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Introduction
Appell’s hypergeometric function F(a, 8, v, ¥'; @, ¥) is defined by

F(a, 8, 7,7, @, y)= > — % mtm)(B, min)

mn=o (7, m)(Y', n)(1, m)(, n)

x"lyﬂ
where (a, k) denotes the factorial function;
(@, k)=I(a+k)/[(a) .

We assume v, v'#0, —1, —2, --- throughout this paper. This power

series converges in the domain {(x, ) € C%; Vx]+1Ty]<1} and satisfies
the following system of partial differential equations.

r(l—x)r —y*t—2xys+[v—(a+ B+ xlp—(x+B8+1)yg—aBz=0
(F)
Yyl —y)t—a*r—2xys+[v' —(a+B8+1)ylg—(a+B8+1axp—aBz=0 .
Where z is the unknown function and

_ 0z q= 0z . _ 0% g 0%z t:azz.
ox’ oy’ ox?’ oxdy’ oy

p

This system (F),) is equivalent to a completely integrable syStem of linear
differential equations of rank 4 whose coefficients are rational functions
with poles only on L=L,UL,UL,UC and A in P? where

L,={x=0}, L,={y=0}, L,=line at infinity
C={x—y)—2x+y)+1=0}, A={x+y=1}.
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As we prove in §1, A is an apparent singularity, i.e. any solution of
the system (F,) does not branch at A. Hence we have the monodromy
representation:

o 77.'1(P2—L, Po)""_>GL(4’ C) ’

where =, (P*—L, P,) denotes the fundamental group of P*—L with base
point P,.

In this paper, we calculate the generators p(v,), 1=1,2, 3 of the
monodromy group, where v, i=1, 2, 3 are the generators of =,(P*—L, P,),
which is thoroughly investigated in the appendix.

The monodromy representations of the Appell’s hypergeometric
equations (F), i=1, 2, 3 are calculated explicitly by several authors. They
made use of the Appell’s integral representations whose integrands are
power products of linear functions. For this kind of integral, the
fundamental method of calculating the monodromy is known ([3]). System
(F) has no such integral representation. We make use of Aomoto’s
integral representation whose integrand contains a power of a quadratic
polynomial.

During the author was preparing this paper, he was informed that
Prof. K. Takano was calculating the monodromy group of (F,) by quite
a different method.

Finally, the author wishes to express his grateful thanks to Prof.
K. Aomoto for suggesting this problem and for his patient encouragement.

Throughout this paper we use the notation:

e(a)=exp(2myv —1a) .
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§1. Preliminaries.

The system (F,) is equivalent to a completely integrable system of
differential equations of the form:

(F) d

z
P=w
q
8

w N W N
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where w=(w;;) is a 4x4 matrix of rational 1-forms which have poles
only on LU A.

LEMMA 1. A is an apparent singularity.

ProOF. Let D={(u, v) e C* uv+0}. =: (u, v)— (x, ¥)=U? v*) gives a
covering D—P*—L,UL,UL,. Let (F,) be the pull back of the system
(F,) to D:

vt —2uvs [y~ L L)L
1 —ub)r —v*t—2uvs I:'y 5 (a+,8+2)u up
1 —
2(a+,8+—é—)vq—4aﬁz—0
(F)
(l—vz)t—-uz'r——zuvs—[v’——1———<a—|—,8+}—)'v2]-lq
2 2/ v
_ 1\, . _ -
2<a+5+—2—>up 4aBz=0
where z is the unknown function and p=0z/ou, ¢=0dz/ov, r=02fou’,
8=20%2/0uodv, t=0%2/0v".

An easy calculation shows that the characteristic variety I of (ﬁ'.,)
is given by

L=U{m,v)eD; sutev=1}.
g;=%1
Hence, by the theorem of Bernstein-Sato ([5]), any solution of the system

(FL) is holomorphic on D—L. Since 7(L)=C, the lemma is proved.

