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On Homeomorphisms with Pseudo-Orbit
Tracing Property
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Let $ f:x_{\epsilon}\Rightarrow$ be a homeomorphism of a compact metric space onto
itself and $\Omega$ be the non-wandering set of $f$. The following is a main
result of this paper.

THEOREA 1. If (X, f) has the pseudo-orbit tracing property, then so
does $(\Omega, f)$ .

This is a problem proposed by A. Morimoto [5].
Let $d$ be a metric function of $X$. A sequence of points $\{x_{i}\}_{te(a.b)}$

$(-\infty\leqq a<b\leqq\infty)$ is called a $\delta$-pseudo-orbit (abbrev. $p.0.$ ) of $f$ if $d(f(x_{i})$ ,
$ x_{t+1})<\delta$ for $i\in(a, b-1)$ . A sequence $\{x_{i}\}_{ie(a,b)}$ is called to be $\epsilon$-traced by
$x\in X$ if $ d(f^{l}(x), x_{i})<\epsilon$ holds for $i\in(a, b)$ . We say that (X, f) has the
pseudo-orbit tracing property (abbrev. P.0.T.P.) if for every $\epsilon>0$ there
is $\delta>0$ such that every $\delta- p.0$ . of $f$ can be e-traced by some point $x\in X$.
Given $x,$ $y\in X$ and $\alpha>0,$ $x$ is $\alpha$-related to $y$ (written $x\alpha\sim y$) if there are
$\alpha$-pseudo-orbits of $f$ such that $x_{0}=x,$ $x_{1},$ $\cdots,$ $x_{k}=y$ and $y_{0}=y,$ $y_{1},$ $\cdots,$ $y_{l}=x$ .
If $ x\sim y\alpha$ for every $\alpha>0$ , then $x$ is related to $y$ (written $x\sim y$). The chain
recurrent set of $f,$ $R$ is $\{x\in X:x\sim x\}$ . ‘

Recall that $\Omega=\{x\in X$: for every neighborhood $U$ of $x,$ $ f^{n}(U)\cap U\neq\emptyset$

for some $n\geqq 1$ }. Clearly $\Omega\subset R$ and both sets are $f$-invariant and closed
(a set $E$ will be called $f$-invariant when $f(E)=E$). Assume that (X, f)
has the P.0.T.P., then $\Omega=R$ . For, if $x\in R$ then for every $\alpha>0$ there
is $\alpha’>0$ with property of the P.0.T.P.; i.e., for every $\alpha^{\prime}- p.0$ . $\{x_{i}\}$ such
that $x_{0}=x,$ $x_{1},$ $\cdots,$ $x_{k}=x$ , there is $y\in X$ with $d(f^{i}(y), x_{i})<\alpha(0\leqq i\leqq k)$ .
Hence $ U_{\alpha}(x)\cap f^{-k}(U_{\alpha}(x))\neq\emptyset$ where $U_{\alpha}(x)=\{y\in X:d(x, y)<\alpha\}$ , and so $ x\in\Omega$ .

We proceed with a sequence of lemmas leading to the proof of
Theorem 1. For the following (L. 1), (L. 2) and (L. 3), it is assumed
that (X, f) has the P.0.T.P.. Denote by per $(f)$ the set of all periodic
points of $f$.
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(L. 1) For $\alpha>0$ , every $ x\in\Omega$ is $\alpha$-related to $f(x)$ .
PROOF. If $ x\in$ per $(f)$ then the statement is true. For the case $ x\not\in$

per $(f)$ , take $\gamma$ with $ 0<\gamma<\alpha$ such that $ d(z, x)<\gamma$ implies max $\{d(f(z), f(x))$ ,
$d(f^{2}(z), f^{2}(x))\}<a$ . Since $ x\in\Omega$ , there is $l\geqq 3$ with $ f^{-l}(U_{\gamma}(x))\cap U_{\gamma}(x)\neq\emptyset$ ,
and so $f^{1}(z)\in U_{\gamma}(x)$ for some $z\in U_{\gamma}(x)$ . Hence $\{f(x), f^{2}(z), \cdots, f^{l-1}(z), x\}$

is an $\alpha- p.0.$ .
(L. 2) Let $\alpha>0$ and $\{x^{i}\}_{i\geq 1}\subset\Omega$ be a sequence with $\lim_{\rightarrow\infty}x‘=x^{0}$ . If

