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Introduction

By a number field, we mean in this paper any finite extension of
the field @ of rational numbers. For any natural number %, £, means
a primitive n-th root of unity. Let ! be an odd prime fixed throughout
this paper.

It was proved by Yahagi [8] that there exist infinitely many number
fields whose I-class groups are isomorphic to any given finite abelian I-group.
Some weaker results had been obtained by Gerth [1] and Iimura [5]. The
degrees of those number fields given in [1], [6] and [8] are all divisible by
[, and the methods in these papers do not seem to yield any number fields
with degree relatively prime to I, even if we require these fields to
satisfy only a weaker condition to have the class number divisible by 1.

On the other hand, Satgé [7] constructed infinitely many quadratic
extensions of Q({,+{;"), whose class numbers are divisible by I. This
is a generalization of the result in Honda [4] where the case [=38 is
treated.

In this paper, we shall give one of the ways of constructing ex-
tensions K of a given number field k£ (satisfying a few conditions given
below), such that [K:k]|l—1 and the class numbers of K are divisible
by I. We shall show that there exist infinitely many such extensions K.
In particular, we can apply this to the case %k is any proper subfield of
Q()), and get a similar result to Satgé’s. We can show namely that
there exist infinitely many extensions of k& with degree I—1 over Q,
which are independent of Q(f;) over & and whose class numbers are
divisible by 1.

Our method is based on the following simple idea. Let K be an
arbitrary number field. According to the class field theory, the class
number of K is divisible by ! if and only if there exists an unramified
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cyclic extension L/K of degree I. Furthermore, the existence of such an
extension L/K is equivalent to the existence of an unramified Kummer
extension L'/K({,) of degree | such that L’/K is abelian. So, the condition
that the class number of K be divisible by ! can be discribed in terms
of the ramification theory of Kummer extension (Proposition 1). Now,
we shall give a certain polynomial f(X)e k[X] (see below §1) so that
the field K defined by f(X)=0 satisfies the condition given in Proposition
1. Finally, we shall show, using local conditions, that infinitely many
K’s exist.

NOTATIONS. Z denotes as usual the ring of rational integers. For
an arbitrary field K, K* denotes its multiplicative group. If K is a
number field, then o, denotes the ring of integers of K. Moreover for
a prime ideal 8 of K and a € K*, vg(a) denotes the order of o at PB.

§1. Preliminary propositions.

Let &k be a number field such that {;¢ k. Put ¥'=k(,) and m=[k": k].
Then k'/k is cyclic of degree m and m|l—1. Assume that there exists
a prime ideal | of ¥ which is totally ramified in £'. Note that [|l. Let
G be the Galois group of %'/k, s be a generator of G and g be a positive
integer such that {{={!. We fix s and g. Then G is isomorphic to a
subgroup of (Z/lZ)* under the map

Gasg'——g‘modle(Z/IZ), O0=Zi=m-—1).
We denote by w the element >.n%!g‘s™* of the group ring Z[G]. Set
F(X, Y)=¢IEI¢;(X—C§Y) . (*)

Then F(X,Y)eo]X, Y] and F(X, 1) is the minimal polynomial of {; over
k. Take h(X)eo[X] which is constant or monie, ¥ €0, such that A(0)
and ly are relatively prime, and a unit ¢ of o,. For these, we define a
polynomial of o,[X] o

AX)=F(X, ly)—eh(X)" .

Let 6 be a root of f(X). Put K=k(6) and K’'=K(,). The above notations
o, (X), y, ¢, f(X), 6, K and K’ will be fixed throughout this paragraph.
Denote by f'(X) the derivative of f(X). Then we get fAX)=X"—eh(X)
(modl) and f'(X)=mX™"' (modI). As IYm and h(0) and ly are relatively
prime, f(X) mod! is a separable polynomial of (0,/I)[X]. This implies that
! is unramified in K. As | is totally ramified in %', we have KNk'=k.
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Therefore the Galois group of K’/K can be identified with G, as we shall
do in the following. The group ring Z[G] acts on K'*. -

LEMMA 1. Let L'/K’ be a cyclic extension of degree I. Then L' is
abelian over K if and only if L'=K'(Wa) for some ac(K'™)".

Proor. See Long [5] §1.

The following lemma is well-known in the theory of Kummer ex-
tension (e.g. Hecke [3] § 39). ‘

LEMMA 2. L'/K’' i8 an wunramified cyclic extension of degree 1 if
and only if I'=K'Wa) for some acog, a=<0, satisfying the following
conditions:

(1) a¢ K".

(2) vg(a)=0 (modl) for any prime ideal P’ of K'.