PROPOSITION 1. Any solution of Lauricella’s hypergeometric equation
(F,) (see [4], [T]) of m wariables is holomorphic on P*—L where

L= Q {,=0} U {line at infinity}UC
C= yl{gstl/:a:l} .

The proof is analogous to that of Lemma 1.

§2. Integral representation of F\.
Put
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M=B=Y, M=B—7, M= —a, =747 —8—2
h‘;: _(h1+kz+)ls+2k4) .
We pose the following assumtion throughout this paper:

ASSUMPTION. :

D MM+tMmEZ 15155, 1=55#355.

ID AN +HN, 20+ A+ N, AN +20 8 Z
where 7, j=1, 2,5 and 7+#j.

PROPOSITION 2. (K. Aomoto) For sufficiently small x, y, we have
2.1 Fya, B, v, 7; 2, y):(_l)ﬁ—r—2r’8in n(B—")
T

Ir'(v-()
I'y—v"-p—-1)

where d={(u, v) e B*; 0<u<1, 0=v, u+v—uv=0}.

S S'“" T Tl —zu —yv)"*(u+v—uv) - 2dudv ,
4

Proor. By the assumption posed above, we can regularize the right
hand side in Hadamard’s sense by taking a suitable cycle 4, disjoint
from the singularities (see [1]). Hence we have the estimates on 4..,:

|ub-rtmypb-rin | < Kmx K m,n=0,1,2, ---
For some positive constants K,, K,. Substitute the expression
1—z2u—yv)—*= S Mw" U™ o"
o= 2, myt,

in the integrand. On account of the above estimates, we can interchange
integration and summation so that

S Sup—r',,p—r(l —2u—yv)~*(u+v—uv)* 7 dudv
4

= 3 (a, m+n) . nSSup—r'+m B=1+8(gy 4 v — uw) 7 =2 dudy
wieta (L, m), m) ¥ vt )

Areg
On the other hand we have

g S ub-TmpbTEn(y - —uw) A tdudy
dreg

= (—1)rter-s al'(v+v'—B—-1) . (B, m+n)
sin t(B—NI'(MNIL@') (v, m)(', n)

which completes the proof.
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Next we shall transform the domain of integration 4.,. We shall
use the following notations:

Uu, v) =uwv*(1 —xu —yv)s(u +v —uv)™

w=dU/U

S={(u, v) € C*:U(u, v) =0}

X=C*-S, Y={u=1}nX

X=P? §=SU{line an infinity}

X p(resp. S;)=real parts of X(resp. S)

V,=d+®: Gauss-Manin connection attached to w.

S,: Local system defined by many-valuedness of U.

S_,: Dual local system of S,.

6: (X —S, x;)—C*: The characteristic homomorphism of
S_., wWhere z, is a certain fixed point.

3,: Boundary operation of homology groups of X —8 with
coefficients in S_,.

H*(X,7,: De Rham rational twisted cohomology group (see [2]).

H.(X, S_.): Homology group with coefficients in S_,.

By the comparison theorem of Deligne-Grothendieck (see Theorem 6.2
in [6]), we have the duality:

2.2) H(X,S_,)xHYX,rV,)—C
e $p—\ U-#
(2.3) H(Y, S_ol) X H{(Y, | )—C

@, vy—| Ulrv

where |, denotes the restriction to Y.
In the following, we shall take (x, y) € P*—L.

LEMMA 2. dim, H,(X, S_,)=4, dim, H(Y, S_,|»)=1.

PrROOF. Since X has a finite simple covering, we have

> (—1)dim, H(X, S_,)=XX),

iM-

where X(X) denotes the Euler characteristic of X. Due to the vanishing
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theorem of Aomoto (Theorem 4.2 in [2]), we have
HYX, 7,)=0, i#2 .

One can easily check that X(X)=X(P?)—X(S)=4. Latter claim is analo-
gously proved.