$x^{i\alpha+1}\sim x$ for $i\geqq 1$ , then $ x\sim x^{0}\alpha$ for all $i\geqq 1$ .
PROOF. Let $J>0$ be an integer such that $d(x^{j}, x^{0})<\alpha/2$ for all $j>J$.

Since $ R=\Omega$ , we can construct $\alpha$-pseudo-orbits from $x^{J}$ to $x^{0}$ and from $x^{0}$

to $x^{J}$ , respectively. Therefore we have $ x^{J}\sim x^{0}\alpha$

Take and fix $\epsilon>0$ . Let $\delta=\delta(\epsilon)>0$ be the number with property of
the P.0.T.P.. Then we can split $\Omega$ into equivalence classes $A_{\lambda}$ under the
$\delta$-relation; i.e., $\Omega=\bigcup_{\lambda}A_{\lambda}$ . Each $A_{\lambda}$ is $f$-invariant and closed (by (L. 1)
and (L. 2)). From the following (L. 3), it follows that $\{A_{\lambda}\}$ is finite; i.e.
$\Omega=\bigcup_{1}^{k}A_{\ell}$ .

(L. 3) Each $A_{\lambda}$ is open in $\Omega$ .
PROOF. Take $x\in A_{\lambda}$ . For every $y\in A_{\lambda}$ there is in $\Omega$ a $\delta- p.0$ . $\{x_{0}=$

$x,$ $x_{1},$ $\cdots,$ $x_{p}=y$ }. We write $U_{\alpha}(x)=\{z\in\Omega:d(z, x)<\alpha\}$ . Choose 7 with $0<$

$\gamma<\delta/3$ such that $f(U_{\gamma}(x_{0}))\subset U_{\delta}(x_{1})$ . Then for every $x_{0}^{\prime}\in U_{\gamma}(x_{0}),$ $\{x_{0}^{\prime}, x_{1}, \cdots, x_{p}\}$

is a $\delta- p.0$ . in $\Omega$ . On the other hand, let $\{y_{0}=y, y_{1}, \cdots, y_{l}=x\}=p$ be a $\delta- p.0$.
in $\Omega$ . If $ f(y_{l-1})\in\overline{U_{\gamma}(x_{0})}\cap\Omega$ ( $\overline{E}$ means the closure of $E$), then $(p\backslash \{y_{l}\})\cup\{x_{0}^{\prime}\}=$

$\{y_{0}, y_{1}, \cdots, y_{l-1}, x_{0}^{\prime}\}$ is a $\delta- p.0$ . since $ d(f(y_{l-1}), x_{0}^{\prime})\leqq 2\gamma<\delta$ , and hence $y\sim^{\delta}x_{0}^{\prime}$ . If
$ f(y_{l-1})\not\in\overline{U_{r}(x_{0}})\cap\Omega$ , then there is $ze\overline{U_{\gamma}(x_{0}}$) $\cap\Omega$ with $d(f(y_{l-1}),\overline{U_{\gamma}(x_{0})}\cap\Omega)=$

$ d(f(y_{l-1}), z)<\delta$ . And so $ d(x_{0}^{\prime}, z)\leqq 2\gamma$ . Since $z\in\Omega=R$ , we have $z\sim z;i.e.$ ,
there is a $\gamma- p.0$ . $\{z_{0}=z, z_{1}, \cdots, z_{\iota+1}=z\}$ in $\Omega$ . Since $d(f(z_{b}), x_{0}^{\prime})\leqq d(f(z_{b}), z)+$

