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Intrbduction

It is an interesting problem to classify the parallel submanifolds in
a specific riemannian symmetric space. Actually, these submanifolds have
been classified by D. Ferus [5], [6], [7] when the ambient space is the
Euclidean space or the Euclidean sphere, and by M. Takeuchi [17] when
the ambient space is the real hyperbolic space. Moreover H. Nakagawa
and R. Takagi [10] and M. Takeuchi [16] have classified the parallel
Kahler submanifolds in the complex projective space P"(c) with constant -
holomorphic sectional curvature ¢. It is known that parallel non-Kahler
submanifolds in P"(¢) are totally real.

In this paper we study wn-dimensional complete totally real parallel
submanifolds in P"(c). It is known that a riemannian manifold which
admits a parallel isometric immersion into a riemannian symmetric space
is a locally symmetric space. Fix an n-dimensional simply connected
riemannian symmetric space M". Let .7, (resp..%%) be the set of all
equivalence classes of totally real parallel isometric immersions of M"
into P"(c) (resp. of complete totally real parallel submanifolds in P*(c)
with the universal riemannian covering M"). Moreover, in section 3 we
define an equivalence relation among symmetric trilinear forms on a
tangent space of M satisfying certain conditions, and denote by A, the
set of all equivalence classes of these trilinear forms. In sections 2, 3,
we shall show that there are the natural correspondences among these
sets .Zy, S, #y. In sections 4, 5, we shall determine the set _#, for
a riemannian symmetric space M without Euclidean factor. Moreover,
in section 6, we shall study the set _#, for a riemannian symmetric
space M with Euclidean factor and an interesting example in the geometry
of totally real surfaces in P*(c).
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§1. Preliminaries.

Let M™ (resp. M"*) be an m-dimensional (resp. n-dimensional) connected
riemannian manifold. Denote by V (resp. V) the riemannian connection on
M™ (resp. M") and by R (resp. R) the riemannian curvature tensor for
V (resp. V). Now let f be an isometric immersion of M" into M™. We
denote by the same notation {,) the riemannian metrics on the both
riemannian manifolds. Moreover denote by o, the second fundamental
form of M", by D the normal connection on the normal bundle N(M) of
M* and by R* the curvature tensor for D. For a point p in M and a
vector { in the normal space N,(M) at p, the shape operator A, is defined
by

(A(X), Y)=<04(X, Y), &)

for all vectors X, Ye T,(M). The shape operator A, is a symmetric
endomorphism on the tangent space T,(M) at p. It is also characterized
by the equation that

Vil=—A(X)+ Dyl

for any tangent vector field X of M and any normal vector field { of M.
Now we recall the following fundamental equations, called the equa-
tions of Gauss, Codazzi-Mainardi, and Riceci respectively.

(1.1) (R(X, Y)Z, W)=(R(X, Y)Z, W)+{04X, Z), 0 (Y, W)}
—<af(X’ W)9 o-f(Y) Z)>

1.2y {R(X, Y)Z}' =(Vio)Y, Z)—(Vio)X, Z)

for all vectors X, Y, Z, We T, (M) and all vectors {, pe N,(M). Here we
denote by {*}* the normal component of * and by V* the covariant
derivation associated to the isometric immersion f: M— M, defined by

(Vio Y, Z2)=Dx(0(Y, Z))—0,(V(V:Y, Z)—0 (Y, V3Z)

for tangent vector fields X, Y, Z of M. The second fundamental form
o, as well as the isometric immersion f is said to be parallel if V*o,=
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0. Moreover When f is an imbedding, the submanifold f(M) is called a
parallel submanifold in M. If the second fundamental form o, is parallel,
we have '

(1.4) Dy(0,(Y, Z))=04(VxY, Z)+0,Y, V+Z)

for all tangent vector fields X, Y, Z of M.

Now let M*=Pr(¢) be the r-dimensional complex projective space
with constant holomorphic sectional curvature c¢(>0). The complex
structure of P7(c) will be denoted by J. An isometric immersion f: M*—
Pr(c) is called totally real if JT,(M)cC N, (M) for every point p in M.
Moreover when f is an imbedding, the submanifold f(M) is called a
totally real submamnifold in P7(c). Then we have the following

LEMMA 1.1 (cf. see Lemma 2.4 [11]). Let f be a totally real isometric
immersion of M™ into P7(c). Then

<af(X9 Y)’ JZ> = <0f(Xy Z)’ JY>
for any point pe M and all vectors X, Y, Ze T,(M).

From now on we assume that the complex dimension r equals n.
For a totally real isometric immersion f: M"— P"(c) we define the as-
sociated temsor &; of M as follows:

(X, Y)=Jox(X, Y)

~

for vectors X, Ye T,(M), pe M. If we identify the tangent space T,(M)
with the cotangent space T'¥(M) through the riemannian metric on M,
the associated tensor &, is a symmetric covariant tensor of degree 3 on
M by Lemma 1.1. For a vector X in T (M), we define a symmetric
endomorphism &, X) of T,(M) by

G X)Y)=0,(X, Y)

for a vector Y in T,(M). Since the isometric immersion f is totally real
in P*(c), we have R(X, Y)Ze T,(M) for all vectors X, Y, Ze T,(M) and
hence the equation of Gauss reduces to

(1.5) R(X, Y)Z=R(X, Y)"—[6(X), 6,(Y))Z)
for all vectors X, Y, Ze T,(M). Moreover we have the following

LEMMA 1.2. Let f be a totally real parallel isometric immersion of
M into P"(c). Then Vd,=0, that 1is,
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Vx(G,(Y, Z))=67(V,Y, Z)+6,Y, ViZ)
for all tangent vector fields X, Y, Z of M.

PrOOF. Since J{ is a tangent vector field of M for any normal vector
field ¢ along M,

IV IC=JV I+ Jo (X, JC)
for every tangent vector field X of M, while

IV JE=—V{=A(X)—Dy{
since JoVy=VoJ. Hence, comparing normal components we get

JD L=V ,JC .
Thus, substituting {=0,(Y, Z), together with (1.4) we have
V@Y, 2))=67,VY, Z)+5,Y, V3Z)

for all tangent vector fields X, Y, Z of M. | Q.E.D.

Let 80(T,(M)) be the Lie algebra of all skew symmetric endomor-
phisms of T,(M) and ¥(p) the Lie subalgebra in go(T,(M)) generated by
the set {R,(X, Y); X, YeT,(M)}. Since the isometric immersion f is
parallel, the manifold M is a locally symmetric space* and hence the Lie
algebra f(p) is spanned by the set {R,(X, Y); X, Y € T,(M)} and coincides
with the holonomy algebra of M at p. Thus, by Lemma 1.2, we have
the following

COROLLARY 1.8. Let f be a totally real parallel isometric immersion
of M" into P"(c). Then ¥(p)-6,=0, that s,

T(@ (X, Y)=0,T(X), Y)+6,(X, T(Y))

for any endomorphism T €t(p) and all vectors X, Y € T ,(M).

