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We can easily extend Theorem 2 of [1] to the following theorem.
All results in [1] which follow from Theorem 2 are extended consequently.
We will use the same notations as in [1].

THEOREM. Suppose that | is an odd prime and a (# +1) is a rational
integer without l-th power factor such that a'*=1mod 2. Then Q¢ ¥ a)/
Q) has always a normal integral basis.

Proor. Let g be a primitive root modl 2=<g=<!—1). Then, for any
7 (0=75=0—1), there is some integer ¢; such that g°=a'"'-b, mod!. Here
we may put ¢,=0, because of our hypothesis. Let p be a unique prime
ideal lying above I in Q) and e=({*—1)/({—1), which is a unit of Q).
We put u;=(—1)'"""Je%i (0=5j=<l—1). Since ¢é=g mod p, we have g=g'=
gmod!. Consequently, for any ¢ (0=i=<1—1),

1—1 —1 -1 [ 1—1
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=0\ 4

=((*—1)"'=0mod .

Hence, by Theorem 2 in [1], (1/1)3}iz} €'*i( 4/ @ #/b,) is a generator of normal
integral basis. This proves our theorem.
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