
TOKYO J. MATH.
VOL. 6, No. 1, 1983

On Regular Fr\’echet-Lie Groups V.

Several Basic Properties.

Hideki OMORI, Yoshiaki MAEDA, Akira YOSHIOKA
and Osamu KOBAYASHI

Science University of Tokyo, Keio University and
Tokyo Metropolitan University

Introduction.

In the previous paper [7], we have defined the concept of regular
Fr\’echet-Lie groups, and given two fundamental theorems, which cor-
respond to the fundamental theorem of calculus.

A group $G$ will be called an FL-group, if $G$ is a $C^{\infty}$ Fr\’echet manifold
modeled on a Fr\’echet space $\mathfrak{G}$ (we always assume for a Fr\’echet space
to be locally convex) and the group operations are $C^{\infty}$ . (Cf. Introduction
and \S 2 of [7] for the reason why we hesitate to use the word “Fr\’echet-
Lie group”.) Roughly speaking, a regular Fr\’echet-Lie group is an FL-
group on which product integrals are well-defined. We shall repeat briefly
what is a product integral on an FL-group $G$ .

Let $\Delta=\{t_{0}, t_{1}, \cdots, t_{m}\}$ be a division of an interval $J=[a, b]$ such that
$a=t_{0},$ $b=t_{m}$ . For a division $\Delta$ of $J$, we denote by $|\Delta|$ the maximum of
$|t_{j+1}-t_{j}|$ . We call a pair $(h, \Delta)$ a step function on $[0, \epsilon]\times J(|\Delta|<\epsilon)$ , if $h$

is a mapping of $[0, \epsilon]\times J$ into $G$ such that
(i) $h(O, t)\equiv e$ for all $t\in[a, b]$ and $h(s, t)$ is $C^{1}$ in $s$ for each fixed $t$ .
(ii) $h(s, t)=h(s, t_{j})$ for $(s, t)\in[0, \epsilon]\times[t_{j}, t_{j+1})$ .

For a step function $(h, \Delta)$ , we define the product integral $\prod_{a}^{t}(h, \Delta)$ by

$\prod_{a}^{t}(h, \Delta)=h(t-t_{k}, t_{k})h(t_{k}-t_{k-1}, t_{k-1})\cdots h(t_{1}-t_{0}, t_{0})$ ,

where $k$ is the integer such that $t\in[t_{k}, t_{k+1}$). Now, let $\{(h_{n}, \Delta_{n})\}$ be a
sequence of step functions such that $\lim_{n\rightarrow\infty}|\Delta_{n}|=0$ , and $\{h_{n}\}$ converges
uniformly to a $C^{1}$-hair $h$ at $e$ with their partial derivatives $\partial h_{n}/\partial s$ (cf.
[7], (9)), where $h:[0, \epsilon]\times J\rightarrow G$ is called a $C^{1}$-hair at $e$ , if $h$ is continuous,
$h(s, t)$ is $C^{1}$ with respect to $s$ and $(\partial h/\partial s)(s, t)$ is continuous. We call an
Received May 22, 1981
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FL-group $G$ a regular Fr\’echet-Lie group, if $\lim_{n\rightarrow\infty}\prod_{a}^{t}(h_{n}, \Delta_{n})$ converges
uniformly on $J$ for every sequence of step functions converging to a
$C^{1}$-hair $h$ at $e$ in the above sense. We denote the limit by $\prod_{a}^{t}(h, d\tau)$ ,
and call it the product integral of $h$ .

Set $u(t)=(\partial h/\partial s)(O, t)$ . Then, $u$ is a continuous mapping of $J$ into G.

The first fundamental theorem (cf. [7], Theorem 4.1): The product
integral $\prod_{a}^{t}(h, d\tau)$ is $C^{1}$ with respect to $t$ , and

(1) $\frac{d}{dt}\prod_{a}^{t}(h, d\tau)=u(t)\cdot\prod_{a}^{t}(h, d\tau)$ , $\prod_{a}^{a}(h, d\tau)=e$ .

Thus, by the uniqueness theorem of the solution of the differential
equation (cf. Lemma 2.5 [7]),

$\frac{d}{dt}g(t)=u(t)\cdot g(t)$ , $g(a)=e$ ,

we see that $\prod_{a}^{t}(h, d\tau)$ depends only on $u(t)$ . Therefore, we often denote
$\prod_{a}^{t}(h, d\tau)$ by $\prod_{a}^{t}(1+u(\tau))d\tau$ . Let $C^{0}(J, \mathfrak{G})$ be the Fr\’echet space of all
continuous mappings of $J$ into the Lie algebra $\mathfrak{G}$ of $G$ , and let $C_{e}^{1}(J, G)$

be the $C^{\infty}$ Fr\’echet manifold of all $C^{1}$ mappings $c:J\rightarrow G$ such that $c(a)=e$ .
The second fundamental theorem (cf. [7] Theorem 5.1): Let

$\mathcal{J}:C^{0}(J, \mathfrak{G})\rightarrow C_{e}^{1}(J, G)$ be a mapping defined by $\mathcal{J}(u)(t)=\prod_{a}^{t}(1+u(\tau))d\tau$ .
Then, $\mathcal{J}$ is a $C^{\infty}$-diffeomorphism.

For every $u\in \mathfrak{G}$ , we denote $\prod_{0}^{t}(1+u)d\tau$ by exp $tu$ . Then, it is easy
to see that {$\exp$ tu; $t\in R$} is a $C^{\infty}$ one parameter subgroup of $G$ , and the
mapping $exp:\mathfrak{G}\rightarrow G$ , called the exponential mapping, is a $C^{\infty}$ mapping.

In this paper, we shall prove several basic properties of regular
Fr\’echet-Lie groups by using first and second fundamental theorems. The
main result of this paper is that the universal covering group of a regular
Fr\’echet-Lie group is determined uniquely by its Lie algebra. Hence, one
can get a lot of information about a regular Fr\’echet-Lie group $G$ by
investigating its Lie algebra G. Hence, regular Fr\’echet-Lie groups satisfy
all requests of “Lie groups” imposed in the introduction of [7].

We shall also investigate several methods to make a new regular
Fr\’echet-Lie group starting from two regular Fr\’echet-Lie groups, most
of which are strong ILB-Lie groups which are fundamental examples of
regular Fr\’echet-Lie groups (cf. [7]). These methods will be useful to
prove that the infinite dimensional group of all invertible Fourier integral
operators of order $0$ is a regular Fr\’echet-Lie group, which is one of the
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main purposes of this series. (cf. [5], $I6]$).

\S 1. Exponential mappings and their properties.

Let $G$ be an FL-group and $\mathfrak{G}$ be the tangent space of $G$ at the identity
$e$ . $\mathfrak{G}$ is naturally identified with the model space of $G$ and hence a Fr\’echet
space. For every $u\in \mathfrak{G}$ , we denote by $u^{*}$ the right-invariant $C^{\infty}$ vector
field on $G,$ $i.e.$ ,

$u^{*}(g)=u\cdot g$ $(=(dR_{g})u)$ , $u^{*}(e)=u$ ,

where $dR_{g}$ is the differential of the right translation $R_{g}:G\rightarrow G,$ $R_{g}h=h\cdot g$

at the identity. For every $ v\in$ (S3, define the adjoint map Ad $(g),$ $g\in G$ on
$\mathfrak{G}$ by

Ad $(g)v=\frac{d}{dt}|_{t=0}gc(t)g^{-1}$ ,

where $c(t)$ is a smooth curve in $G$ such that $c(O)=e,\dot{c}(0)=v$ . Then,
Ad $(g):\mathfrak{G}\rightarrow \mathfrak{G}$ is an isomorphism of $\mathfrak{G}$ and the map Ad: $G\times \mathfrak{G}\rightarrow \mathfrak{G}$ defined by

Ad $(g, u)=Ad(g)u$ , $g\in G$ , $u\in \mathfrak{G}$ ,

is a $C^{\infty}$ mapping. (cf. [7], Lemma 2.4).
We define the bracket of $\mathfrak{G}$ by

(2) $[u, v]=\frac{d}{dt}|_{t=0}$ Ad $(g(t))v$ , $u,$
$v\in \mathfrak{G}$ ,

where $g(t)$ is a $C^{\infty}$ curve in $G$ such that $g(O)=e,\dot{g}(0)=u$ . Alternatively,
(2) can be written by

$[u, v]=(du^{*})_{e}v-(dv^{*})_{e}u$ ,

for every $u,$
$v\in \mathfrak{G}$ (cf. $I7],$ (8)). With the above bracket (2), $\mathfrak{G}$ is a

Fr\’echet-Lie algebra, and called the Lie algebra of $G$ .
Now, let $G$ be a regular Fr\’echet-Lie group. As we mentioned in

the introduction, the exponential mapping $exp:\mathfrak{G}\rightarrow G$ is a $C^{\infty}$ mapping.
In this section, we shall investigate several properties of the exponential
mapping.

LEMMA 1.1. For a C’ curve $c(t)$ in $G$ such that $c(O)=e,$ $\{c(t/n)^{n}\}$ con-
verges uniformly on $[0,1]$ to $a$ one parameter subgroup exp $tu$ , where
$u=\dot{c}(0)$ .

PROOF. Set $h_{a}(s, t)=c(as),$ $a\in[0,1]$ , and $h_{a}$ is a $C^{1}$-hair for smaU $s$ .
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Let $\Delta_{n}$ be a division $0<1/n<2/n<\cdots<(n-1)/n<1$ of $I=[0,1]$ . Let
$\{(h_{a}, \Delta_{n})\}$ be a series of step functions such that $\lim_{n\rightarrow\infty}|\Delta_{n}|=0$ and
$\lim_{n\rightarrow\infty}h_{a}=h_{a}$ with its derivative in $s$ . Note that $\prod_{0}^{1}(h_{a}, \Delta_{n})=c(a/n)^{n}$ .
Thus, we see $\prod_{0}^{1}(h_{a}, d\tau)=\lim_{n\rightarrow\infty}c(a/n)^{n}$ . Remark that $t\prod_{0}^{1}(h_{a}, \Delta_{n})$ } con-
verges uniformly in $a$ (cf. [7], Corollary 3.4).

To prove $\lim_{n\rightarrow\infty}c(a/n)^{n}=\exp$ au, remark that by (1), $g_{a}(t)=\prod_{0}^{t}(h_{a}, d\tau)$

satisfies $(d/dt)g_{a}=au\cdot g_{a},$ $g_{a}(0)=e$ . Hence by the uniqueness theorem ([7],
Lemma 2.5) we have

II $(h_{a}, d\tau)=\prod_{0}^{a}(h_{1}, d\tau)=\exp$ au. $\square $

The following lemmas are useful throughout this paper.

LEMMA 1.2. For any $u,$
$v\in \mathfrak{G}$ ,

exp $s$ Ad $(\exp tu)v=\exp$ tu exp $sv\exp-tu$ .
PROOF. Put $ g(s)=\exp$ tu exp $sv\exp-tu$ . Then, $g(s)$ satisfies

$\frac{d}{ds}g(s)=Ad(\exp tu)v\cdot g(s)$

and $g(O)=e$ . Using the first fundamental theorem and the uniqueness of
the above differential equation, we get Lemma 1.2. $\square $

LEMMA 1.3. Let $G$ be a regular Fr\’echet-Lie group with the Lie
algebra G. For every continuous mapping $u:[0,1]\rightarrow \mathfrak{G}$ , the equation

$(*)$ $\frac{dw}{dt}=[u(t), w(t)]$ , $w(0)=we\mathfrak{G}$

has a unique solution Ad $(g(t))w$ , where $ g(t)=\prod_{0}^{t}(1+u(\tau))d\tau$ . Moreover,
if $\mathfrak{H}$ is a finite codimensional closed Lie subalgebra of $\mathfrak{G}$ and $u(t)$ is a
$C^{\infty}$ curve in $\mathfrak{H}$ , then the diferential equation $(*)$ with $w(O)=w\in \mathfrak{H}$ has a
unique solution in $\mathfrak{H}$ .