The vanishing theorem of Aomoto gives the following commutative
exact sequence (coefficients are omitted):

0— HV) I8 1 (%, ¥)—s H'(X)—0

(2.4) 12 o ]2 ,2

0—H(Y)——HyX, Y)—Hy(X)+—0,

where (7,), and (d,), are the canonical homomorphisms of relative exact
sequence. Let ¢, ¢, ¢, ¢, be a basis of Hy,(X, S_,). In view of the above
exact sequences, we can take ¢, :---,¢, and ¢,=4,,, as a basis of the
relative homology group H,(X, Y, S_,).

Put
é=du Adv ¢=id’_"_&d_” _ —vduAdu
(2.5) 1 T l—mu—yo' T 1—zu—yv
. _ wvduAdv |, _ p )
T u—yo P U

where y is a basis of HY(Y,7,|s).
éy, -+, ¢, is a basis of H¥X, F,) provided that (x, y)¢ LUA .

In fact we have

Usp=F, Ug, = 3F4’ Ugy— oF, ,
2.6) R aFS . o

ozoy
LEMMA 3. For any (z, y)€ LUA, ¢, ¢,, ¢, 1, #s form a basis of
HX,Y,V.,).

PROOF. We may take ¢, to be rational with respect to (u, v, x, ¥).
First we note that ¢, ---,4, can be seen as elements of H¥X, Y, /,)
naturally and that they are linearly independent. Suppose we have, in
HYX, Y,V.),
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&= Q1@ + QP + AP + AP,

where «,, ---, a, are rational functions of « and y. The integration over
the cycle ¢;=4.., gives

(2.7) o.F,+a, oF, +a, oF, +a, e =S Ug, .
ox 0y 0xoy °p

In view of (2.4), the right hand side can also be regarded as the
duality between HYY,V,|y) and H,(Y, S_.|¢):

(2.8) S Ug,= Cte X y*sx Swu‘2< z—1 ——u)zadu .
cg 0 Y

Restricting to y=c¢ with ¢+0, 4, the left hand side of (2.7) does not
branch at =1 as we saw in §1. But the right hand side does. This
gives a contradiction. ‘

PROPOSITION 3. There exists certain constants K;, j=1, ---,4 such
that

(2.9) | vs=3K.x| vs,15i=4.
cp J=1 cj
PROOF. The column vector

(] oe, | v8)

ceH(X, Y, S_.)
satisfies the following system:

dY,=w-Y,,

where @ denotes a rational matrix 1-form of z, y of the form:

4 1

&,’_(a) 0>4
“\0 o/ 1.

(1,080 - o) =(1, 08\ U8)

Therefore, t(g Ug,, ---, S U¢4> is a linear combination of the fundamental
°s oy

Hence we have
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system of solutions:
t(Sc,U“’h LU@) , 1sisd.

§$3. Construction of cycles attached to certain fibering of X.

In the following, we shall assume that (x, y) € P2—L is real.
Since X,—S; is simply connected, we can define the regularization
of cycles of the relative homology group:
3.1) Z(Xz, Sz, C)—> Z,(X~§, S_.)
(relative cycles) (twisted cycles)

and the map reg,:

(3.2) H(Xz, Sz, C) 2% H(X -5, S_,) (see [1]).

DEFINITION 1. The image of the map reg, will be called the group
of real cycles and any other cycles will be called imaginary cycles.

PROPOSITION 4. Let
{(u, v) € C* 1—zu—yv=0N{(u, v) € C*% u+v—uv=0}

be real. Then we have the exact sequemnce

H(Xz, Sz, C) 2% H(X -8, S_,)—0.

To prove Proposition 4, we first construct a fibering X—S—B. Let
B be a projective line in P* which passes through the origin P, and the
contact point P, of C and L,, B does not pass through the other
singular points of L (see Figure 1). We set P,=(B—-P)NC. We take
real base point P,=(x,, ¥,) in B between P, and P,. We set

B=B—{(P, P}.
For any (z, y) € B, put (see Figure 2)
F(z, y)={(u, v)e X—S, 1—2u—yv=0} .

Finally, define the map p: X—S—B by p(u, v)=(x, y) if (u, v) € F(z, y).
We note that P, 1=0, 1, 2, 3 are real and the singlar fibres are located
on P, and P, v .

