Compact Homomorphisms on Function Algebras

Shûichi OHNO and Junzo WADA

Waseda University

In § 1 we give some characterizations of compact (resp. weakly compact) homomorphisms on function algebras. We also discuss when weakly compact homomorphisms on function algebras become compact. In § 2 we deal with the compactness of some linear operators, in particular, of composition operators on $H^{\infty}(D)$ as an application of § 1.

§1. Compact homomorphisms on function algebras.

Let E and F be Banach spaces and φ be a linear operator of E to F. φ is called a *compact* (resp. weakly compact) operator if, for the unit ball S of E, $\varphi(S)$ is relatively compact (resp. relatively weakly compact) in F. We will consider compact (resp. weakly compact) homomorphisms from A to B, that is, compact (resp. weakly compact) operators which are homomorphisms, when A and B are function algebras. We say A is a function algebra on a compact Hausdorff space X if A is a uniformly closed subalgebra of C(X) that contains the constants and separates points of X. The family $\{X_i\}_{i=0}^n$ of subsets of a topological space X is said to be a partition of X if $X=\bigcup_{i=0}^n X_i$ and X_i are mutually disjoint, closed and open subsets of X for $i=0,1,2,\cdots,n$. By A^* and M_A we denote the dual space and the maximal ideal space of a function algebra A respectively. We put $\widehat{f}(m)=m(f)$ for $f\in A$, $m\in M_A$.

We begin with characterizations of compact homomorphisms and weakly compact homomorphisms on function algebras (cf. [10]).

THEOREM 1.1. Let A be a function algebra and B be a function algebra on a compact Hausdorff space X. Suppose that φ is a linear operator from A to B. Then we have

(a) φ is a continuous homomorphism if and only if there is a continuous map τ of X to $M_A \cup \{0\}$ with respect to the topology $\sigma(A^*, A)$ such that

$$(\varphi f)(x) = \widehat{f}(\tau x)$$
 , $f \in A$ and $x \in X$,

where we put $\hat{f}(\tau x) = 0$ for $f \in A$ when $\tau x = 0$.

(b) φ is a compact homomorphism if and only if there are a partition $\{X_i\}_{i=0}^n$ of X, a family $\{P_i\}_{i=1}^n$ of Gleason parts of A and a continuous map τ_i of X_i to P_i for each i $(i=1, 2, \dots, n)$ with respect to the norm topology of A^* such that

$$(*) \qquad (\varphi f)(x) = \begin{cases} \hat{f}(\tau_i x), & f \in A \quad and \quad x \in X_i \quad 1 \leq i \leq n \\ 0, & f \in A \quad and \quad x \in X_0 \end{cases}.$$

- (c) Let X be a compact metric space. Then φ is a weakly compact homomorphism if and only if there are $\{X_i\}_{i=0}^n$, $\{P_i\}_{i=1}^n$ as the above (b) and a continuous map τ_i of X_i to P_i with respect to the topology $\sigma(A^*, A^{**})$ that satisfies (*) for each $i, i=1, 2, \dots, n$.
- PROOF. (a) If φ is a continuous homomorphism from A to B, then φ may be regarded as a continuous linear operator from A to C(X) and so there is a continuous map τ of X to A^* with respect to the topology $\sigma(A^*,A)$ such that $(\varphi f)(x)=\tau x(f)$ for $f\in A$ and $x\in X$ (cf. [1] [2] [9]). Here $\tau x\in M_A\cup\{0\}$ for any $x\in X$. In fact, we know that τx is a complex homomorphism of $A:\tau x(f_1f_2)=(\varphi f_1f_2)(x)=(\varphi f_1)(x)(\varphi f_2)(x)=\tau x(f_1)\tau x(f_2)$ for any $f_1,f_2\in A$. Conversely, if τ is a continuous map of X to $M_A\cup\{0\}$ such that $(\varphi f)(x)=\widehat{f}(\tau x)$ for $f\in A$ and $x\in X$, then it is clear that φ is a continuous homomorphism from A to B.
- (b) Let φ be a compact homomorphism from A to B. Then φ becomes a compact operator from A to C(X). So there is a continuous map τ of X to A^* with respect to the norm topology of A^* such that $(\varphi f)(x)=\widehat{f}(\tau x)$ for $f\in A$ and $x\in X$ (cf. [1] [2] [9]). In the same way as in (a), we see $\tau(X)\subset M_A\cup\{0\}$. Now let P_1 and P_2 be distinct Gleason parts of A. If m_1 is in P_1 and m_2 is in P_2 , then $||m_1-m_2||=\sup\{|m_1(f)-m_2(f)|:f\in A, ||f||<1\}=2$. Since $\tau(X)$ is compact with respect to the norm topology of A^* , there is a finite family $\{P_i\}_{i=1}^n$ of Gleason parts of A such that $\tau(X)\subset P_1\cup P_2\cup\cdots\cup P_n\cup\{0\}$. Here we put $X_i=\tau^{-1}(P_i)$ for $i=1,2,\cdots,n$ and $X_0=\tau^{-1}(\{0\})$. Then $\{X_i\}_{i=0}^n$ is a partition of X. If we put $\tau_i=\tau|_{X_i}$, the restriction of τ to X_i , for $i=1,2,\cdots,n$, $\{X_i\}_{i=0}^n$, $\{P_i\}_{i=1}^n$ and $\{\tau_i\}_{i=1}^n$ are what we need. The converse is clear.
- (c) Let φ be a weakly compact homomorphism from A to B. Then there is a continuous map τ of X to $M_A \cup \{0\}$ with respect to the topology $\sigma(A^*, A^{**})$ such that $(\varphi f)(x) = \hat{f}(\tau x)$ for $f \in A$ and $x \in X$. Now we have to show that $\tau(X)$ is contained in $P_1 \cup P_2 \cup \cdots \cup P_{n_0} \cup \{0\}$ for a finite family $\{P_i\}_{i=1}^{n_0}$ of Gleason parts of A. Suppose otherwise. Then there exist distinct Gleason parts P_n with $P_n \cap \tau(X) \neq \emptyset$ $(n=1, 2, \cdots)$. Take

