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On an Analogoue to Hecke Correspondence
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Introduction

In [2], Hecke established the one-to-one correspondence, called Hecke
correspondence, between (A) and (B) below, through Mellin and inverse
Mellin transformation: (k: even, k=4)

" (A) (i) f(») is analytic on the upper-half plane H,
(i) flo)=(oz+dyfiz) for o=(* f)er
(I': the full modular group),
(i) fl#)=23= a(n)e™ .
B) (i) If a(0)=0, then

Ple)= 3, 4n)

n=l n'

is continued to an entire function of s.
(ii) If a(0)=0, then @(s) is continued to s-plane analytically
except for a simple pole at s=k with residue

(=1)**a(0)(2m)"
I'(k)

dii) @m)—I(8)p(s)=(—1)**2r)"*I (k—s)P(k—83).

This is a vast generalization of Hamburger’s Theorem on the deter- .

mination of Riemann zeta-function via the functional equation.
Note that in (A), it follows that

if a(0)=0 then a(n)=0n*")

and
if a(0)#0 then a(n)=0x*").

Now we shall consider
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(C) (i) a(n) are as above and

bm)= 2 (=DM e+ (1/2)a(m)

n.b+1/2

(ii) For
9(z)= g‘a a(n)er=* |

D b(n)
h(Z) ,ga (_4nzz+l)k+1/2 ! zeH ’

the following “inversion formula” holds:
9()=2z"*h(—27").

The main purpose of the present paper is to settle the one-to-one
correspondence between (B) and (C). One significance of (C) is that the
Kronecker’s formula for partial fraction expansion of e**/(e*—1), 0<u<1,
belongs to (C), and we note that the well-known formula for (2n),
L(2n+1,X) with X odd and L(2n,X) with X even can be derived from
Kronecker’s formula. (n=1).

The correspondence of this kind but slightly different from us (at
least in procedure) was already given by K. Chandrasekharan and
Raghavan Narasimhan [1] in a more general context.

§1. A proof of (B)= (C).

We use Legendre’s formula for I'-function:

L1 r(_;-)r( 8*2‘ 1 )= (2T s

2:—1/2

and Barnes’ contour integral for the hypergeometric function [4]:

1 [ T'a+8)®b+8)(—8), g _ .\ T@I®)
?ﬁsa_m e (—2)ds=Fla, b, ¢; )L @LO) '

where |arg (—z)|<m, all poles of I'(a+8)I'(b+s) lie in the left side of
the line Re s=0 and all poles of I'(—s) lie in the right side of the line.
In particular, for b=e¢, t= —2z positive real and s instead of —38, we have

(1.2) @)1+ t)-«:ET% S"”‘”: Ta—s)(s)t—*ds .

~—g—0o

Here all poles of I'(a—s) lie in the right side of the line Re s= —¢ and
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all poles of I'(s) lie in the left of the line.
Now we shall go from (B) to (C). Multiply both hands of (B), (iii)
by I'((s+1)/2) then by (1.1), we have

OB 0 (e )LL)

For o=2k+%, Mellin inverse transform shows

1 oot —s i o — - —27nl/2t t>0
— S,_m @) r(s)qa( 2s)t ds=3; a(n)e . (@#>0),

where the order of 3, and \ can be changed by the absolute convergence.
Further by the shift integration, we have

1

ey

__1 S:urm(27:)"[‘(3)99(%3)15’%8+R

2Te Jo'—oot

(With R=Za’<u<‘a Res.=u ((27?)_’F(8)¢(%8)t_'))
1 (=L (o=t (541 1\ (p 1\
T 2mi 2+ightie S.,'_MZF ( 2 )F (k—E"’)q’(k Es>t ds
+R
2( —_— 1)1:/2 1 k—a'/2+o0t
= 2k+17ck+1/2 27:7: S
+R

k—28 1 — 28—2k
20 2F(k+—2— s)F(s)gP(s)t ds

k—o'/2—00%

for some ¢’. We take‘k—%o'>k, i.e., 0’<0. Then the above integral
is equal to

22k+1(_1)k/2 i 1 Sk+a’/2+mi
a(n)

Qk+ipk+i/epek <= o211
+R.