PROOF. By Lemma 2.3 in [7], we see easily that Ad $(g(t))w$ is a
solution of $(*)$ . Suppose $w’(t)$ be another solution. Then by the same
lemma, we see that $(d/dt)$ Ad $(g(t)^{-1})w’(t)=0$ , and hence Ad $(g(t)^{-1})w(t)=$

$w’(0)=w$ .
Assume that $u(t)$ is a $C^{\infty}$ curve in $\mathfrak{H}$ . We have only to show $w(t)=$

Ad $(g(t))w\in \mathfrak{H}$ . Set ad $(u(t))=[u(t), ]$ . Then ad $(u(t))\mathfrak{H}\subset \mathfrak{H}$ . Thus ad $(u(t))$

induces a linear mapping $ad\sim(u(t))$ of $\mathfrak{G}/\mathfrak{H}$ into itself such that $p$ ad $(u(t))v=$

ad $(u(t))pv$ where $p:\mathfrak{G}\rightarrow \mathfrak{G}/\mathfrak{H}$ is the projection. Thus $(d/dt)pw(t)=$

ad $(u(t))pw(t),$ $pw(O)=0$ . Since $\dim \mathfrak{G}/\mathfrak{H}<\infty$ , we see $pw(t)=0$ by the
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uniqueness theorem of linear differential equations. Hence $w(t)\in \mathfrak{H}$ . $\square $

Now, we consider a subgroup $H$, possibly non-closed, of a regular
Fr\’echet-Lie group $G$ . Though one can not conclude $H$ is an FL-group
even if $H$ is closed, one can define the Lie algebra $\mathfrak{H}$ of $H$, if $H$ satisfies
a certain condition. For a neighborhood $\tilde{U}$ of $e$ in $G$ , denote by $\tilde{U}_{0}(H)$

the subset of $\tilde{U}$ consisting of all points $x$ which can be connected to $e$

by piecewise smooth curves contained in $\tilde{U}\cap H$. We denote the closure
of $\tilde{U}_{0}(H)$ by $\tilde{U}_{0}(H)^{-}$ , and denote by $\mathfrak{H}$ the totality of $u\in \mathfrak{G}$ such that
exp $tu\in H$ for every $t\in R$ .

LEMMA 1.4. Notations and assumptions being as above, suppose there
is an open neighborhood $\tilde{U}$ of $e$ such that $U_{0}(H)^{-}\subset H$. Then, $\mathfrak{H}$ is a
closed Lie subalgebra of G.

PROOF. It is obvious that if $u\in \mathfrak{H}$ , then $au\in \mathfrak{H}$ for every $a\in R$ .
Let $u,$ $v\in \mathfrak{H}$ . Then $ g(t)=\exp$ tu exp $tv$ is a $C^{\infty}$ curve in $G$ , contained in
$H$. By Lemma 2.1 in [7], we have $(dg/dt)(O)=u+v$ . By Lemma 1.1, we
see $\lim_{n\rightarrow\infty}$ $(\exp(t/n)u$ exp $(t/n)v)^{n}=\exp t(u+v)$ , and the convergence is
uniform on the unit interval $I=[0,1]$ .

Let $[0, \epsilon_{n}$) be the maximal interval such that $g(t/n)^{n}\in\tilde{U}$ for $t\in[0, \epsilon_{n}$).
By definition of $\tilde{U}_{0}(H)$ , we see $g(t/n)^{n}\in\tilde{U}_{0}(H)$ for $t\in[0, \epsilon_{n}$). Suppose for
a while that lim $inf\epsilon_{n}=0$ . Then choosing a suitable subsequence, if
necessary, one may assume that $\lim_{n\rightarrow\infty}\epsilon_{n}=0$ . Since $g(\epsilon_{n}/n)^{n}\not\in\tilde{U},$ $\{g(\epsilon_{n}/n)^{n}\}$

can not converge to $e$ . However, since $\lim_{n\rightarrow\infty}g(s/n)^{n}=exps(u+v)$ uniformly
on $I,$ $\lim_{n\rightarrow\infty}g(\epsilon_{n}/n)^{n}=e$ with $\lim_{n\rightarrow\infty}\epsilon_{n}=0$ . This contradicts the above
argument, and hence there is an $\epsilon_{0}>0$ such that $\epsilon_{n}\geqq\epsilon_{0}$ .

Since $g(t/n)^{n}\in\tilde{U}_{0}(H)$ for $t\in[0, \epsilon_{0}$) and $\tilde{U}_{0}(H)^{-}\subset H$, we have
$\lim_{n\rightarrow\infty}g(t/n)^{n}\in H$ for $t\in[0, \epsilon_{0}$). This implies exp $t(u+v)\in H$. Thus,
$u+v\in \mathfrak{H}$ , hence $\mathfrak{H}$ is a linear subspace of G.

Let $\{u_{n}\}$ be a sequence in $\mathfrak{H}$ converging to $ u\in$ G. Denote by $[0, \epsilon_{n}$)
the maximal interval such that exp $tu_{n}\in\tilde{U}$ for every $t\in[0, \epsilon_{n}$). Then
exp $tu_{n}\in\tilde{U}_{0}(H)$ for every $t\in[0, \epsilon_{n}$). Since exp $tu$ is a continuous mapping
of $R\times \mathfrak{G}$ into $G$ , there is $\epsilon_{0}>0$ such that $\epsilon_{n}\geqq\epsilon_{0}$ for all $n$ . Hence,
$\lim_{n\rightarrow\infty}$ exp $tu_{n}\in\tilde{U}_{0}(H)^{-}\subset H$ for all $t\in[0, \epsilon_{0}$). Therefore, exp $tu\in H$ for all
$t\in R$ and hence $u\in \mathfrak{H}$ . $\mathfrak{H}$ is therefore a closed subspace of G.

By using Lemma 1.2, we get Ad $(\exp tu)v\in \mathfrak{H}$ for every $u,$
$v\in \mathfrak{H}$ . It

follows $[u, v]\in \mathfrak{H}$ , because of (2). $\square $

\S 2. Covering groups and subgroups.

First of all, we shall give the following.
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PROPOSITION 2.1. Let $G$ be a regular Fr\’echet-Lie group. Then a
covering group $G$’ of $G$ is a regular Fr\’echet-Lie group.

PROOF. It is not hard to see that $G$’ is an FL-group. Thus we have
only to show the convergence of product integrals. Denote by $pr:G’\rightarrow G$

the natural projection, which is obviously a $C^{\infty}$ homomorphism. Let $\tilde{U}$

be a connected neighborhood of $e$ in $G$ which is evenly covered by $pr$ ,
i.e., $pr$ is a $C^{\infty}$-diffeomorphism of each connected component of $pr^{-1}\tilde{U}$

onto $\tilde{U}$. We denote by $\tilde{U}$‘ the identity component of $pr^{-1}\tilde{U}$. The inver8e
mapping of $pr:\tilde{U}‘\rightarrow\tilde{U}$ will be denoted by $pr^{-1}$ .

Let $h:[0, \epsilon]\times J\rightarrow G^{\prime}$ be a $C^{1}$-hair at $e$ , and let $\{(h_{n}, \Delta_{n})\}$ be a sequence
of step functions such that $\lim_{n\rightarrow\infty}|\Delta_{n}|=0$ and $\{h_{n}\}$ converges uniformly
to $h$ with their partial derivatives $\{\partial h_{n}/\partial s\}$ . $pr(h):[0, \epsilon]\times J\rightarrow G$ is a $C^{1}-$

hair at $e$ and $\{(pr(h_{n}), \Delta_{n})\}$ is a sequence of step functions in $G$ with the
same convergence property as $\{(h_{n}, \Delta_{n})\}$ . Since $G$ is a regular Fr\’echet-
Lie group, $\prod_{a}^{t}(pr(h_{n}), \Delta_{n})$ converges uniformly on $J$ to a $C^{1}$ curve
$\prod_{a}^{t}(pr(h), d\tau)$ . Hence, there is a number $\delta>0$ such that if $t\in[a, a+\delta]$

then $\prod_{a}^{t}(pr(h), d\tau),$ $\prod_{a}^{t}(pr(h_{n}), \Delta_{n})\in\tilde{U}$ for all $n$ . Since $pr^{-1}$ is a local iso-
morphism, we have $pr^{-1}(\prod_{a}^{t}(pr(h_{n}), \Delta_{n}))=\prod_{a}^{t}(h_{n}, \Delta_{n})$ . Thus, $\lim_{n\rightarrow\infty}\prod_{a}^{t}(h_{n}, \Delta_{n})$

converges uniformly on $[a, a+\delta]$ .
The same proof as above shows also that for every $c\in J$ there is a

compact neighborhood $K_{\iota}$ of $c$ such that $\lim_{n\rightarrow\infty}\prod_{a}^{t}(h_{n}, \Delta_{n})$ converges uni-
formly on $K_{c}$ , where if $t<c$ we define $\prod_{c}^{t}(h_{n}, \Delta_{n})$ by $(\prod_{t}^{\iota}(h_{n}, \Delta_{n}))^{-1}$ . Take
a finite covering $\cup K_{c_{i}}$ of $J$, and use the property

$\lim_{n\rightarrow\infty}$ II $(h_{n}, \Delta_{n})=\lim_{n\rightarrow\infty}$ II $(h_{n}, \Delta_{n})\lim_{n\rightarrow\infty}$ II $(h_{n}, \Delta_{n})$ .

Then, we obtain that $\lim_{n\rightarrow\infty}\prod_{a}^{t}(h_{n}, \Delta_{n})$ converges uniformly on J. $\square $

REMARK. The convergence of product integrals is a local property,
as we saw in the argument.

We return to the stage of FL-groups and define a subgroup in the
category of FL-structure.

Let $G$ be an FL-group with Lie algebra $\mathfrak{G}$ and $H$ a subgroup of $G$ ,
possibly non-closed. For a neighborhood $\tilde{U}$ of $e$ in $G$ , denote by $\tilde{U}_{0}(H)$

the subset of $\tilde{U}$ consisting of all points $x\in\tilde{U}\cap H$ such that $x$ and $e$ can
be connected by a piecewise smooth curve which is contained in $\tilde{U}\cap H$.

DEFINITION 2.2. Let $G$ be an FL-group with Lie algebra G. A
subgroup $H$ of $G$ is called an FL-subgroup, if there is a $C^{\infty}$ local coordi-
nate system $\zeta:U\rightarrow G$ at $e$ such that $\zeta(0)=e$ where $U$ is an open convex
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neighborhood of $0$ in $\mathfrak{G}$, and there is a closed subspace $\mathfrak{H}$ of $\mathfrak{G}$ such that
$\zeta$ and $\mathfrak{H}$ satisfy the following:

$(FLS)$ $\zeta$ maps $U\cap \mathfrak{H}$ homeomorphically onto $\tilde{U}_{0}(H)$ , where $\tilde{U}=\zeta(U)$ .
Next, we induce a topology on the FL-subgroup $H$ of FL-group $G$

as follows: Notations being as above, let $\mathfrak{R}$ be the set of the open convex
neighborhoods of $0$ contained in $U$. Since $\tilde{W}_{0}(H)=\zeta(W\cap \mathfrak{H})$ for every
$W\in \mathfrak{R}$ , we see that $\{\zeta(W\cap \mathfrak{H}):W\in \mathfrak{R}\}$ gives the topology under which $H$

is an FL-group. Note that this topology is in general stronger than
the relative topology (The above topology has been called LPSAC-topology
in the category of strong ILB-Lie groups. See [4], I.4.). Thus, we shall
indicate by $(H, FL)$ (resp. ($H$, rel)) if $H$ has the above topology (resp.
the relative topology).

LEMMA 2.3. Suppose $H$ is an FL-subgroup of an FL-group G. Let
$X$ be an open connected neighborhood of $0$ of a Fr\’echet space $E$.

(i) Suppose $\{\kappa_{n}\}$ is a sequence of continuous mappings $\kappa_{n}$ of $X$ into
($H$, rel) such that $\kappa_{n}(0)=e$ and $\{\kappa_{n}\}$ converges uniformly to a mapping
$\kappa:X\rightarrow G$ . Then, $\{\kappa_{n}\}$ converges uniformly in $(H, FL)$ , and $\kappa(X)\subset H$.

