{i}$ to $P_{i}$ with respect
to the topology $\sigma(A^{*}, A^{**})$ for each $i\geqq 1$ which satisfies $(*)$ in Theorem
l.l.(b). Now if it would be showed that the identity map $\psi$ of $P_{i}$ onto
itself with respect to the norm topology of $A^{*}$ is continuous, $\varphi$ should
be compact by Theorem l.l.(b). Hence we only show the continuity of
$\psi$ Let $P=P$ be the non-trivial Gleason part and $m_{0}$ be in $P$. By $(\alpha)$ ,
there are a neighborhood $U(m_{0})$ and an analytic map $p$ of $D$ onto $U(m_{0})$

that is homeomorphic. Since $\rho^{-1}(m_{0})$ is in $D$“, for any $\epsilon>0$ there is a
neighborhood $V$ of $\rho^{-1}(m_{0})$ in $D$“ such that

$|f(z)-f(\rho^{-1}(m_{0}))|<\epsilon$

for any $zeV$ and any function $f$ which is analytic on $D$“ with llfll $<1$ .
Here $\rho(V)$ is a neighborhood of $m_{0}$ in $P$ and for any $m=\rho(z)$ in $\rho(V)$
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$\Vert m-m_{0}\Vert=\sup\{|\hat{g}(m)-\hat{g}(m_{0})|:g\in A, ||g\Vert<1\}$

$\leqq\sup$ { $|f(z)-f(\rho^{-1}(m_{0}))|:f$ is analytic on $D^{n},$ $|f||<1$}
$\leqq\epsilon$ .

Hence $\psi$ is continuous.

Let $X$ be a metric space or a locally compact Hausdorff space. By
$C_{k}(X)$ we denote the topological algebra of continuous functions on $X$

with the topology of uniform convergence on compact subsets in $X$. Let
$\varphi$ be a linear operator from a normed space $E$ to $C_{k}(X)$ . Then $\varphi$ is
compact if and only if there is a continuous map $\tau$ of $X$ to the dual
space $E^{*}$ of $E$ with the norm topology such that $(\varphi u)(x)=\tau x(u)$ for $u\in E$,
$x\in X$ ([2], [9: Theorem 1]). We obtain the following in the same way
as in the proof of Theorem 1.1.

COROLLARY 1.3. Let $\varphi$ be a linear operator from a function algebra
$A$ to $C_{k}(X)$ . Then $\varphi$ is a compact homomorphism if and only if there
are a partition $\{X_{i}\}_{i=0}^{r}$ of $X$, a family $\{P_{i}\}_{l=1}^{n}$ of Gleason parts for $A$ and
a continuous map $\tau_{i}$ of $X$ to $P_{l}$ (with respect to the norm topology in
$A^{*})$ for any $i\geqq 1$ which satisfies $(*)$ in Theorem l.l.(b).

\S 2. Examples of compact homomorphisms on function algebras.

(1) Restrictions to Gleason parts.
Let $A$ be a function algebra and $P$ be a non-trivial Gleason part of

$A$ . For any $f$ in $A$ , we define $\varphi f=\hat{f}|_{P}$ . Then the linear operator $\varphi$ from
$A$ to $C_{k}(P)$ is a continuous homomorphism. We assume that $P$ is metric
or locally compact as a subspace of $M_{A}$ and $m$ in $P$ has a unique representing
measure.

THEOREM 2.1. Suppose $P$ satisfies the assumptions above. Then $\varphi$

is compact if and only if there is an analytic map of a unit open disc
$D$ onto $P$ that is homeomorphic.

PROOF. If there is an analytic map of $D$ onto $P$ that is homeomor-
phic, the identity map $i$ of $P$ onto $P$ with the norm topology of $A^{*}$ is
continuous as in the proof of Theorem 1.2. Now $(\varphi f)(x)=\hat{f}(x)=\hat{f}(i(x))$

for $f\in A$ and $x\in P$. By Corollary 1.3, $\varphi$ is a compact homomorphism from
$A$ to $C_{k}(P)$ . Conversely, assume $\varphi$ is compact. Since $m$ in $P$ has a unique
representing measure, there is an analytic map $\rho$ of $D$ onto $P([3$ : Chap.
6, Theorem 7.2]; [6: Chap. 6, Theorem 24]). So it is sufficient to show
that $\rho$ is homeomorphic. For $s,$ $t\in D$ , let
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$||t-s\Vert=\sup\{|g(t)-g(s)|:geA(D), \Vert g\Vert<1\}$

where $A(D)$ is the disc algebra. For $m_{1},$ $m_{2}eP$, we put

$\Vert m_{1}-m_{2}\Vert=\sup\{|\hat{f}(m_{1})-\hat{f}(m_{2})|:feA, ||f||<1\}$ .
Then the following is proved (cf. [5]):

$||\rho(t)-\rho(s)\Vert=||t-s||$ for $t,$ $seD$ .
As $\varphi$ is compact, there is a continuous map $\tau$ of $P$ to $M_{A}\cup\{0\}$ with the
norm topology of $A^{*}$ such that $(\varphi f)(x)=\hat{f}(\tau x)$ for $f$ in $A$ and $x$ in $P$.
On the other hand, $(\varphi f)(x)=\hat{f}(x)$ . It implies $\tau x=x$ for $x$ in $P$ and $\tau$ is
the identity map. So the map $\tau$ of $P$ onto $P$ with the norm topology
of $A^{*}$ is continuous. Thus by this and the isometric property of $\rho,$ $p^{-1}$

is continuous and $\rho$ is a homeomorphism.