$ d(z, x_{0}^{\prime})\leqq 3\gamma<\delta$ , the sequence $(P\backslash \{y_{l}\})\cup\{z_{0}, \cdots, z_{b}, x_{0}^{\prime}\}(=\{y_{0}, \cdots, y_{l-1},z_{0}, \cdots, x_{0}^{\prime}\})$

is a $\delta-p.0$ . from $y_{0}$ to $x_{0}^{\prime}$ . Therefore $x_{0}^{\prime}\in A_{\lambda}$ and so $U_{\gamma}(x_{0})\subset A_{\lambda}$ .
PROOF OF THEOREM 1. Let $\epsilon$ and $\delta$ be as above. Since each $A_{i}$ is

open and closed, we have $d(A_{i}, A_{\dot{f}})=\inf\{d(a, b):a\in A_{i}, b\in A_{j}\}>0$ if $i\neq j$ .
Put $\delta_{1}=\min\{d(A, A_{j}):i\neq j\}$ . For $\alpha$ with $0<\alpha<\min\{\delta, \delta_{1}\}$ , let $\{x_{i}\}$ be an
$\alpha- p.0$ . in $\Omega$ . It will be enough to prove that a $\epsilon$-tracing point of $\{x_{i}\}$ is
chosen in $\Omega$ . By using (L. 1) we see that $\{x_{i}\}$ is contained in some $A_{j}$ .
Take $x_{a},$ $x_{b}\in\{x_{i}\}(a<b)$ . Then we get $x_{a}\sim^{\delta}x_{b}$ , so that there are $k_{1},$ $k_{2}>0$

and a $(k_{1}+k_{2})$-cyclic $\delta- p.0$ . $\{z_{i}\}_{iez}$ such that $x_{a}=z_{(k_{1}+k_{2})}$ and $x_{b}=z_{k_{1}+tk_{1}+k_{2})}$

for all $i\in Z$. Put $k=k_{1}+k_{2}$ . Since (X, f) has the P.0.T.P., there is $y_{a,b}\in X$
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such that $ d(f^{i}(y_{ab}), z_{i})<\epsilon$ for $i\in Z$ and so $d(f^{k+j}(y_{a,b}), z_{j})<\epsilon(i\in Z, 0\leqq j<k)$ .
If $D=\overline{\{f^{kl}(y_{a.b}):i\in Z\}}$ is discrete, then there is $l>0$ such that $f^{\iota}(y_{a,b})=$

$y_{a,b}$ . Hence $ y_{a.b}\in\Omega$ . If $D$ is not discrete, then there is a subsequence
$\{f^{k^{\prime}}(y_{a,b})\}$ with $f^{k\ell^{\prime}}(y_{a,b})\rightarrow y_{a,b}^{\prime}\in X$ as $ i^{\prime}\rightarrow\infty$ . Obviously $ d(y_{a,b}^{\prime}, x_{a})\leqq\epsilon$ and
$ d(f^{j}(y_{a,b}^{\prime}), z_{j})\leqq\epsilon$ for $j\in Z$. We shall see that $ y_{a,b}^{\prime}\in\Omega$ . For $\alpha^{\prime}>0$ , we can
take $J>0$ such that $ d(f^{kj^{\prime}}(y_{a,b}), y_{a,b}^{\prime})<\alpha$ and $d(f^{kj^{\prime}+1}(y_{a,b}), f(y_{a,b}^{\prime}))<\alpha^{\prime}$ for
$j’>J$. From this we see that $y_{a,b}\sim y_{a,b}^{\prime}\alpha^{\prime}$ for $\alpha^{\prime}>0$ . Hence $ y_{a,b}^{\prime}\in R=\Omega$

(since $\alpha^{\prime}$ is arbitrary). If a subsequence of $\{y_{a,b}^{\prime}\}$ converges to $y$ as
$ a\rightarrow-\infty$ and $ b\rightarrow\infty$ , then $ y\in\Omega$ and $ d(f^{i}(y), x_{t})\leqq\epsilon$ for $i:i.e$ . $(\Omega, f)$ has
the P.O.T.P..