§2. Equivariant immersions associated to trilinear forms.

Assume that the manifold M" is a simply connected symmetric space
and fix a point o in M*. Put p=T, (M), t=*%) and g=t+p and define
the bracket product [, ] on g as follows:

* Symmetric space means riemannian symmetric space in this paper.
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[T, S]=T-8—-8-T, [T, X]=—-[X, T]=T(X),
[X, Y]=—R(X, Y)

for endomorphlsms T, S in t and vectors X, Y in p. Then (g,[,]) is a
Lie algebra over R and there exists a simply connected Lie group G
acting on the symmetric space M isometrically and transitively, such
that the Lie algebra of G is isomorphic to g and. that the Lie subgroup
K={g € G; g(o)=o0} is connected and has the Lie subalgebra f (cf. see [8]).
Let _#, be the set of all p-valued bilinear forms & on p satisfying the
following conditions:

(1) & is a symmetric trilinear form on p under the canonical iden-
tification of P*XP*Rp with p*Rp*Rp* through the riemannian metric
< ’ > on b,

(2) t.6=0,

(3) (/HKY, Z2)X—(X, Z)Y)=R(X, Y)Z—[6(X), 6(Y))(Z) for all
vectors X, Y, Zep.

Let f be a totally real parallel isometric immersion of M" into P(c).
Then

R(X, Y)Z=(c/4)(Y, Z)X—(X, Z}Y)

for all vectors X, Y, Zep. Hence we have that (6,),€ _+; by Lemma
1.1, Corollary 1.3 and (1.5).
Now the riemannian manifold P"(c) is also a simply connected sym-

metric space. We denote by o, 5, f, §, G, K the objects for P*(c) which
are generally denoted by o, p, §, g, G, K for M". Note that G (resp. g)
is isomorphic to the compact Lie group SU(n+1) (resp. the compact Lie

algebra 8u(n+1)) and that f is given by
T=u(@)={T e 80(p); JoT="ToJ} .

A linear subspace q in p is called totally real if the subspaces q and Jq
are orthogonal. Totally real subspaces in p of the same dimension are
conjugate to each other under the natural action of K on p. Fix an
n-dimensional totally real subspace q in p and set

1,={Tef;, T(q)cq} and %,={Tet; T(q)cJq}.

Then f, (resp. I,) is a Lie subalgebra (resp. linear subspace) in f, and
is the direct sum of ¥, and f,. In fact, take an orthonormal basis
{es, -+, e,} of q and identify p with C* by the correspondence:

po (Zwe;)+J(3ye;) — (®;+V —1y,) e C* .
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Then t, £, and t, are identified with the Lie algebra u(n) of all skew
hermitian matrices of degree n, the Lie algebra 3o(n) of all real skew
symmetric matrices of degree », and the linear space ' —1S8*(R)={V —1A4;
A is a real symmetric matrix of degree m} respectively. This implies

the assertion.
Let s be a linear isometry of p onto q. We define an injective Lie

homomorphism 7z, of 8o(p) into f, by
7(T)(8(X) +J8(Y)) =8(T(X))+ J3(T(Y))

for Te3o(p) and vectors X, Yep. Next, for an element & in _#,, we
define a linear mapping g,; of p into f, by

L5 (X)(8(Y) +J8(2))=3(6(X, Z))—Js(6(X, Y))

for vectors X, Y, Zep. Here note that the condition (1) for & im-

plies that g¢,;(X)ef. Now we define a linear mapping p,; of g into g
by :

0.,:(T+ X)=17,(T)+ p,3(X) +8(X)
for Tet and Xep. Then we have the following

LEMMA 2.1. The linear mapping p,5; of ¢ into g s an injective
Lie homomorphism.

PrROOF. At first we shall prove the following three formulas:

(2.1) [z.(T), ¢.5(X)]= 1.5 (T(X))
(2.2) [£4.5(X), p.5(X)]=7([6(Y), 5(X)])
(2.3) R(s(X), s(Y)) =7 (R(X, Y)—[6(X), ()]

for any T et and all vectors X, Yep. By the condition (2) for & we
have

[zT), p.5(XDN8(Y) +J8(2Z))
=8(T(6(X, 2)))—Js(T(@@(X, Y))+Js(0(X, T(Y))—s(0(X, T(Z)))
=8(F(T(X), Z))—Js(6(T(X), Y))
= 5 (T(X))(s(Y) +J3(Z))

for all vectors Y, Z e p, and hence (2.1) is proved. Next, by the definitions
of , and g,; we have
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[£5(X), p,5(Y))(8(Z) + Js(W))
= —Js((X, 6(Y, W)))—s(d(X, 6(Y, 2)))+Js(5(Y, (X, W)))
+8(8(Y, 6(X, Z)))
=s([5(Y), 5(X))(2))+JIs(6(Y), 6(X)(W))
=7,(6(Y), 5(X)(s(Z) +Js(W))

for all vectors Z, W in p, and hence (2.2) is proved. Since the subspace
q in p is totally real, we have '

R(s(X), s(Y))8(Z)=(c/A)(Y, Z)s(X)—(X, Z)s(Y))
for all vectors X, Y, Zep. By the condition (3) for & we have

R(s(X), s(Y))(s(Z) +Js(W))
=R(s(X), 8(Y))8(Z)+ JR(s(X), s(Y))s(W)
=s((c/O(Y, Z)X—<X, Z)Y)+Is((c/H(Y, W)X —(X, W)Y))
=s(R(X, Y)Z—[6(X), 5(Y)1Z)+Js(R(X, Y)W—[d(X), G(Y)I1W)
=7,(R(X, Y)—[8(X), 5(Y)](s(Z) + Js(W))

for all vectors Z, Wep. Hence (2.8) is proved.
Now by (2.1), (2.2) and (2.3) we have

[0.:(T+X), 0,5(S+Y)] |

=[z(T), z.(S)]+[cT), £t 5(Y)]+[z(T), s(Y)]
+[£,,5(X), 7,(S)]+[24,5(X), tt.,5(Y)]+[£4,,5(X), 8(Y)]
+[s(X), 7.(S)]+[s(X), £, 5(¥)]+[s(X), s(Y)]

=T,([T, SD+ .5 (T(Y)) +s(T(Y)) — t£,,3(S(X))
+7,([F5(Y), F( X)) —Js(F(X, Y))—s(S(X))+Is(6(Y, X))
—7(R(X, Y)—[6(X), 6(Y)]

=7,([T, S]—R(X, Y))+ ,:(T(Y)—S(X))+s(T(Y)—8(X))

=0,;IT+X, S+Y))

for all T, Sef and all X, Yep, and hence p,; is a Lie homomorphism

of g into §. Moreover, since 7, and s are injective, p,; is injective.
‘ Q.E.D.

