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Introduction

All number fields we consider are in the complex number field. The
symbol {S) denotes a multiplicative group generated by an element or
a set S. For any complex number xz, a j-th root of x, which is taken
to be positive real if x is positive real, is denoted by vz .

0.1. For a finite algebraic number field %, let £, be the group of
units of ¥ and W, be the torsion part of E,. Then E, is generated by
W, and by a set {¢;|j=1, ---, r} of fundamental units of k. The number
r is called the Dirichlet number of k. In general, some geometrical
calculation is necessary to obtain fundamental units of % (see [1] or Chap.
2, §5.3 of [2]). Those methods are very complicated when 7 is large.
If k is a real abelian number field, there is an effective method, which
requires no geometrical calculation, to obtain fundamental units of k (see
[5]). Our main interest is, in case k is not galois or galois but not
abelian over @, to construct {¢;|j=1, ---, r} from certain subgroups of
E, without any geometrical calculation. Let E; be the subgroup of E,
generated by W, and the units of all proper subfields of k. If the index
(&,: EY) is finite, we may construct E, from E,. Such a problem is
treated in some cases when k is galois over @, see [6] and [7] for example.
If (&,: E;) is not finite, we consider the following subgroup H,, the group
of relative units of k, in addition to E;:

H,={c € E,|N,,,(c) € W, for any proper subfield k, of k}.

The object of the present article is to show a way how E, is con-
structed from E; and H, in some cases. Our main tool is Proposition 1
in §1, which can be applied to ¥ of types as in 1.2. To explain our
actual calculation, we take for & a subfield of a dihedral extension of
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degree 8 or 12 over Q. Most of the results have been announced in our
previous note [12] without proof.

0.2. Throughout the paper we suppose n=2 or 3. Let L be a
dihedral extension of degree 4n over Q with the galois group G:

G={o,7); orr=7=(07)’=1.

Let K, F and 2 be the invariant subfield of (z), {(o°z) and (o)
respectively. The quadratic subfields K, and F, of K and F' are the
invariant subfields of {(¢% ) and (¢°z, 6*) respectively. When n=3, the
cubic subfield K,=KN F is the invariant subfield of {(¢* 7). The quartic
subfield A=K, -F, is the invariant subfield of {¢*) and is the maximal
abelian subfield of L. Another quadratic subfield 4,, which is the in-
variant subfield of (o), is contained in 4. Note that 4=2 when =2,
and that W,= W, in any case. We shall investigate the groups E;, E;
and E,. The fields K and F are pure number fields of degree 2n if and
only if 4, is the 2n-th cyclotomic field, and then

K=Q(¥d) and F=Q(V-—n"d)

with a natural number d.
T. Nagell [10], in case =2, and H.-J. Stender [16], in case n=3

and K is pure, have given a classification of K and F in terms of the
structure of E./Ex-Hy and E./E;-H,. We can complete such a classi-
fication as a corollary of Proposition 1. Moreover, Proposition 1 has
another application to the field of type Q(¥f, ¥'g) as in Proposition 4

in 1.5.

0.3. Let k/Q be a finite galois extension with the galois group G'.
A. Brumer [4], L. Bouvier-J. Payan [3] and N. Moser [8] have investigat-
ed the structure of E, as a Z[G']-module when G’ is a certain cyclic or
dibedral group, and have given several conditions for %k to have a
Minkowski unit (a unit which forms, together with some of its con-
jugates, a set of fundamental units of ¥). But in our case when k=L
and G'=G given as above, there seems to be no literature concerning
Minkowski units. Let us assume LN R=K. Then, by the result in §1,

we see
(1) H,=(—1>x{s> with &>1.

Let 7,(>1) be the fundamental unit of K,. Further let 7, (>1) be the
fundamental unit of K, when n=38. Then we can prove the following
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theorem by considering the relation between E, and E, and by con-
strueting E, from E;.

THEOREM 1. Let assumptions be as above. (i) In case m=2, there
18 a real Minkowski unit for L if and only if the following holds:

Ee=Hy,x{&) with &=V¢&7,,
E,=E, and K#K('27,), =#Q¥2).
Moreover, if this condition is satisfied, the unit &, 18 a Minkowski unit
for L. (ii) In case n=3, there i3 a real Minkowski unit for L if and
only if the following holds:
Ex=Hx{&> X (&> with &= Ve, &=V'¢&; ,
E,=E;, and E=Ej;.

Moreover, if this condition s satisfied, the unit &;7'¢; 18 a Minkowski
unit for L.

0.4. Stender [15], [16] and [17] have given a series of K with
explicit fundamental units when K is a pure number field. The method
used there is to construct E, from H, and E;. By the same method,
we obtain a new series of K with explicit fundamental units.