(ii) Let $\kappa:X\rightarrow(H, FL)$ be a continuous mapping such that $\kappa:X\rightarrow G$

is $C^{r}(0\leqq r\leqq\infty)$ . Then $\kappa:X\rightarrow(H, FL)$ is $C^{r}$ .
PROOF. (i) Let $W$ be an arbitrary element in $\mathfrak{R}$ and set $\tilde{W}=\zeta(W)$ ,

where these notations are as in Definition 2.2. As $\{\kappa_{n}\}$ is a Cauchy
sequence in the uniform topology of mappings of $X$ into ($H$, rel), there
is a number $n_{0}$ such that if $n,$ $m\geqq n_{0}$ then $\tilde{\kappa}_{n,m}(x)=\kappa_{n}(x)\kappa_{m}^{-1}(x)\in\tilde{W}$ for any
$x\in X$. Since $\tilde{\kappa}_{n,m}(0)=e$ and $\tilde{\kappa}_{n,m}(X)$ is arcwise connected, we see that
$\tilde{\kappa}_{n,m}(X)\subset\tilde{W}_{0}(H)=\zeta(W\cap \mathfrak{H})$ . Hence $\{\kappa_{n}\}$ is a Cauchy sequence in the space
of mappings of $X$ to $(H, FL)$ with the uniform topology. Note that
$\lim_{n\rightarrow\infty}\kappa_{n}(x)=\kappa(x)\in G$ . At this stage $\kappa(x)$ is only an element of $G$ . How-
ever, since one may assume that $\tilde{W}_{0}(H)^{-}\subset H$ by a suitable choice of
$W\in \mathfrak{R}$ , where $\tilde{W}_{0}(H)^{-}$ is the closure of $\tilde{W}_{0}(H)$ , we see that
$\lim_{n\rightarrow\infty}\kappa_{n}(x)\kappa_{n_{0}}(x)^{-1}\in H$. Hence, $\kappa(x)\in H$ for $\kappa_{n_{0}}(x)\in H$. Consequently, $\{\kappa_{n}\}$

converges uniformly to $\kappa$ in $(H, FL)$ .
(ii) Now, suppose $\kappa:X\rightarrow(H, FL)$ is a continuous mapping which can

be regarded as $C^{r}$ mapping of $X$ into $G$ . For an arbitrarily fixed $x_{0}\in X$,
$\tilde{\kappa}(x)=\kappa(x)\kappa(x_{0})^{-1}$ is a continuous mapping of $X$ into $(H, FL)$ such that
$\tilde{\kappa}(x_{0})=e$ . Fix $W\in \mathfrak{R}$ arbitrarily, and there is a neighborhood $V$ of $x_{0}$ such
that $\tilde{\kappa}(V)\subset\tilde{W}_{0}(H)=\zeta(W\cap \mathfrak{H})$ . Note that $\tilde{\kappa}:V\rightarrow\zeta(W)$ is a $C^{r}$ mapping,
hence so is $\zeta^{-1}\tilde{\kappa}:V\rightarrow W$ . However, $\zeta^{-\iota}\tilde{\kappa}(V)\subset W\cap \mathfrak{H}$ . This implies that
$\zeta^{-1}\tilde{\kappa}:V\rightarrow W\cap \mathfrak{H}$ is $C^{r}$ , and hence so is $\tilde{\kappa}:V\rightarrow\zeta(W\cap \mathfrak{H})$ . Thus, $\tilde{\kappa}$ is $C^{r}$ on
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a neighborhood of $x_{0}$ . Since $\kappa(x)=\tilde{\kappa}(x)\kappa(x_{0})$ , we get the desired result. $\square $

Now, we are ready to prove the following:

PROPOSITION 2.4. Every FL-subgroup of a regular Fr\’echet-Lie group
is a regular Fr\’echet-Lie group.

PROOF. Suppose $H$ is an FL-subgroup of a regular Fr\’echet-Lie group
$G$ . We have only to show the convergence of product integrals. Let
$h:[0, \epsilon]\times J\rightarrow(H, FL)$ be a $C^{1}$-hair at $e$ , where $J=[a, b]$ and let $\{(h_{n}, \Delta_{n})\}$ be
a sequence of step functions such that $\lim_{n\rightarrow\infty}|\Delta_{n}|=0$ and $\{h_{n}\}$ converges
uniformly to $h$ with their partial derivatives $\partial h_{n}/\partial s$ . Set $\kappa_{n}(t)=\prod_{a}^{t}(h_{n}, \Delta_{n})$ .
Then, regarding $\kappa_{n}$ as a continuous mapping of $J$ into $G,$ $\{\kappa_{n}\}$ converges
uniformly to the mapping $\kappa(t)=\prod_{a}^{t}(h, d\tau)$ . Thus by (i) in Lemma 2.3,
we see that $\{\kappa_{n}\}$ converges uniformly on $J$ under the topology of $(H, FL)$ .
Hence $(H, FL)$ is a regular Fr\’echet-Lie group. $\square $

\S 3. Lie algebra homomorphism.

Let $G,$ $H$ be FL-groups and $\mathfrak{G},$ $\mathfrak{H}$ their Lie algebras respectively.
Suppose there is a $C^{\infty}$ homomorphism $\Phi$ of $G$ into $H$. Then the deriva-
tive $(d\Phi)_{e}$ at $e$ gives a continuous linear mapping of $\mathfrak{G}$ into $\mathfrak{H}$ .

LEMMA 3.1. $(d\Phi)_{\ell}:\mathfrak{G}\rightarrow \mathfrak{H}$ is a Lie algebra homomorphism.

PROOF. Let $g(t),$ $k(s)$ be $C^{\infty}$ curves in $G$ such that $g(O)=k(O)=e$ and
$\dot{g}(0)=u,\dot{k}(O)=v$ . Remark that $\Phi(g(t)),$ $\Phi(k(s))$ are $C^{\infty}$ curves in $H$ such
that $\Phi(g(O))=\Phi(k(O))=identity$ and $d(\Phi(g(t)))/dt|_{t=0}=(d\Phi).u,$ $d(\Phi(k(s)))/ds|.=0=$

$(d\Phi)_{e}v$ . Then, we have by (2),

$[(d\Phi)_{*}u, (d\Phi)_{6}v]=\frac{\partial^{2}}{\partial t\partial s}|_{--0}t=0\Phi(g(t))\Phi(k(s))\Phi(g(t))^{-1}$

$=\frac{\partial^{2}}{\partial t\partial s}|_{\iota=0}t=0\Phi(g(t)k(s)g(t)^{-1})$

$=(d\Phi)_{e}[u, v]$ .
So, we get the lemma. $\square $

For regular Fr\’echet-Lie groups, we obtain a sort of converse of the
above fact as follows, which is the goal of this section.

THEOREM 3.2. Let $G$ be a connected, simply connected regular Fr\’echet-
Lie group, and $H$ a regular Fr\’echet-Lie group. Let $\mathfrak{G},$ $\mathfrak{H}$ be the Lie
algebras of $G,$ $H$ respectively. If there is a continuous homomorphism
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$\varphi$ of $\mathfrak{G}$ into $\mathfrak{H}$ , then there is a $C^{\infty}$ homomorphism $\Phi$ of $G$ into $H$ such
that $(d\Phi)_{e}=\varphi$ .

REMARK. The above result shows that the local structures of regular
Fr\’echet-Lie groups can be determined by their Lie algebras, for an iso-
morphism between two Lie algebras yields a $C^{\infty}$ isomorphism between
two universal covering groups. (cf. Proposition 2.1.)

We need several lemmas to prove Theorem 3.2.
For a Lie homomorphism $\varphi$ of $\mathfrak{G}$ into $\mathfrak{H}$ , let $Y$ be the subset of the

product Lie algebra $\mathfrak{G}\times \mathfrak{H}$ composed of all elements of the form $(u, \varphi u)$ ,
$ u\in$ G. Since $\varphi$ is a continuous homomorphism, we see easily that $Y$ is
a closed subalgebra of $\mathfrak{G}\times \mathfrak{H}$ . Let $\gamma*$ be the left-invariant distribution
on $G\times H$ defined by

$Y^{*}(g, h)=dL_{(g,h)}Y=\{(dL_{g}u, dL_{h}\varphi(u));u\in \mathfrak{G}\}$ ,

where $L_{(g,h)},$ $L_{g},$ $L_{h}$ mean the left translations, $\gamma*$ may be regarded as
an involutive distribution on $G\times H$, for $Y$ is a closed subalgebra. What
we are going to make is the maximal integral submanifold E19 through
the identity. If it were done, then 219 should be an FL-subgroup of
$G\times H$ and $g$ should give the graph of $\Phi$ .

REMARK. It is not known whether the Frobenius theorem holds in
general in the category of regular Fr\’echet-Lie groups.

Let $\xi:U\rightarrow G$ be a $C^{\infty}$ local coordinate system of $G$ at $e$ , where $U$ is
an open convex neighborhood of $0$ in $\mathfrak{G}$ and $\xi(0)=e$ . Also, we may assume
that $(d\xi)_{0}=id$ . For each $u\in U$, we define a $C^{\infty}$ mapping $\mu(u):[0,1]\rightarrow \mathfrak{G}$

by $\mu(u)(t)=((d/dt)\xi(tu))\xi(tu)^{-1}$ . By the homomorphism $\varphi$ of $\mathfrak{G}$ into $\mathfrak{H}$ , we
see that $\varphi\mu(u)$ is also a $C^{\infty}$ mapping of $[0,1]$ into $\mathfrak{H}$ . Solve the equation
$(d/dt)h(t)=\varphi\mu(u)h(t),$ $h(O)=e$ . As $H$ is a regular Fr\’echet-Lie group, $h(t)$

is given by the product integral. Thus, we set

(3) $\theta(t, u)=\prod_{0}^{t}(1+(\varphi\mu(u))(\tau))d\tau$ .
By the second fundamental theorem of product integrals, it is easy to
see that $\theta:[0,1]\times U\rightarrow H$ is a $C^{\infty}$ mapping such that $\theta(0, u)=e$ .

LEMMA 3.3.

$\varphi$ Ad $(\xi(tu))w=Ad(\theta(t, u))\varphi w$ , $ w\in$ G.

PROOF. By the same computation as in the proof of Lemma 1.3,
we see
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$\frac{d}{dt}\varphi$ Ad $(\xi(tu))w=\varphi[\mu(u), Ad(\xi(tu))w]$ (cf. [7], Lemma 2.3.)

$=$ [$\varphi\mu(u),$ $\varphi$ Ad $(\xi(tu))w$].

On the other hand,

$\frac{d}{dt}Ad(\theta(t, u))\varphi w=$ [$\varphi\mu(u)(t)$ , Ad $(\theta(t,$ $u))\varphi w$],

and if $t=0$ then two quantities coincide, hence by Lemma 1.3, we get
the desired one. $\square $

Now, consider a $C^{\infty}$ Fr\’echet submanifold $S$ of $G\times H$ given by

$S=\{(\xi(u), \theta(1, u));u\in U\}$ .
It is obvious that the tangent space of $S$ at $(e, e)\in G\times H$ is given by $Y$ .