Since g=8u(n-+1), we have the following

COROLLARY 2.2. If the set _#; is not empty, the Lie algebra g is
the direct sum of an abelian Lie algebra and a Lie algebra of compact

type.
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We call p,; the Lie homomorphism associated to s and &.

Since G is a simply connected Lie group, there exists the unique
Lie homomorphism 9,5 of G into G such that the differential dp,; is o, ;.
The associated homomorphism p,; maps the Lie subalgebra f into the
Lie subalgebra f and the isotropy subgroup K is connected. Hence we
can define a G-equivariant C~-mapping f,; of M" into P*(¢) by

f.3(9(0))=p,(g)(0)
for ge G. Then we have the following

THEOREM 2.3. Let M" be a simply connected symmetric space. Then,
Jor any linear isometry s and any & € _#,, the associated G-equivariant
mapping f,; of M" into P™(c) is a totally real parallel isometric
tmmersion such that

(j‘g,;)*o=3 and (6f":)o=& .

PROOF. Note that G divided by the center is the group of all holo-
morphic isometries of P"(¢). The claim (f,3).,=s is obvious by the
definition of f,;. Now we show that f,; is a totally real parallel
isometric immersion. Since f,; is G-equivariant, it is sufficient to see
our claim at o. The linear mapping s is an isometry and the image q
of s is a totally real subspace in p. Hence f,; is a totally real and
isometric immersion at o. Moreover, to show that f,; is parallel, it is
sufficient to see that

(2.4) [0.,:(X)z, [0,5(X)5, 0.:(X);1l€q

for any vector X in p (see Proposition 5.2 in [11]). Here the suffix
¥ (resp. p) means the f-component (resp. p-component) with respect to the
decomposition g=f+p. Since

O0:(X)i=,5(X) and p,;(X);=8(X),

the left hand of (2.4) equals —s(F(X, 6(X, X)) eq. Now the second
fundamental form at o of the G-equivariant immerssion f,; is given by

(2.5) (@7,,3)(X, Y)=[(0.5)(X)z, (0,)(Y )]s,

for all vectors X, Y in p (see Proposition 5.1 in [11]). Here the suffix
Jq means the Jq-component with respect to the decomposition p=q-+.Jq.
Hence we have (75, ;),=—J8(6(X, Y)). This implies (¢,, ;),=&. Q.E.D.
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§3. Frenet curves and rigidity problems.

Let M be a riemannian manifold and ¢(t) be a C=-curve in M defined
on an open interval I containing 0 which is parametrized by arc-length.
The curve c(t) is called a Fremet curve in M of osculating rank »(=1)
if for all te I its higher order derivatives

é)=(V35:8)(®), (Vaaib)(®), - -+, (V35E)(E)
are linearly independent but
C'(t)=(6%,a,é)(t), (ea/até)(t), Sty (65/&(3)(“’)

are linearly dependent in T.,,,(M). Then there exist the unique positive
C~-functions «,(t), -, £,_,(t) on I and the unique orthonormal C=-vector
fields V,(¢), ---, V,(t) along the curve ¢(f) such that

é(t)= V()
(Vasae V) (&) =K,(8) Vi(t)
(Voo Vo) (&) = — K1) Vi(8) + £,(8) Vi (£)

(3.1) ) :
(Va/az V_,;)(t) = ’C:i—l(t) Vj—1(t) + ’Cj(t) Vj+1(t)

Farae Vo )V = — Ky o8 Vo) + Ko u(8) V()
(6a/az Vr)(t) = — ’fr—1(t) V. i) .

Here we call £;(t)1<j<7r—1) the Frenet curvature functions on I, the
vector fields {V;(t); 1=<j=<7} the Frenet r-frame along c(t), and the
equations (3.1) the Frenet formulas. For a given integer r(=1) and
given positive C~-functions £,(t), ---, £,_,(¢t) on I, the Frenet formulas
(8.1) may be regarded as a system of differential equations with varia-
bles ¢, V,, ---, V.. It is known that this system of differential equations
has the unique local solutions for given initial conditions; a point ¢(0)=
pe M and an orthonormal r-frame {V,(0)=7V,, ---, V,(0)=V,} of T (M).
If the riemannian manifold M is complete, the Frenet curve c(t) is
defined for —co<t<+ oo (cf. see [4] and [15]). Now we have the
following

LEMMA 3.1 (W. Striibing [15]). Let M and M be riemannian mani-
folds and f a parallel isometric immersion of M into M. Suppose that
a curve c(t) defined on I containing 0 is a geodesic in M parametrized
by arc-length. Then
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a) the curve (foc)t) on I is a Frenet curve in M,

b) the Frenet curvature functions k,(t), - - -, k,_,(t) are constant (and
positive), where r denotes the osculating rank of (foc)(t),

¢) the integer r(=1), the constant positive numbers K, ---, k,_, and
the orthonormal wectors V,=V,(0), ---, V,=V,(0) are determined only by
the initial point p=c(0) of c(t), the initial tangent vector X=¢é(0) of c(t),
the differential (fy), at p, and the second fundamental form (o;), at p.

Now, by Lemma 3.1, we have the following fundamental lemma.

LEMMA 8.2. Let g and f be parallel isometric immersions of a
complete riemannian manifold M into another riemannian manifold M.
If there exists a point o in M such that

9(0)=f(0)=0, (9.)e=(F1)o: To(M)— T5(M), (6,),=(0y), ,
then the mappings g and f coincide on M.

PROOF. For any point p in M, there exists a geodesic c¢(t) in M
parametrized by arc-length, such that ¢(0)=o0 and ¢(I)=p. Then (goc)(t)
and (fec)(t) are Frenet curves in M by Lemma 3.1, a). By Lemma 3.1,
¢), the above assumption implies that the Frenet curves (foc)(t) and
(goc)(t) are solutions of the same Frenet formulas for the same initial
conditions. Hence, by the uniqueness for solutions of the system of
differential equations, we have (foc)(t)=(goc)() and particularly f(p)=
g(p). Q.E.D.