TEEOREM 2. Let d be a square free integer greater than 1 and put
0="¥'d. Assume K=Q(6) has a binomial unit a—bé(a, b€ N) such that

az=b"—1.
Then a set of fundamental units of K is given as follows:

&L=a—bf, &=a-+bo in case n=2;
&=a—b8, &=a+b0, &=a*+abd+b0* in case n=3.

Combining this theorem with Theorem 1, we obtain examples of L
with explicit real Minkowski units.

THEOREM 3. Assumptions being the same as in Theorem 2, the unit
& 18 a real Minkowski unit for the galois closure L of K/Q unless d=2.

We also give examples of L with no Minkowski unit in case n=2,
see Propositions 7 and 8.

0.5. In §1, we prove Proposion 1 and apply it to the groups of
units of some number fields, especially to Er and E,. (In order to
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construct E, and E,, it is the most important to find a finite index
subgroup of Hy or H,. When LNR=K, we can compute &, in (1) from
a so called “elliptic unit”, and then we have an effective method to
compute fundamental units and the class numbers of K and F, see [13]
and [14].) In §2, we study the relation between E. and E,. The proof
of Theorem 1 is given in §3 and the proofs of Theorems 2 and 3 are
given in §4.

§1. A property of a free abelian group.

1.1. Let E be a free abelian group with finite rank », and E, be
subgroups of E with rank », (1<i{<m). Assume that natural numbers
n, and homomorphisms f;: E—E; (1=i=m) are given and satisfy

fi@)=a% for xzekE; 1<%, j=m),

where d,; is Kronecker’s delta. Put
E,=[) Ker (£)

and let », be the rank of K.

PROPOSITION 1 (Lemina 1 of [12]). Notations being as above, the

following holds:

(i) (E|0=igEm)=ExXE X .- X E, (direct product);

(ii) The product map f=fiX:++ Xfu: E—E X .- XK, induces the
180morphism _

E|(ByX -+ X B )= f(ED[(BM X - - - X Egm) ,

and thus
r=rt-c-+rn, (B:EyX -+ XE)|nt--na»;

(ii) If =, (1sSisr—r,) are elements of E such that f(E)=
{fle)|1Si<r—r,), we have

E=E,x{x) X+ X{x. (direct product) ;
(iv) If n, (1<i=<m) are pairwise relatively prime,

FB)=f(B)X - X fa(B) (direct product) .
ProOF. For 1=0,1, ---, m—1, let

x¢=x‘+1";xﬁ With xjeE,' (’iéjé’”b) .
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If ¢=1, then
&P =f (%) =Fo(®es1)* - fi(@n)=1,

hence z,=1. If i=0, then, for j=1, ---, m,
1=fi(x) =F3(%)+ - - fi(®n) =237 ,

hence z;=1, and so #,=1. Therefore E.N (&, -H,)=1 for i=0,1, ---,
m—1. Thus (i) is proved. To see (ii), it is enough to prove

(2) f“(Ef‘lx---xE;m):on---xE,,.

The right side of (2) is obviously contained in the left gside. Let « be
an element of the left side of (2), then fi(x)=2y¢ with x, ¢ E, (1=si=m),
80 (2, + - %) €Ker (f)=FE, Hence (2) is proved. It is easy to see (iii)
from the exact sequence :
1—E, 25 L, (5 —1

which splits via a natural homomorphism from f(E) to E. Let n,, -, 7tn
be pairwise relatively prime. Since f(&) is always contained in
fi(E)---fu(H), it is enough to show »

(3) f(B)Cf(E) 1=i=m)
in order to prove (iv). Take p, ve€ Z such that
#n1+va=1 ’ a«:=’n2°°°’n,,. .

For x € E, let
Y= xmf1(x)p(:g ft(w)a‘)—v ’ ac=aln;,

then f(y)=fi(x), hence f(E)Cf(E). Similarly, (8) holds for 2=<i1=m.
Thus we complete the proof of Proposition 1.

1.2. We can apply Proposition 1 to the following finite algebraic
number field k; '

A. the field k is an extension of relative degree m, over a proper
subfield %, of k;

B. the field k is the composite of two subfields k, and k., which are
linearly disjoint over Q, with [k: k]=mn, (1=1, 2);

C. the field k contains M subfields k, (1=<i<M) which are pairwise
linearly disjoint over @ and [k: k]=[k: Q]=N (1=i=M).
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In all these cases, let B:=E,/W,, E:=E,,- W./W(=E,/W,) and f;: = Ni/a,
Then f(W,)C W, CW,, so f, is regarded as a homomorphism from E to
E;. Let r and r, be the Dirichlet numbers of k¥ and &, respectively.
Then the assumptions of Proposition 1 are satisfied with

m=1 in case A,
m=2 in case B,
m=M in case C.

