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Eta-Function on S#-!

Ichiro IWASAKI

Gakushuin Uuiversity

Let Y be a compact oriented riemannian manifold of dimension 2n—1,
QYY) be the space of all differential g-forms on Y and put 2°7(Y)=
Do 22(Y). Let A: 2°°(Y)—2°7(Y) be a first order differential operator
defined by

(1) Ap=1"(—1y"(xd—dx)p (¢ €2*(Y))

where i=1"—1, d is the exterior differential and x is the Hodge duality
operator. Then A is formally self-adjoint, elliptic and the squre A’ is
the Laplace operator 4=dd-+0d, where 6 is the formal adjoint of d.
Therefore A is diagonalizable with real eigenvalues and, of course, the
eigenvalues of A can be either positive or negative—they are square
roots of the eigenvalues of 4.

Now let G be a compact group of orientation preserving isometries
on Y and suppose that A commutes with the action of G, then the A-
eigenspace E; of A is a finite dimensional G-module. In this situation,
Atiyah-Patodi-Singer [4] defined the so-called “eta-function”

(2) 74(9, 8)= g; (sign A) Tr (g1 Ey) - [n]™*

for any g € G, where the summation is taken over all distinet eigenvalues
of A and g|E, is the transformation induced by g on E,.

For example, when Y is the circle S' and g is rotation through an
angle 6, we have already known that

N4(9, 8)=— 2 sin kﬂ

(see [4, Dp. 413]), and When Y is the 3-sphere S® and g is represented by
the matrix ( (gl) D, )> where D(0)= (coso —sin 0) is rotation of R?

sinfé cosé
by an angle 4, K. Katase calculated directly this 7-function by determining

the basis for the eigenspace of A (see [12]). On the other hand, J. J.
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Millson [138] has found a formula to compute directly the »-invariant on
homogeneous spaces in terms of a Selberg-like zeta function.

In §2 and §3 we show the result of K. Katase (Theorem 3 in §3)
by a different way and in §4 we extend to the case where Y is the

D(8,) 0
(2n—1)-sphere S**' and g is represented by the matrix ( . ),
0 D@,)

where 0<6; <7 (1<j=<m). In case ¢*1, e™*1, ... ¢*n ¢ % are the distinct
eigenvalues of g, our result is the following equation:

{(ﬁ sin 6, ) S sin (k+n)0,} .

=i cos 6,—cos 0;/ = (k+n)

74(g, 8)= —2i" 2

f=1

Lastly the author wishes to express his gratitude to Mr. K. Katase
for his kind and helpful suggestions.

§1. We start by recalling some facts about the spectrum of the
Laplace operator 4 on the standard sphere S**~* in R*™. For further
details we refer to [14, p. 118] and [6, p. 2104].

Throughout this paper, we will denote by *, d, §, 4 and %, d, §, 4
the intrinsic operators on S** and R™, respectively.

Let (9, * -, ¥..) be the standard coordinate system on R* and set
’=>%, 9. Let 4 be a g-form on R* which can be written as

= g(O)y+ OO NV, ,

where +, and +, are ¢ and ¢—1 forms, respectively, on S** and f and
g are powers of p. Then we have

S =(=1)10" 7 gdO N s+ 0T ey
Since 6 and 6 are expressed as
§=—5%d* and d=(—1)*dx*

on g-forms, respgctively, a straightforward calculation shows that, for
Y= 0"y + OF IO Ny

dpr=(k+q)0* 7' Ao A+ 0*dpr, — 0* T dp Ad,
and _

Sop= 041209, — (k— g+ 2) 0"+ 2o, — O*+ O N O,
Further, we see that, for « to be harmonic, 4, and +, must satisfy

A"/"x_(k+Q)(k—Q+2n_2)"/"1=2d"l"2
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and
Ao, — (o +q — 2)(k— g+ 20 )3, =209 .

Now, let Vi(S™ ') be the subspace of 2(S*™) consisting of eigen-
forms associated to each eigenvalue A of 4. For A+0, V(S**) decom-
poses into the closed eigenspace Vi(S™ N Kerd and the coclosed eigen-
space V{(S*™ ) NKerd and the map

d: Vi(S*» ) NKer 6 —> Vit (S )NKerd

is an isomorphism. Therefore, it is enough to consider the closed eigen-
space of S*~'. Thus we deduce the following result by a standard

argument.