Now let &, be the set of all totally real parallel isometric immersions
of a simply connected symmetric space M* into the riemannian manifold
P7(c), I(M) the group of all isometries of M, and G the group of all

holomorphic isometries of P"(¢c). Then we can define an action of G X
I(M) on .v, by

(9, 9)-f=gofeog™"

for ge€G,geI(M) and fe.7,. Let .7, be the set of all orbits of the
G x I(M)-action on .7,. The orbit [fl+ of f in .77, is called the equiv-
alence class of f. '

Secondly, let .55 be the set of all complete totally real parallel
submanifolds whose universal riemannian coverings are M*. Then we
can define an action of G on &4 by

§-N=g(N)
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for geG and Ne.%,. Let 5% be the set of all orbits of the G-action
on .. The orbit [N]., of N in &, is called the equivalence class of N.
Finally, set

F,(M)={g € I(M); g(o)=o0} .
Then we can define an action of F,(M) on ._#, by
| (k- 6) (X, ¥)=).(0((k,)sX, (k,)7*Y))

for ke F(M),6c_#, and X, Yep. Let _7, be the set of all orbits of
the F,(M)-action on _#,. The orbit [§]., of & in _4;, is called the equi-
valence class of &.

Now we study the relations among three kinds of equivalences. At
first we have the following

LEMMA 3.8. For any §eG,geI(M) and fe. ., there exists an
element ke F,(M) such that

(ﬁt—ﬁfw"l)o =k (6}')0 .

Moreover, i1f ge F,(M), the very same element g can be taken as the above
element k.

PrROOF. Since g, and J are comutative, we have
(3.2) (GFer=1)o(X, Y)=(Gr.4-1)o(X, Y)
=0+((01)s1((9:)7' X, (9,)7'Y))

for all vectors X, Yep. Let v(t) be a geodesic joining o to g~(0). Since
M is a symmetric space, there exists some h € I(M) such that h(o)=g (o)
and that =~ (6;),., is the parallel translation of (6,),.,, along the geodesic
v(t), where

™G no( X, Y)=h3 (G nor(hs X, By Y)

for all vectors X, Yep (cf. see [8]). Putting k=goh, we have ke F,(M).
Since &, is parallel by Lemma 1.2, we have

the last term of (3.2) _ |
=k (' ((F no (BB’ X), ha(B3'Y)))
=k ((05)o(kx' X, k'Y ))= (k- (01))(X, Y) .

The second assertion is clear from the above proof. Q.E.D.

Now we define a mapping i, of .7, into _#, by
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([ f1-)=1(31)s].<

for f in 9. By Lemma 3.3 the mapping i, is well-defined. Then we
have the following

THEOREM 3.4. The mapping iy of 7y into Ay is bijective.

ProOOF. By Theorem 2.3 it is obvious that 7, is onto. We show
that the mapping ¢, is injective. Take two mappings f,, f; in .7, and
suppose that (6;,),=k-(6,,), for some ke F,(M). Then, putting f,=f,°k™,
we have (6;),=(0s,), by Lemma 3.3. Since f, and f, are totally real,
there exists some ge G such that

(@-f)0)=fi0)=0 and (Fof)«(To(M))=(F)e(T(M))=q .

Moreover, since any linear isometry of the totally real subspace q is
the differential at © of some holomorphic isometry of P"(c), we may
assume that (geofy)xo=(f)s.. Here note that (67.,).=(d,), by Lemma 3.3.

Hence, by Lemma 3.2, we have gof,=f, on M and thus [ f,].-=[fil-=[f.]--
Q.E.D.

THEOREM 3.5. Amny totally real parallel isometric immersion of M™
wnto P*(c) 18 G-equivariant.

ProOOF. Let f be a totally real parallel isometric immersion and
put f(o)=0. Then we have f=fy,, p, by Theorem 2.3 and Lemma 3.2.
This implies the theorem. Q.E.D.

Now let j, be a mapping of .7, into .54, defined by

I« F1)=[fM)]s
for fe€.7,. Here note that the image f(M) is a submanifold in P"(c)
by Theorem 3.5. Then we have the following
THEOREM 3.6. The mapping jx of T x into %, is bijective.

PRrROOF. It is obvious that j, is onto. We show that the mapping
Jux is injective. Take two mappings f,, f; € 7 » and suppose that f,(M)=
G(f.(M)) for some geG. Put 0=f,(0) and N=f,(M). Taking some ge
I(M) and putting f,=go-f,°g, we have

fi(0)=f(0)=0 and f(M)=f(M)=N .

Let (oy); be the second fundamental form at 6 of the submanifold N.
Then we have
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(0x)5(X, ¥)=(0,).((f)3'X, (f)x*Y)
=(07)((f)¥'X, (f)3'Y)

for all vectors X, Y e T5(N). Hence we have

(G1o(X, Y)=((fo)x"o(f))(F 1 )o((f)3'o (f)x X, (F)x'e ()4 T))

for all vectors X, Ye T,(M). Note that f;'of, defines a local isometry of
M around o. Since M is a simply connected symmetric space, there exists
a unique element ke F,(M) that coincides with f;of, around o. Hence
we have (6;,),=k-(6,),. By Theorem 3.4 we have [f;]-=[f]- and thus

[f;]ﬁ":[.fl]ﬁ" QED

§ 4. The set _#, for a simply connected symmetric space M without
Euclidean factor.

In this section we assume that M is a simply connected symmetric
space without Euclidean factor; thus, M is decomposed as a riemannian
manifold as follows:

Mr=MHx - XM’;r<'n=ji=1'ni)

where M}: is an n,;-dimensional irreducible simply connected symmetric
space for each j. Then the tangent space T,(M)=p (resp. the holonomy
~algebra f) is decomposed as follows:

.'p:jz; P; (resp. f:jz; f,-)

where the subspace p,Cp (resp. the subalgebra f;t) denotes the tangent
space T,(M;) (resp. the holonomy algebra of M;). For a p-valued symmetric
bilinear form & on p and any ordered triple {7, 7, k}(1=4, 7, k<7), a
mapping d%: p,xXp; —p, is defined by

01;(X,, Y;)=the p,-component of (X, Y;)

for X;ep, and Y,;ep;,. Then we may write symbolically as

F= 3 & .
1,5, k=1
Assume that 6 e_#,. Since each holonomy algebra f,(1<j<7) acts on
the subspace p; irreducibly and on the other subspaces p,(j==k) trivially,
the condition (2) for ¢ implies that
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D~
=1

(4.1) F=

J
Now we have the following

LEMMA 4.1. Assume that the set _#, 18 not empty. Then the simply
connected symmetric space M without Euclidean factor is irreducible and

of compact type.

