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Introduction

In this article we would like to begin to study vector bundles over
flag varieties. It is well-known that every vector bundle over a projec-
tive line P, is a direct sum of line bundles. Thus for a given vector
bundle over a variety F, after restricting it to each line contained in
F, by examining which line bundles appear as direct summands, we can
analyze its properties. This method was developed in Van de Ven [12],
Barth [1], and Hartshorne [6], when F' is a projective space.

In §1 in this article, we construet explicitly a component X of the
Hilbert scheme parametrizing “straight lines” in the flag variety F=
Fi(r, s; n)={(P,, P,)|P,cP,cP,} (0=r<s<n). (In our case the union @
of two copies of P, intersecting transversally at one point appears over
a divisor 4 in X as a deformation of the usual straight line. Thus it
is necessary that we call @ “a line” as well. However, vector bundles
over @ have simple properties and it is not an obstacle for our purposes.)

In §2 we give a theorem concerned with Schubert varieties in F
and X. Now according to §1, we can define tautological homogeneous
vector bundles not only on F' but also on X. We will show in Theorem
2.1 that there is a systematic correspondence between Chern classes of
tautological vector bundles on F and those on X.

Let I° be the universal family of subvarieties of F over X We
have a diagram

7
a/ \B
N

o~

X F

such that for every point z¢ X, BA~(x) is the subvariety corresponding
to xe X. Let _# be a vector bundle on F with ¢,(.#)=0 such that
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for some point z, Let J be
the set of jumping hnes, i.e., J={xe X lB*/]a—x(,, is mot tr1V1al} In
§3, we show the next equality in the first Chow group A'X

[J1=&,B*c,(_#) .

In the case where F' is a projective space, this equality has been given
in Barth [1], which plays an important role in the theory of vector
bundles on complex projective spaces. (Cf. Okonek [8].) Our theorem is
a generalization of Theorem 2 in Barth [1]. However our proof is entirely
different from his one. The relative Riemann-Roch theorem plays an
important role in our proof.

Every variety is assumed to be defined over an algebraically closed
ground field & of arbitrary characteristic. A locally free coherent sheaf
is called a vector bundle. For linear subspaces G, H of an n-dimensional
projective space P,, the minimum linear subspace of P, containing both
G and H is called the join of G and H, and it is denoted by GV H. For
a variety Z with the structure sheaf <, and for a vector space W, we
denote W,=W®,,; for simplicity.

I would like to express heartily thanks to every member of depart-
ment of mathematics of Tokyo Metropolitan University for stimulating
atmosphere.

§1. The space parametrizing straight lines in F.

Let
F=Fl(r, s; n)={(P,, P,)|P,CcP,CcP,} 0=r<s<n

be the flag variety parametrizing flags in P, made up of two linear sub-
spaces. (If r=s, F' is the Grassmann variety Gr (; n). In particular if
r=8=0, F coincides with the projective space P,.) In this article we
study on F. We use the following convenient abbreviation:

F={g 7}

Where G and H denote linear subspaces in P,, indices » and s denote
the dimension respectively, the bar — denotes the inclusion relation and
the brackets { } means that the set of all linear subspaces of P, satisfy-
ing the condition indicated in them are under consideration.

By this abbreviation we define varieties I" and X.
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Crtl s+t

, ’ CrtL D+
e |l

l{r——l B's"1 Ar—l Bs—l

A, B,C,D,G and H are linear subspaces of P,. If »=0, A denotes the
empty set. In case »=s, the above definition is equal to the following.

C'r+1
| Cr+1
r={Gr X ={ | }
| Ar-—l
Ar—l
Canonical morphisms
r—2 .x r—*t . p
L () ) [V}
C D c D C D
G H|— <A B> G H|— (G H)
A B A B

are defined.
Subvarieties 4, 4 (XD4>A) are defined as

c——>D
A:{] é BnC¢A}

A

By an easy calculation we have dim 4=dim X—1 and dim 4=dim X—4.
By the definition of I we have for a closed point ze X

if reX—4, alx)=P,
if xed—4, a'(x)=2 copies of P, intersecting

transversally at one point
and

if zed, all@)=P,xP,.
Let
: X — X: the blowing-up with center 4
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: ' —— I': the blowing-up with center a~'(4)
: [ — X: the induced map

Q D

and

A

B: ' — F be the composition B=8.% .

We have the next diagram.

7
27NN
2 r
X

Now let V be the dual vector space of H°(P,, &% (1)). A vector
subbundle & of V,=V® is defined by putting for a closed point
*=(G, H)e F,

(1.1)

- Z.Qk(x)=GcV = V,Qk(x) ,

where the inclusion GcV is the dual morphism of the surjection
HP,, & (1))— H(G, Z1)) associated with the inclusion GCP,.

Analogously associating with H, we can define a vector bundle 5~ and
the inclusion relation G Hc P, induces canonical morphisms

?—'—)%—_’VF.

Here both arrows are injective homomorphisms between vector bundles,
i.e., the cokernels are again locally free. Thus we have an exact com-
mutative diagram of vector bundles over F.

0

.

| l

00— & —Vy— ~F —0

(1.2) ! H l
0— F —Vy— F—0.

l

o 0

+
0
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Analogously we have a commutative (not exact) diagram of wvector
bundles over X '

S — &

(1.3) | l 1

Z » > Vx .