(8) a and | are relatively prime and the congruence X'=a
(mod (1—C,))") is solvable in og.

The above two lemmas yield, in virtue of the class field theory as
mentioned in the introduction, the following

PROPOSITION 1. The class number of K s divisible by l if and only
1f there exists a €0y, a=<0, satisfying the conditions (1), (2) and (3) of
Lemma 2 and that aY' e (K'*)* for some 7¥¢c K'*.

Now, set g=60—1yf, and a=pB“. These are the elements of og..

LEMMA 8. (i) Ng,xB=¢h(0), where Ng,x i8 the norm map from K’
to K. (ii) No prime factor P’ of B of K' divides B' for any te @G, t=<1.
(iii) All prime ideals B of K dividing h(8) are decomposed completely
m K'.

PROOF. By the definition of F(X,Y), we have Nz, 8=F(, ly)=
eh(6). To see (ii), assume B=F"=0 (mod P’) for some P’ and s'=<l.
Then IyZ,(1—*)=0 (mod P'). Since ga<l (mod!), we have 1—&'*|l.
Hence ly=0 (mod ') and =0 (mod P’). On the other hand, we have
h(@)=0 (mod P’), from (i). So we have ly=hr(0)=0 (mod P'). This is a
contradiction. (iii) is shown easily from (i) and (ii). So our lemma is
proved.

PROPOSITION 2. If aa¢ K" then the class number of K is divisible
by 1.

Proor. By Proposition 1, it is sufficient to show that a=pg"
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satisfies the conditions (2) and (8) of Lemma 2. Let P’ be a prime ideal
of K’ and P the prime ideal of K defined by =P No,. By Lemma 3, we
have vg.(8)=0 or vg(B)=ve(Ng,/xB)=ve(ch(0)))=0 (mod ). Therefore, we
have vy (a) =373 g°Ve4(8)=0 (mod l), for any prime ideal P’ of K'. So,
(2) is satisfied. Next, g=6—1ly (mod 1—-C)", as ()=(1—C)". Hence
a=p"=1Irx (0—1ly)* (mod 1—C)"). From the choice of A(X) and y, we
see easily that ¢ and | are relatively prime, and so are also a« and I.
We have Dlg'=0 (modl), since m=1. This shows that a satisfies
(8), and the proof is completed.

Next, take a prime ideal p of k£ such that Np=1 (mod!) (where Np
is the absolute norm of p). Then we can find u o, satisfying the con-
gruence F(u,1)=0 (mod p). For such u, set

M= T A—w =, (%)

where g is a positive integer such that gg=1 (mod ). A\, modp is uni-
quely determined in (o./p)* independing of the choice of § since u'=1,
uZ1 (mod p).

ProrosITION 3. If (i) fIX) 18 irreducible, (ii) h(lyu)=0 (modp) and
(iii) eyt~™n, 18 mot an l-th power mod p, then the class number of K is
divisible by 1.

ProOF. By the choice of u, we have F(lyu, ly)=0 (mod p). We first
claim that there exists « € o, such that p|| F(z, ly) and x=lyu (mod p). It
is sufficient to show this in case F'(lyu, ly)=0 (mod p*). Set &(X)=F(X, ly)
and take ¥(X)eo[X] such that ¢(X)T(X)=X'—(ly)). Then we have
O'(lyw)T(lyu)=1llyu)'* (mod p). Since ly and h(0) are relatively prime,
and consequently y2<0 (mod p), we get @’(lyu)>=<0 (mod p). Set z=lyu+r=,
where wep—p>. Then, using Taylor’s formula,

O(x)=0(lyu) + D' (lyuw)r=P'(lyu)r=<0 (mod p*),

and so we have p|| Fi(x, ly) and =lyu (mod p). Now, from (ii), p|f(x).
On the other hand, we have N, (0—x)=*f(x), since f(X) is irreducible.
Hence p| Ng.(@—=x). So there exists a prime ideal P of K such that
N B=p and =2 (modP). Then we have Ng.,x8=0 (modP), since
Nx,xB=¢h(0)!, and there exists a prime ideal P’ of K’ which divides g
and P. As P is decomposed completely in K’, we have Ng.,. P =p.