Define the groups of relative units with respect to k/k, by
H;:={ec E,|N,,(e)e W,}.

Then W, is contained in H,, and

E=(!j H,) W, .

In the rest of this section, typical examples of each case are studied.

1.3. Notations being as in 0.2, let n=2. The fields K and F belong
to the case A of 1.2. Note that Ex=E,, and E:=E,, because W= Wk,
and Wy= W,

Assume L is imaginary and the maximal real subfield of L is galois
over Q, i.e.,

LNR=42.

Then E, and E, have the same situation, so we may treat E.. Apply-
ing Proposition 1 as in the case A of 1.2, we see (Ey: Ey)=1or 2. More
precisely, we have the following.

PrROPOSITION 2 (Nagell). If n=2 and LNR=2, then Ey=FEy,.
PrROOF. See §2.11 of [10], p. 359.

Assume L is imaginary and the maximal real subfield of L is not
galois over Q. Then we may assume

LNR=K.
In this case, we have
(4) Ex,={—1)x{n) with 2,>1, Ep,=Wpg,.

Applying Proposition 1 as in the case A of 1.2, we see
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(5) Hy={-1)x<{e) with ¢>1, E,=H,=Wg X ,
and
(6) Ex=Hgx <& »
where ¢, can be chosen as one and only one of the following forms:

(1) e— {772 if £7,¢ Nx/_xz(Ex)
*“ w7, or V&7,  otherwise.

REMARK 1. Since Ng/g,(@)°=|a’*=0 for ac K, it is obtained that
Hy={¢ ¢ Be| Nei©)=1} |
and that
£, € Ne/x,(Bx) = 7: € Ne/x,(Eg) -
If &,=1"%, in (7), then K=K,('7,), and so 73<0, thus
&,=1"7 in (7)— Ngjo)=—1.

Assume L is real, then we may treat only Ex. Similarly as above
we have

(8) Eg,=(—1)x<ny with 7,>1,

and see

(9) H.={(—1)x{&p x<ey with ¢&,¢&>1,

(10) | | Bp=Hex (e,

where ¢, can be chosen as one and only one of the following forms:

11) &, = {7]2 if +7,¢ Neg/x,(Ex)
v N2y V &2y V'ey, or V&, otherwise .

REMARK 2. As in Remark 1, we have
&=V"7, in (11)=— Ng,o(7)=1.

1.4. Notations being as in 0.2, let n=38. The fields K and F belong
to the case B of 1.2. Note that Ei=Ey,  Ex, and E;=Ey, - E., because
We= Wy, and We= Wp,.

Assume L is imaginary and the maximal real subfield of L is galois
over Q, i.e.,
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LNR=Q.

It is sufficient to consider only E.
PROPOSITION 3. If n=8 and LNR=Q, then Ey= Wk, - B,

PROOF. First we mention that EL°* is contained in Wg,: Because,
for ec E; and i€ Z,

|t f= N, o(e¥~M) =1,

so every conjugate of &~ has its absolute value 1, hence & is a root
of unity in K. Suppose Ex#E%. Then, since 7\.‘"””—7\.2 for » € Wy,, there
exists € € E; such that -

V-1 if K,=Q(/=1)

*=5 ith 8={ -
€ ¢ w (-1 otherwise ,

on account of Proposition 1 applied as in the case B of 1.2. Now lét
K,=Q(V'—d) with a squarefree natural number d, and write e=a+ 81 —
with a, g€ K,. Then it follows that

a—-gV —d =da+pV —=d),
which implies that

o {2,192 if d=1
dg’ otherwise .

This is a contradiction because the ideal (2) or (d)#(1) cannot be a square
in K,. Hence Ex=Ex=Eg,-BEx,=FEg - Wy,

Assume L is imaginary and the maximal real subfield of L is not
galois over @. Then we may suppose

LNR=K.
In this case, we have

12) Br=(~1>x>, Bg=(~1x(7) with
ey 77s>1 ’ EF2= WF3= <,0> .

Applying Proposition 1 as in the case B of 1.2, we see ’
(13) Hy={—1yx<(ey with &>1, Hp=WgXx{e)

and
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(14) Ex=Hgx &) X (& , E,=Hy;x <&y ,

where ¢,, & or &, can be taken as one and only one of the following
forms:

(15) E.= {772 if :i:% e NK/KZ(EK)
"\ ¥7,, ¥Vem, or ¥em' otherwise,
16 f—] _ - 3
(16) & {1/ 7, or Ve, otherwise ;
an &= {”8 if 7 @ Noyx(Br)
* Wons, Vems or Vpem, otherwise .