THEOREM 1.1. (A) Let 4 be the strict inverse image of 4 by =«
(=7~ (d—A)). For every closed point #c X,

e X—4, ax)=P, and
ed, A&'x)=two copies of P, intersecting
transversally at one point .

(B) X is one conmected component of the Hilbert scheme of F. (Cf.
Grothendieck [3].)

. (C) I is the graph of the correspondence associating every point of
X with the subvariety of F.

Whole this section is devoted to verify Theorem 1.1.

(A) We put A=xn"*(4). This 4 is the exceptional divisor of 7. For
a closed point Ze X— A, (A) is obvious. Thus we consider a point Ze 4.

On X the composition &€ —> 2 — /< defines an element

W € H X, G (€|, D|F)) .
LEMMA 1.2. The zero locus of w=A.

PrOOF. By definition, it is easy to see that they are equal as sets.
Thus we have only to show that the zero locus of @ has the reduced
scheme structure. '

We fix linear subspaces A;c B;c Di**c P, and set

Cr+1 DO
= (
A;

CicX.

B,

Obviously Y is isomorphic to the Grassmann variety Gr(1; s—»+1). Let
@ be the restriction of w to Y. We have {the zero locus of w}N23=
{the zero locus of @}=2Z. By choosing local coordinates on ¥ and by an
easy calculation we know that Z coincides with
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D

]
B, cl.
A/

0
Thus Z and the zero-locus of @ itself are reduced. Q.E.D.

COROLLARY 1.8. N, = 5 (& Y, D/ F) |4

PrOoOF. By Lemma 1.2 and by the following Lemma 1.4, it is
obvious. Q.E.D.

The next lemma is well-known and we omit the proof.

LEMMA 1.4. Let & be a vector bundle of rank r over a variety
Z. Let fe HZ, ) be a section and II be the zero locus of f. If
codim; IT=7r, then we have Ny ,=.F |g.

On I', we have a canonical surjective homomorphism a*(=Z/<#)—
a*Z|B*5# and a canonical injective homomorphism g*&/a* 7 —
a*(&| 7). Let

TV Q* G (G| SN D | F) —— Fhom (B*E|a* 7, a* D] B*57)
be the homomorphism induced by them.

LEMMA 1.5. For a*we H(I', a* 5m(E| 7, D|#)), we have Y(a*®)=

PROOF. It is obvious by definition. Q.E.D.
COROLLARY 1.6. N, 1.4, r=Ker¥|,-14.
LEMMA 1.7. a~'(4) i3 a smooth variety.

PROOF. Set-theoretically we have

a~N(A) = c
G/
A~

Thus the underlying reduced variety a~'(4).., is smooth. On the other
hand, by Lemma 1.2, a~(4) is the zero-locus of a*w. Thus it is enough |
to show that ®=a*w has a reduced zero-locus when we regard it as an

element of H'(I", Ker 7).
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We fix A,, B,, D, and H,. Let

Cr+1 DOS'H
| l

O=<G- II{; C,GrcrI'.
1113-1 B!

By choosing an appropriate local system of coordinates on 6 and by
representing @ by it we know that @ {the zero-locus of @} and thus the
zero-locus of @ itself are reduced. (See the following figure.) Q.E.D.

Tﬁ.

N
<«
>

* =

COROLLARY 1.8. X and I’ are smooth varieties.

COROLLARY 1.9. The map & @A) —A can be identified with the
map PEKer 7|,-1)— P(5m (& S, D/F)|,) induced by an imjective
homomorphism of vector bundles

Ker ’Yla"l(/i) —)a*(%nz (g/..%: 97.@) ]A) .

COROLLARY 1.10. Let x=<i g)e/l be a closed point. Then,

(1) =z x) can be identified with
P=P(C/A)YQ(D/B)) . (VY denotes the dual linear space.)
(2) Moreover if T € n‘"(x)c:/f corresponds to the point ue€ P,
a\(@=P, if ugP(C/A)V)xP(D/B)
A~HB)=2 copies of P, intersecting at one point transversally
if ue P(C/A)V)xP(D/B) .

Here we regard
P((C/A)V)x P(D/|B)c P((C/A)"Q(D/B))

by the Segre embedding.
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Now by the above discussion, if we set

X,={x¢ Xl&‘l(x)-EPl} .
X,={xe X|a'(x)=2 copies of P, intersecting transversally at a point},

then we have

X UuX,=X
and X, 4. Silxce X, is a closed set and since 4 and A are irreducible,
we know X,=4. Thus we get (A).

(B), (C). First of all, @ is flat since " and X are smooth and since
every fibre @~(x) of @& has the same dimension.
By the construction of X and by Corollary 1.9, we know that for
z,2'e X
r=2" = Ba '(x)=pRa*(x’) .

Thus by the universality of the Hilbert scheme, we have an injective
morphism (Grothendieck [5])

X — Hilb (F) .

We would like to show that this is an isomorphism onto an component.
The next lemma treats a general situation.