Next, we see =Ily{, (mod ') since 8=0 (mod P’). On the other
hand, =x=Ilyu (mod P). Therefore u={, (mod P') and we get
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B =0—1lyll=lyu(l—u"") (mod P), (1Sis<m—1).
Set a’=a/h(6)'. Then a’ €y and

o' =e T g4 =6 IT (w1 — w7~} (mod ) .
= =1
As we have >*'(¢*—1)=—m (mod l), we get
o E'u'e:(l:l/u)“"‘:i:j[1 (1—u? 1) 1=gley!~™\, (mod P),

for some v epo, such that pyv. Therefore, the assumption (iii) shows
that a’ is not an I-th power mod P, since Nx., B’ =p. Thus a’'¢ K" and
a¢ K". Our proposition follows from this and Proposition 2.

REMARK. It is easy to see that for p, v and ¢ there exists ye€o,
satisfying (iii) of Proposition 3.

§2. Main theorem.

THEOREM. Let k be a number field such that §, & k and assume that
there exists a prime ideal of k which is totally ramified in k({). Set
m=[k({,): k]. Then there exist infinitely many number fields K with the
Jollowing properties:

(a) K=1IKk(8), 0 being any root of the polynomial f(X)=F(X, ly)—2,
where F(X,Y) i3 the polynomial of 0,[X, Y] as defined by (*) and ¥y, 2z
are suitably chosen elements of o,.

(b) The class number of K is divisible by L.

(e) KNkE)=k.

@) [K:Ek]l=m.

Furthermore, in case £, & k, we may add the following condition on K:

(e) K/k 18 non-Galois.

PrROOF. We apply Proposition 8 with e=1 and h(X)=constant. Re-
call that %({)/% is cyclic and F(X, 1) is the minimal polynomial of {; over
%. So, there exists a prime ideal p, of k& such that F(X, 1) modp, is
irreducible in (o0,/p)[X]. Next, take a prime ideal p, of & and ueco,
satisfying the congruences Np,=1 (mod!) and F(u, 1)=0 (mod p,). Obvi-
ously p=<p, because p, is inert while p, is decomposed completely in &(C,).
Let A, be defined by (#). Take y, z €0, such that

(i) ly=1 (modp),

(ii) ¥* ™\, is not an I-th power mod p,,

(iii) 2=0 (modp,),
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(iv) 2=0 (mod ),

(v) ly and 2z are relatively prime. .

It is clear that such y, z exist. Let # be any root of f(X) F(X, ly)—2
and K=k(#). Then (c) is shown in §1. From (i) and (iii), we have
f(X)=F(X,1) (modp,). So f(X) is irreducible in 0,[X] by the choice of
p,. Then, by Proposition 3, (b) and (d) are satisfied.

Next, we consider the case {,¢k. We can find a prime ideal p, of
k which is not decomposed completely in k(,). We may assume that
p, . and p, are distinet and p,{m. Then it is easy to see that y, z can
be chosen so that the following additional conditions are satlsﬁed

(vi) ly=0 (mod p,),

(vii) 2z=1 (mod p,).

In this case, we have f(X)=X"—1 (modp,). Therefore p, has a prime
divisor in K with relative degree 1. Assume that K/k is Galois. Then
S(X) mod p, factors into a product of distinct linear factors in (0,/py)[X].
This shows that p; is decomposed completely in k({,), since the minimal
polynomial of {, over k is the irreducible factor of X™—1. This con-
tradicts the choice of p,, and (e) is satisfied.

To see that there are infinitely many choices of K=£k(9), it is
sufficient to show that, for any finite set S of such K’s, there exists
another field with properties (a)-(d) (and also (e) in case {, ¢ k) which is
not contained in S. Let S={K,, ---, K,}. For each 7 (1<i<n), we can
find a prime ideal Q,}l of K, which is not decomposed completely in
K,(,). Putq,=Q,No0, and a=q, ---q,. Choose prime ideals p,, p, (and p,,
if (. & k) as above which do not divide a. Then we can find y, z satis-
fying in addition to (i)-(v) (and (vi), (vii), if &, ¢ k) also the condition:

(viii) 2=0 (mod a).

Now, the field K defined as above for such y, z satisfies the properties
(a)-(d) (and also (e) in case {,& k), and every prime ideal of K lying
above q, is decomposed completely in K(Cl) by Lemma 38 (1<i<mn). Hence
K& S and our theorem is proved.

COROLLARY 1. For any proper subfield M of Q(Z,), there exist in-
finitely many number fields K satisfying the following conditions:

(@) The class number of K is divisible by 1.

(b) KNQE)=M.

(¢) [K:Q]=l-1.
If [QE): M]>2 i.e., M><QL,+CiY), we may add the following condition
on K.

(d) K/M i3 non-Galois (therefore K/Q is also non-Galois).
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COROLLARY 2. For a given divisor m=<l of l—1, there exist in-
finitely many extensions of Q) of degree m whose class numbers are
divisible by 1.
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