We may suppose, by suitable coordinization, P,=« and P,, i=1, 2, 3



MONODROMY GROUP 43

are located as in the following Figure 3:

line at
infinity  #=0 utov—ur=0

1 —xou—yov=0

_ ¢ ¢ 3¢
/\—/\”:0 b, P, P; real line

FIGURE 1 FIGURE 2 FIGURE 3

We set

F, y)n{v=0}=gq,, F(x, ) N {u+v—uv=0}={g, g5}
F(z, y)N{u=0}=gq,, F(z, y)N{line at infinity}=gq,,

where F(x, y) denotes the closure of Fi(z, %) in X. Note that all of
F(x, y) have one common point q,.

Next we construct a Lefschetz type cell decomposition of X—S com-
patible with the above fibring p: X—S—B. We take a cell decomposition
of B as follows.

3
B=4,U4 UULUPUP,

4.(4_)=upper half plane (lower half plane),
I.;=(Pi, P.,;+1) 'I:=0, 1, 2, 3 ’ Where P4=P0 .

By choosing suitable coordinates of X—S, we may suppose ¢, is a
point at infinity on every F(x,y) and gq,, - -, ¢, are as in the following
Figure 4 for (x, y) € I:

c
. J

T q: as 91+ real line Q1 1 q4+ real line
a

FIGURE 4 FIGURE b

We take cell decomposition of F'(x, ) as follows:

F(z, 1)=5,U8_U UL, @, el
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(8.3) 0.(resp. 6_)=upper half plane (resp. lower half plane)

l;=(q, 9:+) , where g¢;=gq, :
F(m) y)=5:|- U 5'— U llbU lMU labU lba UO, (x; y) € I2

(8.4) 0% (resp. 4_)=slitted upper half plane (resp. slitted lower half plane)
lh=(qy, 9), li,=(o, q,) ,
lav=(qs, 0) or (g;, 0)=slit in the lower half plane
Le=(0, ¢;) or (o, g¢;)=slit in the lower half plane
o: middle point of the segment g.qg,.

Notice that o is a real fixed point provided that (z, y) € I,. We can define
the unique cell decomposition of X —S compatible with (3.3) and (3.4).

PROOF OF PROPOSITION 4. Let (x, Y¥)=(x,, ¥o)=P, be as above. We
shall observe the boundary operation in detail. We have

1) 0=0,(I,x 8.:)=I,% 30, +0I,x 5,
2) 0=0,(4.x1)

in H(X, S_,). Since oI,=P,, 6I,= —P,, putting ¢=1, 3 in 1), every 2-cycle
of type P,xé. is a linear combination of cycles of type I;x1l,, i.e. real
cycles. We have only to show the following four imaginary cycles can
be written by linear combinations of real cycles:

Iz X {llb_lab} +-[3 X ll, Iz X {l]_b + lbc} +I3 X ll 9
L X {ly—le}+ I by, Lx {Ly+ L} + I x 1, .

Putting 7=1, 8 in 2) and noting that the imaginary cycle appears only
once in each formula, we obtain the desired expressions.

REMARK. For general S defined over R, Proposition 4 is not always
true. For example, for

Uu, v)=@’+v°—1)u*,
put S={U(u, v)=0}, then we have
dim; Hy(Xy, Sz, C)=4, and dim,H,(X-S, S_)=6.

Now we specify a basis of real cycles {c, ¢, ¢, ¢} for Py=(x,, ¥,)
as in the following figure: (The other real cycles are also numbered.)
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Cs u
Ciz €1

1 —xou—yov=0

FIGURE 6
PROPOSITION 5. ¢, ¢,, G, ¢, 83pam the homology group H,.(X, S_,).

PrOOF. By Proposition 4, it suffices to show ¢, ¢, ¢, ¢, actually span
the real cycles. Let b be the curve in F(z, y), (x, ¥) € I, as in the following
figure.

b BN

‘—‘/l‘\ /.\/l\f;\g

FIGURE 7

Since b is homotopically zero in F'(x, ¥), we have

0=I, X {(A—e(n + 20+ Ng + M)+ (1 —e(Ny -+ A+ 0+ ),
+ (1 - e(kxl + Xa + Nb))ls + (1 - 8(7\.3 + k5))l4} -
Hence
- 1
6(7\13 + )m) - 1
+ (1 —-6(7\.1 + kia + X5))02} .