LEMMA 3.4. The tangent space of $S$ at $(g, h)\in S$ is $Y^{*}(g, h)$ , i.e., $S$

is an integral submanifold of the left-invariant distribution $Y^{*}$ .
$PR\infty F$ . Let $(g, h)=(\xi(u), \theta(1, u))$ . The tangent space of $S$ at $(g, h)$

is given by $\{((d\xi)_{u}v, (d\theta_{1})_{u}v);v\in \mathfrak{G}\}$ , where $\theta_{1}(u)=\theta(1, u)$ . Since $Y^{*}(g, h)=$

$\{(dL_{\xi(u)}v, dL_{\theta_{1^{(}}u)}\varphi v);v\in \mathfrak{G}\}$ , we have only to show that

$\{(dL_{\xi(u)}^{-1}(d\xi)_{u}v, dL_{\theta_{1}(u)}^{-1}(d\theta_{1})_{u}v);v\in \mathfrak{G}\}=Y$ .
Since $dL_{\text{\’{e}}(u)}^{-1}(d\xi)_{u}:\mathfrak{G}\rightarrow \mathfrak{G}$ is a linear isomorphism, it is enough to show that
(4) $\varphi dL_{\text{\’{e}}(u)}^{-1}(d\xi)_{u}v=dL_{\theta_{1}(u)}^{-1}(d\theta_{1})_{u}v$ ,

for every $ve\mathfrak{G}$ . Note that $(\partial/\partial s)|_{=0}\theta(t, u)^{-1}\theta(t, u+sv)$ is a $C^{\infty}$ curve in
$\mathfrak{H}$ , which is $0$ if $t=0$ . Now, putting this fact in mind we compute as
follows
(5) $dL_{\theta_{1}tu)}^{-1}(d\theta_{1})_{u}v$

$=\frac{d}{ds}|_{=0}\theta_{1}(u)^{-1}\theta_{1}(u+sv)$

$=\int_{0}^{1}\frac{\partial}{\partial t}\{\frac{\partial}{\partial s}|_{=0}\theta(t, u)^{-1}\theta(t, u+sv)\}dt$

$=\int_{0}^{1}\frac{\partial}{\partial s}|_{=0}dL_{\theta(t,u)}^{-1}\varphi(\mu(u+sv)-\mu(u))(t)\cdot\theta(t, u+sv)dt$ (by (3))

$=\int_{0}^{1}dL_{\theta(t,u)}^{-1}\varphi(d\mu)_{u}v\cdot\theta(t, u)dt$

$=\int_{0}^{1}Ad(\theta(t, u))^{-1}\varphi(d\mu)_{u}vdt$ .
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Hence, by Lemma 3.3, we have

$ dL_{\theta_{1}tu)}^{-1}(d\theta_{1})_{u}v=\int_{0}^{1}\varphi$ Ad $(\xi(tu))^{-1}(d\mu)_{u}vdt$

$=\varphi\int_{0}^{1}$ Ad $(\xi(tu))^{-1}(d\mu)_{u}vdt$ .
On the other hand, replacing $\theta(t, u)$ by $\xi(tu)$ in the above computation
(5), we obtain also

$dL_{\xi(u)}^{1}(d\xi)_{u}v=\int_{0}^{1}$ Ad $(\xi(tu))^{-1}(d\mu)_{u}vdt$ .

Thus, we get the desired equality (4). $\square $

The above lemma shows that $S$ is an integral submanifold of $\gamma*$

through $(e, e)\in G\times H$. Since $Y^{*}$ is left-invariant, $L_{(g,h)}S$ is also an integral
submanifold of $\gamma*$ through $(g, h)\in G\times H$.

LEMMA 3.5. Let $(g(s), h(s)),$ $s\in[0, \infty$ ), be a $C^{\infty}$ curve in $G\times H$ such
that $(g(O), h(O))\in S$ and $(d/ds)(g(s), h(s))\in Y^{*}(g(s), h(s))$ for every $s$ . Let $\delta$

be the maximal number such that $g(s)\in\tilde{U}=\xi(U)$ for every $s\in[0, \delta$). Then,
$(g(s), h(s))\in S$ for every $ s\in[0, \delta$).

PROOF. For $s\in[0, \delta$), $g(s)$ can be written in the form $\xi(u(s))$ . Let
$\mu(u)(s)=dL_{\xi(u(\epsilon))}^{-1}\cdot(d/ds)\xi(u(s))$ . Consider a $C^{\infty}$ curve $(\xi(u(s)), \theta_{1}(u(s)))$ in
$G\times H$. By definition, it is contained in $S$ . Therefore, by Lemma 3.4,

$\frac{d}{ds}(\xi(u(s)), \theta_{1}(u(s)))\in Y^{*}(\xi(u(s)), \theta_{1}(u(s)))$ .

This implies

$\varphi\mu(u)(s)=dL_{\theta_{1}((u(\epsilon))^{\frac{d}{ds}}}^{-1}\theta_{1}(u(s))$ .

On the other hand, by the assumption $(g(s), h(s))$ , we see

$(dL_{g(\epsilon)}^{-1}\frac{d}{ds}g(s),$ $dL_{h(s)}^{-1}\frac{d}{ds}h(s))\in Y$ .

Therefore, $\varphi\mu(u)(s)=dL_{h(s)}^{-1}(d/ds)h(s)$ and hence $(d/ds)h(s)\theta_{1}(u(s))^{-1}=$

$dL_{h(s)}\varphi\mu(u)(s)\cdot\theta_{1}(u(s))^{-1}-dL_{h(\epsilon)}\varphi\mu(u)(s)\cdot\theta_{1}(u(s))^{-1}\equiv 0$ . Since $h(0)\theta_{1}(u(0))^{-1}=e$ ,
we get $h(s)=\theta_{1}(u(s))$ for $s\in[0, \delta$). This implies $(g(s), h(s))\in S.$ $\square $

Suppose $L_{\langle ff},h$
)
$S\cap L_{(ff^{\prime}},h^{\prime}$

)
$ S\neq\emptyset$ for some $(g, h),$ $(g^{\prime}, h’)\in G\times H$. Let $\epsilon(t)$

be any $C^{\infty}$ curve in $L_{(g^{\prime},h^{\prime})}S$ such that $\epsilon(0)\in L_{(g,h)}S$ . Then $\epsilon^{\prime}(t)=L_{(g,h)}^{-1}\epsilon(t)$
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is a $C^{\infty}$ curve in $G\times H$ such that $\epsilon^{\prime}(0)eS$ and $(d/dt)\epsilon^{\prime}(t)eY^{*}(\epsilon^{\prime}(t))$ . Thus,
by Lemma 3.5, $\epsilon’(t)\in S$ whenever $\pi\epsilon^{\prime}(t)e\tilde{U}=\xi(U)$ , where $\pi:G\times H\rightarrow G$ is
a natural projection. Therefore, $L_{(g,h)}S\cap L_{(g^{\prime},h^{\prime})}S$ contains the connected
component of

$L_{(g,h)}S\cap\pi^{-1}(g\tilde{U}\cap g^{\prime}\tilde{U})$

containing $\epsilon(0)$ . Thus, $L_{(g,h)}S\cap L_{(g^{\prime},h^{\prime})}S$ is an open subset of $L_{(g,h)}S$ . Simi-
larly, it is an open subset of $L_{(g^{\prime},h^{\prime})}S$ . Hence, we get that $L_{(g,h)}S\cup L_{(g^{\prime}.h^{\prime})}S$

is an integral submanifold of $Y^{*}$ .
PROOF OF THEOREM 3.2. Let $p_{s}$ be the family of all open subsets

of $S$, and make a topology on $G\times H$ by calling $P_{\theta\times H}=\cup\{L_{(g,h)}a_{S};(g, h)e$

$G\times H\}$ a generator of open subsets. Let $g$ be the connected component
containing the identity $(e, e)$ under the above topology. Since every $L_{(g,h)}S$

is an open subset of $g$ for every $(g, h)\in \mathscr{G}$, we see that 87 is an integral
submanifold of $Y^{*}$ .

It is obvious that $g$ is a connected subgroup of $G\times H$ because
$L_{(g,h)}g=g$ for any $(g, h)\in C$. As $\pi:L_{(g,h)}S\rightarrow g\tilde{U}$ is a $C^{\infty}$-diffeomorphism,
$\pi:\mathscr{G}\rightarrow G$ is a $C^{\infty}$ isomorphism, for $G$ is connected and simply connected.
Thus, regarding 29 as the graph of a $C^{\infty}$ homomorphism $\Phi$ of $G$ into $H$,
we get $(d\Phi)_{\ell}=\varphi$ . $\square $

REMARK. The proof of Theorem 3.2 works well under the assumption
that $G$ is an FL-group.

\S 4. Frobenius theorem for finite codimensional closed Lie sub $\cdot$

algebras.

Let $G$ be an FL-group, and $H$ an FL-subgroup of $G$ .
DEFINITION 4.1. $H$ is called to be locally flat, if $t\mathfrak{H},$ $\zeta,$ $U$ } given in

the definition (Definition 2.2) of FL-subgroups satisfy the following:
(a) $\zeta:U\rightarrow G$ satisfies $(FLS)$ in Definition 2.2.
(b) There is a complementary subspace $\mathfrak{M}$ of $\mathfrak{H}$ in G.
(c) There are neighborhoods $V,$ $W$ of zeros of $\mathfrak{H},$

$\mathfrak{M}$ respectively
such that $U=V\oplus W$ and $\zeta(V\oplus m)=\zeta(V)\cdot\zeta(m)$ for every $m\in W$.

In this section, we consider a finite codimensional closed Lie sub-
algebra $\mathfrak{H}$ of the Lie algebra $\mathfrak{G}$ of a regular Fr\’echet-Lie group $G$ . As
dim $\mathfrak{G}/\mathfrak{H}=\dim \mathfrak{M}<\infty$ , there is a finite dimensional complementary subspace
$\mathfrak{M}$ of $\mathfrak{H}$ , that is,

(6) $\mathfrak{G}=\mathfrak{H}\oplus \mathfrak{M}$ .
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Let $p:\mathfrak{G}\rightarrow \mathfrak{G}/\mathfrak{H}=\mathfrak{M}$ be the projection associated with (6). The goal of
this section is the following:

THEOREM 4.2. Let $\mathfrak{H}$ be a finite codimensional closed Lie subalgebra
of $\mathfrak{G}$ of a regular Fr\’echet-Lie group G. Then, there is a locally flat
FL-subgroup $H$ of $G$ having $\mathfrak{H}$ as its Lie algebra.

REMARK. This theorem has been already known by Leslie [3] under
slightly stronger conditions. We shall give here another proof, for the
method and lemmas used here will be useful in the future coming papers
in this series.

To prove the above theorem, we consider a right-invariant distribu-
tion $\tilde{\mathfrak{H}}$ on $G$ given by

(7) $\tilde{\mathfrak{H}}(g)=dR_{g}\mathfrak{H}=\{dR_{g}u;u\in \mathfrak{H}\}$ ,

and make the maximal integral submanifold of $\tilde{\mathfrak{H}}$ through the identity.
This will be done by proving the Frobenius theorem for the distribution $\tilde{\mathfrak{H}}$ .

Let $\xi:U=V\oplus W\rightarrow G$ be a $C^{\infty}$ local coordinate system at $e$ with the
same property as in (a), (b) of Definition 4.1 where $V,$ $W$ are open
neighborhoods of zeros of $\mathfrak{H}$ , EPI respectively, and $\xi(0+0)=e$ . For every
$v+w\in V\oplus W$ , define a linear map $j(v+w)$ by

$j(v+w)=dR_{\text{\’{e}}(v+w)}^{-1}(d\xi)_{v+w}$ .
Since dim $\mathfrak{M}<\infty$ , one may assume that

$ pj(v+w):\mathfrak{M}\rightarrow$ EPZ

is an isomorphism for every $v+w\in V\oplus W$ , whose inverse will be denoted
by $I(v+w)$ . Hence $I$ is a $C^{\infty}$ mapping of $V\oplus W$ into $GL(\mathfrak{M})$ . Set

$\left\{\begin{array}{l}\Phi(v+w)u=u-j(v+w)\cdot I(v+w)pu\\\Psi(v+w)u=j(v+w)I(v+w)pu\end{array}\right.$

for $ u\in$ G. We see easily that $\Phi(v+w)u\in \mathfrak{H},$ $\Psi(v+w)u\in j(v+w)\mathfrak{M}$ . $\Phi$ and
$\Psi$ are $C^{\infty}$ and give a direct decomposition of $\mathfrak{G}$ other than (6). There-
fore, we have

(9) codim $\mathfrak{H}=co\dim j(v+w)\mathfrak{H}$ .
Define the mapping $\varphi(v+w),$ $v+w\in V\oplus W$ by

(10) $\varphi(v+w)u=pj(v+w)^{-1}\Phi(v+w)j(v+w)u$ , $u\in \mathfrak{G}$ .
LEMMA 4.3. $\varphi$ is a $C^{\infty}$ mapping of $(V\oplus W)\times \mathfrak{H}$ into EPZ and
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$(d\xi)_{v+\tau\sigma}\{u+\varphi(v+w)u;u\in \mathfrak{H}\}=\tilde{\mathfrak{H}}(\xi(v+w))$ .
PROOF. Remark that for every $u\in \mathfrak{G}$,