REMARK 3. If ¢ is an element of H,, we have Ng,(e)=1, and so
Nk /x,(¢)=1, hence ' ‘

Hy={s € Ex| Ng/x,(6)= %1, Ngx,(6)=1} -
Further Ng/,(¢)=sgn (¢) for ¢ € Hy, therefore |
ey ={e € Ex| Ng/x,(6) = Ng/x,(6) =1} .
As —1 belongs to Ng/x,(Ex), it holds that
92 ¢ N (Bx) = 71 € Nay(Bix) -

If —7, belongs to Ng/,(Fx), we see that —1 also belongs to Ng/x,(Ex)
and that

/2 'NK/Kg(EK) =1 ¢ Nx/xa(Ex) .
Since every element of N ,(Ey) is positive, it follows that

Hy={e € Er| Ny g(e)=1}
and that ‘
+7s € Np/x,(Br) =15 € Ne/x(Er) -

We shall see later in Proposition 6 that z-:3=1/77—3 never occurs in (16)
and that e;=1"p7, never occurs in (17).

Assume L is real, then we may treat only Er. We can classify
E,. similarly be using Proposition 1, though the statements are more
complicated. As it is not used in the rest of this paper, we shall omit
the explicit formulation of the classification, which is found in Corollary
2. (ii) of [12]. '
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1.5. As an example of the case C in 1.2, we study the following
number field. Let » be an odd prime number, f and g be natural
numbers such that all f‘g (1=1,2, ---, p) and f are not perfect p-th
power in @, and put

k:=Q( '1\’/7-’ W) ) kt:=Q( Wg) (i=1) 2; c Y p) ’kp+1:=Q( g/—f—‘) .

Then the conditions of C in 1.2 are satisfied with N=p» and M=p+1,
and we have ,=(p—1)/2 as the Dirichlet numbers of %, (i=1, 2, ---, p+1).
On the other hand, the Dirichlet number of k& is given by »r=(p*—1)/2.
Therefore r=7,4+---+7r,,, follows. Since there is no proper subfield
other than k, (1=1, 2, --., p+1), the following proposition is proved by
Proposition 1.

PrROPOSITION 4. Notations being as above, the group E,/E; is an
elementary abelian p-group with p-rank 0 to (p*—1)/2.
§2. Relations between E, and E,.

2.1. Let n=2 and keep notations in 0.2. The following multiplicative
homomorphisms are useful to study the relations between E; and F;:

¢: K*— F*; g— g't7 ;
v F*—— K%, y——y'* .
LEMMA 1. Let ¢ and 4 be as above, then it holds that

N, F/Fg(¢(x)) = Ng/(®) , N, 212,V (Y)) = Ng,o(¥) ,
Vo (%) =2"Ng/x,(®)° , $ oY (Y)=y'Np/r,¥)° ,

Jor xe K* and y € F*.
ProoF. Every formula is easily checked by direct calculation.

The next proposition tells us that generators of E; can be utilized
to determine generators of E,, and vice versa.

PROPOSITION 5. Let ¢ and + be as above, then we have
(Hg: Wy - y(Hp))(Hp: We-9(Hg))=2 or 4

respectively when LNR=K or L is real. Especially when LNR=K, it
holds that

Er=WeXx<{$(s) , He=Wg X {y(&,))
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if e=V'em, in (7). Here &, & and 7, are given as in (4) and (5).
ProOF. By Lemma 1, ¢ and 4 induce the homomorphisms
¢: He/Wy—— H,/W; and §: Hp/Wy—— Hg/Wg,

which satisfy that J: o4 and go are the squaring endomorphisms of
H. /W, and H,/W.. Since H./ Wy is torsion free, ¢ is injective, and so
S (He/ W) )= (Hyg/Ws). Therefore

(Hy/ W) [¥(Hy/ We)=@(Hg/ W) /(Hp| Wg)* .
Thus
(Hg/ Wx): 3(Hzp| We))(Hz/ Wr): (Hg| W)= (Hz/ We): (He/ Wr)*) ,

which proves the former part of the proposition on account of (5) and
(9). Assume LNR=K and &,=17¢%, in (7), then ¢(c,) belongs to H; by
Lemma 1 and ¢(s,)*=+¢(c,). This proves the latter by virtue of the
former statement.