LEMMA 1.11 (Kodaira [7]). Let L be a locally complete intersection
subvariety of a smooth projective variety F and let [L]e Hilb (F)=H be
the corresponding point. If for the normal bundle N.,p, H'(L, Ny, =0,
then H i3 smooth at [L] and the dimension of H at [L] is equal to
dim H(L, N,,z).

PrOOF. For a complete Noetherian local ring A with the residue
field k, we set
S(A)={GcSpec (A) X F such that
(1) G is a subvariety,
(2) the restriction of the projection to the first factor
pr: G—Spec (A) is flat and proper,
(3) the fibre of pr, over the closed point o€ Speec(A4) is L}.

Then, the correspondence A — S(A) defines a covariant functor.
According to Kodaira [7], if H'L, N, =0, then functor S() is
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represented by a certain pair (kK[[TV]], {) with {e S(X[[TV]]). Here K[T"V]]
is the completion of the local ring at the origin of the affine space
T=H%L, N.,r). (Cf. Schlessinger [10].) (Though Kodaira [7] treats a
more restricted case, it is easy to generalize it to the above-mentioned
statement.)

On the other hand, by the universality of the Hilbert schemes, the
functor S( ) is also represented by ﬁ;: (The roof ~ denotes the com-
pletion.) P

By the uniqueness of the representing object, we have &,y x=k[[TV]],
which implies our lemma. Q.E.D.

By Lemma 1.11, if we can show the following (1.4), it follows that
the morphism X —Hilb (F') is injective and surjective onto an smooth
component and thus it is an isomorphism.

1.4) “For every point x¢ X, setting L=pga™'(x), we have
dim H(L, N,,z)=dim X and H*(L, Ny,;)=0".
We will show (1.4).
First of all, we set z(x):(i ‘g) and
c—D

1 |
L=pBa ()= G-‘"’I,’I G, H) .
W B

Let F, be the zero-locus of the composite morphism 5% — V,—(V/D);.
Then, we can write that

Dn+1
F1={ |
G——H’*

G, H}

and dim F,=dim Gr (s; s+1)+dim Gr (+; 8). Thus since dim F—dim F,=
rank 5%.,. (5S¢, (V/D)rz), we know

(1.5) Ny r= Fom (52, (V/D)p) s, -
Let F, be the zero-locus of Ay — Dy —Dy/Z|p,. We have
Dl+1
|.
F.={G—H' |¢, H

Ar—l
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and dim F,—dim F,=7»(s—r+1)=rank 5%.. (Ar, Dp/Z |r,). Therefore, we
have

(1.6) Neyp, = o (Ar,, (Dy,/ & l#)) |7, -
Setting F,=the zero-locus of & ]Fz/AF2—+(D/A)F2—>(D/C)F2, we have
CrtL Dt

|
F,= CI;/H ‘|G, H

l

Ar—l
and dim F,—dim Fy=8—r=rank 5 (Z |r,/Ar, (D/C)r). Thus we get
(1.7) Npyr, = Fom (T |py/ A,y (D/C)p,) |#, -

Case 1. Assume ze X—(4UA). Then, L=P,, L coinsides with the
zero-locus of (B/A)r,— (D/A)r,— D,/ 57 | rp and dim Fy—dim L=s—1.
Therefore

(1.8) Ny p, = Horn ((B/A)g,, Dyg,/5#7 ez -
Now we have an exact sequence

0 :BL ¢%|L__—)¢P1(—1)__)O~

Since Ext' (s (—1), B,)=H '(@%,(1)*))=0, this sequence splits and we have
1= BT (—1). Thus by (1.5), we get

(1.9) Neyel L Z 4@ (1) .
The exact sequence

O'——’CL/gIL—_)DL/g |p — (D/C),—0
i Il

Zp,(1) 4 ‘
also splits. Thus we have D,/& L= "@F(1). By (1.6),
(1.10) Nryr, .= "D (1) .
By (1.7) and (1.8) it is easy to see that
(1.11) Neyr,l: =T, (1)
(1.12) Npjp, =, (1) .

By (1.9)-(1.12) and exact sequences
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0— Nz«'z/rllz, — NF;/FIL — NI"1/F]L —0
00— NF,/F2|L - NF3/F|L — NF,/FIL —0

00— NL/Fs""'—’ Npp— NFa/FIL —0,
we get

dim HYL, Ny»)=2(n+s—r—1)+s(n—s—1)+r(s—r)=dim X  and
HI(L, NL/F)=0 . v
C D

Case 2. Assume that ze /—4. In this case ﬂ:(x)=( A B) satisfies

AcCcBcD. Equalities (1.5), (1.6), (1.7), (1.9), (1.10) and (1.11) hold as
well. But (1.8) and (1.12) do not hold. ’

The composed morphism B, » Dg, » Dy /57 |5, defines a global
section @ of SZm (Bp/Z |, Dr,/57 |r)=R. Let F, be the zero-locus of
. Since

F,= o5 G, H-=P,x P,

it is easy to see the equality dim F,—dim F,=rank 2 and thus
NF‘,/F;;E %”‘ (BF3/g lFs’ DFs/% [Fg) lF4 .

We get

1.12)* Neyrs |1 = P BT (1) 77" .
Obviously

(1.13) Npp=(2) .

By (1.9), (1.10), (1.11), (1.12)* and (1.13), we easily obtain (1.4) in
our case. .