$j(v+w)u=\Phi(v+w)j(v+w)u+\Psi(v+w)j(v+w)u$ .
Then, we get

$u=(1-p)j(v+w)^{-1}\Phi(v+w)j(v+w)u+\varphi(v+w)u$

$+j(v+w)^{-1}\Psi(v+w)j(v+w)u$ .
Note that the last two terms are contained in $\mathfrak{M}$ . Thus, if $u\in \mathfrak{H}$ , then

$u=(1-p)j(v+w)^{-1}\Phi(v+w)j(v+w)u$ ,

and hence

$u+\varphi(v+w)u=j(v+w)^{-1}\Phi(v+w)j(v+w)u\in j(v+w)^{-1}\mathfrak{H}$ .
Therefore, $\{u+\varphi(v+w)u;u\in \mathfrak{H}\}\subset j(v+w)^{-1}\mathfrak{H}$ . To prove the equality,
remark that codim $\{u+\varphi(v+w)u;u\in \mathfrak{H}\}=co\dim \mathfrak{H}$ and use (9). Then, we
get the desired equality. $\square $

Let $V_{1},$ $W_{1}$ be convex neighborhoods of zeros in $V,$ $W$ respectively
such that $\overline{V}_{1}\subset V,\overline{W}_{1}\subset W$ and $\overline{W}_{1}$ is compact. Let $\ovalbox{\tt\small REJECT}$ be a Fr\’echet space
consisting of all $C^{\infty}$ mappings of $\overline{W}_{1}\times[0,1]$ into $\mathfrak{M}$ . Define a mapping
$x:V_{1}\rightarrow\ovalbox{\tt\small REJECT}$ by

$\chi(v)(w, t)=\varphi(tv+w)v$ .
Then, $\chi$ is a $C^{\infty}$ mapping such that $\chi(0)=0$ .

The following lemma is well-known as the uniqueness and the regu-
larity of solutions of ordinary differential equations (cf. [3]):

LEMMA 4.4. There is an open neighborhood $N$ of $0$ in $\ovalbox{\tt\small REJECT}$ and an
open neighborhood $W_{2}$ of $0$ in $W_{1}$ satisfying the following:

(i) For any $X\in N$, the differential equation

$\frac{d}{dt}\omega(t)=X(\omega(t), t)$ , $\omega(0)=weW_{2}$

can be solved uniquely for $t\in[0,1]$ and $\omega(t)\in W_{1}$ .
(ii) Let $\psi(X, w, t)$ be the solution of the above equation. Then, $\psi$ :

$N\times W_{2}\times[0,1]\rightarrow W_{1}$ is a $C^{\infty}$ mapping.

Since $\chi(0)=0$ and $x;V_{1}\rightarrow X$ is $C^{\infty}$ , there is an open convex neighbor-
hood $V_{2}$ of $0$ in $V_{1}$ such that $V_{2}\subset V_{1}$ and $\chi(\overline{V}_{2})\subset N$. Now, consider the



FR\’ECHET-LIE GROUPS 53

equation

(11) $\frac{d}{dt}\omega(t)=\varphi(tv+\omega(t))v$ , $\omega(0)=w\in W_{2}$ ,

for every $v\in V_{2}$ . Let $\psi(v, w, t)$ be the solution of (11) and set $\psi_{1}(v, w)=$

$\psi(v, w, 1)$ . Then, $\psi_{1}:V_{2}\oplus W_{2}\rightarrow W_{1}$ is a $C^{\infty}$ mapping by virture of the
Lemma 4.4, and it is easy to see $\psi_{1}(tv, w)=\psi(v, w, t)$ .

For every fixed $w\in W_{2},$ $\{(v, \psi_{1}(v, w));v\in V_{2}\}$ forms a $C^{\infty}$ Fr\’echet-sub-
manifold $S_{w}$ of $V_{2}\oplus W_{1}$ of finite codimension. What we are going to show
is that $\xi(S_{w})$ is an integral submanifold of $\tilde{\mathfrak{H}}$

Let $(v, \psi_{1}(v, w))$ be a point of $S_{w}$ . The tangent space of $S_{w}$ at this
point is given by $\{v_{1}+(d\psi_{1})_{(v,w)}v_{1};v_{1}\in \mathfrak{H}\}$ . Thus, we have only to show
that this equals $j(v+\psi_{1}(v, w))^{-1}\mathfrak{H}$ Hence, it is enough to show

$j(v+\psi_{1}(v, w))\{v_{1}+(d\psi_{1})_{(v,w)}v_{1};v_{1}\in \mathfrak{H}\}\subset \mathfrak{H}$ ,

because if so, then we have the equality by considering codimensions.
Set

$\mathscr{L}(v_{1})=pj(v+\psi_{1}(v, w))(v_{1}+(d\psi_{1})_{(v,w)}v_{1})$ ,

then we have only to show that $ \mathscr{G}(v_{1})=0$ for every $v_{1}\in \mathfrak{H}$ . Indeed, we get

$-\mathscr{G}(v_{1})=p\cdot\frac{d}{ds}|_{\epsilon=0}\xi(v+sv_{1}+\psi_{1}(v+sv_{1}, w))\xi(v+\psi_{1}(v, w))^{-1}$

$=p\int_{0}^{1}\frac{\partial}{\partial t}\frac{\partial}{\partial s}|_{\epsilon=0}k(t, s)k(t, 0)^{-1}dt$

$=pd\xi\int_{0}^{1}\frac{\partial}{\partial t}\frac{\partial}{\partial s}|_{\epsilon=0}\xi^{-1}(k(t, s)k(t, 0)^{-1})dt$ ,

where $k(t, s)=\xi(tv+tsv_{1}+\psi_{1}(tv+tsv_{1}, w))$ .
Hence, we have

$\mathscr{L}(v_{1})=pd\xi\int_{0}^{1}[\frac{\partial}{\partial s}|_{\epsilon=0}(d\xi)^{-1}\frac{\partial}{\partial t}k(t, s)k(t, 0)^{-1}]dt$ .

Set $(\partial/\partial t)\xi(tv’+\psi_{1}(tv^{\prime}, w))=dL_{\text{\’{e}}(tv^{\prime}+\psi_{1^{(tv^{\prime},w))}}}\Xi(tv^{\prime})$ . Then, we get

$\frac{\partial}{\partial t}k(t, s)k(t, 0)^{-1}=dL_{k(t,s)}dR_{k(t,0)}^{-1}(--(tv+tsv_{1})-\Xi(tv))$ .
Therefore, we see

(12) $\mathscr{L}(v_{1})=p\int_{0}^{1}Ad(\xi(tv+\psi_{1}(tv, w)))\frac{\partial}{\partial s}|_{\epsilon=0}\Xi(tv+tsv_{1})dt$ .
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LEMMA 4.5. Notations and assumptions being as above, we have

$\Xi(tv^{\prime})\in$ Ad $(\xi(w))^{-1}\mathfrak{H}$ , for every $v^{\prime}\in \mathfrak{H}$ .
$PR\infty F$ . Recall that $\Xi(tv^{\prime})$ is defined by $(d/dt)\xi(tv^{\prime}+\psi_{1}(tv’, w))=$

$dL_{\text{\’{e}}(tv^{\prime}+\psi_{1^{(v^{\prime},w))}}-(tv’)}^{-}$ . For simplicity we denote $k(t)=\xi(tv’+\psi_{1}(tv^{\prime}, w))$ , and
we set $(d/dt)k(t)=u(t)\cdot k(t)$ . Then by the definition of $\psi_{1}$ we see that
$u(t)e\mathfrak{H}$ and $k(O)=\xi(w)$ . Moreover, we see easily $\Xi(tv^{\prime})=Ad(k(t)^{-1})u(t)$ .
Thus, $\Xi(tv’)\in$ Ad $(k(t)^{-\iota})\mathfrak{H}$ . Set $h(t)=k(t)k(0)^{-\iota}$ . Then $(d/dt)h(t)=u(t)\cdot h(t)$

and $h(O)=e$ . Hence by Lemma 1.3 we have $Ad(h(t))\mathfrak{H}=\mathfrak{H}$ .
$\coprod^{Therefore}$

Ad $(k(t)^{-1})\mathfrak{H}=Ad(\xi(w))^{-1}\mathfrak{H}$ .
By the above lemma, we see that $(\partial/\partial s)|_{=0}\Xi(t(v+sv_{1}))e$ Ad $(\xi(w)^{-1})\mathfrak{H}$ ,

for Ad $(\xi(w)^{-1})\mathfrak{H}$ is a closed subspace of $\mathfrak{G}$ . Therefore, we have

Ad $(\xi(tv+\psi_{1}(tv, w)))\frac{\partial}{\partial s}|_{=0}\Xi(tv+tsv_{1})\in$ Ad $(\xi(tv+\psi_{1}(tv, w))\xi(w)^{-1})\mathfrak{H}$ .

Recall that $\xi(tv+\psi_{1}(tv, w))\xi(w)^{-1}=h(t)$ in the proof of Lemma 4.5. Hence
by the above lemma again, we see that Ad $(h(t))\mathfrak{H}=\mathfrak{H}$ . By (12) we get
$\mathscr{L}(v_{1})=0$ , and we obtain the following:

LEMMA 4.6. $\xi(S_{w})$ is an integral submanifold of $\tilde{\mathfrak{H}}$ for every $w\in W_{2}$ .
As $\tilde{\mathfrak{H}}$ is right-invariant, $\xi(S.)g$ is also an integral submanifold of $\tilde{\mathfrak{H}}$

for every $geG$ .
LEMMA 4.7. Let $g(t)$ be a $C^{\infty}$ curve in $G$ such that $g(O)e\xi(S.)$ and

$(d/dt)g(t)\in\tilde{\mathfrak{H}}(g(t))$ . Then as far as $g(t)$ is contained in $\xi(V_{2}\oplus W_{1}),$ $g(t)$

is in fact contained in $\xi(S_{w})$ .
PROOF. Put $\xi^{-1}(g(t))=v(t)+w(t),$ $v(t)\in V_{2},$ $w(t)eW_{1}$ . Then, $v(t)+$

$\psi_{1}(v(t), w)$ is a $C^{\infty}$ curve in $S_{w}$ such that $\xi(v(0)+\psi_{1}(v(0), w))=g(O)G\xi(S.)$ .
Evidently,

$\frac{d}{dt}(v(t)+\psi_{1}(v(t), w))=\frac{d}{dt}v(t)+\varphi(v(t)+\psi_{1}(v(t), w))\frac{d}{dt}v(t)$ ,

because $S_{w}$ is an integral submanifold of $(d\xi)^{-1}\tilde{\mathfrak{H}}$ . On the other hand,
we have

$\frac{d}{dt}(v(t)+w(t))=\frac{d}{dt}v(t)+\varphi(v(t)+w(t))\frac{d}{dt}v(t)$

because the left hand side of the above equation must be contained in
$(d\xi)^{-1}\mathfrak{H}^{*}(\xi(v(t)+w(t)))$ and this is given by $\{u+\varphi(v(t)+w(t))u;u\in \mathfrak{H}\}$ .
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Therefore, we see that $\psi_{1}(v(t), w)$ and $w(t)$ satisfy the same differential
equation with the same initial condition. Since $W_{1}$ is finite dimensional,
we get $w(t)=\psi_{1}(v(t), w)$ by the uniqueness theorem. $\square $

PROOF OF THEOREM 4.2. Let $p(S_{w})$ be the family of all open subsets
of $\xi(S_{w})$ . We denote by $p(G)$ the $family\cup\{\theta(S_{w})g;g\in G\}$ , where $p(S_{w})\cdot g=$

$\{U\cdot g;U\in P(S_{w})\}$ . If $ U_{1}\cdot g_{1}\cap\cdots\cap U_{N}\cdot g_{N}\neq\emptyset$ for some $U_{l}\in p(S_{w})$ and
$g_{i}\in G,$ $i=1,2,$ $\cdots,$

$N$, then this is an element of $p(S_{w})\cdot g_{1}$ by virture of
Lemma 4.7. Hence regarding $p(G)$ as a basis of open sets of $G,$ $p(G)$

defines a topology on $G$ . This topology makes $G$ a locally connected
topological group. Let $H$ be the identity component. Then, $H$ is a
subgroup of $G$ . Since $\xi(S_{0})$ is an open subset of $H,$ $H$ is an FL-group
with the Lie algebra $\mathfrak{H}$ .

