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Introduction

For a lattice L, let Sub(L) be the set of sublattices of L, inclusive
of the empty set. The set Sub(L) forms a poset under set inclusion.
Indeed, it is known (see Gratzer [7], for instance) that the poset (Sub(L);
c> forms an atomistic and algebraic lattice in which A is an atom in
Sub(L) iff A={a} for some a in L, B is a dual atom in Sub(L) iff B is
a proper maximal sublattice of L, and for all A, B in Sub(L), the meet
AAB in Sub(L) is the set-intersection AN B in L and the join AV B in
Sub(L) is the sublattice of L generated by AU B.

Motivated by the study on the lattice of subsemilattices of a semi-
lattice by Sevrin [11], Filippov [6] undertook the first and intensive
investigation on the structure of the lattice Sub(L). While easier proofs
of some of Filippov’s results can be found in Rival [10] and Koh [9],
some of his results have been extended recently in Chen, Koh and Teo
[5].

Let L(FD) be the class of finite distributive lattices. In this paper
we proceed to study the structure of Sub(L) of L, Le L(FD), by employ-
ing the notion of the Frattini sublattice of L. Following Birkhoff [1],
the Frattini sublattice ®(L) of a lattice L is the intersection of all
proper maximal sublattices of L. Thus, the element @(L) in the lattice
Sub(L) is the meet of all dual atoms in Sub(L). Denote by Sub*(L) the
interval [@#(L), L] and by Sub,(L) the interval [@, ®(L)] in Sub(L). The
lattice Sub(L) is said to be pure if Sub,(L) forms a Boolean sublattice
of Sub(L), and doubly pure if, in addition, Sub,(L) also forms a Boolean
sublattice of Sub(L). A pure lattice Sub(L) is said to be strongly pure
if every atom in Sub(L)—Sub,(L) is contained in (less than) a unique
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atom in Sub*(L). In [8], Chen, Koh and Lee gave a sufficient condition
on L, Le L(FD), whereby Sub(L) is pure, and they determined com-
pletely the structure of L, L e L(FD), such that Sub(L) is doubly pure.

In this paper, we characterize lattices L, L ¢ L(FD), such that the lattice
Sub(L) is strongly pure.

§1. Preliminaries.

In this section we introduce some notation and terminology and state
some known results which will be needed in the sequel.
Let L be a lattice. An element a in L is said to be join reducible

if a=bVe for some b, ¢ in L—{a}. Meet reducible elements are defined
dually. We write

L(V)={a€ L|a is join reducible} ,
L(A)={a€ L|a is meet reducible} ,
J(L)=L—-L(V),

M(L)=L—-L(A), and
Irr(L)=J(L)NML)=L—L(V)UL(A) .

Note that zVye L(V) if ¢, ye L(V) and zAye L(A) if x, y€ L(A). Let
a,b be in L. We say that b covers a or a is covered by b, in notation
b>—a or a—b, if a<bd and a<x<b for no x in L. Assume both the least
element 0 and the greatest element 1 exist in L. An element a of L is
called an atom (resp., a dual atom) if a—0 (resp., a—1). For a,bin L
with a<b, the closed interval {xe L|a<x<b} is denoted by [a, b] and
the open interval {xe L|a<x<b} is denoted by (a, b). For a subset X
of L, the sublattice of L generated by X is denoted by (X).

A non-empty sublattice N of L is called a prime sublattice of L if
L—N is either empty or a sublattice of L. A prime sublattice N of L
is called a minimal prime sublattice of L if N contains no prime sub-
lattice of L other than itself. The set of all minimal prime sublattices
of L is denoted by mp(L).

The following provides a useful characterization of minimal prime
sublattices of L, L e L(FD).

LEMMA 1[4]. Let Le L(FD) and NCL. Then Nemp(L) iff one of
the following holds:

(i) N={a} where ac Irr(L),

(ii) N=[a, db] where ac L(N)—L(V), be L(V)—L(A), and (a, b)S
L(V)NL(A).



DISTRIBUTIVE LATTICE 383

For L in L(FD), a relation between ®(L) and the family mp(L) exists
and is given below.

LEMMA 2[4]. Let Le L(FD). Then L—®(L)= U(N|N e mp(L)).