PROPOSITION 1. Let ¢,, be a closed eigenform of 4 on St with
eigenvalue N,=k+q)(k—q+2n), where g#0 and k=0. Let Hi(R™)
denote the vector space consisting of all g-forms on R* of which coefficients
are harmonic homogeneous polymomials of degree k on R™ and pul
7R = HY(R™) N Ker dNKerd. Then the map

@: Vi, (SN Ker d— H{(R™)

given by ¢,,,,,k—>(1/xk,q)3(pk+“6¢k_q) is an isomorphism and commutes with
the action of 9.

From now on we have only to consider forms on S$**7* of even degree.
Since Ay =N\pon_g it follows from this proposition that the diagram

V;:(Szn_l) NKerd 2, ﬁzp(RZn)
(%) ld* l(k—2p+2fn)>?
Vf:—zp( S2n—1) NKer d _9‘1_, ﬁz‘n—Zp ( R™)

commutes, where A\, =\, = (k+2p)(k—2p+2n), p=1 and k=0. Moreover,
by making use of the isomorphism d, we have the following commuta-
tive diagram:
V= nKerd — VEH(S»)NKerd —— HP(R™)
(4) . l—*d 1—d* l(k—2p+2n—-1)i
Vz:—zp—z(sm—1) A Ker o d a V;:—2p—1(S2n—1) NKer d ¢, ﬁin—ZP—l(R&n)

where f4,=Ngzp=k+2p+1)(k—2p+2n—1), p=0 and £=0.
Now, let us return to our basic operator A and decompose A into
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the following form:

{A1¢= M(—1)’d=*¢ on Vi*(S*™")NKerd
Ap=1"(—1)" " xdg on Vi S*™")NKerd.

Also, let 7 be an involution defined by
(@)=t o (a € HY(R™))

(see [5, p. 575]). Then, from the diagrams (3) and (4), we see that the
operator A, corresponds to (k—2p+2n)r and the operator A, corresponds
to (k—2p+2n—1)r. In particular, if » is even and put 2p=mn, then
A,=d= corresponds to (k+n)* and if n is odd and put 2p+1=m, then
A,= —ixd corresponds to (k+n)i*. Hence, by a standard argument (see
for example [5, pp. 579-580]), if we denote by ( ). the +1-eigenspaces
of 7, we can write the 7-function (2) as follows:

- 1 (e P2ny \ __ Fin( 2
(5) 74(9, 3)—% Gty {Tr (9| Hy(R*™),)—Tr (9| H(R™)_)} .

Therefore we need to calculate Tr (glﬁ;;(Rz")J,)—Tr (glﬁ;:(R”)_). (Cf. also
[1].)
§2. In §2 and §83, let us work out the case when n=2, i.e., when
Y is the 3-sphere S® in R* and g:(D (gl) D(()a )), as a simple illustration
2

of our methods.
Now we put

¢ =H(R)YOHR)YDHLR") and H*=HYRYDHIR) .

Then there is an exact sequence:
d+3 i+6
(6) ce o HY S Hy TS Hpt s

Furthermore, if we put
v=H;"NKer (d+5) and K= 24N Ker (d+3),

then the sequence

3 ... d—3

(7) s KR —— KT S Ky

is also exact.
The exactness of these sequences is proved by making use of the
following commutative diagram:
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0

L]

S HE, (R = H} (R =2 HYR) — 0

-3 |? |-
s H}(RY—2 HXRY) -2 H_(RH)— -

l_s . 15 _ 1_5
0 — HIRY —2 Hi_(R) -2+ Hi_(RY)—> +--

S

0

where columns and rows are both exact (see [11]).
Next, a simple computation shows that

td=—8&r and ti=—dr.

That is, the involution 7z anti-commutes with d+0 and commutes with
d—35. Therefore, from the sequences (6) and (7), we have the following
induced exact sequences:

d+é d+5 . aa

(8) o — l?i(}.q:""_’ I‘:Z:__._) P I
d—é d—d
— —_ N d
(9) s l?i(i:t » Kix ? I?—d—u Poe

We now proceed to the calculation of the trace of g. From 8) it
follows that

Tr (g|HeD)="Tr (9 Kgi)+Tr (91 Ki%is) -
Similarly, since
" Ker (§—35)=HXR") and K*nKer (d—3)=H(R)PHIR ,
it follows from (9) that
Tr (g|Ke) = Tr (gl HARY).) + Tr (gl(Hi_(R)DH;_(R"):)
and
Tr (gK2%:) =Tr (g|(Hi_(RYDHL(RY)=)+Tr (g|Hi-(RY=) .