Consider a $C^{\infty}$ mapping $(v, $w$) $=\xi^{-1}(\xi(v+\psi_{1}(v, O))\xi(w))$ . It is well-
defined on a neighborhood $V_{3}\oplus W_{3}$ of $\mathfrak{G}$ such that $V_{3}\subset V_{2},\overline{W}_{3}\subset W_{2}$ , and
it satisfies $$(0, 0)=0$ . Since $J|(V_{s}, w)\subset S_{w}$ for sufficiently small $V_{3},$ $(v, w)
can be written in the form $(v^{\prime}, \psi_{1}(v’, w))$ for some $v^{\prime}\in V_{2}$ . Remark that
$(D_{2}\psi_{1})_{(0,0)}$ : $\mathfrak{M}\rightarrow \mathfrak{M}$ is the identity. Thus, by the implicit function theorem
which will be proved below, the equation $w’=\psi_{1}(v^{\prime}, w)$ can be smoothly
solved with respect to $w$ if $w$

’ is sufficiently close to $0$ . By $w=\alpha(v’, w’)$

we denote the solution, i.e., $w^{\prime}\equiv\psi_{1}(v^{\prime}, \alpha(v’, w^{\prime}))$ .
Now, remark that $\xi(v^{\prime}+\psi_{1}(v^{\prime}, w))\xi(w)^{-1}\in H$. Therefore, if $v^{\prime}$ and $w$

are sufficiently small, then we see easily that

$\xi(v^{\prime}+\psi_{1}(v^{\prime}, w))\xi(w)^{-1}=\xi(v+\psi_{1}(v, 0))$ .
This shows that $v$ depends smoothly on $v^{\prime}$ and $w=\alpha(v^{\prime}, w^{\prime})$ . Therefore,
fi is a $C^{\infty}$ diffeomorphism of a neighborhood $V_{4}\oplus W_{4}$ of zero of $\mathfrak{G}$ onto a
neighborhood $\mathbb{I}(V_{4}\oplus W_{4})$ of zero. Obviously, $\xi J[(v, w)=\xi(v+\psi_{1}(v, O))\xi(w)=$

$\xi J(v, 0)\xi J(0, w)$ . It follows that $H$ is a locally flat FL-subgroup of G. $\square $

So, nothing remains but to prove an implicit function theorem for
$\psi_{1}$ , which is stated as follows:

LEMMA 4.8 (An implicit function theorem). Let $U_{1}$ be an open neigh-
borhood of $0$ in a Fr\’echet space $E$, and $V_{1}$ an open neighborhood of $0$

in $R^{n}$ . Suppose there is a $C^{\infty}$ mapping $f$ of $U_{1}\oplus V_{1}$ into $R^{n}$ such that
$f(O, 0)=0$ . If $(D_{2}f)_{(0,0)}$ : $R^{n}\rightarrow R^{n}$ is invertible, then there are neighborhoods
$V_{2}$ of $0$ in $V_{1}$ and $U_{2}$ of $0$ in $U_{1}$ and $C^{\infty}$ mapping $\varphi:U_{2}\oplus V_{2}\rightarrow V_{1}$ such
that $f(u, \varphi(u, v))\equiv v$ .

PROOF. Without loss of generality, one may assume that $(D_{2}f)_{(0,0)}$
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is the identity. Set $f_{u}(v)=f(u, v)$ . There is a neighborhood $U_{1}^{\prime}$ of $0$ in
$U_{1}$ such that $(Df_{u})_{0}$ is invertible for every $ueU_{1}^{\prime}$ . Moreover, there are
an $\epsilon$-neighborhood $V(\epsilon)$ of $0$ in $R^{n}$ and an open neighborhood $U_{2}$ such
that $|f_{u}(0)|<\epsilon/4$ and $|Id-(Df_{u})_{v}|<1/2$ for every $u\in U_{2}^{\prime},$ $v\in V(\epsilon)$ . Obvi-
ously, $|f_{u}(v)-f_{u}(0)|\geqq|v|-\int_{0}^{1}|(Id-(Df_{u})_{v})v|dt\geqq(1/2)|v|$ . Hence, $ f_{u}(V(\epsilon))\supset$

$f_{u}(0)+V(\epsilon/2)$ . Thus $f_{u}(V(\epsilon))\supset V(\epsilon/4)$ for every $u\in U_{2}^{\prime}$ . Since $f_{u}$ is a $C^{\infty}$

diffeomorphism of $V(\epsilon)$ into $R^{n}$ and $f$. is $C^{\infty}$ with respect to $u\in U_{2}^{\prime}$ , so
is $f_{u}^{-1}:V(\epsilon/4)\rightarrow R^{n}$ . Set $\varphi(u, v)=f_{u}^{-1}(v)$ . Then, we get $f(u, \varphi(u, v))\equiv v$ . $\square $

\S 5. Extensions of regular Fr&het-Lie groups.

Suppose we have an abstract group $G$ and a normal subgroup $N$.
In this section, we assume the following:

(Ext. $0$) $N$ and $G/N$ are FL-groups under certain topologies, respec-
tively.

Therefore, we have an exact sequence

(13) $1\rightarrow NG\underline{i}\rightarrow^{\pi}G/N\rightarrow 1$

where $i,$ $\pi$ denote the natural inclusion and projection respectively. We
shall consider at first when $G$ becomes an FL-group.

DEFINITION 5.1. We call the exact sequence (13) an FL-extension of
$G/N$ if (Ext. $0$) is satisfied and also if the following conditions are
satisfied:

(Ext. 1) There is an open neighborhood $\hat{V}$ of the identity $ e\wedge$ in $G/N$,
and a local cross-section $\gamma;\hat{V}\rightarrow G$ such that $\gamma(\hat{e})=e$ (the identity), namely,
$\pi\gamma=id$ . on $\hat{V}$ and the mapping $(\hat{g}, n)\rightarrow\gamma(\hat{g})n$ gives a one-to-one correspond-
ence of $\hat{V}\times N$ onto $\pi^{-1}(\hat{V})$ .

(Ext. 2) The mapping $r_{\gamma}:\hat{V}_{1}\times\hat{V}_{1}\rightarrow N$ defined by

(14) $r_{\gamma}(\hat{g},\hat{h})=\gamma(\hat{g}\hat{h})^{-1}\gamma(\hat{g})\gamma(\hat{h})$

is $C^{\infty}$ , where $\hat{V}_{1}$ is a neighborhood of $\hat{e}$ in $\hat{V}$ such that $\hat{V}_{1}^{2}\subset\hat{V},\hat{V}_{1}^{-1}=\hat{V}_{1}$ .
(Ext. 3) The mapping $\alpha_{\gamma}:\hat{V}_{1}\times N\rightarrow N$ defined by

(15) $\alpha_{\gamma}(\hat{g}, m)=\gamma(\hat{g})^{-1}m\gamma(\hat{g})$ $(=A(\gamma(\hat{g})^{-1}, m))$ ,

is $C^{\infty}$ , where $A(n, m)=nmn^{-1},$ $n,$ $m\in G$ . We often denote $\alpha_{\gamma}(\hat{g}, m)$ by
$\alpha_{\gamma}(\hat{g})m$ .

PROPOSITION 5.2. For an FL-extension of $G/N$, if $G$ is generated
by $\pi^{-1}(\hat{V}_{1})$ , then $G$ has a natural structure of an FL-group such that $N$
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is a locally flat FL-subgroup of $G$ and $\gamma;\hat{V}_{1}\rightarrow G$ is a $C^{\infty}$ local section
and $\pi:G\rightarrow G/N$ is $C^{\infty}$ .

PROOF. By (Ext. 1) every element of $\pi^{-1}(\hat{V}_{1})$ can be written as $\gamma(\hat{g})m$ .
Using (14), (15), we easily have

(16) $\left\{\begin{array}{l}\gamma(\hat{g})m\gamma(\hat{h})n=\gamma(\hat{g}\hat{h})r_{\gamma}(\hat{g},\hat{h})\alpha_{\gamma}(\hat{h}, m)n\\(\gamma(\hat{g})m)^{-1}=\gamma(\hat{g}^{-1})\alpha_{\gamma}(\hat{g}^{-1}, m)^{-1}r_{\gamma}(\hat{g},\hat{g}^{-1})^{-1}\end{array}\right.$

Hence, it is not hard to see that $\pi^{-1}(\hat{V}_{1})$ has a structure of a local FL-
group, regarding $(\hat{g}, m)\rightarrow\gamma(\hat{g})m$ as a local coordinate system. It is obvious
that $\gamma:\hat{V}_{1}\rightarrow\pi^{-1}(\hat{V}_{1})$ and $\pi:\pi^{-1}(\hat{V}_{1})\rightarrow\hat{V}_{1}$ are $C^{\infty}$ mappings. Since $G$ is gener-
ated by $\pi^{-1}(\hat{V}_{1})$ , we see that $G$ has a structure of an FL-group. Since
$\pi^{-1}(\hat{V}_{1})$ is $C^{\infty}$ diffeomorphic to $N\times\hat{V}_{1}$ through the mapping $(n,\hat{g})\rightarrow\gamma(\hat{g})n=$

$A(\gamma(\hat{g}), n)\gamma(\hat{g})N$ is a locally flat FL-subgroup of G. $\square $

Remark that by (16), the associative law on $G$ is equivalent to the
equality:

$r_{\gamma}(\hat{g},\hat{h}\hat{k})r_{\gamma}(\hat{h},\hat{k})=r_{\gamma}(\hat{g}\hat{h},\hat{k})\alpha_{\gamma}(\hat{k}, r_{\gamma}(\hat{g},\hat{h}))$ .
Let $G$ be an FL-group and assume for $G$ to have the FL-extension (13).
Now, we shall compute the Lie algebra of $G$ . Let $R,$ $\mathfrak{R}$ and $\mathfrak{G}$ be the
Lie algebras of $K=G/N,$ $N$ and $G$ respectively. Notations being as above,
set $\Gamma=(d\gamma)_{e}\wedge$ and $\Gamma:R\rightarrow \mathfrak{G}$ is a continuous linear mapping such that
(d\mbox{\boldmath $\pi$})\^e\Gamma =id, and $\mathfrak{G}=\Gamma\Re\oplus \mathfrak{R}$ . Define $R_{\Gamma}$ and $a_{\Gamma}$ by

(17) $\left\{\begin{array}{ll}R_{\Gamma}(X, Y)=[\Gamma(X), \Gamma(Y)]-\Gamma([X, Y]), & X, Ye R,\\a_{\Gamma}(X)v=-[\Gamma(X), v], & XeR, v\in \mathfrak{R}.\end{array}\right.$

To get the structure of $\mathfrak{G}$ is to compute $R_{\Gamma}$ and $a_{\Gamma}$ , because the Lie
algebra structure of $\mathfrak{G}$ is given by

$[\Gamma(X)+v, \Gamma(Y)+w]=\Gamma([X, Y])+R_{\Gamma}(X, Y)-a_{\Gamma}(X)w+a_{\Gamma}(Y)v$

$+[v, w]$ , for $X$, Ye $R$ , $v,$
$w\in \mathfrak{R}$ .

LEMMA 5.3. (i) $R_{\Gamma}(X, Y)=(D_{1}D_{2}\gamma_{\gamma})_{(e,e)}\wedge\wedge(X, Y)-(D_{1}D_{2}\gamma_{\gamma})_{(ee)}\wedge,\wedge(Y, X)$ .
(ii) Let $\hat{g}(t),$ $h(s)$ be $C^{\infty}$ curves in $K,$ $N$ respectively such that

$(d/dt)|_{t=0}\hat{g}(t)=X,$ $(d/ds)|_{\epsilon=0}h(s)=v$ . Then,

$a_{\Gamma}(X)v=\frac{\partial^{2}}{\partial t\partial s}|_{t=0}\epsilon=0\alpha_{\gamma}(\hat{g}(t))h(s)$ .