PROOF. Suppose that »r=2 and de_~,. In the condition (8) for &,
let X be a nonzero vector in p; and Y=Z a nonzero vector in p, with
j#k. Then, by (4.1), we have

(c/4XY, Y)X=R(X, Y)Y —[6(X), 6(Y)]Y = —[6(X), 6’(Y)]Y
=5(Y, #(X, Y)—&(X, (Y, Y))=0 .

This is a contradiction. Hence we have r=1.
Sicce M has not an Euclidean factor, the Lie algebra g is semi-simple.

Hence Corollary 2.2 implies that M is of compact type. Q.E.D.

Hereafter we assume that M is a simply connected compact irreducible
symmetric space. Let a be a maximal abelian subspace in p and W the
Weyl group of M relative to a. Denote by S*(p) (resp. S*(a)) the vector
space of all symmetric trilinear forms on p (resp. on a). Then it is
known that the vector subspace {G € S%p); £-G=0} is isomorphic to the
vector subspace {X € S*a); w-X=X for all we W} by the restriction to
the subspace a. Since the Weyl group W acts on a irreducibly, W-invariant
polynomials on a of degree 3 are irreducible. Hence a basis of the vector
subspace is given by all the fundamental W-invariant polynomials of
degree 3. The Weyl group W for M is of types A, B, C,, D,, E,, F,, G,,
or type B,C, by the Araki’s table [1]. Then, by N. Bourbaki [2], only
the Weyl groups W of type A,(l=2) have one fundamental W-invariant
polynomial of degree 38 and the other Weyl groups have nothing. Hence
we have the following

LEMMA 4.2. Let M be a simply connected compact irreducible sym-
metric space and set d,=dim {F € S¥p); t-6=0}. Then d,=1 if M is one
of the following spaces and d,=0 otherwise: :

SUn)/SO(n)(n=38), SU2n)/Sp(n)(n=38), SU(n)(n=3), E/F,
Now we determine the set _#,.

PROPOSNITON 4.3. Let M" be a simply connected compact irreducible
symmetric space satisfying d,=0. Assume that the set _+,; is not empty.



TOTALLY REAL PARALLEL SUBMANIFOLDS 293

Then the riemannian manifold M" is the sphere S™(c/4) with constant
sectional curvature c/4 and the set _#, consists of one point. Moreover

the unique element in _#, corresponds to the matural totally geodesic
isometric immersion f:S"(c/4)— P"(c).

ProOF. Take 6 e_4#,. Then the assumption that d, =0 implies that
=0. Hence, by the condition (3) for &, we have ’

R(X, Y)Z=(c/0(Y, ZYX—<X, Z)Y)

for all vectors X, Y, Zcp. This implies that M" has constant sectional
curvatures c¢/4. The other assertions are obvious. ‘ Q.E.D.

Now we consider the case when d,=1. Then we have the following

PROPOSITION 4.4. Let M™ be a simply connected compact irreducible
symmetric space satisfying dy=1. Assume that the set _#, is not empty.
Then the metric of M" is determined uniquely by the constant ¢ and the
set _#, consists of one point.

ProOF. Let (M, <{, >, and (M, {, >, be symmetric spaces with the
same underlying manifold M. Suppose that _Zy,;y and _Zu.,, are not
empty, and take &; € 4,y for j=1,2. Then, noting that M is not a
sphere, we can see by the same way as for Proposition 4.3 that each
&; is nonzero. Since M is irreducible, we have {,),=a{,), for some
a>0. Moreover the assumption that d, =1 implies that &,=84, for some
B. By the condition (3) for &;(j=1, 2), we have

/DY, Z);X—(X, Z),Y)=R(X, Y)Z—[6,X), 6,(Y)](Z)
and thus

(/M@ —a)KY, 20X~ (X, Z),Y)=(8—1RX, Y)Z
for all vectors X, Y, Zep. Since M is not a sphere, we have g*=1 and
a=1. Hence we have {, >,=(, >, and §,=+4,. Note that the symmetry

¢ € F,(M) at o acts on the set S*p) by ¢-6= —& for any 6 € S’(p). Then
we can see that the set _Zy,,)=. .,y consists of one point. Q.E.D.

In the next section we shall construct a model of a totally real
parallel isometric immersion of M" into P"(c) for M" satisfying d,=1.
Hence, summing up Lemma 4.1 and Propositions 4.3, 4.4, we have the
following

THEOREM 4.5. Let M" be a simply connected symmetric space without
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Euclidean factor. Then the set A, i3 mot empty tf and only if the
symmetric space M" 18 one of the followings:

SU(n)/SO(n) (n=3), SU@2n)/Sp(n) (n=3), SU(n) (n=3),
EJF,, SOn+1)/SO(n) (n=2) .

In this case, the metric on the manifold M" is determined wuniquely by
the constant ¢ and the set _#y consists of one point.

§5. Models of totally real parallel isometric immersions.

Let V be an (n+1)-dimensional complex vector space furnished with
a positive definite hermitian inner product (,). Then we can define the
associated inner product {, >, on V as follows:

<Xr Y>V:Re(X’ Y)

for vectors X, Ye V. Let P(V) be the complex projective space associated
to V, furnished with the Kahler metric (, ) with constant holomorphic
sectional curvature ¢, and S the unit sphere in V furnished with the
following riemannian metric <, )g:

(X, Y)s=(c/[O<{X, Y)y

for tangent vectors X, Y of S. Then the Hopf fibring 7: S—P(V) is a
riemannian submersion. For a point pe .S, the horizontal subspace H,
at p is given by

H,={Xe V; X, p)y=<(X, V' —1-p),=0}.

Here note that the linear mapping =,: H,— T,.,,(P(V)) is a linear iso-
metry satisfying 7,0 —1X)=J(#,X) for any Xe H,. Let v(t) be a
curve in S. Then a vector field Z, along ~(t) is called horizontal if Z, e
H;, for all t. The curve ~(t) is called horizontal if ¥(t) is a horizontal
vector field along ~(f). Moreover an isometric immersion f of a rieman-
nian manifold M into S is called horizontal if f.(T,(M))cHj, for any
point p in M. And a horizontal isometric immersion f is called totally
real if the subspaces f*(T,,(M)) and 1/ rff,.g(T,,(M)) are orthogonal. Let
V¢ be the riemannian connection on S for the riemannian metric (, ).
Then we have the following

LEMMA 5.1 (K. Nomizu [12] and B. O’Neill [18]). Let (t) be a hori-
zontal curve im S parametrized by arc-length. Then (V§Y)(t) is a hori-
zontal vector field along v(t). Moreover
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et(ﬂ:*zt):ﬂ*(vfzt)
for any horizontal vector field Z, along (t).