Case 3. Assume zed—A. We set z(x)= ig} We can write
L=ga*(x)=L,UL, where

D

C

L= CI;-———C\!/B Gh=P,

4A——B
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C ll) |
L,= CIIWB__ If Hy=P, .
A B

Equalities (1.5)-(1.8) hold as well in this case. However
S |,=0p and D, |2 |, =0 "D (1), we have
NF1/F |L1—=— ﬂé:'“) (n—8—1)
NFz/F]_ ILIE ﬁ;l(‘—r)eﬂpl(l)'
NF3/F2|L120’P1(1)._'
N, L/Fﬂz.'l = '1";—:’
and consequently E
NL/F lng &’;(»:_'H)("_'_1)+('+1)('-')@ﬁpl(l)'. .
Analogously we have

NFIIF = ﬂ;{n—t—l) 2> Tp (1)
l\er/F1 IL,E Vi 1(a—,-+1)
Neyr, Ing Op;"
'NEL/F3 |z,= T (1)"
and thus _ : : -
NL/F ]ng ﬂ;l(a—r)+8(n—a)®¢P1(1)n—r—-1 .

Now by using the exact sequence

00— Nprp—> Ny/» IL1®NL/F IL2 — ﬂpllm; —0

since

where ¢f=rank N,,, and m, is the ideal sheaf of the point p=LlnL2,

we obtain (1.4) in this case as well.

Case 4. Assume xe ANA. This is the last case. We set n(x)=

(91 IB?) with AcCcBcD. In this case we have G, and H, corresponding
with 2, and we can write L=ga '(x)=L, UL, where
_ H/ b
B
L= c Gr=P,
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L,=

—
(A/ @

As in Case 1 and Case 2, we can define a sequence of subvarieties
FOF ODF,DF,DF,OL such that

Neyrle, & ‘§:+1’ (et}
Neyr, |2, = LT, (1)
N.F's/Fz lLl— ﬁrl(l)'—'
Nryryl, = P (—1)DT5 "
Nyp ), = (1)
Npyrle,= o "oy
Niyp, |1,z om0
NFa/Fz le e "
Nryrl, =7 (1)
Niwl,=20p,(1) .
By these equalities we have
dim HYNyr lLl) =t-+38
dim H°(Np/plz,)=t+n—r—1
H'(Nyrle)=0 and
H'(Ny/ple,)=0

with ¢=rank N,,». It follows that

HYNy#)=0.

They conclude the proof of Theorem 1.1. “ " Q.E.D.

§2. Correspondence of Chern classes.

For a smooth variety Z, we denote by A*Z the k-th Chow group,
i.e., the group of cycles on Z of codimension % modulo rational equiva-
lence. For a cycle Mon Z, [Mle A'Z denotes its equlvalence class. We
put & =n*.57 B = n*F, & =n*®¥, F=n*< and & =7y(—A). They
are vector bundles over X. Chern classes of them are defined. (Chevalley,



348 TOHSUKE URABE

Grothendieck, Serre [3])
In this section we will show the following.

THEOREM 2.1. Consider the map

$=@&,8* A*F — A*'X .

We have
el DN =—6 () 1sksr+l
e = —co(#) 1=5k<s+1
dei( PN =¢,(Vi/Z) 1sksn—r
e _EFN=6,_(V2/D) 1sksn—s
and

$e( )= —ei(&) .
COROLLARY 2.2. The map
¢=a,B*: A'F — A'X
18 an isomorphism and we have
$(eZ))=—c,()
P(c(SF)) = —01(?)
#ex(F))=—c(F)

e F))=—0c(D)
e T =—0(&) .

That 18, ¢ transfers vertices of the square

&L - F

| |

F

K ——
to ones of the square
1
.Q? —

and the exceptional one 9% to the exceptional one &.

PROOF. It is easy to show that non-zero elements in ¢,(2)—c,(.2%")
are basis of A’F and that non-zero elements in ¢,(%)—¢,(&) are basis
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of A'X. Thus our cbrollary follows from Theorem 2.1. Q.E.D.
We begin with a lemma in Piene [9].

TRANSVERSALITY LEMMA 2.3. Let Z be a reduced equidimensional
vartety, ¢:Z—>G=Gr (m;n) a morphism. Fix a Schubert condition
(a, as, +++, @y_mw). Then for a general flag Fl={T.c---cT,_.CP,} with
dim T,=a,—1, the corresponding Schubert variety 3 =23(a; F'l) satisfies the
following conditions:

(i) g7'% is either empty or equidimensional with codim (g7'3, Z)=
codim (X, G);

(ii) ¢7'2 has no embedded components. If char k=0, g7'3 is reduced;

(iii) given a Zariski open dense set UcZ, g~'X |, is dense in ¢g~'3;

(iv) the cycle g*[Z] is defined and is equal to [g~X].

Let T be an (n—r-+k—2)-dimensional linear subspace of P, with
1=<k<r+1. We define a reduced subvariety ¢(T) by

«(TY={(G, H)e F|dim(GNT)=k—1} .
By definition of Chern classes we have in A*F
(—Dfe(&)=[e(T)] .
Transversality lemma implies for any general T
(—1)B*ey(2)=[87¢(T)] .
Now set |

em={(C P)ex

dim (AN T)gk——z} .
We consider ¢(T) as a reduced subvariety of X. By definition we have
in A*X,
| (—1)*e,_( ) =[c"(T] .
By Transversality lemma we have in AR
(—1)*e, () =[x "¢(T)]

for any general T. Thus by following Lemma 2.4, we obtain the first
equality in Theorem 2.1.