COROLLARY 1. If $(\Omega, f)$ has the P.0.T.P., then there exists a f-
invariant probability Borel measure which is positive on all nonempty
open sets of $\Omega$ .

PROOF. For $\epsilon>0$ , let $\delta>0$ be the number with property of the
P.0.T.P.. Put $U_{\delta}(x)=\{y\in\Omega:d(y, x)<\delta\}$ for $ x\in\Omega$ . Then there are $n_{0}>0$

and $ z\in\Omega$ with $z,$ $f^{n_{0}}(z)\in U_{\delta}(x)$ . Define a sequence $\{z_{i}\}_{iez}$ by $z_{k+i}=f^{i}(z)$

$(k\in Z, 0\leqq i\leqq n_{0}-1)$ . Obviously $\{z_{i}\}$ is a $\delta- p.0.$ . Since $(\Omega, f)$ has the P.0.T.P.,
$d(f^{j}(y), z_{j})<\epsilon(j\in Z)$ for some $ y\in\Omega$ . Put $\mu_{m}=\sum_{\dot{g}=0}^{m-1}\delta(f^{j}y)/m$ for $m\geqq 1$

( $\delta(x)$ denotes the measure with support $\{x\}$). Then $\mu_{m}(U_{\epsilon}(x))\geqq 1/n_{0}$ . Since
the set of all probability Borel measures is a compact metric space with
respect to the weak topology (cf. see p. 10, [3]), a subsequence of $\{\mu_{m}\}$

converges to some $f$-invariant measure $\mu$ , and clearly $\mu(U_{e}(x))\geqq 1/n_{0}$ .
Assume that $(\Omega, f)$ is expansive. If $\epsilon>0$ and $ x\in\Omega$ , let $W_{\text{\’{e}}}^{\epsilon}(x),$ $W_{e}^{u}(x)$

be the local stable and unstable sets defined by

$W_{\epsilon}^{\epsilon}(x)=\{y\in\Omega:d(f^{n}(x), f^{n}(y))\leqq\epsilon, n\geqq 0\}$ ,
$W_{\epsilon}^{u}(x)=\{y\in\Omega:d(f^{-n}(x), f^{-n}(y))\leqq\epsilon, n\geqq 0\}$ .

Let $e>0$ be an expansive constant for $f$ and fix $0<\epsilon<e/2$ . Now define
the stable and unstable sets $W^{*}(x),$ $W^{u}(x)$ as

$W^{*}(x)=\bigcup_{n\geq 0}f^{n}W_{\epsilon}^{\epsilon}(f^{n}x)$ , $W^{u}(x)=\bigcup_{n\geq 0}f^{-n}W_{\epsilon}^{u}(f^{-n}x)$ .

It is known (Lemma 1, [4]) that for all $r>0$ there is $N>0$ such that
$f^{n}W_{\epsilon}(x)\subset W_{r}^{l}(f^{n}x)$ and $f^{-n}W_{\epsilon}^{u}(x)\subset W_{r}^{u}(f^{-n}x)$ for all $x\in X$ and $n\geqq N$. From
this we have

$W(x)=\{y\in\Omega:\lim_{\rightarrow\infty}d(f^{n}(x), f^{n}(y))=0\}$ ,

$W^{u}(x)=\{y\in\Omega:\lim_{n\rightarrow\infty}d(f^{-n}(x), f^{-n}(y))=0\}$ .
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If $(\Omega, f)$ has the P.0.T.P., then $\Omega$ splits into the equivalence classes $B_{\lambda}$

under the relation $\sim$ . Each $B_{\lambda}$ is closed and $f$-invariant (by (L. 1) and
(L. 2)), and $\Omega=\bigcup_{\lambda}B_{\lambda}$ . We now have:

THEOREA 2 (Smale’s Spectral Decomposition). If $(\Omega, f)$ is expansive
and has the P.0.T.P., then $\Omega$ contains a finite sequence $B_{i}(1\leqq i\leqq k)$ of
f-invariant closed subsets such that $(B_{i}, f)$ is topologically transitive and
$\Omega=\bigcup_{1}^{k}B_{i}$ .