Let f be a horizontal (resp. horizontal and totally real) isometrie
immersion of an n-dimensional riemannian manifold M" into S. Then
the mapping f =xof: M*— P(V) is an isometric immersion (resp. a totally
real isometric immersion). Now we have the following

LeEMMA 5.2. Let ¥(t) be a geodesic in M parametrized by arc-length.
If the horizomtal part of (Vi)f (7(t)) is contained in fy(T:,(M)), the
normal vector (V¥o ) (v(t), 7(t)) at f(v(t)) equals zero.

PROOF. Since the vector field V:f,(7(t)) is horizontal and n*(fo*(v'(t))) =
V(fe(F@)) =0 4(7(t), 7(t)) by Lemma 5.1, we have by Lemma 5.1 again

(5.1) T (VEEF L (F@))) = V(o ,(F(E), (E))) -
Note that

(VEap)(1(2), 7)) =D (a (), 7(¢)))
=the normal component of V,(a,(¥(t), 7(t))) .

By (5.1) and the assumption, the vector field V(o ,(7(t), 7(f))) is a tangent
vector field of M and thus (V¥o,)(7(t), 7(t))=0. Q.E.D.

Now we give the models of totally real parallel isometric immersions
into P*(c) of irreducible compact simply connected symmetric spaces M
satisfying d,=1.

MODEL 1. Let M be the manifold SU®R)/SOn)(n=8) and V the
complex vector space S*(C) of all complex symmetric matrices of degree
n, furnished with the hermitian inner product:

(X, Y)=Tr XY*
for X, Ye V. An imbedding f: M—S is defined by
F(g-80(n)=1/v'n)g-g

for ¢ € SU(n) and thus the manifold M is furnished with the rieman-
nian metric induced from that of S. Let e, be the identity element of
SU(n) and put o=e,-SO(n)e M. Now we can easily see the following
facts:

(1) The tangent space T, (M) at o is identified with the space p=
{V=1A; Aec S*(R), Tr A=0} and the following set a is a maximal abelian
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subspace in p:

—Xx; O
a=ll/:i : s x; € R

O xn—l

(2) The isometric imbedding f is equivariant relative to the repre-
sentation p: SU(n) > SU(V) defined by

o(9)(X)="9Xg

for ge SU(n) and Xe V.

(8) Flo)=@/v'n)e, and (f,),(p)=p. Hence f is horizontal and totally
real at o.

Then the riemannian metric of M is invariant under SU(x) by (2)
and hence M is a symmetric space, and the isometric imbedding 7 is

horizontal and totally real by (2) and (3). Hence f =mof is a totally
real isometric immersion.

Now we show that the isometric immersion f has the parallel second
fundamental form. Since f is totally real in P(V), the equation of
Codazzi-Mainardi implies that V*o, is a normal bundle valued symmetric
tensor of degree 3. Note that f is equivariant by (2), and that maximal
abelian subspaces in p are conjugate to each other under the natural
action of K=SO(n) on p. Hence it is sufficient for our claim to see that
(Vios)(X, X)=0 for any unit vector

—2x; O
X=v'~-1. o . ea.
0 P
{;et 7(t) be the geodesic in M such that v(0)=o0 and 7(0)=X. Then we
ave

n—1

e 2t(Ze V=1 O
For®)y=an/n)- -

O eztz,,__lv -1

and
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—2]/—_1(228,-)6—2“2“"”:1 O
. _ 2 A / —1 2tz v/ —1
Faoy=ap/my| 5T
O ) 2371._1] 4 162&!”_1/—_1

Note that ViZ,=dZ,/dt+(c/4) < Fo(¥(E)), Z,>sF(7(t)) for any vector field
Z, along f(v(t)). Thus we have
(c/4—4(Za;y)e =07 ()
ViF ) =y/my.|  (C/A—daDer T

O . (0/4“‘4(33,_1)62“”"—1 v=1i
and
—(c/A—4Zz))(Zz) ()
(VD2 F (F®) leo= @V =1/V 1) - <c_/fi —dad)e,

O .(0/4—4xi_1)xn_1
Hence the horizontal part of (V:)zfA*('i(t))lm is given by
07 (s LI S (T lemoy V=TFO)s ., — 7
V2L (V(®) im0 — 2 1 —1 0
(VI fu(7()) | "V —1F OV S ((0))
—2(Zx;)(c/4 — 4(Zx,)) — MV ¢ [2 O
2w,(c/4—4x2) — a1V ¢/2

= W —=1/V'n)-
0 o (c/a—tar )—r/T2

where A=(16/n1"¢)((Jx,;)*—(Zx%). Here note that the trace of the above
matrix equals zero. Hence the horizontal part of (V:)zf*(v"(t))ltﬂ is con-
tained in p. This implies that (V*o,)(7(0), 7(0), 7(0))=0 by Lemma 5.2.
Hence f is a totally real parallel isometric immersion of M into P(V).

MopeEL 2. Let M be the manifold SU(2n)/Sp(n)(n=3) and V the
complex vector space 30(2n; C) of all complex skew symmetric matrices
of degree 2n, furnished with the hermitian inner product:

(X, Y)=Tr XY*
for vectors X, Ye V. An imbedding f: M—S is defined by
Flg-Sp(n))=(1/v2n)'gJ.g
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for ge SU(2n), where Jn=[2 _g"]e V, and thus the manifold M is

furnished with the riemannian metric induced from that of S. Put o=
e,,-Sp(n) e M. Now we can easily see the following facts:
(1) The tangent space T,(M) at o is identified with the space

p= {[?’I—’ Z:l, Z e su(n), W € 3o(n; C)}

and the following set a is a maximal abelian subspace in p:

[ —(Zx;)

;xJGR

(2) The isometric imbedding # is equivariant relative to the repre-
sentation p: SU(2n)— SU(V) defined by

e(9)(X)="gXg

for ge SU(2n) and Xe V. _ ,
(3) Fo=anmmJ, and Fow=1{ "7 g Zesun), We
So0(n; C)}. Hence f is horizontal and totally real at o.

Then, by the same way as in Model 1, we can see that f =nof is
a totally real parallel isometric immersion.

MODEL 3. Let M be the manifold SUR) X SUR)/SUn)(n=3) and V
the complex vector space M,(C) of all complex matrices of degree =,
furnished with the hermitian inner product:

(X, Y)=Tr XY*
for vectors X, Ye V. An imbedding f: M—S is defined by
F((g, b)-SU@) =1/V'n)gh™

for g, h € SU(n) and thus the manifold M is furnished with the riemannian
metric induced from that of S. Put o=¢(e,, ¢,)-SU(n)e M. Now we can
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easily see the following facts:

(1) The tangent space T,(M) at o is identified with the space p=
{(X, —X); Xesu(n)} and the following set a is a maximal abelian subspace
in p:

a={(X, —X)ep; X is diagonal}.

