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Introduction

Starting from the model of May, fi@)=re(l—2x), (0=1=4, x< [0, 1],
many works have been done on the topological and measure theoretical
study of one-parameter family of one-dimensional transformations [1]~
[8]. Especially, these works treat the phenomena of bifurcation, that
is, the change of the behaviour of orbits according to the change of
the parameter. In the case of the model of May, it is considered that
the parameter A expresses the characteristics of the species considered
and that the value 2 expresses the population; and also the population
of the (n+1)-st generation w,,, is determined by the population of the
n-th generation x, by «,.,=fi(x,).

In this paper we are concerned with a random family {f.; a<a<b}
of transformations of an interval I into itself. On one hand, the random
family of transformations may serve as more realistic models, e.g.,
models of population dynamics, if one takes into account of the random-
ness of the environment. On the other hand, there may appear some
interesting situations. For example, the random system {f.] may be
mixing (a fortiori, exact ([10])), although each transformation f, is not
mixing.

We formulate the problem in the following manner. Let {f,; a=a=<b}
be a one-parameter family of transformations of an interval I into itself,
and let X, X, -+, X,, --- be a sequence of independent and identically
distributed random variables defined on a probability space (2, P) with
a<X,<b. Then, for each we 2, x,€lis transformed to «,=fx, (@), ¥.=
Fry@(@)y 0y Ca=Jx @ (@ns)y - Our aim is to investigate the behaviour
of the orbit {z,; =0} for almost all we 2.

In this paper we only treat the following simplest case where the
one-parameter family of transformations is that of unimodal linear
transformations, that is,
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1
<sx<—
ax == 2

Ja(2) =1 1
—a(z—1) E<x§1 ,

where 0<a =<2, and the sequence of random variables is 1/2, 1/2)-
Bernoulli trials with state space {a,d} where 0<a<b=<2, that is,
Plw; X, (w)=a}= P{w; X,(w)=b}=1/2. We call this case the random
iteration of unimodal linear transformations.

If we identify this sequence of random variables with the dyadic
transformation on [0, 1), then we can represent this random iteration of
transformations by the following two-dimensional skew-product transfor-
mations

(f.(=), 2y) ogy<%

Ta,b(xy y)= 1
(fo(x), 2y—1) 5 =vy<l.

So, in order to investigate the behaviour of orbit of random iteration,
it is sufficient to investigate the behaviour of orbit of skew-product
transformation T,,. Our aim here is to answer the following three
questions:

Question-1. Does T,, have an invariant measure which is absolutely
continuous with respect to the Lebesgue measure?

Question-2. In the case that T,, has an invariant measure, is T,,
ergodic with respect to this invariant measure?

Question-3. When is T, , exact?

About these questions, we get the following results:

Result-1. The necessary and sufficient condition for T,, to have an
invariant finite measure which is absolutely continuous with respect to
the Lebesgue measure is that ab>1; in this case we get its density
function h, ,(x) explicitly. (Theorem 2.8.) This result shows that in the
case ab>1, even if a<1, the orbit of random iteration shows complicated
behaviour by the influence of f;.

Result-2. T,, is ergodic with respect to this invariant measure.
(Theorem 3.4.) This shows that almost all random iterated orbits
{x,: n=0} satisfy the relation

lim LS 1,0z)= SAhn,,,(w)da: , ae we?,

n—oo N, k=0
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for each Borel set A.

Result-8. Under some additional condition, T,, is exact. (Theorem
4.5.) In particular if f, is exact, then T,, is also exact. But we
emphasize that T, , may be exact even if both f, and f, are not exact.
So it is important to determine completely the pair of parameters (a, b)
for which T,, is exact, and also the shape of the support of A, .(x) for
each (a,b). But we cannot get the complete solution of this problem
now. .
In concluding these introductory remarks, we would like to express
our thanks to professors Y. Takahashi and T. Ohno. Especially we owe
to T. Ohno for the idea of proof of ergodicity and exactness of T, ,.

§1. Definition of random iteration and the case ab=1.

Let a and b be real numbers such that 0<a<b=<2 and let f, and f;
be unimodal linear transformations, that is,

(1) So(@)=

Let X=[0, 1], Y=[0, 1) and let m, and m, be the Lebesgue measure on
X and Y, respectively. And let m=m,xm, be the Lebesgue measure on
XxY. Let T=T,, be the skew-product transformation on X x Y defined
by

(ful@), 2y)  O= y<—§-

(f(@), 2y—1) —;—éy<1 .