Theorem 2 is obtained by the following (L. 4) and (L. 5). In the
rest we assume that $(\Omega, f)$ is expansive and has the P.0.T.P.. It is clear
that $\overline{per(f)}=\Omega$ .

(L. 4) Each $B_{\lambda}$ is open in $\Omega$ .

PROOF. As before define $U_{\delta}(B_{\lambda})=\{y\in\Omega:d(y, B_{\lambda})<\delta\}$ where $\delta$ is the
number with property of the P.0.T.P.. Then for $p\in U_{\delta}(B_{\lambda})\cap per(f)$ there
is $y\in B_{\lambda}$ such that $ d(y, p)<\delta$ . Since $(\Omega, f)$ has the P.0.T.P., we get
$ W^{u}(p)\cap W^{s}(y)\neq\emptyset$ and $ W(p)\cap W^{u}(y)\neq\emptyset$ . Therefore there is $y_{0}\in B_{\lambda}$ with
$y_{0}\sim p$;i.e. $p\in B_{\lambda}$ . And so $B_{\lambda}\supset\overline{U_{\delta}(B_{\lambda})\cap per(f)}\supset U_{\delta}(B_{\lambda})\cap\overline{per(f)}=U_{\delta}(B_{\lambda})$ .

By compactness and (L. 4), $\Omega$ is expressed as a union of a finite set
of $\{B_{\lambda}\};i.e$ . $\Omega=\bigcup_{1}^{k}B_{i}$ .

(L. 5) Each $(B_{i}, f)$ is topologically transitive.

PROOF. Since $B_{i}$ is open in $\Omega$ by (L. 4), $(B_{i}, f)$ has the P.0.T.P..
Let $U$ and $V$ be nonempty open sets in $B_{i}$ . Since $x\sim y$ for $x\in U$ and
$y\in V$ , we can always find in $B_{i}$ a tracing point for a p.o. from $x$ to $y$ ;
i.e. $ U\cap f^{l}(V)\neq\emptyset$ for some $l>0$ .

THEOREM 3 (Bowen’s Decomposition). Under the assumptions and
the notations of Theorem 2, for $1\leqq i\leqq k$ there exists a subset $X_{p}$ of $B_{i}$ and
$a>0$ such that $f^{a}(X_{p})=X_{p},$ $X_{p}\cap f^{j}(X_{p})=\emptyset(0<j<a),$ $(X_{p}, f^{a})$ is topolo-
gically mixing and $B_{i}=\bigcup_{0}^{a-1}f^{j}(X_{p})$ .

This theorem is conducted by the following known lemmas.

(L. 6) Define $X_{p}=\overline{W^{u}(p)\cap B_{i}}$ for $p\in B_{i}\cap per(f)$ , then $X_{p}$ is open in $B_{i}$ .

PROOF. Let $m$ be a period of $p(f^{n}(p)=p)$ and put $U_{\delta}(X_{p})=\{y\in B_{i}$ :
$d(y, X_{p})<\delta\}$ ( $\delta>0$ is the number chosen as above). For $ q\in U_{\delta}(X_{p})\cap$ per $(f)$

($f^{n}(q)=q$ for some $n>0$), we can find $x\in W^{u}(p)\cap B_{i}$ with $ d(q, x)<\delta$ . Since
$(B_{i}, f)$ has the P.0.T.P., there is $x$

’ such that $x^{\prime}\in W(q)\cap W^{u}(x)\cap B_{i}$ .
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Since $W^{u}(x)=W^{u}(p)$ , $f^{kmn}(x’)\in f^{knn}W^{u}(p)=W^{u}(p)$ for every $k>0$ . On
the other hand, $d(f^{knn}(x), f^{kmn}(q))=d(f^{kmn}(x^{\prime}), q)\rightarrow 0(k\rightarrow\infty)$ . Therefore
$q\in\overline{W^{u}(p)\cap B_{i}}=X_{p};i.e$ . $U_{\delta}(X_{p})=X_{p}$ .