(2) The isometric imbedding 7 is equivariant relative to the repre-
sentation p: SUn) X SUN)—SU(V) defined by

o((g, M) X)=gXh™*
for g, he§U('n) and Xe V. . ' .
(3) f()=A/V'n)e, and (f,).(p)=38u(n). Hence f is horizontal and
totally real at o.

Then, by the same way as in Model 1, we can see that f =zof is a
totally real parallel isometric immersion.

MoDEL 4. Let & be the Cayley algebra over R furnished with the
canonical conjugation —, and set F ={X e M,(5”); :X=X}. On the real
vector space .&#, we define the Jordan product o, the inner product ((,)),
the cross product x, and the determinant det as follows respectively:

XoY=1/2)(XY+YX), (X, YV)=Tr(X.Y),

X xY=1/2)2X Y —-Tr(X)Y —Tr(Y)X+(Tr(X)Tr(Y)—Tr(X-Y))e,) ,

det(X)=(1/8)((X x X, X))
for X, Ye.&#. Let V be the complexification of the real vector space
& and extend these o, ((,)), x,det C-linearly and naturally on V.
Denote by z the complex conjugate on V with respect to .. Then

(X, Y)=((zX, Y)) is a positive definite hermitian inner product on V.
We define

Eo={g € GL(V); det(g(X))=det(X), (9X, 9Y)=(X, Y) for any X, Ye V}

and
F,={gc E; gles;)=e5} .

Then E, (resp. F,) is a simply connected compact simple Lie group of
type E, (resp. of type F,). (cf. O. Shukugawa-I. Yokota [14])
Let M be the manifold E,/F,. An imbedding f: M— S is defined by

flg-Fy=Q1/V"3)g(es)

for ge E;, and thus the manifold M is furnished with the riemanniar_l
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metric induced from that of S. Put o=¢,-F,e M and set F,={Xe F;
Tr X=0}. Now we can easily see the following facts:

(1) Define the right translation R, on # for Xe.# by Ry(Y) =
YoX for Ye.#. The tangent space T,(M) at o is identified with the
space p={1V —1R,egl(V); Xe . #,} and the following set a is a maximal
abelian subspace in p:

a={V—1R,cgl(V); Xe F, X is diagonal}.

(2) The isometric imbedding f is equivariant relative to the repre-
sentation p: E,—SU(V) defined by p(g)(x)=g(x) for gc E, and Xe V.

(3) F)=1/V"3)e, and (Fy).(»)=1V"—1.7,. Hence f is horizontal
and totally real at o.

Then, by the same way as in Model 1, we can see that f =mof is
a totally real parallel isometric immersion.

REMARK 5.3. It is known that the isometric imbeddAings Ff:M—Sin
the above models are minimal. Since the imbeddings f are horizontal,
the isometric immersions f are minimal.

REMARK 5.4. We can see easily that the above isometric immersion
f: M—P(V) is (1 ¢/21 2 )-isotropic (that is, |6,(X, X)|=1"¢/2V 2 for any
unit tangent vector X of M) if the symmetric space M is of rank two.
Hence these isometric immersions f are examples of Theorem 4.13 in
[11].

§6. The set _#; for a simply connected symmetric space M with
Euclidean factor.

In this section we assume that M™ is a simply connected symmetric
space with Euclidean factor; thus, M is decomposed as a riemannian
manifold as follows:

Mr=Rwox Mpx - - x M2 (az:i n,, 'no>0)
=0

where M?i is an m,-dimensional irreducible simply connected symmetric
space for each j. Then the tangent space T,(M)=p (resp. the holonomy
algebra ) is decomposed as follows:

p=pt3p, (resp. t=31,)

where the subspaces p; and p, in p (resp. the subalgebra t; in ¥) denote
the tangent spaces T,(M;) and T,(R™) (resp. the holonomy algebra of M;).
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For a p-valued symmetric bilinear form & on p and any ordered triple
{, 7, B}(0=1, j, k=<7), a mapping G%: p,Xp,—p, is defined as in the section
4. Assume that e _#,. Since each holonomy algebra f;(1<j=<7) acts
on the subspace p; irreducibly and on the other spaces p,(57+#Fk) trivially,

~

the condition (2) for & implies that
(6.1) F=3 0t 3 0%+ 3, O+ 2 o -
=0 =1 i=1 i=1
Now we define the FEuclidean j-th mean curvature vector H,-(ié jsr)

in p, by

nj
H;=(1/n;) Tr &3;=1/n;) k2=1 G3i(€jns €ix)

where {e;.};, denotes an orthonormal basis of p;, and call the length h;
of the vector H; the FEuclidean j-th mean curvature. Then we have the
following

LEMMA 6.1. Let 6e€_#y. Then

g a:s(Xj, X)=(KX;, Y H;
5"50(X:’, Zo) = 505(Zo, Xj) = <Zo, H,-) X:’

SJor any jJA=j=7) and Z,ep, X;, Y, ep;.

PrOOF. Since {;-5=0, we have

(6.2) 63{(T;X;, Y)+65(X;, T;Y;)=0
and
(6.3) 1T X, Y)+6i4(X,, T;Y)=T«8i,X,, Y}))

for any T;et; and all vectors X, Y,;ebp;. Let {e}.2, be an orthonormal
basis of p,. Since M; is irreducible, the condition (6.2) implies that

(G54 X;, Yy), ey =cKX;, Yy
for some ¢3e€ R and thus
Xy, Y= (X, Y3(3, o0 )= Xy Y H,

for all vectors X, Y;ep,.
The second equality is obtained by the symmetry condition (1) for
& and the first equality. Q.E.D.
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We denote by _# the set defined in the same way as _#, by replac-
ing the number ¢/4 in the condition (8) with the number d. Then we
have the following

LEMMA 6.2. Let Ge A Then &;e _#£:"5 for each j.

Proor. The conditions (1) and (2) for .,,{,:"*"J is obvious by the
condition (1) for & and (6.3). We show that a‘,, satisfies the condition
(8) for .//Z,‘,’“*":. Denote by R*; the curvature tensor of M;. Then, by
the condition 3) for &, -

(Y, By X;— (X, Z;5 Y ))=R*(X,, Y Z,—[6(X}), 35(Y )2,

for all vectors X;, Y}, Z,-eb,-. By (6.1) and Lemma 6.1, the second term
of the right hand side is calculated as follows:

[6(X)), (Y 1Z;=[51,(X)), §i(Y ))Z;
+hi(KY;, Z X;—<X;, Z,)Y;) .