(2) T(x, y)=

Hereafter we identify the space Y=[0,1) with the space {a, b}" of the
representation of dyadic expansion (here we use the symbol a, b instead
of the usual symbol 0,1 of dyadic expansion) and represent y€ Y as y=
(Ysy Yoy ***y Yny -+ ). Using this representation, T is represented as

(3) T(x, )= (f,(®), 09) ,

where ¢ is the shift operator on {a,b}". And by this identification,
the Lebesgue measure m, on Y=[0,1) can be identified with (1/2, 1/2)-
Bernoulli measure on {a, b}".
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LEMMA 1.1. For each y, ¥, -, ¥. € {a, b}, we have

(4) )RR M CHESTRERY TR 28

PROOF. From the definition of f,(x), it is clear that Jon Sy (@) is a
continuous and piecewise linear function with derivative +y,-- -y, and
satisfies f, ---f,(0)=0. So lemma is proved.

LEMMA 1.2. For mya.ey€eY, we have that (y,---y,)""—1 ab as

Nn— oo,

PROOF. It is clear from the law of large numbers
1 1
(5) Z;‘:llog y,,—>E(log a-+logb) ms-a.e.y.

PROPOSITION 1.8. In the case ab<l, we have that Jons Sy (®)—0 as
n— oo for m,-a.e.y, and so T has no invariant measure which is absolutely
continuous with respect to the Lebesgue measure m on Xx Y.

PrOOF. From Lemma 1.2, we have that m,{y,---y,—0as n—o}=1.
So, by using Lemma 1.1, we have that m,{ Jont Sy (@)—0 as n— co}=1.
The rest of the assertion is clear from this.

PROPOSITION 1.4. In the case ab=1, T has no invariant probability
measure which is absolutely comtinuous with respect to m.

PROOF. Assume that 7T has an absolutely continuous invariant
probability measure p. Let v be the measure on Y defined by v(F)=
(XX F) for Borel set FCY. It is clear that v is absolutely continuous
with respect to m,, and from the relation

(6) V' F)=p(THXXF)=pXXF)=y(F),

it follows that v is g-invariant, and so we obtain v=m, From ab=1 it
follows that

(7) |, o vudm.(v)=~(og a-+logh)=0,

and so, from the central limit theorem we obtain that

(8) mz{y; 1717103'(1/1---z/n)<6} >§;‘/ém exp(—z"’f;)dx
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for each 8. Let us choose 8<0, and let us denote by A, the set of
the left-hand side of (8) and denote by ¢ the limit value of (8). From
(8) it follows that m,(A,)>t/2 for sufficiently large n. Let ¢>0 and
let % be large enough to satisfy exp(81 m)<c. Then from Lemma 1.1,
we have that f, ---f, (@)<c for each yc A, and each xe X.

For each %, ¥,, -, ¥, € {a, b}, let [y, ¥., - -+, ¥.] be the cylinder set

in Y, that is, the set of ¥ whose first n symbols are equal to y,, ¥, * -+, ¥n-
Then it follows that

(9) ([0, e)x Y) =, Zy St fol00, ) X [wy, « -+ wal s

where the symbol 3, means disjoint union. If we choose 3, ¢ and » as
above, then we have that

(10) ©([0, ¢) x Y)=p(T~([0, ¢) X ¥))
S et fl(0, ) X[y, - -y ¥a)

Yysc*» Y

z XXy =225 Yal)

3

So we have ([0, ¢)x Y)>t/2 for each ¢>0, which contradicts to the
absolute continuity of p.

REMARK 1.5. ' In the case ab=1, T may have m-a.c. invariant measure
with infinite total mass. In fact, in the case a=1/2 and b=2, the
following function is the density of T-invariant measure.

1
(11) Mmzl 2
o

2'n+2 . 5

=z=<1

(n+1) é x<2—n (,n__>:.1) .

§2. The invariant measure of T.

In this section, we give the density of m-a.c. invariant measure in
the case ab>1.