 m_n in $P_n \cap \tau(X)$ and choose x_n in $\tau^{-1}(m_n)$, and thus we can obtain a sequence $\{x_n\}$ in X. As X is a compact metric space, there is a subsequence $\{x_n\}$ of $\{x_n\}$ such that x_{n_i} converges to some point x_0 in X. We can assume without loss of generality that x_n converges to x_0 . As τ is continuous, $m_n = \tau x_n$ converges to τx_0 . Since M_A is closed, τx_0 is in M_A . So τx_0 is contained in some Gleason part P_0 . Now we can assume that $P_n \neq P_0$ for $n = 1, 2, \cdots$ and $P_n \neq P_m$ for $n \neq m$. As m_n is in P_n and τx_0 is in P_0 , we may choose a family $\{f_n\}$ of functions in A such that

$$||f_n|| < 1$$
 , $\hat{f}_n(m_n) = 0$,

and

$$\hat{f}_n(\tau x_0) = 1 - \varepsilon_n$$
, $0 < \varepsilon_n < \frac{1}{n^2}$ $(n = 1, 2, \cdots)$.

Put $g_n = f_1 f_2 \cdots f_n$ in A. Then

$$\widehat{g}_{n}(\tau x_{0}) = (1 - \varepsilon_{1}) (1 - \varepsilon_{2}) \cdot \cdot \cdot (1 - \varepsilon_{n})$$

$$\widehat{g}_{n}(m_{i}) = 0 \quad (i \leq n)$$

and

$$||g_n|| < 1 \quad (n=1, 2, 3, \cdots).$$

As φ is weakly compact and $||g_n|| < 1$ for $n = 1, 2, 3, \dots, \{\varphi g_n\}$ is relatively weakly compact. Hence there is a subsequence $\{\varphi g_{n_k}\}$ of $\{\varphi g_n\}$ such that φg_{n_k} converges pointwise to some h in C(X) ([1]). We here have

$$(\varphi g_{n_k})(x_i) = \hat{g}_{n_k}(m_i) = 0$$
, $i \leq n_k$
 $(\varphi g_{n_k})(x_0) = \hat{g}_{n_k}(\tau x_0) = (1 - \varepsilon_1) (1 - \varepsilon_2) \cdots (1 - \varepsilon_{n_k})$.