2.2. Let n=38 and keep notations in 0.2. The following multiplica-
tive homomorphisms are useful to study the relations between E; and
E.:

¢: KX— F* x— x°t°? ;

"l": F*— K* . y____)yo+02 .
Similarly as in 2.1, we have
LEMMA 2. Let ¢ and + be as above, then it holds that

Ng/r,((2)) = Ngso() , Ny/e,(v(¥))=Npso(y) »
N, F/K3(¢(x)) = Ng/o(@)/N. xxxa(x) ’ N, PYAG (¥))=Nr,o(®)/N, F/Ks('y) ’
o g(@)=a"°N, K/Kg(x)N x/xs(wz) ’ poy(y)=y N, F/F,(y)N F/Ks(yz) ’

for xe K* and y € F~.
PROOF. The formulas are obtained by direct calculation.
PROPOSITION 6. Let ¢ and + be as above, then we have
(Hg: Wi - 4(Hp))(Hp: Wy ¢(Hx))=3 or 9

respectively when LNR=K or L is real. Especially when LNR=K, it
holds that



96 KEN NAKAMULA

He=WgXx<{s(s)) , He= Wg X (&)

if &= Ve in (15); the case =17, in (16) or &=V N0 im (17) never
occurs; and the case &,=17, in (16) occurs if and only if ei=7, in (17).
Here p, &, &, 1, and 7, are given as in (12) and (13).

PROOF. The first statement is proved by Lemma 2 similarly as in
the proof of Proposition 5. Let LNR=K. Assume &= YemE in (15),
then ¢(e,) belongs to Hr by Lemma 2 and ¢(c,)*= +4(¢,), therefore H,=
Wex<{g()) and Hy= Wgx<{y(c,)> on account of the first statement of
this proposition. Assume &=177, in (16), then ¢(s,)*=7;'>0, which is
a contradiction because F N R=K, and ¢(¢;) cannot belong to K,. Hence
V7, does not belong to K. Assume &=1"p7, in (17), then ()=
which is impossible since 1”7, does not belong to K. Hence Vo7, 07 is not
an element of F. If there is a unit ¢ of K such that Ng/x,(6)=7;, see
Remark 3, then the third formula of Lemma 2 tells that N, F1E(P(E™Y)) =1
From the fourth formula of Lemma 2, it is derived that 7, belongs to

Ny/x(Ey) if 7, is an element of Ng/x(Eyz). Thus the proof is complete.

COROLLARY. When LNR=K, we have
Er=Hyx{¢(&)) » Ex=HeX{E)X{P&),
where &, & and & are as in (15), (16) and (17). Especially
Er=We- ¢(Er)
if &.= ¥emE in (15).

PrROOF. Combining the first four formulas of Lemma 2 with
Proposition 1.(iii), we see the former. Then the latter is clear from
Proposition 6.

§3. Minkowski units.
3.1. Notations being as in 0.2, we assume n=2 and LNR=K.

PROOF OF THEOREM 2 IN CASE n=2. Assume ¢ is a Minkowski unit
for L which belongs to K, then

e**= N, /(€)= N, /x5 (E) »

which is not any v-th power modulo W, in E, for v=2. Therefore '+
is a fundamental unit of both K, and 4, is a norm from E, and is not
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a square modulo +1 in E,. Hence E,= W,x<%) and &=V, in (7).
Put a:=1"27, and suppose K=K,(a), then g(a)’=—4 since 7, cannot be
totally positive, where ¢ is given as in 2.1. Therefore 1'—1 is an
element of L and (a/(1—1 —1))*=1"—17,. This implies that ¢+ is a
square modulo W,, and a contradiction. Thus K=K,1'27,). Suppose
K=Q(¥72), then (1+w)/¥2)r=wn, with w:=1+V=D/12 and 7,=
14+1v"2. Thisis also a contradiction. Hence we have proved the “only
if” part of the theorem.
Assume E,= W,x<{n,) and &=1"¢7,, then we see

Ey=(—1,¢,¢&" and E,=W,x{&),
and so it follows from Proposition 5 that
(18) By =W, % (&) X &3y X (&7
Therefore, since E% is contained in E;, for every ¢ in E,,
(19) g=epepoer” (mod W)

with v, in Z (=0, 1, 2). Operating 1+7 and 1+0® on the both sides of
(19), it is obtained that

2(1+7) — o2Vg—¥a(2vp—v;) 02
Ut =gpegy (mod Wry) ,
52(1+02)Eeéu0+v2-—v1)(1+02) (mod WA) .

So the congruences
(20) v, =y,+v,=0 (mod2)

are derived. If y,=y,=1 (mod2), it follows from (19) that there exists
a unit \ of L such that

AN=gt?=7, (mod Wy).

If A*=7,, we see that A\ is an element of K=LN R, however it contradicts
to e,=1V"¢),. Therefore we may assume

~ 7 if v—1e¢L
M=l{wy, with @:=1+V—=DNV'2Z if 4=Q(1 2,V -1)
VvV =1y, otherwise .