(3.5) 05 {(1 —6(7\.1+27\.4+7\a3+7\.5))61+ (1 —6(7\.1+7\:4+7\a3+?\.5))03

By the same way, we have

_ 1
6(7\01 + 7\:2 + 2)04) - 1

+ 1 —e(n))e:} .
Fibring by linear pencils through the origin and by the same argu-

ment as above, we can show that ¢, ¢,, are linear combinations of ¢,
i=1, ---, 4. Fibring by linear pencils parallel to {v=0} (resp. {u=0}), we

(3.6) Co {A—e(n+20))e,+ (A —e(n +Ny))es
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can show that c,, ¢,(resp. ¢, ¢,;) are linear combinations of c;, c,,(resp. ¢, ¢.,).

S§4. Monodromy group with respect to {c,, ¢, ¢, C,}.

In view of Proposition 5, for the calculation of the monodromy group,
it suffices to observe the variation:

o:m(P*—L, P)— Aut H(X, S_,)

with respect to the basis {c, c., ¢, c,}.

We define v, ex,(P*—L, P,) i=1,2, 8 as follows (see Figure 8).

Put &,=w,=y, and take a small positive number ¢, such that 0<¢, <é&.
i) 7=l[r,-0,-t7"] ([7v] denotes the homotopy class of the loop v) where

7, a segment g, <xr=<e¢, on y=¢, joining x=¢, to x=¢,,
0,: a circle r=¢,* with 0<6<27 on y=s,.

i) v.=[r,-0,-77"]
where

7, a segment ¢, SyY=¢, on r=¢, joining y=¢, to y=¢,,
o,: a circle y=¢, with 0<0<27 on z=¢,.

i) vs=[rs-0,5-757]
where

Ts: a segment sogx(=y)§%—sl or x=y joining x(=y)=¢,

to x(=y)=%——sl,

. . 1/ _ 1) _ 0

g,.  a circle x——4— —y—-z = —¢g,e with 062 .
y
)7

V‘C P, \(-’B“~y)2—2(x+y)+l=0

—

Ve

FIGURE 8
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Yy Yoy Yo actually generate w,(P*—L, P,) .

For the proof, see Appendix.

Now we calculate the monodromy group with respect to the basis
{e,, ¢, ¢s, ¢} by the method of F. Pham’s generalized Lefschetz principle
(see [3] and [8]).
I) Variation along 7,.

c;—re(— (Mt ))ey

Co—>C,

Cs— €5+ (€(Ng) — 6(Ng + Mg+ Mg+ Ag))Cs + (€0 1) — (Mg +Ns N+ N5))Cs
co— €+ (€A + Mg+ M) —€(Ny)) 1+ (€ + Ny ) —€(Ng + No))Cs

Using the formula (3.5) in the proof of Proposition 5, we get

e(—(+2y) 0 0 by, M)
(€1 €y Cs, Cy) 0 1 e(—n+r))L—e(M) hs(hgy Xp)
—> (€4, gy Csy Cy) 0 0 e(— () Bs(M1y Ne)

0 0 0 1

where

_ eOuw)(e(n) —1)(e(—2) —1)
hl(k'ly 7\'2) 6(7\,1 + 7\'2 + 2)\'4) _ 1
ey 20 (e(h) =D (A —e(\y))
6(7\.1 +N2 + 2)\:4) - 1
_ Q) (e0v) =11 —e(hy +2))
[ NOWBWES Py :

kzo\'n 7\'2) =

II) Variation along v,.