Thus $h(x_i)=0$ for $i=1, 2, 3, \cdots$ and $h(x_0)=(1-\varepsilon_1) \ (1-\varepsilon_2) \cdots$, where $0<\varepsilon_n<1/n^2$. As $\sum \varepsilon_n<\infty$, $h(x_0)\neq 0$. But $h(x_i)$ converges to $h(x_0)$ and $h(x_i)=0$ for $i=1, 2, 3, \cdots$. This is absurd. So there is a family $\{P_i\}_{i=1}^{n_0}$ such that $\tau(X)$ is contained in $P_1 \cup P_2 \cup \cdots \cup P_{n_0} \cup \{0\}$. Next we show that $\tau^{-1}(P_i)$ is closed in X. Put $P=P_i$. Let a sequence $\{x_n\}$ be in $\tau^{-1}(P)$ such that x_n converges to x_0 . Then τx_n is in P and τx_n converges to τx_0 . As M_A is closed, τx_0 must be in M_A . So there is a Gleason part P_0 such that τx_0 is in P_0 . If P is different from P_0 , we can construct $\{f_n\}$, $\{g_n\}$ in the same way as above and this induces a contradiction. Consequently, x_0 is in $\tau^{-1}(P)$. When we put $X_i = \tau^{-1}(P_i)$ and $X_0 = \tau^{-1}(\{0\})$, $\{X_i\}_{i=0}^{n_0}$ is a partition of X. So (c) can be proved in the same way as in (b).

REMARK. Compact homomorphisms on disc algebras were discussed in [7].

Next we consider when weakly compact homomorphisms from A to B become compact. If A=C(Y), Y is a compact Hausdorff space, and B is a function algebra on a compact metric space, then P_i consists of a single point in Theorem 1.1.(c). So in this case weakly compact homomorphisms are always compact.

Let now A be a function algebra and P be a non-trivial Gleason part of A. A map ρ of a polydisc D^* (a disc if n=1) into P is said to be analytic if $f \circ \rho$ is an analytic function on D^* for all $f \in A$. We say that P has the condition (α) if P satisfies the following condition; (compare [6; Chap. 4, Theorem 18])

(a) for any x in P, there are some open neighborhood U(x) of x in P and an analytic map ρ which is a homeomorphism from a polydisc D^n ($n \ge 1$, n depends upon U(x)) onto U(x).

EXAMPLES. (1) Let A be the disc algebra or the polydisc algebra $A(D^2)$. Then any non-trivial Gleason part for A satisfies (α) .

(2) Let Γ be the unit circle in C and X be the cartesian product of Γ and I=[0,1]. Let A be the function algebra on X generated by polynomials in t and z, where $t \in [0,1]$ and $z \in \Gamma$. Then any non-trivial Gleason part for A has the property (α) .

THEOREM 1.2. Suppose A is a function algebra and any non-trivial Gleason part P for A satisfies (α) . Let B be a function algebra on a compact metric space X. Then any weakly compact homomorphism from A to B is compact.

PROOF. Let φ be a weakly compact homomorphism from A to B. Then, by Theorem 1.1.(c), there are a partition $\{X_i\}_{i=0}^n$, a family $\{P_i\}_{i=1}^n$ of Gleason parts of A and a continuous map τ_i of X_i to P_i with respect to the topology $\sigma(A^*, A^{**})$ for each $i \ge 1$ which satisfies (*) in Theorem 1.1.(b). Now if it would be showed that the identity map ψ of P_i onto itself with respect to the norm topology of A^* is continuous, φ should be compact by Theorem 1.1.(b). Hence we only show the continuity of ψ . Let $P=P_i$ be the non-trivial Gleason part and m_0 be in P. By (α) , there are a neighborhood $U(m_0)$ and an analytic map φ of P onto $U(m_0)$ that is homeomorphic. Since $\varphi^{-1}(m_0)$ is in P, for any $\varepsilon>0$ there is a neighborhood V of $\varphi^{-1}(m_0)$ in P such that

$$|f(z)-f(\rho^{-1}(m_0))| < \varepsilon$$

for any $z \in V$ and any function f which is analytic on D^n with ||f|| < 1. Here $\rho(V)$ is a neighborhood of m_0 in P and for any $m = \rho(z)$ in $\rho(V)$

$$||m-m_0|| = \sup \{|\widehat{g}(m)-\widehat{g}(m_0)|: g \in A, ||g|| < 1\}$$

 $\leq \sup \{|f(z)-f(\rho^{-1}(m_0))|: f \text{ is analytic on } D^n, ||f|| < 1\}$
 $\leq \varepsilon$.

Hence ψ is continuous.

Let X be a metric space or a locally compact Hausdorff space. By $C_k(X)$ we denote the topological algebra of continuous functions on X with the topology of uniform convergence on compact subsets in X. Let φ be a linear operator from a normed space E to $C_k(X)$. Then φ is compact if and only if there is a continuous map τ of X to the dual space E^* of E with the norm topology such that $(\varphi u)(x) = \tau x(u)$ for $u \in E$, $x \in X$ ([2], [9: Theorem 1]). We obtain the following in the same way as in the proof of Theorem 1.1.