Since $f(X_{p})=X_{f(p)}$ , obviously $f^{m}(X_{p})=X_{p}$ so that there is $a>0$ with
$a\leqq m$ such that $f^{a}(X_{p})=X_{p}$ . Since $(B_{i}, f)$ is topologically transitive, we
have $B_{t}=X_{p}\cup f(X_{p})\cup\cdots\cup f^{a-1}(X_{p})$ .

(L. 7) $X_{p}=X_{q}$ for $q\in X_{p}\cap per(f)$ .
PROOF. As we saw in the proof of (L. 6), $U_{\delta}(X_{p})=X_{p}$ and so $W_{\delta}^{u}(q)\subset X_{p}$ .

As before let $m$ and $n$ be periods of $p$ and $q$ , respectively. Then we
claim that $W^{u}(q)=\bigcup_{j\geqq 0}f^{nmj}W_{\delta}^{u}(q)$ . So $X_{q}\subset X_{p}$ . To get the conclusion,
assume $p\not\in X_{q}$ . Then we get $0<d(K, X_{q})$ where $K=X_{p}\backslash X_{q}$ . Since $q\in X_{p}=$

$\overline{W^{u}(p)\cap B}_{i}$ , there is $z\in W^{u}(p)\cap B_{i}$ with $d(z, q)<d(K, X_{q})$ . Clearly $z\in X_{q}$ .
On the other hand, $d(f^{-nmj}(z), p)=d(f^{-nmj}(z), f^{-nmj}(p))\rightarrow 0(j\rightarrow\infty)$ , so
that $f^{-nmj}(z)\not\in X_{q}$ for sufficiently large $j$ . We get that $z\not\in f^{nmj}(X_{q})=X_{q}$ ,
which is a contradiction.

(L. 8) $(X_{p}, f^{a})$ is topologically mixing.

PROOF. Let $U,$ $V$ be nonempty open subsets of $X_{p}$ . Since $X_{p}=X_{p^{\prime}}$

for all $p^{\prime}\in X_{p}\cap per(f)$ , for $p’\in V\cap per(f)$ we have $ U\cap W^{u}(f^{aj}p^{\prime})\neq\emptyset$ for
$i\in Z$. Now let $l>0$ be a period of $p^{\prime}$ . Then for $0\leqq j\leqq l-1$ there is
$z_{j}\in U\cap W^{u}(f^{aj}p^{\prime})$ , so that $f^{-alt}(z_{j})\rightarrow f^{aj}(p’)$ as $ t\rightarrow\infty$ . Obviously $ f^{aj}(p’)\in$

$f^{aj}(V)$ . Fix $j$ with $0\leqq j\leqq l-1$ . Then there is $N_{j}>0$ such that for every
$t\geqq N_{j},$ $f^{-alt}(z_{j})\in f^{aj}(V)$ . Put $N=\max\{N_{j}:0\leqq j\leqq l-1\}$ . For every $t\geqq N$,
we get $t=ls+j$ . If $s\geqq N$ then $f^{-at}(z_{j})=f^{-al\cdot-aj}(z_{j})\in V$. Since $z_{j}\in U$,
$ f^{at}(V)\cap U\neq\emptyset$ for $t\geqq lN$.

As an easy conclusion we have

COROLLARY 2. If $(\Omega, f)$ is topologically transitive and if there is
$ p\in$ per $(f)$ with $f(p)=p$ , then $(\Omega, f)$ is topologically mixing.
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