C;—C

c;—e(— (At NJ))e,

Cs—> s+ (1 — €Ay + s+ Np)) 02+ (1 — (s 4+ N5))Cs
ei— ¢4+ (e(Ay +Ng) — 1) e+ (e(Ns) — 1) -

Using the formula (3.6) in the proof of Proposition 5, we get

1 0 e(—A)—1 en)hs(Ngy Ny)
(Cy, Cay Csy Ca) 0 e(—(+N) 0 e(— Ny (Nzy M)
—(C1y €5 C5, C) | 0 0 e(— N +Ny) Bg(Ney A1)

0 0 0 1
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III) Variation along 1+,.

1 0 0 0
(cly 62; ca, 04) 0 1 0 0
—(cy, €, Csy €,) 0 0 1 0

—e(Ns) —e(MtN) e(d)L+e(n)) — e(As+2\,)

THEOREM. The monodromy group of the system (F,) with respect

to the fundamental system of solutions ‘(S Ug,, -- -,S U¢4), 1=1<4, s
d d
generated by ‘ ¢

[e(—(\+0) 0 0 JiA, Ns)
(7= 0 1 e(—n)—1  fildy, M)
o 0 0 e(—0u+n)  filhy M)
L0 0 0 1,
(1 0 e(—A)—1  filhgy \y)
(7= 0 e(—(n+Ny) 0 Jilhgy Ny)
P= 0 e(—MHN) Sl M)
0 0 0 1,
-1 0 0 0
0 1 0 0
p(7s) = 0 0 1 0
L—e(Ns)  —e(Ns) e 4+e(N))  —e(a+n)d,
where
— e)(e(hs) —1)(e(—ny) —1)
Jilhgy No) = €O+t ) —T
— e +20)(e(Ms) —1) (A —e(N\,))
Fius 2= e+ +21,) —1
— e t+2)(e(n) —1)(1 — e(M\+2Ay))
.fs(x'ly )"2) - e()q +):2 + 2%4) _ 1
and '

d‘=6i, 7: ¢ 2’ d2=6(—7\,4)02 .

Appendix

In this appendix, we shall show that v, v,, v, generate n,(P*—L, P,)
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and satisfy the following generating relations:
ViYa= VeV, (VeY8)*= (V570 (V27a)*=(Vs72)*

which define an Artin group of rank three of infinite type. We shall
use the pencil section method of Zariski-Van Kampen ([9]). In the
following, the elements of the fundamental group will be identified with
their representative loops.

We take a linear pencil 4, passing through the point P, such that
{xr+y=0}N4,=¢. By suitable coordinization of {x+y=0}, we may suppose

Ao, 4., are tangents of C,

A,_,, 4., pass through L,NC and L,NC respectively,
Ao,y Aoy are parallel to L, and L, respectively,

A., passes through the origin (see Figure 8),

and
o LA, <O <y <o, <<y, (@, <0<ay) .

Let 7:C*—L,U L,UCU 4,—C—{a,, i= —2, - - -3} U {0} be the map defined
by w(x)=¢ for z € A, (¢ is uniquely determined by z). Then we have a
fibre bundle

(C*—L,UL,UCU 4, &, C—{a,;, i=—2, ---, 3JU{0}) .

We take special generators of =, (C—{a, t=—2, ---3},0) as follows
(see Figure 9):
Go=T0" 00 Ts ", 0:=(To* 05 *T1)- 01+ (To° 05 *T) ™",
g:=(To* 05 T, T7 *T2)* 02" (To* 06+ T1°07 *Ta) ™
gs=(To'a;‘71'0;’72'0;’78)‘03'(70'0‘0—’T1'0'1_'Tz'0';°7»'s)»—1 ’
g1=T_4'0_1*T 1, §_»= ('z'--l‘a'i1"lv'—-2)'0'—2'('l'—l""il"z'—'2)“1 ’

where

z_, is the segment from 0 to a_,—¢,
r_, is the segment from a_,+¢ to a_.—¢,

of (resp. o7), i=—2, .-+, 3, is the upper half circle (resp. lower half
circle) around a; with radius ¢ which is oriented counterclockwise, and

o,=0o7-0f,1=0, o,=0f-07, 1<0.
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Aa2 A‘,,1
A
a3
A %
A,
Ny
A, .
~ \\X \' \ o
A, Aay
FIGURE 9
o_, a_, () gy a2 ()