When 1”—1 does not belong to L, then, since A is neither in 4 nor in
K, we see \ is in K’ and \’ is in K, so a*=—7;>0. Hence 9,=—7,°"=
(A7) with A7 in K, which also contradicts to &,=1V'¢7,. When A=
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Q1 2,V 1), put 6:=(1+w)/n, then =12 and K=Q6)=Q(¥2).
Otherwise, 1 —1 belongs to L and 4#Q(1' 2,1 —1), and then (A+\7)*=
27,, while 27, is not a square in K, by Satz 13 of [7] since K,#Q(1/2)
and K,#Q(13). Hence K=K,A+\)=K,(V27,). Thus we have shown
that v,=»,=»,=0 (mod2) on account of (20) if K+Q(¥2) and K=
K,(1"27,). So & has already been a square in E; modulo W, by (19),
which implies that E,=FE; and that, by (18), ¢, is a Minkowski unit for
L. This completes the proof of Theorem 1 in case n=2.

3.2, Notations being as in 0.2, we assume n=8 and LN R=XK.

PROOF OF THEOREM 2 IN CASE n=38. Assume ¢ is a Minkowski unit
for L which belongs to K, then

g+’ =N, 19(€)=N, x/xs(E) »

which is not any v-th power modulo W, in E, for y=2. Therefore &'**
is a fundamental unit of K, and is a norm from Ej, hence &=1 &7 in
(16) by Proposition 6. Further, since ¢+ and &°*** are units of 2 which,
together with W,, generate a maximal subgroup with free rank 2 in
E,, it follows that E,= Wy X (%) X {%>. Similarly, from

gitot+ol= N, 2/4(€) =N, /%, (€) »

we obtain that E,= W,x<n,) and that ¢,= ¥e7F or ¥7,. Here ¢, ¥7,
because ¢'+*** cannot be a cube in E, modulo W,. Thus the “only if”
part of the theorem is shown. '

Assume &,= V&7 in (15) and =176, in (16), and put &: =¢,/e,.
Then it is easy to see that '

Ey=Wgx &) X (&™) X (e .
If we further assume E,= W,x <7 and E,= Wy X 3> X 3>, then

Ey= Wy x (g x e+,
E4= WA X <81+02+al> .

Now, by the corollary of Proposition 6, we see
Fro= Wi X {4 x &7+ .
Therefore

(21) Ei=W.x <) X e x (&) X (") X (e* ,
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and, since E? is contained in E}, for every ¢ in E,,
g=¢" (mod W.), Y:=y,+v,0+ -+ +v,0*

with v, in Z (=0, 1, ---,4). Operating 1+7, 1+o°c and 1+0% the
congruences

y,=0 (mod3) (¢=0,1,-:-,4)

are derived similarly as in case n=2. Thus £ is a cube in E; modulo
W,, which means E,=FE., and hence, by (21), ¢ is a Minkowski unit for
L. This completely proves Theorem 1 in case n=3.

3.3. Notations being as in 0.2, let =2 and LNR=K. It seems
to be a little more complicated to see whether L has a Minkowski unit
¢ which is not necessarily real, e.g. E,=W.x <) x<e’) x(&). The
following proposition gives a necessary condition for L to have a
Minkowski unit. '

PROPOSITION 7. Assumptions being as above, let 1, be as in (4).
Then there is mo Minkowski unit for L if &,=1, in (1) and E,# W,X
0

PROOF. Suppose that there is a Minkowski unit ¢ for L. Then one
of the following sets is a system of fundamental units of L:

@ (5 &Y, leeet, e e), e et

{e’ sa, 603‘:} ’ {s’ 802, er} ? {8’ 602’ sar} ’

Since {e, %, 67} ={e", (67)°, ()7}, {&, €%, &%} ={e%, (6°)", (¢°)°} and {e,e”, €7} =
{e°™, (¢°*)°, (°*)"}, we may treat the first two and the last two sets of
(22). If the first set of (22) is a system of fundamental units of L, we
have

E,=W,x (&t .
If ¢+ is not a fundamental unit of K,, i.e., B, W,x (1,), then gi+sma+a
is a fundamental unit of K,. From
| 8(1+02)(1+f)=8(1+r)(1+02) ,
it follows that 7, is element of Ny, (Ex) and that &+%, in (7). There-
fore E,=W,x {1,y or =7, in (7) if the first set of (22) is a system of

fundamental units of L. Similarly, if either of the last two sets of (22)
is a system of fundamental units of L, we have E,= W, X, Or &+,
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in (7). If the second set of (22) is a system of fundamental units of L,
it holds that

" =¢ewen’%"* (mod W)

with v, in Z (=0, 1, 2). Then, operating z on the both sides, we obtain
that

o= euou1+vzev§ae(vo+v1vz)r (mod W)
and that
g' =g’ (mod W)
with y,==1. Therefore
goU+D) = gull—mr)gli+)e (mod w,) .