COROLLARY 1.3. Let φ be a linear operator from a function algebra A to $C_k(X)$. Then φ is a compact homomorphism if and only if there are a partition $\{X_i\}_{i=0}^n$ of X, a family $\{P_i\}_{i=1}^n$ of Gleason parts for A and a continuous map τ_i of X_i to P_i (with respect to the norm topology in A^*) for any $i \ge 1$ which satisfies (*) in Theorem 1.1.(b).

§ 2. Examples of compact homomorphisms on function algebras.

(1) Restrictions to Gleason parts.

Let A be a function algebra and P be a non-trivial Gleason part of A. For any f in A, we define $\varphi f = \widehat{f}|_{P}$. Then the linear operator φ from A to $C_k(P)$ is a continuous homomorphism. We assume that P is metric or locally compact as a subspace of M_A and m in P has a unique representing measure.

THEOREM 2.1. Suppose P satisfies the assumptions above. Then φ is compact if and only if there is an analytic map of a unit open disc D onto P that is homeomorphic.

PROOF. If there is an analytic map of D onto P that is homeomorphic, the identity map i of P onto P with the norm topology of A^* is continuous as in the proof of Theorem 1.2. Now $(\varphi f)(x) = \hat{f}(x) = \hat{f}(i(x))$ for $f \in A$ and $x \in P$. By Corollary 1.3, φ is a compact homomorphism from A to $C_k(P)$. Conversely, assume φ is compact. Since m in P has a unique representing measure, there is an analytic map ρ of D onto P ([3: Chap. 6, Theorem 7.2]; [6: Chap. 6, Theorem 24]). So it is sufficient to show that ρ is homeomorphic. For s, $t \in D$, let

$$||t-s|| = \sup \{|g(t)-g(s)|: g \in A(D), ||g|| < 1\}$$

where A(D) is the disc algebra. For $m_1, m_2 \in P$, we put

$$||m_1-m_2|| = \sup\{|\hat{f}(m_1)-\hat{f}(m_2)|: f \in A, ||f|| < 1\}$$
.

Then the following is proved (cf. [5]):

$$\|\rho(t)-\rho(s)\|=\|t-s\|$$
 for $t, s \in D$.

As φ is compact, there is a continuous map τ of P to $M_A \cup \{0\}$ with the norm topology of A^* such that $(\varphi f)(x) = \widehat{f}(\tau x)$ for f in A and x in P. On the other hand, $(\varphi f)(x) = \widehat{f}(x)$. It implies $\tau x = x$ for x in P and τ is the identity map. So the map τ of P onto P with the norm topology of A^* is continuous. Thus by this and the isometric property of ρ , ρ^{-1} is continuous and ρ is a homeomorphism.

(2) Composition operators on $H^{\infty}(D)$.

We here consider compact composition operators on $H^{\infty}(D)$ as an application of §1. Let D be a domain in C and $H^{\infty}(D)$ be the algebra of bounded analytic functions on D with the supremum norm. We assume that the functions in $H^{\infty}(D)$ separate points on D. For an analytic function ϕ from D to D the composition operator C_{ϕ} on $H^{\infty}(D)$ is defined by $C_{\phi}(f) = f \circ \phi$ for $f \in H^{\infty}(D)$. A composition operator C_{ϕ} is a continuous homomorphism on $H^{\infty}(D)$. Let M be the maximal ideal space of $H^{\infty}(D)$. Then $H^{\infty}(D)$, the image of $H^{\infty}(D)$ by the Gelfand transform, can be regarded as a function algebra A on M. So C_{ϕ} may be considered as a continuous homomorphism from A to A. We deal with the case where C_{ϕ} is compact. Suppose C_{ϕ} is compact. It follows from Theorem 1.1(b) that there are a partition $\{X_i\}_{i=0}^n$ of M, a family $\{P_i\}_{i=1}^n$ of Gleason parts for A and a continuous map τ_i of X_i to P_i equipped with the norm topology of A^* such that $C_{\phi}(f)(x) = f(\tau_i x)$ for $f \in A$, $x \in X_i$ $(i \ge 1)$ and $C_{\mathfrak{p}}(f)(x)=0$ for $f\in A$, $x\in X_0$. Since $\{X_i\}_{i=0}^n$ is a partition of M and M is a connected set, $X_i = M$ for some i. It is clear that i=1, since $H^{\infty}(D)$ contains the constant function 1. Put $\tau = \tau_1$ and $P = P_1$. Then $f(\phi(x)) =$ $C_{\phi}(f)(x) = f(\tau x)$ for $x \in D$ and $f \in A$. From this $\phi(x) = \tau x$ for $x \in D$. So we have that $\phi(D) = \tau(D) \subset \tau(M) \subset P$. Hence we obtain the following.