LEMMA 2.4. &Bc(T)=n""c'(T)) and & is generically ome-to-one
on B~ 'e¢(T).
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ProoF. It follows from the next Lemma 2.5 and formal calculations
that

- w@B-He(T))=n"¢(T) .
However, by Transversality lemma, we may assume that
codim (z~'¢'(T), X)=codim (n“é’(T)ﬂ /f, A .
It implies that
7He(T)) =7e(T)— 4 .
(The bar — denotes the closure.) Aanlogously
B (e(T)=Be(T))—&4) .

Thus, noting that & is proper, we obtain that

e (T)=n"‘n@B~(c(T))— 4
=@&Be(T))— 4
=&(B~(e(T))— & (4))
=&(E(T)—a™(4)
=aB=(e(T)) .

The latter half of the assertion follows from the next lemma. Q.E.D.

LEMMA 2.5. aB ' (c(T))=c(T) and a i3 generically one-to-one .on
B~ (e(T)).

PrOOF. Recall that linear spaces we are considering satisfy the
condition indicated by the next diagram.

Cr+1 Dl'l'l
l l
2.1) G* I,I .
1!49'-—1 Bl-—l

Thus if (G, H)e ¢(T), i.e.,
(2.2) dim (GN T)=k-1,

g g) € aB Y (c(T)) satisfies

(2.3) dim(ANT)=k—2.
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- : C D ’ | . . . .
Conversely is ( A B)ec(T), i.e., the equality (2.3) is satisfied, then
there exists (G, H) e F satisfying the conditions (2.1) and (2.2). Moreover
if dim(ANT)=k—2, C and T intersect transversally, i.e., dim (CNT)=
k—1 and CNB=A, then the element (G, H)¢< F satisfying (2.1) and (2.2)
is unique. It implies our lemma. Q.E.D.

Analogously we can show the second equality in Theorem 2.1.
We proceed to the third equality. Let U be an (n—r—k)-dimensional
linear subspace of P, with 1=k<n—7». We define

MUY ={(G, H)e F|dim (GN U)=0}

omy=l(® P)ex

They are considered as subvarieties of F and X respectively. By defini-
tion we have

dim (CnN U)go} .

c(F)=[c"(U)]
e Ve/Z)=[c""(U)] .

By similar arguments as in the above, it is enough to show the following
lemma, whose proof is an easy exercise of linear algebra.

LEMMA 2.6. a(87'(c"(U))=c"(U) and a 18 generically one-to-one on
B~ (c(U)). |

Analogously we can show the fourth one.

Now we consider the fifth equality.

Set X'=X—4, I'"'=—a"'(4). On I'", a*(F| ¥ )=a*(D|/&)=L* %"
Thus we have

&*3*02(%) [2_ia= 0 B%¢( ) |x =aa*c( B ) |z .

If c(F| ) lzr=[M] for a cycle M on X’, then a*c,(&/¥)|x=[a"'M]
since a|r is flat. Thus since dim a™*M>dim a(a™*M)=dim M,

Qe a*e( B )| =0.
It follows that
8,B*ci( 58" = am*o(Px(4) +bo(Px( D))
for some integers a and b.

LEMMA 2.7. ¢(Zx(d)=c(¥)—c(F)—c(F)+e(D) .
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PROOF. The composition & — 2 —» /<# defines a global section @
of the sheaf 5Z.. (¥ v, 2/<#). We set

0 =MW € G (N(F| ), NN D|F))=2F .

As sets 4 coincides with the zero-locus of 4. Moreover it is easy to
show that the zero-locus of d is reduced. Thus we have that ¢,(x(4))=
(&), which implies the desired equality. Q.E.D.

In order to calculate a and b, we use the following lemma. (Chevalley,
Grothendieck, Serre [3], Fulton [4])

LEMMA 2.8. We consider the map ¢=62*/§*: A*)F— A'X. Suppose that
for a smooth subvariety & of X, subvarieties 6=a-*(8), Z’=§&‘1(.§) are
smooth. Let ¢g=a,B*: A3 — A'S be the induced map where a==&|s and
,§=3Ié. Then, we have for every element ce A*F

dlels)=g(e) s .
We define subvarieties
g,8,cX, &8cX
A,, 6,crl’, 6,cI’” and

3, Z,CcF as follows.

IB? ) € AcX. The condition implies 4,C

0
0

@

(1) We fix a point xo=(i°o
C,cB,cD, We set
X0 8, =n"'(x)=P,
'oé,=a&)
Fo3,=B6,)=P,xP,.
We obtain a diagram;

~

6,
a/ \B
N
Note that this diagram can be embedded in the next diagram.
P, X P, xXP,
L3 JJ
A

P, P, %< P,
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where 7,, 7, are projections, A is a divisor of degree (1,1,1) and j is
the inclusion map.