FIGURE 10

- We take ¢, sufficiently small and positive, and take the generators
Py Pay tay Moy 15 Of Ti(Ae,— A N L, P,) as indicated in Figure 10 (we may
suppose, by suitable coordinization of 4,, P,=1" —1c in 4. for any g),

Y.: a loop enclosing counterclockwise only 6,=4,,NC

#:: a loop enclosing counterclockwise only 0.=4,,NC with 6,<6,
Ys: a loop enclosing counterclockwise only 6,=4. NL,

#: a loop enclosing counterclockwise only 0.=4,,NL,

#: a loop enclosing counterclockwise only Oy=A.,N L,.

Each g, defines an automorphism (9)s of w(d;—A.NL, P). By the
theorem of Van Kampen ([9]), relations

1) Boyo o Py f0 - pts=1

2) (gt)*(#i)z-#h .7:: 1: <o, 5,
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are the generating relations of 7(P,—L, P)). For the computation of 2),
we take the generators puk=—2, ..., 8 of n(4.—A4.NL, P) for tez,,
with g =pu{"=p; as indicated in Figure 10. We shall compute

A) connection relation, namely, the relation of y; and ©nP,

B) local monodromy relation, namely,

(9 (") =2 .

i) local monodromy relations

(90)o ()= (ot ) e (pto ) 2
(90) () = (2t45) (2o ts) "
(90)« (1) = (L) ot t) "

i.e.,
(pepts)* = (F‘s!‘z)zy Palls= Lottty «

connection relations

P =ty 57 = 057 o, 150 = (Patts) " (ptaty), (0 = pet gty i = pa,.
Using local monodromy relations, we have
0=ty 157 = 057 Mttty 150 = oot (0= phy, g0 =gty .

ii) local monodromy relations

(90) o (£3") = (24" 1150 11 (1o )
(904 (2587) = (152 150) 11 (e p2)

i.e.,

. #él)pa(l)=#él)#§1) .
Using the relations in i), we get

Pttt = Psploft 15
connection relations
IS, = o, (= et P =g, P =

iii) local monodromy relations

(92)x (£452) = (142 802 1252 (4 o)~
(90)x (157) = (1457 67 12 (e o) 2
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Using ii), we have

(657 oo ts)" = (Pt t5™ Uafts)” -

connection relations

P = g, 18P = (ptpte) " ta(Palts), 10 = tallolts™, PO =ty
F‘z(sS) = U5 11“2#34“5(93_ 1#2)“3)‘1 .

iv) local monodromy relations

(99) 5 (42) = 12 037 (1)~
(99)x (#és)) = F‘{B) .

Using iii), we have

Hslhslly = Pollslls -

v) local monodromy relations

(9-2) (1) = (U8 (1 28) ™"
(-0« (28) = (Mt tu(ist) ™

i.e.,

Hoslls= [Lulls -
connection relations
piP=p,, i=1,.:-,5.
vi) local monodromy relations

(9P = (i~ a2V~ (ot~ )
(9-Da (i) = (i P i ()

Using v), we have

(P‘zfﬁ)z = (#4#2)2 .

Now we shall simplify the above relations by using g e 00,=1.
We can easily see that iii) is equivalant to

iii’) ()= (Pst)” -

Using i) and iv), we have

Lttt =1 .
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Hence
) t= (st feft)™
**) M= ()7 i petty
Substituting these expressions to i), ii), iv), v) and vi), we get
i) Plts=htte , (Pt = (P 00" .
Hence
**) He= P00

ii), iv), v) and vi) are deduced from i’), iii’) provided *) and **). There-
fore we get the generating relations of n,(P*—L, P,) as follows:

generators: p,, g, s,
generating relations:

ats= fostty, (p000)° = (e 0,)?, (taspt)?= (e s)® .
Finally we note

V1= s, '72=F§1)=/"4, Ts= 4 -
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