Since N,,x(E,) is a finite index subgroup of E., &'** and e’'+? gare in-
dependent units of K, so v,=1 and

(23) €T =¢"e% ™" (mod W) .
Now, for ¢ in E,, let
(24) E=ereM%*  (mod W)

with ¢, in Z (i=0, 1, 2), then, on account of £¢=¢-, it follows from (23)
that

(25) eEepo(1+r)sy1(a—vor) (mod WL) .

If E,+ W,x<{(,), then 7. is a square modulo W, in E, by Satz 12 of
[7]. Therefore, when g¢=7, in (24), all the g, (=0, 1, 2) should be even,
hence, by (25), 7, is a square modulo W, in E.-W,. Thus, by E,-
Wo./Wo=Eg/Wg, 7, is a square modulo Wy in E,, i.e. =V, in (1),
and the proof is complete.

§4. Binomial units.

4.1. For n=2 or 3, let K=Q(6), 0="¥'d with 2n-th power free d
in N, be a real pure number field of degree 2n, and & be a primitive
2n-th root of unity. Then the galois closure L of K/Q and the galois
group G of L/Q are given by

L=Q,0=KQ; G={o,7), 6°=L0, =0, =, r=(".
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The group G is a dihedral group of order 4n. Using the notations in
0.2, we see that

LNR=K, F=Q(¥—n"d) .

We determine fundamental units of K, F' and L explicitly in a certain
case, assuming that K has a binomial unit. Before we prove Theorems
2 and 3, we make a few remarks.

REMARK 4. Let S be the set of K which has a unit of type a—bé
with a, b in Z, a>0, b>1. Then, by Ljunggren’s theorem (Satz 3 and
Satz 7 of [17]), there is only one unit of type a—bf in K for each K in
S, and the fields K differ if the pairs (a,b) differ. Therefore, if we
put

S;:={KeS|a€N, a—bb € E}
for each b>1, we see
S =p S, (disjoint union) .
=2

So we fix b>1 and consider K it S,. Then, by a similar manner as in
H. Yokoi [18], we see that a—b8 is a unit of K if and only if

a=b"c+a,
. {c (b'c+2a,)(b°c*+ 2a.b'c +2a2) +d, for n=2
T e(®®e+2a,)(b%c? + abe + ad)(b?c*+3ab’c+3a3)+d, for n=38

with a certain natural number ¢ and a rational integer a, such that

(26) ai"=+1 (mod b*") , 1§1~“b2"<a0§1§1 .
Here the rational integer d, is given by a2"=+1+b*"d,. If ¢>1, we see

a>b*", so the assumption a=b*""—1 removes only finitely many fields in
S;. Especially in the trivial case in (26), a,= 1,

c(b*c+=2)(b*c*+2b'c +2) for n=2,

27 d= {
c(b’c+2)(bc*+b%+1)(b*%c*+3b%¢+3) for n=8.

By [9], we can prove, for any fixed b in N, odd in case n=2, there are
infinitely many square free d of the form (27). Therefore there are
infinitely many fields in the set S, (b: 0dd if n=2) which satisfy the
assumption of Theorem 2. In the case d is as in (27), the condition
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a=b"—1 is satisfied even if ¢=1. The same fact holds for S, when b

is even and n=2.
We note that d becomes very large since d is a polynomial of degree

2n(2n—1) in b and of degree 2n in c.

REMARK 5. By using Satz 3, Satz 7, Satz 16 and Satz 22 of [17],
we see that the field K in Theorem 2 is different from those in Stender
[17] unless b=1. Of course, Theorem 3 is a new result including the

case b=1.

4.2,
PROOF OF THEOREM 2. (i) Let n=2. When b=1, the proof is

seen in [15]. Assume b>1. Then the inequalities
(28) a=15, Max(a,b0)<a+l, 6'<¥a+1 [(a—1)

are obtained easily. Let d:=a'—b‘d=Ng/ (&), and 7,, & be as in (4), (5).
Then

(29) N,= 0 &r ‘52— t=¢N, x/xz(ei- 1) =a*+ b%*6*
and
(30) &= 53772 = 3&: 1& = (a:2 + bgaz) (a + b6)*

are proved as follows. In (29), only the first equality is non-trivial.
Suppose a*+b**=7n; with v=2, then