LEMMA 2.9.
(i) eI 5= —e(Z)ei () s,
= —(Pexr(—1, 06T (0, —1))
(ii) | el &) 13,2 e (1))
(iii) (e ) |8, = —ei(&) 3,
(iv) n*c(Fx(4))15,=0 .

ProoOF. (i) First note
(7)== — (L) + ¢ )+ ¢(L) — e )e(FE)

since the sequence 0 > ¥ — % — .22 —0 is exact. Since ¥|;, contains a
trivial bundle (A4,)s,, ¢(¥)|:,=0. By the same reason c,(5%¢")|;,=0. Since
2,=P,x P, we have ¢,(¥)*|;,=0. Thus we obtain (i).

(ii) It is obvious by definition of blowing-up.

(iii) By (i) and (ii) and by Lemma 2.16 it is enough to show that @(e)=
e Tp 1)) With F=@,F* and e=c,(Peyer(—1, 0)e:(Po,r (0, —1)). Indeed,

(@ B*e)e(Pe, (1)) N [P)]
=ay(B*e-a*c(Zp, (1)) N[A])
=Tuudu(§* (e - Te(Te (1)) NA]
=15 (Wone* 77::61(&}?3(1))2 N J«[A])
=Tal{TFe(Topxr (1, 0)TEC(Trixr (0, 1)) mhes(Te (1))}
X {TFe(Poyxri(l, 0) +TEC( T, (0, 1)) + 7t ei(Pe NN N P X P X P}
=1
=c(&) e P 1) N[P)] ,

which implies the desired equality. | Q.E.D.

COROLLARY 2.10. b= —1.

(2) We fix the following linear subspaces

Clrn‘-l _Dl“’J"1

Ap-r——8;~*
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(Bars — denote inclusion relations.) with C,NS,=A4,.

defined as follows.

XDE,.= C ,,,,,ﬂ_a——lf)l =P,
‘ B
| 5B

: AI/

C
1C,;r/H' G,H, B}
|

>6,=#-6,)
Fo3,=56,

- (C;H/Df“ )

*Gr/H' G, H}

~

8 —2
Api— J

LEMMA 2.11. 5,NA=9¢.

Subvarieties are

PrOOF. If 5,NA+¢, then we have a linear space B*~' with C,cB

and S,cB. However,

8—1=dim B=dim (C,VS,)=dim C,+dim S,—dim (C,n S,)

=(r+1)+(8—2)—(r—1)=8,
which is a contradiction.

COROLLARY 2.12. Morphisms

7:: E 'y — E 2
7:.60,—> 6,
are 180morphisms.

Q.E.D.
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LEMMA 2.13. dim (GVS,)=s8—1.

PROOF. Since G, 8,0 A", either GNS,=A or GNS,=G. If GNS,=G,
then GcS, and A4,=C,NS,DOG, which implies »r—1=dim A, =dim G=7r, a
contradiction. Q.E.D.

COROLLARY 2.14. The morphism t: 3,— P(C,/A,) defined by ©(G, H)=
P(G/A) e P(C,/A) gives to X, a structure of P,-bundle over P,.

PrROOF. The fibre of = over the pomt P(G/A)) is P(DI/GVSI), which
is isomorphic to P, by Lemma 2.13. Q.E.D.

Analogously it is easy to show the next lemma.

LEMMA 2.15. The morphism p: 3,— P(D,/S)V) defined by p(G H)=
P((H/S,)") (Here wedge vV denotes the dual linear space.) i8 identified with
the blowing-up of the point P((C,VS,/S))V).

Now we have a diagram;
/ 62\

The above discussion implies that this dlagram can be embedded into

the next commutative diagram.
P, ><2'

P1

)

2

where 7, and 7, are projections, B is a divisor, j is its inclusion, p is
the blowing-up of a point of P,, and 7 is the canonical surjection.

LEMMA 2.16.
(1) e(E)]s,=0
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(ii) () [3,=0
e(P) |3,= — e T (1)) = —e(Tr (1))
o) ls,=
c(2) Iﬁz =0
(&) 3,=0
(iii) n*e(x(4)) 12,0 .

PROOF. (i) Recall

e,(X)= —cz(f)'*'cz(%)+61(?)2_c1(?)01(%) .

By definition of X, it is easy to show that c,(¥) l5,=0, c(SF)|s,=
¥ TP, (1)) (&) [5,=7%c (P (1))*=0 and ¢,(L)e(5F) lz,=7*c,(F%,(1)) X O*
¢,(Zp,(1)). They imply (i). .

(ii) It is obvious by definition. '

(iii) It follows from Lemma 2.7 and (ii). Q.E.D.

COROLLARY 2.17. a=0.

Corollaries 2.10 and 2.17 imply the fifth equality in Theorem 2.1. Q.E.D.

§3. The set of jumping lines.

Main purpose of this section is to show the equality in (C) of Theo-
rem 3.1, which is very similar to the equalities in Theorem 2.1. Theorem
3.1 is a generalization of a theorem for P, in Barth [1]. The essential
idea of the proof of (A) and (B) in Theorem 3.1 is due to him. However,
our proof of (C) is entirely different from his one. The relative Riemann-
Roch theorem due to Grothendieck (Borel, Serre [2]) will play a very
important role in the proof.