Apparently, &(L)=¢ if L is a chain. The converse is not true in
general. It is true provided that L is of finite length. This is due to
the following more general result. Note that L(V) and L(A) form
join-subsemilattice and meet-subsemilattice of L respectively.

LEMMA 3[8]. Let L be a lattice. If c is the greatest element in L(V),
then ce ®(L). Dually, if d is the least element in L(N\), then de ®(L).

For a,b in L, we write al||b if a is incomparable with b. The
following result provides ways to generate elements in @(L) if O(L)= Q.

LEMMA 4[2]. Let Le L(FD). If ac®(L), be M(L), and a|lb, then
aVbe ®(L). Dually, if ac ®(L), be J(L), and a|b, then aAbe O(L).

We now introduce a special class of minimal prime sublattices which
play a prominent role in our main result. A minimal prime sublattice
N of L, Le L(FD), is called a solid sublattice of L if (i) #(L) U N € Sub(L)
and (ii) O(L)U K¢ Sub(L) for any non-empty proper subset K of N.
Clearly, for xz € L, the singleton {x} is solid iff x€ Irr(L). The set of all
solid sublattices of L is denoted by sd(L). Of course, sd(L)Smp(L).

Recall that the lattice Sub(L) is pure if Sub*(L)=[9(L), L] forms a
Boolean sublattice of Sub(L). In [3], Chen, Koh and Lee gave a sufficient
condition on L, L(FD), expressed in terms of solid sublattices of L,
whereby Sub(L) is pure. U(X|XeC) denotes U(X|Xe C) where C is a
collection of pairwise disjoint sets. Its proof is based on the following
two results.

LEMMA 5[3]. Let Le (FD). If L—®(L)=U(N|NeC) where C=sd(L),
then for any BZC, O(L)UUN|Ne B)e Sub(L).

LEMMA 6[3]. Let Le L(FD) such that L—®(L)=U(N|NeC) where
Ccsd(L). If Ae Sub*(L), then A=®(L)UUWN|Ne B) for some BSC.

The following result now follows from Lemmas 5 and 6.

LEMMA 7[38]. Let Le L(FD). If L—0(L)=U(N|NeC) where C<
sd(L), then the lattice Sub(L) 18 pure.

REMARK. The converse of Lemma 7 is not true as was noted in [3].
It is still not true even if L is finite, distributive, and planar. The
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Ficure 1

lattice of Figure 1, which is the smallest distributive and planar lattice
we (with S.C. Lee) can find, provides such a counter example.

For the lattice L of Figure 1, we have &(L)=L—Irr(L)U[z, y]U[u, v]
and Sub*(L)=2" (in general, 2" denotes the Boolean lattice of » atoms),
in which the ten atoms are &(L)U{a}, ®(L)U{d}, ---, ®(L)U{h}, ®(L)U
([, y]—{2}) and &®(L)U ([u, v]—{2}). Thus Sub(L) is pure. On the other
hand, every solid sublattice of L is a singleton, z¢ ®(L), and 2z is con-
tained in no solid sublattice of L.

§2. Some further results.

To ease the proof of our main result in section 3, we first prove
some new results in this section.

The results contained in Lemmas 5-7 require that L—&(L) be ex-
pressed as the disjoint union of some members of sd(L). The following
result says that every two distinet solid sublattices of L are automa-
tically disjoint.

LEMMA 8. Let Le L(FD), Nesd(L), and Mecmp(L) be such that
O(L)UMe Sub(L). If N#¥M, then NN M=Q.

ProoF. If NNM=@, let xze NN M. Then O(L)U{x}SO®(L)UNe
Sub(L) and so O(L)<<(PL)U{z})<®(L)UN in Sub(L). As Ne sd(L),
O(L)U{x}) =P(L)UN. Since &(L)UN={P(L)U{x}) S<Dd(L)UM Y=0(L)UM
by assumption, it follows that NCM. The fact that Me mp(L) and N
is prime implies that N=M. Hence NNM=Q if N=M.

COROLLARY. Let Le L(FD). If N, N,esd(L) and N,#N,, then
N.NN,=0@.
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LEMMA 9. Let Le L(FD) and a¢ O(L).
(i) If acIrr(L), then {®(L)U{a})=0(L)U{a};
(i) If a¢lrr(L), then

{un@Va)lz, ye (L)} =(B(L)U{a})={yV(xAa)|x, ye O(L)} .