Further we take —1<g¢’. Then all poles of I'(s) lie in the left of the
line Res=¢’ and all poles of I'(k+3—s) lie in the right of the line.
Hence we can apply (1.2) to get

the above integral=1¢2*(—1)*2"(k+ 3)/m*** 3., (a(n)/(dn+)* ")+ R .

r(k+—;-—s)r(s)(4nt-ﬁ)-'ds

k+a'/2—c0i

There remains the computation of R. Since only pole of ®(3s) is at
s=2k and thus poles of (27)~*I'(s)p(:s) are at s=2k, s=0, between o’
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and o, we have

R=Res ((2,r)_. F(s)¢<_;_s)t")+Res ((Zn)"F(s)go(—%-s)t")

=2k

= —a(0) +t“2"a(0)2—k(7£%);u—zr (k +%)

by (B), (ii) and the information of poles of gamma-function. Summing
up, we get

S —eentze P21 (k+3) S aln)
1.3) ; Z‘la(n)e zmnl/it rEt2 A=l (4n 4 t2)k+12
2'(=D**Ir'(k+3%) a(0)
+ ( n.k+1/2( 1+ —a(0)
and
S —2enl/2t__ g—2k O b(n)
g:,) a(n)e =t g__“,) @t t>0,

which can be continued analytically to H. Changing ¢t by —iz, z€ H, we
get (O).

§2. A proof of (C)= (B).

The method employed here is almost the same as that of (B)=(A)
used by Hecke. We have to use

2.1) I'e)rg—s)= S: )+~ ""de

for O0<Res<g (B>0).
We have, for Re s>2k,

S: (g(it) _a(O))tc—ldt,: 21 a(n) S: e—zimlﬂttc—-ldt

—< _I'(8)a(n)
A=t (27V'n )’

— — 1
=(2r)*1] '(s)¢<—2 s) .
Further we have

2.2) g:’ (g(it) — a(0))t*—dt

={ @ity —a@)r—at+{ @Gty —aneat
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oo

I

(9(it)—a()er~dt+ | glityedt—a(0) || #-at

1

|
S (9(it) — a(0))t*~*dt +
|

8

(e — 29

1 0

8

Il

A Bt

1 1

= a(0) __b(0)

' AP 2k—sg—1 — .
| (WGt — b dt— L 2 -

|
” (9(it) —a(O))tdt+ |
|

- S” (g(it)—a(0)t—*dt +

Next, we compute

(=1)** 2,F<8+1 )F(k-—-—l———s>¢(k—-%- )

2k+1n.k+1/2 2 2

which becomes

—1\k/20k—1
(zk-l]-l)n.ki/z 2_2‘F(k+_;_—8>r(3)50(3)

after changing s to 2k—2s.
We have

S: (h(3t) — b(0))E*—di
o~ b(’n) = F(k+%) 281
_221 T'(k+%) So (4nt"+1)"“’2t dt

—_ow _bn)4 ™ (* _I'(k+3) o
—‘2"};{ F(k-l—%)’n' So (1+u)k+1/2u du

with w=4nt* and k<Res. For Res<k-+3, we can apply (2.1) to get

. & b(m)4d 1
the above 1ntegral_1§1—-—-—r(k+ pover F(k+ 5 s)F(s) .

Thus

k—1¢ ___ 1\k/2 /
2 gnr (k42— )T ©)2()

2.8)
_—_Sw(h(it)—b(O))t”“‘dt, for lc<Res<k+-;—.

Further, we have, by shift integration as employed in §1,

(2.4) S” (h(3t)—b(0))t=—1dt
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=|" ma—vope-de+ |7 @it —a@perae

__a) _ 50
2(k—s8) 28

Replacing s by k—3s, we have by (2.3), (2.4),
(—1)*22¢ s+1 _l_ __l_
2k+1n.k+1/2 F( 2 )F(k 2 8)¢(k 2 8)
= r (h(it) —b(0))t*—>"'dt - Sw (g(it) —a(0))t*'dt

_a0) 50
8 2k—s

which is valid for all 3. We compare this with (2.2) and rewrite it by
Legendre formula (1.1) to get (B), (iii).

§3. Going from (A) to (C).
We proved (B)=(C). Hence by Hecke’s result, we get
(A)=—=B)==() .

But, we can go from (A) to (C) directly and more easily. Its basis is
the integral

= —aly—b2 dy ‘/? —2a
31 =TT, 0,520) .
8.1) |"e L-YZ, (@>0, b=0)
Now (A), (ii) and (iii) for o=(] ~) and z=iy, show
(3.2) 20 a(n)e v =(—1)**y* 2 a(n)e ™ .

Multiply both hands of (8.2) by y %>, t>0, and take the integral of
both hands with respect to y from 0 to . Then we have

a(0) Soo e_gztzyy—uzdy + ﬁ a(n) SN e_zun/y—zggzyy_l/z dy
o n=1 0
= (__ 1)"/20,(0) Sw e—zzt’-vyk-x/zdy
0

+ (__1)&/2 ’g a(,n) S: e—2znv—2xt’vyk—l/2dy
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where the order of 3, and | are already changed by the absolute con-
vergence. From this, we get by (8.1) and Euler’s integral,

. r (&) —1§ -1 < —4xnl/2t
a(O)—————( 27rt’)1"‘+2 2 nzs‘{a(n)e

—(—1)\*2 Fe+3) o (e s
=(—1*a(0) G oL25+(— 1 3, alm)

I'(k+3) .
(2mtm + 2mtr)* 1/

Changing ¢ to 3t shows that this formnla becomes (1.3) and the going
(A)==(C) finishes.
§4. Theta-series.