1<67 (0, + |7 <0~ (V &+ +1)
since 00 (,—7) € Z and 1<7,=V'a*+b°¢*. On the other hand
(V' a*+ b6 +1)<1

follows from (28). This is a contradiction, and so (29) is proved. In
(30), only the first equality is non-trivial. Note that v'7), does not
belong to K because, if it belongs to K, we have ¢(1'7,)*)=—1, though
F,+Q(1/—1), where ¢ is given as in 2.1. Suppose &7,=¢f with v=3.
Then, by (3), (4), we see 1<0~%8+ ¥&n,), applying Hilfssatz 1 of [15].
While 68+ ¥&7,)<1 follows from (28). This is a contradiction, and
hence (30) is proved. Thus, by (29), (30), and by (6), (7), Theorem 2 is

completely proved in case n=2.
(ii) Let n=8. When b=1, the proof is seen in [16]. So we assume

b>1. Then the inequalities
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(31) a=63, Max(a, b0)<a+1l, 0'<¥Va+1l/(a—1)

are proved easily. Similarly as in case n=2, we obtain

(32) =086 =0Ng/x, (&) =0’ +b¢" ,

(83) =086 =0Ng/x (67" =a'+a'b’6*+ b6 ,

(84) =gt =087188 = (a +b0)*(a*+ abl + b*6*)(a’+ a*bl + - - - +b°6°)

by using (81) and the results in [16]. Here 6=a’—b’d=Ng, (%), and ¢,
7, and 7, are given as in (12) and (18). The detailed proofs of (32), (33)
and (34) are done in the same way as in [11], so they are omitted. Now
we see, on account of (32), (33), (84), that &= Ve, =¢84, in (15), &=
Ve =0878,8, in (16), and that ¢, &, & form a set of fundamental units
of K. Thus the proof of Theorem 2 is complete in case n=3.

4.3.

Proor OF THEOREM 3. (i) Letn=2. Then K+#K,1'27,), because
F,-Q(—1). Therefore, on account of Theorem 1, it is sufficient to
show

(35) E=W,x{®w ,

since 1¢,7,=0¢' € K has already been shown in the proof of Theorem 2.
We mention that d>3 by (29) and by the assumption. Then we can
apply Satz 18 of [7] to prove (35). Assume that the ideal (2) is a square
of a principal ideal in K,. Then 2%,=((x+y6%)/2)* with », ¥ in Z, z=y
(mod 2). From this and (29), 4b*=xy and x=y=0 (mod 2) follow. There-
fore

29, =(s+ o)

with 8, t in Z. Taking the norms of the both sides, we have 4=(s*—¢t'd).
Hence

20°=g"+1t'd , +2=8—0d,

and so a’+1=g®. This is not the case and (85) follows from Satz 13 of
[7] since d>3. The proof is complete in case n=2.
(ii) Let n=3. It is sufficient to show

(36) E,=W,x{n) and E,= WX X<0)

on account of Theorem 1, because &= ¥e7;* in (15), &,=1"¢7, in (16)
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and ¢;/s,=0/& have been shown in the proof of Theorem 2. Mention
that d>38 by (82) and by the assumption. Assume E,# W,x{%,), then,
applying Satz 14 of [7] similarly as in the proof of Proposition 4.(i) of
[11], we have

3at=2*+9d , +3=a*'—y'd, 3b*=2xy ,

with 2, ¥y in Z. From this, it follows that 3|z, (¢/3, ¥)=1 and that
=32 or x=122° with z in Z. Therefore

a’+1=6(z*) or 12(2z%)°

with 2z in Z, which is impossible, hence E,=W,x(n,). Assume FE,%=
Wox (ns) X <73, then, applying Proposition 1.2 of [6] similarly as in the
proof of Proposition 4.(ii) of [11], we have

3(a*+da’+1)=(x+y)*—3xy

with #, y in Z such that a*+da*+1 divides b*(x+7y). Note here that
b’d=(a*—0)(a*+0da*+1), (a*—0)*+3da*=a*+da*+1 and that d is square-free.
Therefore every prime divisor of a‘+da®+1 divides b, hence

at+da’+1<5b7 .
On the other hand, we have
a*+oat+1=(0—1)—(b*—1)>+1.

This is impossible except for b=1, §=—1 and a=1, and then d=2, which
is the case removed by the assumption. Therefore E,= W, X (0 X (93.
Thus (36) is shown and the proof is complete in case n=3.

4.4. Lastly, we give an example of L which has no Minkowski
unit, real or not, in case n=2.

PROPOSITION 8. The field L=Q( ¥3¢g*, V' —1) has no Minkowski unit
if g 18 a square free natural number prime to 3.

PrOOF. We apply Proposition 7. Notations being  as in 0.2, we see
A=Q(v'3,v —1). Let 7, be as in (4), then 7,=2+1"3 and

B, W, x ) .
Put 6:= ¥3¢%, then, for ¢ in E,, it follows from [15] that
290 =gx,+ gx,0 + 2,0° + x,6°
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with rational integers z, (=0, 1, 2, 8). If Ngyx,(6)=7=2+1"3,

{oc% +8xi—6gxr.x,= —12g
2,0, — ga; — 3gx;= —8g

are derived. But this is impossible, hence ¢,=%, in (7), see also Remark

1.

Therefore the assumptions of Proposition 7 are satisfied, and L has

no Minkowski unit.
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