THEOREM 2.2. C_{ϕ} is compact if and only if ϕ can be extended to a continuous map τ from M to P with respect to the norm topology of A^* .

PROOF. The "only if" part of the theorem was already proved.

Conversely, if ϕ can be extended to τ from M to P, we put $T(f)(x) = f(\tau x)$ $(x \in M, f \in A)$. Then T is a compact homomorphism from A to C(M). Since $M \supset D$ and $T(g)(x) = g(\phi(x)) = C_{\phi}(g)(x)$ $(x \in D, g \in H^{\infty}(D))$, C_{ϕ} is a compact homomorphism from $H^{\infty}(D)$ to $H^{\infty}(D)$.

Next we take a domain D in the Riemann sphere S^2 . Let $H^{\infty}(D)$ be the algebra of bounded analytic functions on D. We assume that $H^{\infty}(D)$ contains non-constant functions. Theorem 2.2 remains true in this case. The fiber M_{λ} over $\lambda \in \overline{D}$ consists of all homomorphisms $m \in M$ such that $m(f) = f(\lambda)$ for all $f \in H^{\infty}(D)$ which extend analytically to a neighborhood of λ . The fiber M_{λ} is a peak set for $H^{\infty}(D)$ if there is some $f \in H^{\infty}(D)$ whose Gelfand transform \widehat{f} is equal to 1 on M_{λ} while $|\widehat{f}(m)| < 1$ for all $m \in M \setminus M_{\lambda}$. See [4] for details on fibers.

From Theorem 2.2, we have the following (cf. [8]).

COROLLARY 2.3. Let the fiber M_{λ} is a peak set for $H^{\infty}(D)$ for any λ in the boundary ∂D of D. Then C_{ϕ} is compact on $H^{\infty}(D)$ if and only if $\phi(D)^{-} \cap \partial D = \emptyset$, where $\phi(D)^{-}$ is the closure of $\phi(D)$.

PROOF. It is evident that $D \subset P$. It is not hard to see that D = P from the assumptions of the corollary. From this $\phi(D) = \tau(D) \subset \tau(M) \subset P = D$. So $\phi(D)^- \subset \tau(M)$ since $\tau(M)$ is compact in D. The converse is clear.

References

- [1] R.G. Bartle, On compactness in functional analysis, Trans. Amer. Math. Soc., 79 (1955), 35-57.
- [2] R. E. Edwards, Functional Analysis, Theory and Applications, Holt, Rinehart and Winston, New York, 1965.
- [3] T. W. GAMELIN, Uniform Algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969.
- [4] T. W. GAMELIN and J. GARNETT, Distinguished homomorphisms and fiber algebras, Amer. J. Math., 92 (1970), 455-474.
- [5] K. Kishi, Analytic maps of the open unit disk onto a Gleason part, Pacific J. Math.,63 (1976), 417-422.
- [6] G. M. Leibowitz, Lectures on Complex Function Algebras, Scott, Foresman, Glenview, Ill., 1970.
- [7] Z. SAWAŃ, Compact homomorphisms on C(S), Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 24 (1976), 157-161.
- [8] D. W. SWANTON, Compact composition operators on B(D), Proc. Amer. Math. Soc., 56 (1976), 152-156.
- [9] J. Wada, Weakly compact linear operators on function spaces, Osaka Math. J., 13 (1961), 169-183.
- [10] J. WADA, Homomorphisms on function algebras, Sci. Res. School of Education, Waseda Univ., 26 (1977), 15-21 (in Japanese).

Present Address:
DEPARTMENT OF MATHEMATICS
SCHOOL OF SCIENCES AND ENGINEERINGS
WASEDA UNIVERSITY
NISHIÔKUBO, SHINJUKU-KU, TOKYO 160
AND
DEPARTMENT OF MATHEMATICS
SCHOOL OF EDUCATION
WASEDA UNIVERSITY
NISHIWASEDA, SHINJUKU-KU, TOKYO 160