Let <~ be a coherent sheaf over a variety Z. Let

aF 2>&’,}’ » Lly—0 (%)

be a free resolution of & on a neighbourhood U of ze€ Z. Consider the
ideal Q, in &, generated by g-minors of the matrix representing A. We
can show that @, does not depend on the choice of the resolution (*) and
thus the ideal sheaf Q called the 0-th Fitting ideal of < is defined by
setting Q|,=Qy for UcZ (cf. Teissier [11]). ,

For a vector bundle _# over F' we denote _#(a, b)=_# QA "#)*R

(An—-c/)b'

THEOREM 3.1. Let _# be a vector bundle over the flag variety F with
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e(#)=0. Assume that B*_# l6-1zp T8 trivial for some point x,€ X. Let
J={xe X | B* # |s-1,, i8 mot trivial} .
Then, we have
(4) J=Supp (R'&.B*_#(0, —1))
=Supp (R'&.B*.#(—1, 0)) .

(B) The 0-th Fitting ideal Q (resp. Q') of R'AB* . # 0, —1) (resp.
R@,B*_#(—1,0)) is locally principal and Q=Q'.

By (A) and (B), we can give a structure of divisors with multiplicity
to J. Then in A'X.

(C) [J1=&,B*c(.#) .

J is called the set of jumping lines.

PROOF. We denote _# =B8*_# and m=rank _#&

(A) By symmetry, it is enough to show the first equality. The
base-change theorem implies that

R&, #(0, —1)Qk(x)=H L, #(0, —1)|,)

with L=a '(xz) for any closed point z¢ X, since the flat morphism & has
1-dimensional fibre. Thus obviously the next proposition implies the
desired equality.

PROPOSITION 3.2. R The following two conditions are equivalent for
any closed point x€ X. Let L=a& \(x).

(1) ./'»?IL 18 not trivial.

(2) HYL, #(0, —1)|;)=0.

PROOF. Case 1. Assume z€ X—J. Then we have L=P,. The vector
bundle _# |, is a direct sum of line bundles.

A leéel o (k) .

It follows that >m k,=0 from assumption ¢, (_#)=0. Since E*m(o,
—1) ;= (—1), it follows that

A O, D)= Fp,(k—1)

and we have
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H( A0, —1)|)=® H (O (kb—1)=® H(Zp(~k~1) -

Assume that _# |c is trivial. Then, since k,=:--=k,=0, H 1(,/{A(O,
—1)|.)=0 by the above equality. :
Assume that _#|, is not trivial. Then, for some 1, k,<0 and

HY(_#£(0, —1)|,)#0.
Case 2. Assume zc 4. We denote L=&'x)=L,UL, (L,=L,=P).

LEMMA 3.8. The following two conditions are equivalent.
(1) _A#|, is trivial.
(2) A, and _#|;, are trivial.

PrOOF. The implication (1)=(2) is obvious.
Assume (2) and consider the exact sequence

0— A |, — A DA |, — (Tm,)* — 0

where m, is the ideal sheaf of the point p=L,NL, It follows that
H°(./f? IL)——>H°(/%IL,) (=1, 2) is an isomorphism. Thus we can choose
m sections of _# | which are independent at each point of L. Thus
we obtain (1). Q.E.D.

Now we set
AN, =BT k), AN, =D (K) .
We note that the sequence
0— H(AO, —1)|) — @ HAT (k) ® HY e (ki —1) —— k=
— H{( 20, —1)|2) — @ H(Tp(—k:i—2)) @ H(Tp(—k/—1)) — 0

is exact.

Assume that H'(_#(0, —1)|,)=0. Then we have that HXZ» (—k/—
1))=0 for every ¢ by the above sequence. Thus k;’=0. It implies that
k=0 for every ¢ since > k=0 by assumption ¢,(_#)=0. Note that
now @, H(Z (k' —1))=0 and that 7 is surjective. It implies that %=0.
Thus we know that k;=0 for every 7 since > k;=0 by assumption
¢.(#)=0. Therefore _# |, and _#|,, are trivial. By Lemma 3.3, _#,
is trivial.

Conversely assume that _# |, is trivial. Then, k;=k’=0 for every
1. By the above sequence we obtain that H 1(./»?(O, —-1)|.)=0. Q.E.D.
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(B) By the Serre’s theorem of ample line bundles, there exists an
exact sequence

0— % — @ P~y —r—1) — A0, ~1)— 0

with 7,=20. By (A) the set J is Zariski-closed and x,¢J. ByAthe base
change theorem, we have a non-empty Zariski open set U,c X—J such
that for every point z¢ U,

8 B* (0, —1)Qk(x)=HB* 4 (0, —1)|4-1(s))
= HY(Z(—1))"=0 .

It follows that &,5*_# (0, —1)=0 since it .is torsion-free and zero on U,.
Thus we obtain the exact sequence

3.1) 0— RA % — @D R'AB*Pe(—1,, —1i—1) —> L — 0
with &2=R@&,8*. 20, —1).
LEMMA 8.4. R'&,B*Zx—r, —r—1) (r=0) is a locally ffee sheaf on X.

Proor. Recall that @ is flat. Thus by the base change theorem,
the function z — X(B*Z(— —r, —r—1)|a-1) X() denotes the Euler-Poincaré
characteristic.) is constant.