(iii) The Jacobi identity is equivalent to the following:
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$\left\{\begin{array}{ll}X,YZ\mathfrak{S},\{a_{\Gamma}(X)R_{\Gamma}(Y, Z)-R_{\Gamma}([X, Y], Z)\}=0 & (2nd Bianchi identity) ,\\\{[a_{\Gamma}(X), a_{\Gamma}(Y)]-a_{\Gamma}([X, Y])\}w=[R_{\Gamma}(X, Y) & w],\end{array}\right.$

for $X,$ $Y,$ $ Z\in$ se and $w\in \mathfrak{R}$, where $\mathfrak{S}$ means the cyclic summation.

PROOF. The equality in (ii) is obvious by Lemma 2.3 in [7].
To prove (i), let $\hat{g}(t),\hat{h}(s)$ be $C^{\infty}$ curves in $K$ such that $\hat{g}(O)=\hat{h}(0)=e\wedge$,

$(d/dt)|_{t=0}\hat{g}=X$ and $(d/ds)|.=0\hat{h}=Y$. Note that

$[\Gamma(X), \Gamma(Y)]=\frac{\partial^{2}}{\partial t\partial s}|_{t--0}=0\gamma(\hat{g}(t))\gamma(\hat{h}(s))\gamma(\hat{g}(t))^{-1}$

$=\frac{\partial^{2}}{\partial t\partial s}|_{t=0}l--0\gamma(\hat{g}(t))\gamma(\hat{h}(s))\gamma(\hat{g}(t)^{-1})r_{\gamma}(\hat{g}(t),\hat{g}(t)^{-1})^{-\iota}$

$=\frac{\partial^{2}}{\partial t\partial s}|_{t=0}=0\{\gamma(\hat{g}(t)\hat{h}(s)\hat{g}(t)^{-1})r_{\gamma}(\hat{g}(t),\hat{h}(s)\hat{g}(t)^{-1})$

$\times r_{\gamma}(\hat{h}(s),\hat{g}(t)^{-\iota})r_{\gamma}(\hat{g}(t),\hat{g}(t)^{-1})^{-1}\}$ .
Since $r_{\gamma}(\hat{g},\hat{e})=r_{\gamma}(\hat{e},\hat{h})=\hat{e}$, we see

$[\Gamma(X), \Gamma(Y)]=\frac{d}{dt}|_{t=0}\{\Gamma(Ad(\hat{g}(t))Y)$

$+\frac{\partial}{\partial s}|_{\iota=0}r_{\gamma}(\hat{g}(t),\hat{h}(\epsilon)\hat{g}(t)^{-1})r_{\gamma}(\hat{g}(t),\hat{g}(t)^{-1})^{-1}$

$+Ad(r_{\gamma}(\hat{g}(t),\hat{g}(t)^{-1}))(D_{1}r_{\gamma})_{(e}\wedge,))(Y)\}$

$=\Gamma([X, Y])+\frac{\partial^{2}}{\partial t\partial s}|_{t=0}r(\hat{g}(t),\hat{h}(s)\hat{g}(t)^{-1})r_{\gamma}(\hat{g}(t),\hat{g}(t)^{-1})^{-r}$

$-(D_{2}D_{1}r_{\gamma})_{(\hat{e},*)}\wedge(Y, X)$ ,

because of $(D_{1}r_{\gamma})_{(ee)}\wedge(Y)=0$ . Since

$\frac{\partial}{\partial t}|_{t\approx 0}r_{\gamma}(\hat{g}(t),\hat{h}(s)\hat{g}(t)^{-1})=\frac{\partial}{\partial t}|_{=0}r_{\gamma}(\hat{g}(t),\hat{h}(s))+\frac{\partial}{\partial t}|_{t=0}r_{\gamma}(\hat{e},\hat{h}(s)\hat{g}(t)^{-1})$

$=\frac{\partial}{\partial t}|_{=0}\wedge$

and

$\frac{\partial}{\partial t}|_{t=0}r_{\gamma}(\hat{g}(t),\hat{g}(t)^{-1})=\frac{d}{dt}|_{t=0}r_{\gamma}(\hat{g}(t),\hat{e})+\frac{d}{dt}|_{t=0}r_{\gamma}(\hat{e},\hat{g}(t)^{-1})=0$ ,

we get
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$R_{\Gamma}(X, Y)=-(D_{1}D_{2}r_{\gamma})_{(\hat{e},\hat{e})}(Y, X)+\frac{d}{ds}|_{=0}(D_{1}r_{\gamma})_{(\hat{e},\hat{h}_{(\cdot))}}(X)$ .

Therefore, by (17), we obtain (i).
Equalities of (iii) are obtained by direct computations of

$\mathfrak{S}[[\Gamma(X)+u’, \Gamma(Y)+v^{\prime}], \Gamma(Z)+w’]\equiv 0$ . $\square $

Now, the purpose of this section is to prove the following:

THEOREM 5.4. Let $G$ be an FL-group and let $N$ be a clo8ed normal
subgroup of G. Suppose $N$ is a regular Fr\’echet-Lie group under the
relative topology and $G/N$ is a regular Fr\’echet-Lie group such that the
natural projection $\pi:G\rightarrow G/N$ is $C^{\infty}$ . If there is a $C^{\infty}$ local cross-section
$\gamma;\hat{V}\rightarrow G$ , where $\hat{V}$ is an open neighborhood of $ e\wedge$ in $G/N$, then $G$ is a
regular Fr\’echet-Lie group.

Although the proof will be given in several lemmas below, we remark
at first that if in an FL-extension (13), $N$ and $G/N$ are regular Fr\’echet-
Lie group, then the subgroup of $G$ generated by $\pi^{-1}(\hat{V}_{1})$ is a regular
Fr\’echet-Lie group.

Let $\{(h_{n}, \Delta_{n})\}$ be a sequence of step functions in $G$ defined on $[0, \epsilon]\times[a, b]$

such that $\lim_{n\rightarrow\infty}|\Delta_{n}|=0$ and $\{h_{n}\}$ converges uniformly to a $C^{1}$-hair $h$ at $e$

with their partial derivatives $\partial h_{n}/\partial s$ (cf. the notation and the definition
in [7]). Since $h_{n}(0, t)\equiv h(O, t)\equiv e$ , one may assume $h([0, \epsilon]\times[a, b])\subset\pi^{-1}(\hat{V})$

and $h_{n}([0, \epsilon]\times[a, b])\subset\pi^{-1}(\hat{V})$ for every $n$ , taking $\epsilon$ small if necessary.
Set $\hat{h}_{n}(s, t)=\pi h_{n}(s, t),\hat{h}(s, t)=\pi h(s, t)$ . As $\pi:G\rightarrow G/N$ is a $C^{\infty}$ homo-

morphism, $\{(\hat{h}_{n}, \Delta_{n})\}$ is a sequence of step functions in $K=G/N$ such that
$\{\hat{h}_{n}\}$ converges uniformly to $\hat{h}$ . For simplicity, we shall denote $\hat{g}_{n}(t)=$

$\prod_{a}^{t}(\hat{h}_{n}, \Delta_{n})$ and $\hat{g}(t)=\prod_{a}^{t}(\hat{h}, d\tau)$ .
Using the continuity of $\hat{g}$ and the uniformity of the convergence of

$\{\hat{g}_{n}\}$ , we get easily the following:

LEMMA 5.5. There is a number $c,$ $a<c$ , independent of $n$ , such that
if $a\leqq t\leqq c$ then $\hat{g}_{n}(t),\hat{g}(t)\in\hat{V}_{1}$ , where $\hat{V}_{1}$ is a neighborhood of $\hat{e}$ such that
$\hat{V}_{1}^{2}\subset\hat{V},\hat{V}_{1}^{-1}=\hat{V}_{1}$ .

For the given division $\Delta_{n}:a=t_{0}<t_{1}<\cdots<t_{n}=b$ , we denote by $\hat{g}_{\Lambda_{n}}(t)$

the mapping defined by $\hat{g}_{\Lambda_{n}}(t)=\hat{g}_{n}(t_{k})$ for $t\in[t_{k}, t_{k+1}$).

LEMMA 5.6. $\{\hat{g}_{\Lambda_{n}}(t)\}$ converges uniformly to $\hat{g}(t)$ on $[a, b]$ .
PROOF. Note that $\{\hat{g}_{n}(t)\}$ converges uniformly to $\hat{g}(t)$ . Since $\hat{g}(t)$ is

uniformly continuous on $[a, b]$ , for any $\delta>0$ , there is $\delta^{\prime}>0$ such that if
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$|t-t’|<\delta^{\prime}$ , then $\rho(\hat{g}(t),\hat{g}(t^{\prime}))<\delta/2$ where $\rho$ is an invariant metric on $K$.
For a sufficiently large $n$ , we have $|\Delta_{n}|<\delta’$ . Hence for any $t\in[a, b]$ ,
there is $t_{j}\in\Delta_{n}$ such that $|t-t_{j}|<\delta^{\prime}$ . Thus, $\rho(\hat{g}(t_{\dot{f}}),\hat{g}(t))<\delta/2$ . Since $\{\hat{g}_{n}\}$

converges uniformly to $\hat{g}$ , we see $\rho(\hat{g}(t_{j}),\hat{g}_{n}(t_{\dot{J}}))<\delta/2$ for sufficiently large
$n$ . Thus, remarking $\hat{g}_{\Lambda}(t)=\hat{g}_{n}(t_{j})$ , we get $\rho(\hat{g}_{\Lambda_{n}}(t),\hat{g}(t))<\delta$ . $\square $

Define $\mu_{n}(s, t),$ $\mu(s, t)$ by

$h_{n}(s, t)=\gamma(\hat{h}_{n}(s, t))\mu_{n}(s, t)$ , $h(t, s)=\gamma(\hat{h}(s, t))\mu(s, t)$ ,

respectively. Obviously, $\mu_{n}(s, t),$ $\mu(s, t)\in N$ and it is easy to see the
following:

LEMMA 5.7. $\{(\gamma(\hat{h}_{n}), \Delta_{n})\}$ is a sequence of step functions in $G$ such
that $\lim_{n\rightarrow\infty}\gamma(\hat{h}_{n}(s, t))$ converges uniformly to a $C^{1}$-hair $\gamma(h(s, t))$ at $e$ in
$G$ with their partial derivatives $\{(\partial/\partial s)\gamma(\hat{h}_{n})\}$ . Moreover, $\{(\mu_{n}, \Delta_{n})\}$ is a
sequence of step functions in $N$ such that $\lim_{n\rightarrow\infty}\mu_{n}(s, t)$ converges uni-
formly to a $C^{1}$-hair $\mu$ at $e$ in $N$ with partial derivatives $\{\partial\mu_{n}/\partial s\}$ .

Now, set for $(s, t)\in[0, \epsilon]\times[a, c]$ ,

(18) $\left\{\begin{array}{l}\lambda_{n}(s, t)=r_{\gamma}(h_{n}(s, t),\hat{g}_{\Lambda_{n}}(t))\alpha_{\gamma}(\hat{g}_{\Delta_{*}},(t),\mu_{n}(s, t))\\\lambda(s, t)=r_{\gamma}(\hat{h}(s, t),\hat{g}(t))\alpha_{\gamma}(\hat{g}(t), \mu(s, t))\end{array}\right.$

where $\alpha_{\gamma}(\hat{g}, n)=\gamma(\hat{g})^{-1}n\gamma(\hat{g})$ , which are well-defined if $\epsilon$ is sufficiently
small. Obviously, $(\lambda_{n}, \Delta_{n})$ is a step function in $N$ defined on $[0, \epsilon]\times[a, c]$ ,
where $c$ is given in Lemma 5.5.