Hence, we have
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Tr (9lHeD)=Tr (9| HXR).) +Tr (9| B} _(RYDH_(RY)+Tr (9| A2_(RY)) .
Combined with
Tr (9|HY)—Tr (9| He™)=Tr (9| Hi(RY),)—Tr (9| Hi(RY).) ,
this leads to the following formula:
(10) Tr (9|Hi(R*),)—Tr (9| H(RY_)={Tr (glﬁﬁA(R‘)J,) —Tr (glﬁ:f(lf‘)_)}
—{Tr (gl Hi_(R"),)—Tr (9|H2_(R.)} .
Finally, we put ;
@.=Tr (9| H(R"),)—Tr (9| HAR*).)
and
by=Tr (9| Hi(R*),)—Tr (9| H(R*)_)
and, with this notation, rewrite the formula (10) as
(11) br=a,—a,_, .

§3. In this section we determine at first a, and then the 7»-function
and lastly the 7-invariant.

First note that g acts on the J-th factor R*=C as multiplication by
e’i (=1,2). We now regard as H{(R"),=H}(R"YQA(R")., where AY(RY).
denote the *1-eigenspaces of z. Then it is well-known that

Tr (g 4%(R*),) — Tx (9| 45(R*)_) = (7% — g1)(¢=*%2— ¢*%2)

(see for example [5, pp. 576-577], [1, p. 473] or [12]). On the other
hand, it is convenient to express Tr (g|H(R*)) by means of the generating
function

5 o R4)) . $+ — 1-¢
3. Tr (gl HXRY) -t e e ey (H<D

(see [9, pp. 80-81)). Therefore, using the multiplicative property of
traces, we obtain

— i (L—t3)(e~*1— 1) (g=t02— )
2 G e ey (A<D

Hence, together with (11), we have the following

PROPOSITION 2. The generating function of a, i3 given by
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00 —1i01 ___ 01 —103 __ ptl2
12 a tk = (e ‘ e )(e € )
(12) kz___::‘, L (€1 —t) (e~ —t)(e¥2—t) (e~*02— 1)
<= —4sin 6, sin 6, )
(1—2¢-cos 6, +t3)(1 —2t-cos 6,+£2)/

Next, denote by f(¢) the right hand side of (12). Then
_ 1 . |
ak_%!_f *(0) ,
where f*(t) is the k-th derivative of f(f). We now write

f(t)=(e¢011_t o e—wll—t> ) (efozl—t B e““’lz—t)

and applying Leibniz’ formula to this we obtain

(13) a,=—4 g sin (1+1)6,-sin (k—1+1)4, .

But there is another expression of a,. To obtain it we need to consider
two cases. At first consider the case 6,7#6,. Then f(t) can be written
as

)= 2sind,sinf, / 2cosf,—t  2cosf,—t )
cos f,—cos 6, \ 1—2t-cos 6, +¢  1—2t-cos 6,+¢*

Hence, by making use of

2cos—t  _ 1 <e‘“ e )
(e —t)(e **—t) —2i-sinf\e?—t e ¥—t/’

we can express the formula (13) as

_ 2s8in@,sin b, [/ sin (k+2)0, sin(k+2)0,
(14), a,= : — . .
cos f,—cos 4, sin 6, sin 4,

Next consider the case 0,=0,(=6). Then f(t) is equal to

) ) e ()
—— )+ + — :
( e —¢ e ¥ —t¢ 2-sinf@ \e?—t e —¢

Hence, a simple computation shows that a, is expressed as

o o d [ sin(E+2)8
(14), ,=2 sin 0 do( e )

Thus we deduce the following result:
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THEOREM 3. (See [12].)

2s8in 6, i sin (k+2)0,  2siné, < 8in (k4 2)0,
cos §,—cos 0, k=0  (k+2)* cos 0, —cos 0, go (k+2)
74(g, 8)= for 6,+6,,
. d 1 & sin(k+2)0
2sin g - =0,=0,.
sin 0 e o (e+2)" | for  0=0,=0,

Finally recall that

i sinkg 1 cot-g- as s—0

15
(15) & 2

(cf. [8, p. 106]). Then we obtain the result of Atiyah-Patodi-Singer
[4, p. 413]:

COROLLARY 4 (Atiyah-Patodi-Singer).

0 6
, 0)=—cot =L. cot == ,
N4(g, 0) ot Z-cot 3

)

REMARK 1. Since the series >;-, (sin k6/k*) is uniformly convergent,
it can be written as

S sinkf . d (& cos kb
= P d0(k=1 kbt )

Therefore, using a well-known fact that

= cos kb .. 6
k2=‘i A -——log<2sm?),

we can get the fact (15).