LEMMA 2.1. In the case ab>1, we have that

(12) $1 5 £¢%ﬁ£2<w

n=12" y1,-+, Un Y, Y

for each xe X.
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PROOF. Let ¢=(1/2)(log a+logb), d=(1/2)(log b—log a) and

B — > log y,—ne
n ye Y; k=1 —
Vnd

={yeY; y, - -y.<exp(nc—Vv 4nlog nd)} ,

<—Vdlogn

(13)

then from the central limit theorem we have that

(14) my(B,) S e o=

S|

The left hand side of (12) is reduced to

oo

(15) Z §Y fy” : : ..Jj‘”l(x) dmZ(y)

n=1 Y,

n

= f:' g f"" - .fyl(_x)dmz(y) +§l SBG fy;. : :fﬁ(w) dm2(y) .

n=1JB, Y, Y, = .

By using Lemma 1.1 and (14), the first term of the right-hand side of
(15) is majorated by =z 3 7., m,(B,)<c. And the second term of the
right-hand side of (15) is majorated by 3=, exp(—mnc+1 dnlognd)<
c. So we obtain Lemma 2.1.

Now let us give the f-expansion formula of . From now on, we
assume ab>1. If we write

(16) &)=

then it follows from (1) that x=(1—e&(®))/2+ (e(x)/a)f.(x). By using this
relation successively, we obtain that '

an x=%::: e@e(fo, () - - -e(fyy_, - - - [, (@) A —e(fy, "« - ,,(@)))
= yl. Y yk .
¢ SR @)y Sl o
yl‘ °° yn
for each » and each y,, ---, y,. Now if we multiply 1/2" to each side

of (17) and sum for all values of y,, ---, y,, then we obtain that
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1wl o @) A—s(fyy s fu @)
(18) x_?k=12kﬂ1§mk Yyo - ,ykk

+5 5 @ el pumy Sl B g p, (@)
Yireror Y Yit**Yn

From Lemma 2.1, the last term of (18) converges to 0 as n—co, S0 We
obtain the following.

PROPOSITION 2.2. We have the following average f-expansion of x:

(19) x=_;_§l 51; Z Sw(yu ) y'n—l)(l'_e(fu,,,' ) 'fvl(m)))
=0 2"y iy, Yo Yn
=i%‘ Y Sz(yu ) Yn—1) ,
n=02" £y o+ Fy @ >172 Yo Yn
where
(20) S,y *+*y Yn) =E@E(fy, (@) ~&(fypy® S (®)) -

Let us write simply S(y, -+, ¥.-) for S..(¥, .-, ¥n-) and define a
function h(x) on X by

(21) Moy=32 > St thdp (@)
n=1 2"y1, ", Y Yi* e Ya

where I, is the indicator function of the set A. Then we have the
following several lemmas.

LEMMA 2.8. For almost all xe€ X, h(x) converges absolutely and
satisfies th(x)dx<oo.

ProoF. Define a function i(x) by

22) =31 5 1L

n=1 2"’1[1 ,,,,, ””yl' . 'yn

Tto, sy ety 0m1()

Then h(z) is non-negative and monotone increasing. By using Lemma
2.1, we obtain that

fvn' ) 'ful "1"'
23) Sxﬁ(w)dx=§%n’§:“ - -y<,,2)<°° .

It is clear that |h(z)|<k(x), so we obtain Lemma 2.3.
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LEMMA 2.4. The function h(x) satisfies
(24) S h(a:)dxdy=§ h(x)dady
714 A
for each Borel set A in Xx Y.

PROOF. To prove (24), it is sufficient to show

(25) ha)=— {h(—j’;)+h(1—§)}1[o,fau,m<é>

+ -2_1b_ {h(—:-) + h(l - %)} Iio, 1y aen(®) .

It is easy to show that

(26) {To0(£) + Lo (1= 2 )} iosrn(@)
= S(E)I[o.fa @(@)+(1— 5(5))1[0,1',, a/21(%)
for each¢€ X, a € {a, b} and x+#£,(¢). The right-hand side of (25) is equal to

(27) Z—{ (a )+h(1_72‘>} I[o.fa w21(%)

a« 20¢

- S(yly M) yn—l)
nzl' 2"+1 1.-%,,4 Yo Y.

{I[o e,.]( ) + I, e,.](l ‘—‘)} I[o,fa wa(®)

where ¢,=f,.---f,(1/2). By using (26) repeatedly, it follows that the
right-hand side of (27) is equal to

@) - 5 SWc-nu)p o o
=121 g, e Y, Y,

FLERE 3, Mt i ()

=1 2nv1 Yi* Y,

X I, f,_, wn1(®)
_Z P S(y,, - -, yn)

I 0 S gy Ly, 1/21(%)

n=1 2"“ """ Vnt1 Y1t Ynta
151 ()
[0,fy, (1/2)]
2 Vi 1 "1

= h(x)
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for almost all 2. So we obtain (25).