PrROOF. (i) The fact that @(L)U{a} e Sub(L) where a < Irr(L) follows
from Lemma 4.

(ii) Let K={yA(xVa)lz, ye O(L)}. Clearly, K<<{O(L)U{a}>. We now
prove the reverse inclusion. Since z=xA(xVa)e K for each xc &(L), we
have (L) K. We claim that ae K. Since a ¢ Irr(L), L is certainly not
a chain. Thus L(V)#©@ and L(A)#@. Let wu=min(x|ze L(A)) and
v=max(x|xe L(V)). By Lemma 8, {u, v}S®(L). It is clear that u<a<w.
Thus a=vA(uVa)e K by definition. Hence &(L)U{a}<K. We next show
that K is a sublattice of L. Thus, let y,A(2,Va) and ¥,A(x,Va) be in
K where {x,, «,, ¥, ¥4,})SO(L). Observe that

[y A (@, V)] VYAV a)]
=A@ NVO)IVYIN (A (@ V)V (@, Va))
=W VYUIN@ VY VAN Y VTV )N NV a)
=1 VYIA([2. VYA (Y, V)N (@ Va)lVae)e K,

as {1, VY, @ VUIAWVE)A @, V) SO(L). Also,
[y. A (xlva)]/\[yz/\ (xzva)]=(y1/\y2)/\[(a’1/\w2)Va] eK.

Hence K forms a sublattice of L and we have (®(L)U{a}>=K. A dual
argument shows that <O(L)U{a})={yV(@&Aa)|x, yc ®(L)}. The proof of
Lemma 9 is thus complete.

LEMMA 10. Let Le L(FD) and Ac Sub(L). If A—®(L) in Sub(L),
then

(i) A—o(L)e Sub(L) and

(ii) A—@O(L)SN in Sub(L) for some Ne mp(L).

PrROOF. (i) Let a,be A—®(L), a#b. Clearly, {a\VVb, aAD}SA. We
shall show that {a\Vb, aAD}SA—D(L). Let B={(P(L)U{a}>. Then &(L)<
B=A in Sub(L). The assumption that A>—&(L) forces B=A. Thus
be A=<{(®(L)U{a}) and by Lemma 9, b=yA(xVa) for some , y in &(L).
Since b ¢ d(L), be N for some Ncmp(L) by Lemma 2. Now yA(x\Va)=
be N and y¢ N imply 2Vac N, which in turn implies ac N as z ¢ N.
Hence {a\vb, aAB}SN and so {a\VVd, aAb}SA—(L).

(ii) Let a be an element in A—®@(L). Then ac N for some N € mp(L)
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by Lemma 2. We shall show that A—&#(L)SN. Letxe A—&(L). Then
O(L)<(PL)U{x}><A in Sub(L). The fact that #(L)—A implies A=
(P(L)U{x}>. By Lemma9, uA(vVz)=aec N for some u, v in &(L). Hence
x€ N as u,v¢ N. This shows that A—®(L)<N in Sub(L) by ().

§3. Main result.

For a lattice L, the lattice Sub(L) is said to be strongly pure if
(1) Sub(L) is pure and (2) for each atom {a} in Sub(L)—Sub,(L) there is
exactly one atom A of Sub*(L) such that ae A. Note that the uniqueness
of such an atom A is automatically derived, because if ac A and a€ B
for two atoms A and B of Sub*(L) then ae AN B=®(L), contrary to
ag¢®(L). We are now in a position to give characterizations of L,
Le L(FD), such that Sub(L) is strongly pure.

THEOREM. Let L€ L(F'D). The following are equivalent:
(i) Sub(L) is strongly pure,

(ii) L—o(L)= U (N|Nesd(L)),

(iii) mp(L)=sd(L).

PROOF. (i)=(ii). Since Sub(L) is strongly pure, Sub*(L)=2" for
some positive integer n. Let {A,[t=1, 2, ---, n} be the set of atoms in
Sub*(L). By condition (2) of the definition of strong purity, for each
a in L—®(L), there exists a unique A,, 1=1,2, ---, n such that ac A,.
Evidently, L=U(A,|t=1,2, ---, n). Let N,=A,—®(L) for each =1, 2,
-++,n. By Lemma 10, each N, is a sublattice of L. Observe that

L—0(L)=U(A]i=1,2, ---, n)—&(L)
= U(A—0(L)|i=1,2, ---, n)=UN,|i=1,2, ---, n).