Hence §7; satisfies the condition (3) for !+, Q.E.D.
LEMMA 6.3. Let 6 _#y. Then &% _#im and
G Xy Hy)=(X,, H:‘>H5"'(c/ 4)X,

Sfor any X,ep,. Moreover {H;, H,y=—c/4 for distinct indeces j, k(1<
7, k=), . v ‘

Proor. Note that the condition (2) for _#xn is obvious since R™ is
flat. Moreover by the conditions (1) and (3) for & we can see easily that
6% satisfies the conditions (1) and (8) for _#&~. Put X=X,ep, Y=Y,
Z=12;€ep; in the condition (38) for 4. Then we have

(c/4)<Y;, Z;) X,= —[U(Xo), F(Ylz; . :
The rlght hand side is calculated by (6.1) and Lemma 6. 2 as follows
—[0(Xo), (Y )1Z;=<Xo, H;)<Y;, Z;)H;—Y;, Z;550(X,, Hj) .
Hence we have
(c/4) Xo=<X,, Hy)H;—5%(Xo, H;) ..

Now, putting X=X, ep, and ¥ = Y., Z= Z,‘ep,,(IS]#:kS'r) in the
condition (8) for &, we have

(0/4)<Yk, Zk>Xi= _<Yh ZI:><HJ” Hk>XJ'
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by (6.1) and Lemma 6.2, and thus {H,, H,>= —c/4. Q.E.D.

‘Summing up Lemmas 6.1, 6.2 and 6.3, We have the claim (A) in the
followmg . :

THEOREM 6.4. Let M~ be a simply connected symmetric space 'wzth
FEuclidean factor decomposed as M™= R™ X []5-, M": and n=>;_,n;. Then
the following claims are true:

(A) Let e _#y. Then

(1) BRI T RN S LN P LR
L C§=0 j=1 . j=1 7=1
(2) e
(8) Ol M, (Hy Hy=—c/t (1Sj#ksr),
62y H)={Zy HYH,~ (|8,
(4) Fi Xy, 2=y X) =Ty HYX; ,

035(X;, Y))=LKX;, Y;)H;

Jor any Z,ep, and all vectors X;, Y;eb;.

(B) Conversely any p-valued bilinear form & on p satisfying the
conditions (1), (2), (3), (4) of (A) i3 an element M Ay

Here the proof of our claim (B) is omitted since it 1s stralghtforward

REMARK 6.5. Let M" be a simply connected symmetric space w1th
Euclidean factor. Changlng the metric on M" ‘componentwise, we can
construct infinitely many elements in _#;. 'In fact, decompose M as
above and suppose that n,=r=1. First we shall show that there exist
a basis {H,};—, of R” and an R"-valued bilinear form &3 on R’ satisfying
the condition (3) of (A). If there exist such basis and R"-valued form,
by Theorem 6.4, (B) an element in A, can be constructed. Let {e;}i=
be an orthonormal basis of R" and set H,= Siioale;, A= (a) ‘Moreover,

for positive real numbers »,, - h,, we set
| TR —cde- —c/4_l
‘S(hl, )= | fc:/4 ki . . o ‘
: B RISy 5 J;

Then the condition for that {H,} is a basis of R’ such that |H |=h;
(1=j=7) and {H;, H,)= —c/4(j+#k) is written as follows:
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(6.4) det A+0, A*'A=S(h,, ---, h,) .

Since the matrix S(h,, ---, h,) is symmetric, for sufficiently large numbers
ki, ---, h,, there exists a positive definite symmetric matrix A satisfying
the condition (6.4). Then we define an R-valued bilinear form 49, on
R’ as follows:

0%W(H;, H,)= <Hj; H,,)H,,—(c/4)H,- .

By easy calculations, we can see that the R"-valued bilinear form &9 on
R satisfies the condition (3) of (A). Thus we get infinitely many ele-
ments in _#;, by taking suitable metrics on M;1=<=j=7).

Now, in the case when M=R?, we have the following

THEOREM 6.6. There exists a unique complete totally real parallel
flat minimal surface M* in P*c) (up to holomorphic isometries of P¥(c)).
The morm |o| of the second fundamental form o of M:® is given by
lo|P=(1/2)c. .

ProOF. Let {e, ¢} be an orthonormal basis of R®. Then the condition
F € _#% is equivalent to the condition that

a(e,, €,)=ae,+ Be,
(6.5) (e, e,)=,8e1+'7e2} , and c¢/4=R*+7*—av—pRé .
a(e,, e,)="e,+de,

Suppose that the totally real parallel immersion of R® corresponding to
& is minimal. Then a+v=8+d=0 and thus g*+~+*=¢/8 by the second

equality of (6.5). Put g=1"¢/8cosfd and Y=1"¢/8sinf for some # and
define a linear isometry g of R? by

(a(e)s g(e)= (e e,)[ cos(0/3)  sin(9/3) } .

—8in(6/3) cos(6/3)
Then we have
(9-6) (e, €)= —(g-8)(e, &)=V"c/[8e,, (g-5)(e, €)=V c[8e, .

Hence all elements in _#z corresponding to minimal immersions belong
to the same equivalence class. Now by Theorem 3.4 and 3.6 we get our
first claim. The second claim follows from |g-&[*=(1/2)c. Q.E.D.

REMARK 6.7. S.T.Yau [18] has shown that if M*® is a complete non-
negative curved totally real minimal surface in P?*(c), M® is totally geodesic
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or flat, and moreover in the second case the second fundamental form is
parallel. The minimal surface of Theorem 6.6 gives a unique example
of surfaces in the flat case. This has been constructed concretely in the
author’s paper [11] and it is compact. '

REMARK 6.8. B.Y. Chen and K. Ogiue [3] has shown that if M~ is a
compact totally real minimal submanifold in P"(c) such that |o,?<(n(n-+1)/
4(2n—1))c for any point p in M, then M= is totally geodesic. Suppose
that |o,'=(n(r+1)/4(2n—1))c for any point pec M. Then, along their
proof, the second fundamental form is parallel. In the case when n=2
(then (n(n+1)/4(2n —1))c=(1/2)c), the universal covering of the compact
totally real parallel minimal surface M? has Euclidean factor and thus is
flat. Hence our minimal surface in P2*c) of Theorem 6.6 is a unique
compact totally real minimal surface M* in P*¢c) such that |o,[*=(1/2)c
for any point p e M.

REMARK 6.9. In the next paper together with M. Takeuchi the
complete classification of n-dimensional complete totally real parallel sub-
manifolds in P"(c) shall be given by a different way.
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