REMARK 2. By (12), we have

SO —sin 6, sin 6, .
:ZS k (cosh t—cos 6,)(cosh t—cos 8,)

So consider I'(s)-7(g, 8), where I'(s) is the gamma function, and calculate
its residue at s=0. Then we can obtain Corollary 4 not using Theorem
3. (See [2, p. 299].)

§4. The computation of the case of S*~* is essentially identical with
that of S® in §2 and §3. So, without repeating the same treatment let
us comment on a few facts.
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First, we put
Hev(R?n) @ H2p(R2n) and HOdd(R2n) — ® H27+1(R2n)
Then it follows that

H“(Rz")nKer @+3)NKer (@ —8)=K"(R™) N Ker (d—35 =e§ (R™)

and

n—1

H?4(R™ N Ker (d+8) N Ker (d —8) = Kg*(R™) N Ker (d —3)= @ Hpr(R™) .

Furthermore, we see as before that the space HE(R™) for g#mn con-
tribute nothing to the trace formula. So if we put

ag =Tr (9| Hi(R™),)—Tr (9| H}(R™).)
and

b =Tr (9| HI(R™),)—Tr (9| H;(R™)_) ,
then it follows that
e be =ag —ag-,
as in §2. Thus we obtain:

PROPOSITION 2°. The generating function of ag 18 given by

e—iﬁl ____eiﬂl ( 27’)?l H Sln 0l

(e —t) (e —1) 1’[(1 —2t - cos 6,+12)

12°  Set=11

Now, using Leibniz’ formula we have

(13)° ae=(—2i [[sing,- 3 qp3ntetl)s,
. i=1 kgt tkp=k I=1 sin 01

On the other hand, we want to get another expression of a7 and
then compute the 7-invariant. For this purpose, at first we suppose
that "1, ¢ "1, ... ¢ ¢~¥» are the distinct eigenvalues of g and put

o&)=11 (t—e“n)(t—e ) .

Using the Lagrange’s interpolation formula, it follows that
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1 1 \@® n — gtk 85 — gtk HD b5
— = 0)= ’
k! \g(t) © E; { g'(e*9) g'(e™*%) }
where g'(t) denotes the first derivative g®(¢) of g(t). Hence we obtain
o [ . LI 1 < sin (k+ n)0
14 a=(—2)"1] s no{ 4 } .
(14); £=(=29) :1;! o (—2)*'ji= sin 0,-l1](cos 0,—cos 6;)
*5

Thus we have the following expression of 7»-function:

{(ﬁ sin 4, ) . i sin (k—l—n)o,-} .

i=i cos f,—cos §; / = (k+mn)

THEOREM 3°. 7),(g, 8)= —2i" Z".

j=1

Now, letting s tend to 0, we have

_ I n 1/2) cot (6,/2)
16 N=-2 sin 8 ( :
(16) 749, 0)=—2i" I sin &, {3} — 6, 11 (cos 6,—cos 0)
EY)
nisin r0;
r=1

~Hem 6 TI (cos 0,——cost9,-)} |
l#g

Here if we put h(t)=(cos §,—t)---(cos §,—t), then

1 -3 1
h(1) 7=t h'(cos 8;) - 2sin? (6,/2)

Therefore the first term in { } of (16) is equal to

1.1 !
2 () (_2)"+1£Ilsin2 (6,/2)

and also using the fact that

3 cos” §; =0 for r=n—2
:gf II (cos 8, —cos 6;) o ’

I3

it is seen that the second term in { } of (16) vanishes. Thus we con-
clude that the »-invariant is given by

7, 0= (—i)" [ cot & .

Next, we show how to treat the general case where g has eigen-
values e*¥ri, -.. e*'r. with multiplicities v, ---, v,, respectively, where
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y,+ -+ +y,=n. Since Gegenbauer’s polynomials Cj(x) are defined by the
generating function:

(1—2t- o+t = S, Ci(aytt

and the formula

Ci(cos )= d )H( sin (»—l—lc)ﬁ)

=
2" (y—1)! \dcos @ sin 6

holds (see for example [7]), we have

> ﬁ Cyi(cos 6, ,)

kyteoetkpy=k i=

1 ﬁ 1 ( d >?f"1{ Z ﬁ in(v,——l—k,.)&,j}

2"'— j=1 (v""—l)' d cos 07',7' g=1 sin 0rj
m 1 [/ d vt 1 m sin (k+n)0, ,
2,,_,,,I=Il(p —1)!\d cos 4, ) { > ’ }