LEMMA 2.5. For some real number t<1/2, h(x) takes a positive value
on (t,1/2]

Proor. From (19) and (21) it follows that

(29) =)= W ot Vo) L

n= 12 Fup fyl(1/2)>1/2 Yo Y,

There exists a natural number n, which satisfies

(30) > i 1 I[o.f,n---fyl(1/2)](x)<'1"

n=ng+1 2" ¥y, 2 ¥n Yi°* Y 4

n

for each #=1/4. Here we use the fact that A(1/4) converges and that
h(x) is monotone decreasing. Let

@) ¢=max{f, S (5)<gi L1SnSng v, o, V. o, b

and let t=¢'Vv(1/4). Then it follows that

no LY
(32) SL oy S nvedp @)

n=1 2"’ Yir**» Un yl. . .yn

‘no LI
'_—_Z.l Z S(yly ) yn—l) ]'[0 fyp fyl(1/2)]( 1 )

a=12"y3," " Un “Yn 2
1 1 1
214

for each x < (¢, 1/2]. From (30) and (32) we see that h(x)>0 for each
x e (¢, 1/2].
The following two lemmas are proved in [6].

LEMMA 2.6. Suppose that an integrable function h(x,y) on X XY
satisfies :

(39) | hia, widady={_ 1, viody

for each Borel set AcCX xY. Let us denote by P(N,Z) the set of
(®, y)e XX Y such that h(z, y)>0(<0, =0, respectively). Then we have
TP=P m-a.e. and TN=N m-a.e.

LEMMA 2.7. Suppose that h(x, y) satisfies the same assumption of
Lemma 2.6., and suppose that a Borel set BC XX Y satisfies for some
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n, that T"BNB=¢ m-a.e. for each m>n, Then we have h(z, y)=0
m-a.e.(x, y) € B.

Now we can prove the following

THEOREM 2.8. Let pt be the probability measure on Xx Y defined by
p=Q1/C)h(x)dxzdy, where C 1is the mormalizing constant, that is, C=

h(x)dx. Then p i3 a T-invariant probability measure, and its support
X
18 given by

-

(34 I'xY=UT(I.Ul)xY),

n=0

where I', is the support of the f.-imvariant measure (whose explicit form
i8 given in [6]). In the case a<1, we assume that I',=¢.

PROOF. From Lemmas 2.5. and 2.6, we have that the set

(35) ar((s %] xY)=0 WU £(5 %:I) XY

is contained in P. It is easy to show that UX,f=(¢, 1/2]=I, for some
M, and so it follows that (I",Ul',))x YC P, and by using Lemma 2.6.
we get I'X YCP. On the other hand we already showed in [6] that in
the case a>1, m,-a.e.xc I'; satisfy frxze I, for some n, which shows that
for a.e.(x, y)€ (I'x Y)° there is a natural number %, such that T(x, y) €
I'x Y for each n=n, By using Lemma 2.7, it follows that I'x Y=P
and N=¢, so we have Theorem 2.8.

In the rest of this section, we give several comments on the shape
of I'.

(i) The case b=1"2.

If 1=a<b, then I'=[a(1—b/2), b/2], and if a<1, then I'=[0, b/2].

(ii) The case ¥2=<b<1 2.

Let a, be the minimum of a which satisfies f,f,f2f,(1/2)= J2,(1/2).
If a,<a<b, then I'=I1,Ul, where I,=[a(l—b/2), b(1—(a*/2)(1—b/2))] and
L=[a’(1-b/2), b/2]. If 1<a<a,, then I'=[a(l1-b/2), b/2]. If a=1, then
I'=1,ULUI, where I,=[1—b/2,1—b*(1—b/2)], I,=[b(1—b/2), b(1—-b*(1—b/2))]
and L,=[b*1—-b/2), b/2]. If a<1, then I'=]0, b/2].

It is complicated to determine the shape of I' for all case of
parameter (a, b), so we only mention the above cases.

§3. Ergodicity of T.

In this section we prove the ergodicity of 7. Let E be a T-invariant
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set such that y¢(E)>0. Let E,={yeY; (x, y)€ E} for each x€ X. Then,

by Fubini’s theorem, we have that p(E)=S my(E,)h(x)de. Now let us
. X

define the set E?, for a positive number § and a natural number » by

(36) = U [y 3])0E.

mo(E o 1{ygsee0, Yp>1-38
Then we have the following

LEMMA 38.1. For each x€ X and 6>0, there exists a natural number
n(x) which satisfies '

(87) my(EZ ) >m(E,)—0 for each n=n(x) .