On the other hand, we have @*&’F(—r, —r—1) |4-1(y = Pp-1((— D,) for
some non-zero effective divisor D, on @X(z). It follows that A%B*Zp(—r,
—7—1)|4-10)) =R p-1,(— D,)) =0.

Thus the function

& — B(B*Po(—1, =1 —1) lim10) = —AB* e~ 1, —7—1) |e-1(0)
is constant. Applying the base change theorem again, we obtain our
lemma. . | : : Q.E.D.
LEMMA 3.5. R'Q,5*%  is locally free.

Proor. By the same argument as in Lemma 3.4, we have only to
show that h°(B*W|a—1m) 0 for every ze X. Now since 0— B*H |g-15y —
@B*ﬁy( ry —7;—1)|s-1,, iS exact, the sequence 0— HY(B*¥~ la=1)) —
D HY(B*P—r, —r—1) le-1) is exact. We have shown that the right-
hand term of this sequence is zero in the proof of Lemma 3.4. Thus
we obtain the desired result. Q.E.D.

By Lemmas 3.4 and 3.5, we know that )\ in the sequence (8.1) is a
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homomorphism between vector bundles. Since .~ is a torsion sheaf by
(A), the source and the target of A have the same rank. Therefore the
0-th Fitting ideal of & is generated by the determinant of the square
matrix representing A and thus it is locally principal. It implies the
former half of (B). The latter half will be taken up after (C).

(C) The following theorem is well-known (Borel, Serre [2]).

THE GROTHENDIECK-RIEMANN-ROCH THEOREM 38.6. Let Z and W be
smooth projective varieties. Let f: Z—W be a proper morphism. Con-
sider the following diagram:

KZ) -2 47

| . |+

KW)— A'W .
Then, we have that for any coherent sheaf & over Z
Su(ch (2) td (2))=23. (—1)'ch (R'f,. ) td (W) .

We would like to apply this theorem to our sitgation. -

Note that we can write that for Todd classes td (I")=&* td (X)-t with
t=1+¢,+t,+---, t,e AT, since the part of degree 0 of the Todd class
is 1.

PROPOSITION 3.7. For any vector bundle S# over F with r=rank &2,
we have that

&u{rt,+ Bre(B) i+ LB () 202N}
| =c(R°AB* B)—c(R&AB*P) .
PrOOF. By Theorem 3.6 and by the above remark we have

@.(B* ch (2)-t)-td (X)=@&,(B* ch (<2)-a* td (X)-t)
=&,(B* ch (=2)-td ()
=(ch (R'&,8*#)—ch (R'&,B*®)) td (X)

since & has 1-dimensional fibre everywhere. It implies that
&.(8* ch (2)-t)=ch (R'&@,8*#)—ch (R'Q,B*?)

since td (X) is invertible. It is easy to deduce the desired equality from
the above one, since
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ch (.%)='r+cl(%)+%—(c,(%)’—20'2(.%))+ e Q.E.D.

Set #=_#(0, —1). By our assumption ¢,(_#)=0, we have

1 m(m—1) .\, ...
o(@)=1 m7+(c,(/l)+ 2 7)+

with Y=¢,(7%(0, 1)). Thus it is easy to show that

Mty + B0 )+ B (e ) 20/ ) = m( ZA — 1,9 +1,) = Bro )

with ?=8*(7).
Since we have seen that R°@.B*_#(0, —1)=0 in the proof of (B),
Proposition 3.7 implies that

(%) &*E*cz(/)—m&*(—;-‘?z——tl-'?+tz)=cl(R‘&*§*./l(0, ~1)).

Therefore our desired equality (C) follows from the next two lemmas.
Q.E.D.
Lewua 38 a*(—lz—? —t,- ?+t2>=0 .

PROOF. Set _# =". Obviously ¢,(#)=0 and J=¢ in this case.
Thus it follows from (A) that R'@.3*_#(0, —1)=0. The above equality
(*) implies our lemma. Q.E.D.

Let J be the variety defined by the O0-th Fitting ideal of
R'&,.B*_#(0, —1).

LeEMMA 3.9. [J1=c(RA.B* #(0, —1)) .
ProoF. By the proof of (B), we have an exact sequence
0— w2 7, — 2 — 0

where %7, and %7, are vector bundles over X with the same rank w
and < =R@a.B* #(0, —1). J is the zero-locus of the induced element
A°n€ Hom (4* %7, A*%#,). By Lemma 1.4, we have that

[J]=c(Fr (A" %, A* D))= ) —e # D) =c(&) . QE.D.

Finally we verify the latter half of (B). Set X’=X—4. Note that
every point € X’ has a neighbourhood x€ Uc X’ such that
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Then we have that
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3*&}(0 l)la—lw) *ﬁp( 1 0) la—lw)

R'a,.p*.#(0, ~Dl=Ra,8* £ (-1, 0)lu

Thus Fitting ideals @ and @' have to coincide over X’. Let J (resp. J')
be the divisor defined by Q (resp. Q). Only the multiplicity of the
component 4 in J and J’ may be different. However, by the proof of (B),

[J]=[J']=&.B%c(#) .

Thus they have to coincide. ' Q.E.D.
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