(—2)"*i=sin g, [] (cos §,,—cos b, )
4
J 1EX] J

(by (14)?). Hence, it follows that

e 1m 1 (4 1
0)=(—22)" vif, . - — -
749, 0)=(~27) j[[=1sma = 2":‘1;11 v;—1)! \dcos0,j> <1—-cos O,j)

= (=1 T (200 Y= (—iy T cots Zoi..
i=1 \ 1—cos 0,j i=1 2

Thus at any rate we have the following

COROLLARY 4° (Atiyah-Patodi-Singer).
74(9, 0)=(—i) IT cot 2t .
1=1 2
REMARK. By (12)°, we have

(=) II sin 4,

; as e-(k+n)t
H (cosh t—cos 0,)

So we can obtain Corollary 4° as in Remark 2 in §3.

§5. Finally we shall consider about the 7-function of the Dirac
operator of S*»!. For the definition of the Dirac operator and formal
properties we refer to [2, §6], [1] and [5].
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Let ¢ be a spin bundle of R*™ associated to the spin representation
of Spin (2n). This is the direct sum of two bundles ¢+ and £~ associated
to the two half-spin representation of Spin (2n) and the restriction of
gt to S is identified with the spin bundle { of S! associated to the
spin representation of Spin (2n—1). So the Dirac operator D of S—!
acting on the sections of { is defined as usual. Furthermore, tensoring
¢ with £ we have a generalized Dirac operator D, on S*~' and this
operator D, coincides with the operator i7¢~V+*(d+ —(—1)?*d) on 28,
(Cf. [2, p. 316] and [3].) Since our basic operator A is the restriction
of this operator to the even forms (see (1)), it follows that

771)5(@, 8)=21,(9, 8)=2¢e(g)n.(g, 8) ,

where § is the lifting of g and &(§)=+1. On the other hand, using the
formula for the character of the spin representation (see [5, p. 569]),
we have

N3, 8)= II_IL (e™V2+¢"v*)n,(§, ) .

Hence we can obtain the formula for 7,(g, s) from the result for 7,(g, s).
Consequently, as s—0, we conclude that

(8, 0)—26(9)(?) I cosec 2L .
(Ct. [1, p. 485].)

References

[1] M. F. A1ivan and R. BorT, A Lefschetz fixed point formula for elliptic complexes: II,
Ann. of Math., 88 (1968), 451-491.
[2] M.F. Arivag, R. Borr and V. K. PAToD1, On the heat equation and the index theorem,
Invent. Math., 19 (1973), 279-330. Errata, ibid 28 (1975), 277-280.
[3] M. F. Ativan, V. K. Patopr and I. M. SINGER, Spectral asymmetry and Riemannian
geometry: I, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43-69.
[4] M. F. Ativas, V. K. Patopr and 1. M. SINGER, Spectral asymmetry and Riemannian
geometry: II, Math. Proc. Cambridge Philos. Soc., 78 (1975), 405-432.
[6] M.F.ATtivaH and I. M. SINGER, The index of elliptic operators: III, Ann. of Math., 87
(1968), 546-604.
[6] J. CHEEGER, On the spectral geometry of spaces with cone-like singularities, Proc. Nat.
Acad. Sci. U.S.A., 76 (1979), 2103-2106.
[7] A. ErpELY1, Bateman Manuscript Project, “Higher Transcendental Functions”, McGraw-
Hill, New York, 1953.
IcARri, “Fourier Kyusu,” Iwanami Shoten, Tokyo, 1975 (in Japanese).
IREDA, On the spectrum of a compact riemannian manifold of positive constant
curvature, Osaka J. Math., 17 (1980), 75-93.

[8]
[9]

>



ETA-FUNCTION ON S#-1 439

[10] I. Iwasakl and K. KaTasE, On the spectra of Laplace operator on A*(S"), Proc. Japan
Acad., 55 (1979), 141-145.

[11] I.Iwasaxk: and K. KATASE, On the dimension of the (co-)closed harmonic forms on R"*,
to appear.

[12] K. Katasg, Eta-function on S® Proc. Japan Acad., 57 (1981), 233-237.

[13] J. J. MiLLsoN, Closed geodesics and the 7-invariant, Ann. of Math., 108 (1978), 1-39.

[14] D. B. Ray, Reidemeister torsion and the Laplacian on lens spaces, Advances in Math.,
4 (1970), 109-126.

Present Address:

DEPARTMENT OF MATHEMATICS
GAKUSHUIN UNIVERSITY

MEJIRO, TOSHIMA-KU, TOKYO 171