PrOOF. Let .#. be the o-field generated by the family of cylinder
sets {[¥, ---, ¥.]}- Then, by the martingale convergence theorem, it

follows that E(, | #,) —I;. So there exists a natural number n(x)
such that '

(38) m{y; | E(Lg, | F )W) — L, (¥)| >0} <0

for each n=n(x). But it is clear that

(89) {v; |EI:,|.F )W) —Ie,)| >} D E,.N{y; mo(Eelly,, - -, ¥ )<1—0},
so we get (37).

LEMMA 3.2, ‘E’,§'=Uﬂ,e <€} X Er,.  Then there exists a natural number
n, which satisfies p(Er)>u(E)—20 for each n=mn,.

ProoF. Choose a natural number n, which satisfies
1

C S(n(z)>no)

Then for each n=n,, it follows that

40) (B =

h(x)dx <o .

my (B, ) h(@)da

N

v

my(E? ) h(x)dx

{n{z) Snp}

{m(B,)— o} h(@)dz

Y
Ql Q- al~ al=

o™y, ey ey

{n(z)sng

[ ma(E) — o)h@)de——

> S
C {n (%) >np}

h(x)dx

>p(E)—20 ,
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S0 we have Lemma 3.2.

LEMMA 3.3. We have E=FXY pt—a.e. for some Borel set F in X.

PrOOF. Let E,={(x, y) € E; my(E,)>1—5}. Then, from the definition
of E} and the T-invariantness of E, it is clear that E,D T Er. So it
follows that

(41) ME)Z (T E7)= (T T"E}) = (E3) > p(E)—25 .

Let 6—0. Then we obtain g{(z, y) € E; my(E,)=1}=p(E), which shows
that E=Fx Y p-a.e. for some F.
By this lemma we have that

(42) FXY=T'FXxY)=(fTFXx[aDU(i*"Fx[b]) p-a.c,

so it follows that f;'F'=f;"F=F p-a.e. And the property of I, (in the
case a>1, almost all wel'; satisfy frezel’, for some ») shows that
m,([',NF)>0, so, by using ergidicity of each f,, it follows that F>
I',ur,, which shows FFOI'. So we obtain the following

THEOREM 3.4. In the case ab>1, T 18 ergodic with respect to the
measure L.

Because the density h(x) is independent of y, we have following

COROLLARY 8.5. For m,-a.e.y,

43) S L Su@— | Hods  for .

§4. Exactness of T.
In this section, we treat the exactness of the transformation T(10)).

LEMMA 4.1. Let ab>1. For each €>0, there exist a natural number
M and a real number 3>2 which satisfy

(44) MY €Y; ¢+ - You>B" for each n}>1l—c¢.

PrOOF. From Lemma 1.2, it follows that, for each §>0,
(45) m J Q5 |, - 9"~/ ab|<5})=1.
N=1na2N

Let us choose & such that 1 ab—é0>1. Then there exists a natural
number N which satisfies
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(46) mz(nr;lv e Y; |-y )"—V 55|<5})>1—e .

So, if we choose M satisfying 3=(1"ab—0)¥>2, then we obtain (44).

Define the subset G, of Y by G.={ye€ Y; ¥, - ¥.x>0" for each n},
and define partitions of X, &, ...,,, &, Py, -.uy 30d F*, for each yeY
and %, as follows:

(47) &7,,,...,y,,=the partition of X given from extremum values of f,

(48) &= VN &, uy
YirroesUar

(49) Py, euy =Sy &V {monotone intervals of f}
(50) gf/(k):gﬂn"':VMVfa)l‘gaﬂ}lﬂ»'":vwV C VI T i 9

where f, is defined by putting fu =f,,, - f,, and the symbol V means
a generated partition. Then we have the following.

LEMMA 4.2. For each y € G’e and almost all x e X, there exists Q € &
such that the element C, of P™ containing « satisfies f,,(C,)DQ for
nfinitely many n.