We now prove the following:

Claim. Each sublattice N, is prime in L.

Assume that N, is not prime for some r=1,2, ---, n. Then there
exist , ¥ in L—N, such that x\Vye N, or xAy€ N, (say the former).

Case (). xz¢®(L) and y ¢ O(L).

Since =z, ye L—®(L)=U(N,|t=1,2, ---,n) and «, y€ L—N,, there
exist 7, k=1,2, ---, n, j==r and k=<r such that xe N;C A, and y€ N,CS A,.
Clearly, xVye (4;UA,> in L which means {x\/y}<A;V A, in Sub(L). As
xVy€e N,, we also have {x\VVy}=<N,<A, in Sub(L). Since Sub*(L) is a
Boolean lattice, it follows that

{xVy}sANA;VA)=(A,NA)V(A,NA)=0(L) ,
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which implies 2\VVye &(L)NN,, a contradiction.

Case (ii). xe€ ®(L) and y ¢ O(L).

Since y ¢ &(L), ye N, S A, for some k=<r. As xc ®(L)SA,, we have
xVye A, or {xVy}=<A4, in Sub(L). But then {x\Vy}<A,AA,=0(L), which
means that x\Vye #(L)NN,, a contradiction.

The case that {x, y}S®(L) is clearly impossible. Hence we conclude
that each sublattice N; must be prime in L, as required.

Now by Lemma 10, each N;=A,—®(L) is contained in some N,
Nemp(L). Since N, is prime and Nemp(L), we must have N,=N,
which shows that each N, is itself a minimal prime sublattice.

Finally, we show that each N, is solid. Apparently, &(L)UN,=
A.eSub(L). If &(L)UKeSub(L) for some K with @ cKcN, then
O(L)<O(L)U K<A, in Sub(L) which contradicts the fact that A,—&(L)
in Sub(L). Hence N,esd(L) for each i=1,2, ---,n. Now by Lemma 2
and the corollary to Lemma 8, we conclude that L—&(L)= U (N|Ne sd(L)).

(ii)=(iii). It suffices to show that mp(L)Ssd(L). Thus, let Me
mp(L).

Claim. @(L)UM e Sub(L).

Let xe ®(L) and ye M. If xVvy¢d(L), then by the assumption,
xVye L—d(L)=U(N|Nesd(L)) and thus z\Vye N for some Nesd(L).
Since x¢ N, we must have ye N. Observe that &(L)<<(P(L)U{xVyP =
O(L)UN in Sub(L) and hence &(L)UN=(P(L)U{xr\Vy}> since Nesd(L).
As ye NCO(L)UN=L®(L)U{xVy}), we have by Lemma 9, uA(wV
@®Vy)=yeM for some u,w in &(L). Since uw, wg M and Me mp(L),
it follows that z\Vye M. Dually, we have xAyc®(L)UM. Hence
O(L)U M e Sub(L), as claimed.

We now show that Mesd(L). By Lemma 2 and the given assump-
tion, MSL—@(L)= U(N|Nesd(L)). Thus MNN=<g for some Nesd(L).
Since #(L)U M € Sub(L), it follows that M=N¢c sd(L) by Lemma 8. Hence
mp(L)Ssd(L), as required.

(iii)=(i). By Lemma 2, the corollary to Lemma 8, and the given
assumption, we have L—@(L)= U(N|Nemp(L))= U (N|Nesd(L)). Thus
by Lemma 7, the lattice Sub(L) must be pure. To show that Sub(L) is
strongly pure, it remains to show that every atom in Sub(L)—Sub,(L)
is contained in exactly one atom of Sub*(L). Since L—®&(L)= U (N|Ne
sd(L)), by Lemma 6, a sublattice A of L is an atom in Sub*(L) iff
A=0(L)UN for some Nesd(L). Now, let {a} be an atom in Sub(L)—
Sub,(L). Then ae L—®(L)= U (N|Nesd(L)) and so ac N for a unique
Nesd(L). Thus, {a} is contained in exactly one atom, namely &(L)UN,
of Sub*(L).
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The proof of the theorem is thus complete.
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