LEMMA 5.8. $\{N_{n}\}$ converges uniformly to a $C^{1}$-hair $\lambda(s, t)$ at $e$ in $N$

with their partial derivatives $\{\partial\lambda_{n}/\partial s\}$ by taking $\lim_{n\rightarrow\infty}|\Delta_{n}|=0$ .
PROOF. By Lemma 5.6, we see that $\gamma(\hat{g}_{A_{n}}(t)),$ $\gamma(\hat{g}_{\Lambda_{*}}(t))^{-1}$ converges

uniformly to $\gamma(\hat{g}(t)),$ $\gamma(\hat{g}(t))^{-\iota}$ respectively. Thus, we see easily that $\{\lambda_{n}\}$

converges to N. Taking the derivative of (15) with respect to $s$ and
using the fact that $\gamma_{\gamma}$ and $\alpha_{\gamma}$ are $C^{\infty}$ , we get that $\{\partial\lambda_{n}/\partial s\}$ converges
uniformly to $\partial\lambda/\partial s$ because of Lemma 5.7. $\square $

$PR\infty F$ OF THEOREM 5.4. By Lemma 5.8 and the assumption that $N$ is
a regular Fr\’echet-Lie group, we see that $\prod_{a}^{t}(\lambda_{n}, \Delta_{n})$ converges uniformly
to $\prod_{a}^{t}(\lambda, d\tau)$ for $t\in[a, c]$ . Since $\{\gamma(\hat{g}_{A_{n}}(t))\}$ converges uniformly to $\gamma(\hat{g}(t))$ ,
$\gamma(\prod_{a}^{t}(\hat{h}_{n}, \Delta_{n}))\prod_{a}^{t}(\lambda_{n}, \Delta_{n})$ converges uniformly to $\gamma(\prod_{a}^{t}(\hat{h}, d\tau))\prod_{a}^{t}(\lambda, d\tau)$ on
$[a, c]$ .

On the other hand, setting $\Lambda_{n}(t)=\prod_{a}^{t}(\lambda_{n}, \Delta_{n})$ , we get
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$\gamma(\prod_{a}^{t}(\hat{h}_{n}, \Delta_{n}))\prod_{a}^{t}(\lambda_{n}, \Delta_{n})$

$=\gamma(\hat{g}_{n}(t))\Lambda_{n}(t)$

$=\gamma(\hat{h}_{n}(t-t_{k}, t_{k})\hat{g}_{n}(t_{k}))\lambda_{n}(t-t_{k}, t_{k})\Lambda_{n}(t_{k})$

$=\gamma(\hat{h}_{n}(t-t_{k}, t_{k}))\gamma(\hat{g}_{n}(t_{k}))r_{\gamma}(\hat{h}_{n}(t-t_{k}, t_{k}),\hat{g}_{n}(t_{k}))^{-1}\lambda_{n}(t-t_{k}, t_{k})\Lambda_{n}(t_{k})$

$=\gamma(\hat{h}_{n}(t-t_{k}, t_{k}))\mu_{n}(t-t_{k}, t_{k})\gamma(\hat{g}_{n}(t_{k}))\Lambda_{n}(t_{k})$

$=h_{n}(t-t_{k}, t_{k})\gamma(\hat{g}_{n}(t_{k}))\Lambda_{n}(t_{k})$ .
Thus, repeating this computation, we get

$\gamma(\prod_{a}^{t}(\hat{h}_{n}, \Delta_{n}))\prod_{a}^{t}(\lambda_{n}, \Delta_{n})=\prod_{a}^{t}(h_{n}, \Delta_{n})$ .

Therefore, $t\prod_{a}^{t}(h_{n}, \Delta_{n})$ } converges uniformly to $\gamma(\prod_{a}^{t}(\hat{h}, d\tau))\prod_{a}^{t}(\lambda, d\tau)$ for
$te[a, c]$ .

Remark that $\prod_{a}^{t}(h, d\tau)=\prod_{s}^{t}(h, d\tau)\prod_{a}^{s}(h, d\tau)$ . By the same reason as
in the proof of Proposition 2.1, the above convergence for $t\in[a, c]$ yields
the uniform convergence on $[a, b]$ . Thus, $G$ is a regular Fr\’echet-Lie
group. $\square $

\S 6. Several examples of regular Fr\’echet-Lie groups.

As we proved in [7], every strong ILB-Lie group is a regular Fr\’echet-
Lie group. In particular, every finite dimensional Lie group is a regular
Fr\’echet-Lie group. Now, suppose we have a regular Fr\’echet-Lie group
$G$ and a $C^{\infty}$ compact manifold $M$ with or without boundary. By $\pi:g\rightarrow M$,
we denote a $C^{\infty}$ fibre bundle over $M$ with fibre $G$ and with the auto-
morphism group of $G$ as the transformation group, where the transition
function $g_{\alpha\beta}$ from a trivialization $U_{\alpha}\times G$ into $U_{\beta}\times G$ satisfies that

$g_{\alpha\beta}:(U_{\alpha}\cap U_{\beta})\times G\rightarrow G$

is $C^{\infty}$ . Remark that we do not give any topology on the group of auto-
morphisms of $G$ . Let $C^{k}(g),$ $ 0\leqq k\leqq\infty$ , be the group of all $C^{k}$ sections of
27, where the group-structure is given by fibrewise product. It is known
that $C^{k}(g)$ is an FL-group for every $k$ (cf. Lemmas 1.2 and 5.2 in [7] for
an idea of the proof and also see [1]).

LEMMA 6.1. Notations and assumptions being as above, $C^{0}(\mathscr{G})$ is a
regular Fr\’echet-Lie group.

PROOF. Let $\{(h_{n}(s, t), \Delta_{n})\}$ be a sequence of step functions in $C^{0}(g)$

defined on $[0, \epsilon]\times[a, b]$ such that $\lim_{n\rightarrow\infty}|\Delta_{n}|=0$ and $\{h_{n}(s, t)\}$ converges
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uniformly to a C’-hair $h:[0, \epsilon]\times[a, b]\rightarrow C^{0}(g)$ with their partial derivatives
$\{\partial h_{n}/\partial s\}$ . For each $x\in M,$ $\{h_{n}(s, t)(x)\}$ converges uniformly to $h(s, t)(x)$ .
Since each fibre of $\mathscr{G}$ is a regular Fr\’echet-Lie group, $\prod_{a}^{t}(h_{n}(x), \Delta_{n})$ con-
verges uniformly to $\prod_{a}^{t}(h(x), d\tau)$ with respect to $t\in[a, b]$ . By the com-
pactness of $M$, and by the same reasoning as in the proof of Lemma 3.7
of [7], we see that the above convergence is also uniform with respect
to $(t, x)\in[a, b]\times M$. Thus, $\prod_{a}^{t}(h_{n}, \Delta_{n})$ converges uniformly in $C^{0}(g)$ , hence
$C^{0}(\mathscr{G})$ is a regular Fr\’echet-Lie group. $\square $

DEFINITION 6.2. Let $G$ be an FL-group and $F$ a Fr\’echet space. $A$

mapping $\rho:G\times F\rightarrow F$ is called a smooth representation, if $\rho$ satisfies the
following:

(i) $\rho$ is $C^{\infty}$ and $\rho(g, u)$ is linear with respect to $u\in F,$ $\rho(g, u)$ will
be denoted sometimes by $\rho_{g}(u)$ or $gu$ .

(ii) $\rho(g, \rho(h, u))=\rho(gh, u)$ .
LEMMA 6.3. Suppose $G$ is a regular Fr\’echet-Lie group and $\rho:G\times$

$F\rightarrow F$ is a smooth representation. Then the group $F*G$ is a regular
Fr\’echet-Lie group, where $F*G$ is the direct product with the following
group-operation:

$(u, g)*(v, h)=(u+\rho_{g}(v), gh)$ .
PROOF. Obviously, $F*G$ is an FL-group, and there is a $C^{\infty}$ section

$\gamma:G\rightarrow F*G,$ $\gamma(g)=(0, g)$ . Evidently, $r_{\gamma}$ in the previous section (cf. Defi-
nition 5.1, (Ext. 2)) is zero and $A_{\gamma}(g)(u, e)=(\rho_{g}(u), e)$ . Note that $F$ is a
regular Fr\’echet-Lie group (cf. Lemma 3.9, [7]). By Theorem 5.4, we get
the desired one. $\square $

Note that the tangent bundle $T_{o}$ of $G$ possesses an FL-group struc-
ture, isomorphic to $\mathfrak{G}*G$ (cf. Lemma 2.2 in [7]). Hence, we have the
following:

COROLLARY 6.4. The tangent bundle $T_{a}$ identified with $\mathfrak{G}*G$ is a
regular Fr\’echet-Lie group if and only ,if $G$ is a regular Fr\’echet-Lie
group.

Let $G$ be a regular Fr\’echet-Lie group with the Lie algebra $\mathfrak{G}$ , and
let $V$ be a finite dimensional vector space over $R$ . It is obvious that
the space $L(V, \mathfrak{G})$ of all linear mappings of $V$ into $\mathfrak{G}$ is a Fr\’echet space.
The adjoint action of $G$ on $\mathfrak{G}$ can be naturally extended to a smooth
representation of $G$ on $L(V, \mathfrak{G})$ , which will be denoted again by Ad: $ G\times$

$L(V, \mathfrak{G})\rightarrow L(V, \mathfrak{G})$ . Hence, by the above lemma, we see that $L(V, \mathfrak{G})*G$
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is a regular Fr\’echet-Lie group.
Let $J_{0^{k}}(R^{n}, G)$ be the space of k-jets at $0\in R^{n}$ of local $C^{k}$ mappings

of $R^{n}$ into $G$ (cf. [1], p. 19). $J_{0^{k}}(R^{n}, G)$ is a group by the pointwise
product. Now, the following is not hard to prove:

LEMMA 6.5. Let $V_{k}$ be a linear space of all R-valued polynomials
of n-variables of degree $\leqq k$ without constant terms. Then, $J_{0^{k}}(R^{n}, G)$ is
isomorphic to $L(V_{k}, \mathfrak{G})*G$ , and hence $J_{0}^{k}(R^{n}, G)$ is a regular Fr\’echet-Lie
group. If we define $J_{0}^{\infty}(R^{n}, G)$ by the projective limit of $J_{0}^{k}(R^{n}, G)$ then
$J_{0}^{\infty}(R^{n}, G)$ is also isomorphic to $L(V_{\infty}, \mathfrak{G})*G$ , hence it is a regular Fr\’echet-
Lie group, where $L(V_{\infty}, \mathfrak{G})$ is the Fr\’echet space defined by the projective
limit of $\{L(V_{k}, \mathfrak{G})\}$ .

Now, suppose $g$ is a $C^{\infty}$ fibre bundle over $M$ with a regular Fr\’echet-
Lie group as a fibre, and with the group of automorphisms of $G$ as the
transformation group. Suppose $M$ is a compact $C^{\infty}$ manifold with or
without boundary. For each $x\in M$, let $J_{x}^{k}(C)$ be the set of all k-jets of
local $C^{k}$ sections of $g$ at $x$ . Obviously, $J_{x}^{k}(g)$ is isomorphic to $J_{0}^{k}(R^{n}, G)$ ,
hence $J_{x}^{k}(\mathscr{G})$ is regular Fr\’echet-Lie group.

Set $J^{k}(g)=U_{xeM}J_{x}^{k}(g)$ . It is easy to see that $J^{k}(\mathscr{G})$ is a $C^{\infty}$ fibre
bundle over $M$ for every $k,$ $ 0\leqq k\leqq\infty$ . Hence by Lemma 6.1, we see that
$C^{0}(J^{k}(g))$ is a regular Fr\’echet-Lie group.

Recall that $C^{k}(g)$ iv an FL-group. Taking the derivatives up to the
order $k$ , there is a natural monomorphism of $C^{k}(\mathscr{G})$ into $C^{0}(J^{k}(g))$ , and
the image is a closed subgroup. Remark that the topology of $C^{k}(g)$ is
given by the relative topology in $C^{0}(J^{k}(g))$ . Therefore, by a similar
proof as in the proof of Proposition 2.4, we obtain the following:

PROPOSITION 6.6. Notations and assumptions being as above, $C^{k}(g)$

is a regular Fr\’echet-Lie group for every $k,$ $ 0\leqq k\leqq\infty$ .
REMARK. If we take $g$ by $I\times G,$ $I=[0,1]$ and $M=I$, then we get

the fact that $C_{e}^{1}(I, G)$ is a regular Fr\’echet-Lie group (cf. [7], \S 5, Lemma
5.2 and Remark.)
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