ProoF. Let £={Q, Q., ---, Q,} and yeG,. We show that, for each
v>0 and %, there exists m>n which satisfies

(51) m (U U C)>1-7.

i‘—'"Ce.?;”; £ (4)(0)>Q for some j

In fact, let us define families &,,, for k=0, 1, 2, - - - inductively as follows:
(52) &.={Ce F"; fu(C)2Q; for any j}

(53) &,..={Ce F®; C is the subset of some element of &,,,, and
fa+n(C)2Q; for any j} (k=1).

Then it is clear that each element of &,,,_, contains at most two ele-
ments of &,,, and that the length of each element of &,,. is not
greater than g~ ™*¥, So it follows that

(54) m( U C)s24z,67" .
CeCptk

And so, for sufficiently large m>mn, we have m,(Uces,,,C)=7, Whiéh
means (51).
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Let us denote the set of (51) by E™, that is,

(55) Er=U U c

‘=”Ce9‘(’”; f14)(C)>Q; for some j
and choose a sequence 7, which satisfies 3¢ ,7,<c. Then, using (51)
repeatedly, we obtain that m,(Er+1)>1—7, for some m,<m,<---, which
implies that m, (Um: Mizs Emtr)=1. If ze Uz, Nizi B+, then, for
sufficiently large k, there exists a natural number # between m, and
M, such that the element C of ™ which contains z satisfies SJ(C)DQ;

for some j. Let us denote by Q an element Q; which appears infinitely
many times in above statement. Then we obtain Lemma 4.2.

LEMMA 4.3. Let pn(E)>0. Then there exists sequence of matural
numbers n,<n,<--- and a subset Bc X with m,(B)>0 such that

(56) 0 N T*ESBXY m-a.e.

PrOOF. Choose ¢>0 so as to satisfy e<p(E). Then, using Lemma
4.1, we get (EN(XxG,)>0. So we can assume EC XxG,. Denote by
E the set of density points of E, that is, the set of such points (z, ¥)
that (m(I,N E)/m(I,))—1 for any sequence of neighbourhoods {I,} of
(x, ¥) which satisfies m(I,)—0. Then it is well-known that pw(EH)= p(HE).
Let (x, y)€ E. Then, by Lemma 4.2, there exist a sequence of natural
numbers n,<n,<--- and Q€ & such that the set C, . € F  which
contains x satisfies f,,(C,)>Q. Put 4, =C, x[y, ---, :l/n,,] Then, from
the definition of E, it follows that (m(A,,knE)/m(A ,))—1. Choose a
sequence {0,} so as to satisfy 3.3 ,0,<1/2. Then there exists a subsequence
of {n,}, which we denote by the same notation {n,} again, such that

=>1—-62.
m,)

It is clear that T4, =B, X YOQx Y where B..,=fy., " f4,Ca, and that
T~ is a monotone hnear map from 4,, to B, xY. So, putting A,
T4, N E), we have that

m(4,,) 2
(58) ml(Bnk) g 1 6

Define the subsets B;, and B,, of B, to be

(69) B, ,={z e B,,; my(A:,)<1—04,}
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(60) B..=B, —B,, .
Then we have that
(61) m(A,,)=1—0d,)m(B,,)+m(B,,)

=m1(Bnk)—5km1(Br:k) .

From (58) and (61) it follows that m,(B,,)=0d,m,(B,,), which means that
my(Bn) =1 —8,)my(B,)=1—8,)m,(Q). So, putting B=[), B.,, we have
(62) my(B)Z (1~ 3,0, )m,(@>0 .

From the relation

(63) A=\ (o} x Az) DU () x 43)

k

it follows that

(64) UnrE-y (0 <(UNaz,)).

*€B =1

And from the definition of B,, we have that, for x¢ B,

which means (56).

Now we obtain the following

THEOREM 4.4. Let ab>1. If T satisfies p(T*(BxY))—1 for each

BCX with p(BX Y)>0, then T is exact with respect to the invariant
measure ft.

ProOF. From Lemma 4.8, we have (56), and so, from the assump-
tion of theorem, we have that

(66 W10 QrE))—1,
which implies that p#(T™*E)—1 for some m,<m,<---. But it is clear

that u(T"FE) is increasing in n, so we have that y(7T"E)—1.

REMARK 4.5. From this theorem, it is clear that if f, is exact,
then T is also exact. But T may be exact even if f, and f, are not
exact. In fact, in the case ¥ 2=<b<1 2 and a<a, T satisfies the
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assumption of Theorem 4.4, so T is exact. Especially, in the case a=1,T
is exact even if I' is the union of disjoint intervals I, I, and I,
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