(2) Composition operators on $H^{\infty}(D)$ .
We here consider compact composition operators on $H^{\infty}(D)$ as an

application of \S 1. Let $D$ be a domain in $C$ and $H^{\infty}(D)$ be the algebra
of bounded analytic functions on $D$ with the supremum norm. We assume
that the functions in $H^{\infty}(D)$ separate points on $D$ . For an analytic func-
tion $\phi$ from $D$ to $D$ the composition operator $C$, on $H^{\infty}(D)$ is defined by
$ C,(f)=f\circ\phi$ for $feH^{\infty}(D)$ . A composition operator $C$, is a continuous
homomorphism on $H^{\infty}(D)$ . Let $M$ be the maximal ideal space of $H^{\infty}(D)$ .
Then $H^{\infty}(D)^{\wedge}$ , the image of $H^{\infty}(D)$ by the Gelfand transform, can be
regarded as a function algebra $A$ on $M$. So $C$, may be considered as a
continuous homomorphism from $A$ to $A$ . We deal with the case where
$C$, is compact. Suppose $C$, is compact. It follows from Theorem l.l(b)
that there are a partition $\{X_{l}\}_{l=0}^{n}$ of $M$, a family $\{P\}_{=1}^{\dot{n}}$ of Gleason parts
for $A$ and a continuous map $\tau_{i}$ of $X_{i}$ to $P$ equipped with the norm
topology of $A^{*}$ such that $C_{\phi}(f)(x)=f(\tau_{:}x)$ for $feA,$ $x\in X_{i}(i\geqq 1)$ and
$C,(f)(x)=0$ for $feA,$ $xeX_{0}$ . Since $\{X\}_{=0}$ is a partition of $M$ and $M$ is
a connected set, $X_{i}=M$ for some $i$ . It is clear that $i=1$ , since $H^{\infty}(D)$

contains the constant function 1. Put $\tau=\tau_{1}$ and $P=P_{1}$ . Then $f(\phi(x))=$

$C,(f)(x)=f(\tau x)$ for xeDandfeA. From this $\phi(x)=\tau x$ for $xeD$ . So we
have that $\phi(D)=\tau(D)\subset\tau(M)\subset P$. Hence we obtain the following.

THEOREM 2.2. $C_{\phi}$ is compact if and only if $\phi$ can be extended to a
continuous map $\tau$ from $M$ to $P$ with respect to the norm topology of
$A^{*}$ .

PROOF. The “only if” part of the theorem was already proved.
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Conversely, if $\phi$ can be extended to $\tau$ from $M$ to $P$, we put $T(f)(x)=f(\tau x)$

$(xeM, feA)$ . Then $T$ is a compact homomorphism from $A$ to $C(M)$ .
Since $M\supset D$ and $T(g)(x)=g(\phi(x))=C_{\phi}(g)(x)(x\in D, g\in H^{\infty}(D)),$ $C_{\phi}$ is a com-
pact homomorphism from $H^{\infty}(D)$ to $H^{\infty}(D)$ .

Next we take a domain $D$ in the Riemann sphere $S^{2}$ . Let $H^{\infty}(D)$ be
the algebra of bounded analytic functions on $D$ . We assume that $H^{\infty}(D)$

contains non-constant functions. Theorem 2.2 remains true in this case.
The fiber $M_{\lambda}$ over $\lambda\in\overline{D}$ consists of all homomorphisms $meM$ such that
$m(f)=f(\lambda)$ for all $feH^{\infty}(D)$ which extend analytically to a neighborhood
of N. The fiber $M_{\lambda}$ is a peak set for $H^{\infty}(D)$ if there is some $f\in H^{\infty}(D)$

whose Gelfand transform $\hat{f}$ is equal to 1 on $M_{\lambda}$ while $|\hat{f}(m)|<1$ for all
$meM\backslash M_{\lambda}$ . See [4] for details on fibers.

From Theorem 2.2, we have the following (cf. [8]).

COROLLARY 2.3. Let the fiber $M_{\lambda}$ is a peak set for $H^{\infty}(D)$ for any
$\lambda$ in the boundary $\partial D$ of D. Then $C_{\phi}$ is compact on $H^{\infty}(D)$ if and only

if $\phi(D)^{-}\cap\partial D=\emptyset$ , where $\phi(D)^{-}$ is the closure of $\phi(D)$ .

PROOF. It is evident that $D\subset P$. It is not hard to see that $D=P$ from
the assumptions of the corollary. From this $\phi(D)=\tau(D)\subset\tau(M)\subset P=D$ .
So $\phi(D)^{-}\subset\tau(M)$ since $\tau(M)$ is compact in $D$ . The converse is clear.
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