As an application of (A)=>(C) in the preceding section, we can derive
Kronecker’s formula

1 1 1 1 &/ 1 1
4.1 — e
.1 e*is—1 2 * 2TiZ + 271 ,Z{ z2—n + Z2+n
for z¢Z
and
2xius oo —2ninu 2riny
4.9 e — 1 1 e e
_( ) e —1 2miz + 2ni n=1< 2+n + z—-n)

for 0<u<1, zeZ

from theta inversion formula

(4.3) i e—xy(m+v)2+zmw

n=—c0

=y—1/z i e—zy—l(m~u)z+2x¢(m—n)v , y>0 .

m=—oo

In fact, by (4.3) with u=v=0, we have

& ety 1L § et

uz-“xe + 2 2 v v a;'-ze
Multiply both hands by ¢ ™** and integrate them with respect to y from
0 to . Here note that in the exponent of ¢ only squares of m appear.
Then by (3.1) we have
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From this follows

1 1 1 1 & 1 1
—— -—_+ —_—
et —1 2 2wt 2wt w=1 (ti—-m + ti+m)

which shows (4.1) by putting t=iz, 2eC, z2¢Z and by the analytic
continuation. A proof of (4.2) is almost the same but we need some
device. We have by (4.8) with »=0, 0<u<1,

1 + i e—zts’+2ﬂsu + i e—:vmz—kiau

m=1 m=1

— ,y—!./z {e—zmzlv + i e-:(m—u)’/v + i e—t(ﬂ+ll)2/v}

m=1 m=1

and by the same procedure as above,

e—z:rut ezzt —ora
(4.4) e
=L_ 1 3 221 % 1 1
nt 2w .Z_‘,le (ti+m ti—m

1 - 2ximu 1 1
2ri §xe (ti+m+ti—m )

Then differentiate (4.4) with respeet to u, sum up both and divide by
2. We have

ez:ue — 1 _ 1 oo {ezﬁnu e—lxiﬂu}
et—1 2nt 2mwi =1 \Gi+m  ti—m

which is analytically continued to (4.2) after putting z=it, z¢ Z.

§5. On Siegel’s proof of Hamburger’s theorem.

Hamburger’s theorem asserts that under a certain condition of
convergence, if

f@)= i-%. ,  Res>1
and

g(l—s)=§‘, b, , Res<—a<0,

il pi—t

satisfy the functional equation
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f(S)F(%s)n'—u/z)s =g(1— 3)]‘(.%.(1 —_ 3)>TC_(I/2) -

then
f8)=all(s) (Riemann zeta-function) .

Siegel gave an analytic proof based on the integral (4.1) in {8]. His
proof goes on (B)—(A)=(C) and takes only 3 pages.

Now, we can go on (B)=(C) directly as in §1, abridge his proof at
least a half page and thus get a slightly different proof of Hamburger’s
theorem. '

Note that in Hamburger’s theorem there is no assumption on poles
in contrary to (A). But we can follow the same line of computation in
§1, except the determination of R=3, ..., Res,-. (I'(8)f(8)(2r)~*¢*) which
is nothing but Siegel’s @) (x=t). We may follow Siegel’s proof after
Q(x)-
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CORRECTIONS to “On the values of Eisenstein series” in this Journal
vol. 1, no. 1 (1978) by Koji Katayama.
p. 166 Theorem 4, (i): read (2zi)* for (2z7).
The right side of formula (3.1): read % for 3.

1
179 Li 0,0 .
P ine 8: 0.=-""1o
. 12 — 1 1\ 2.3
Line 12: S,=12 op(y=1;1 L)_2-3
ine 12: S,=-2, H(V : 2) :
. — 1 1 8zt —1 3 -1 v
L 15: W —1; =, =)= —_ W
ne "<‘/ 2 2> 8 10 =

Line 17: The right side must be read as
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_ 3 1 wé, 3
64+120+ * 640
p. 182 Line 6, 4 from bottom: read 3* for 3.
p. 184 Line 7, 9: read e~*~**—1 for e*"**r—1.
Line 7, 10, 11: read M,, for M,.
p. 185 In the formula of Theorem 11, read

(221:-—1 —1) E,,, —otk ELn
4%

for

3.2%3F _4.9tk-8 B
k
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