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Introduction

The irreducible representations of the Weyl group of type C,, which
we denote by W(C,), is well known. They are constructed for example
using the fact that W(C,) is the semi direct product of the symmetric
group &, and an elementary abelian group of even order (cf. [1]). In
this paper we take another approach. We use quite similar technique
to construct irreducible representations to that of the symmetric group
as in [2]. That is, our approach is to use two disjoint subgroups
(horizontal and vertical) and their linear characters (Theorem 2). The
irreducible characters are then also constructed explicitly using Schur
function (Theorem 8). From this construction we deduce the analogue
of Nakayama’s formula for W(C,) to calculate the character value using
Young diagram (Theorem 9). We also construct multiplicity formula in
the induced representation of linear character of subgroup of type W,=
S, X+ X, X W(Cp) X ++-x W(C,) (Theorem 7). As an application we
determine the I-set of W-graph corresponding to the irreducible represen-
tation of W(C,) (Theorem 11). This application seems to show some
significance of our method.

§1. The construction of irreducible representations.

1.1 Let W= W(C,) be the Weyl group of type C,. To begin with,
we realize W as a subgroup of ©,, the symmetric group on the set Q
where 2={1,2, ..., n, —n, +++, —2, —1} as follows:

W={x e S,lew,=w,x}

where w,=(1, —1)(2, —2).. ‘(n, —m)eS,. For x in W, we decompose 2z
into cyclic permutations as an element of S,. Then we get two kinds
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of cycles in x:

(i) even eycle (a, a,, -, @,) la,]#la;] if 17,

(li) odd cyle (a'v Qgy ** %y Ayy —Qyy — gy **°y _ar)'
If an even cycle (a, @, -, @,) appears in x, then even cycle, “the minus
of (@, @z ***,a,)”, (—a, —a,, *++, —a,) also appears in x since xw,=w,.

Let a, be the number of even-cycle-pairs of length 7 of z, and B;
be the number of odd cycles of length 25 of . Then we define (a; B).
or simply (a; B) by

(a; B):(lal’ 2"‘2’ cees 1#1’ 252’ .o .)

and call it the cycle type of z. Then one has obviously from the
definition

LEMMA 1. For z, y in W, x 18 W-conjugate to y if and only if =
and y have the same cycle type.

PrOOF. Easy.
Therefore

PROPOSITION 1. The number of conjugacy classes in W is

S, p(r)-p(n—r)

0srsn
where p(r) is the number of partitions of 7.

PROOF. Similar as in the case of &,.

NOTATIONS.
P.={(n, ¢£) | » and g are partitions and [\|+|gl=n},

D, is a Young diagram of type \
9,={D=(D, D,) | D, is a Young diagram of type u;,
o, ) e &,

B, is a Young tableau of type A\
B, is a Young tableau of type g
BTabz={B=(B,, B, | \, &) € &, - .
and their entries are 1 to n up
to sign
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e.g. if D=(

L ‘), then BTab consists of the following pairs.

=1 (=3 I), ( g |3 '-1'), ete.

(_; 21’ |4I5|)’(——5

S e

]

We define the action of W on BTab* as follows. For B=(B, B,) in
BTaby and z in W, xB=(B], B;) where B, and B are the same type and
B.(i, j)==-B,(, §), r=1,2. For B=(B, B,) in BTab:, we define B by
B=('B,,'B) in BTab; where ‘B, is the transpose of B,, r=1,2. Then
we define .o, @w; for a given B as follows. Let B=(B, B,), where
type of B, is =(\, -+, \,), type of B, is =y *++, th). Let &7 be the
subgroup of W whose elements permute entries of i-th row of B, and
stabilize other part. Let &u; be the subgroup of W which is generated
by the permutation of entries in the j-th row of B, and transpositions
(k, —k), k is in the j-th row of B,. We define a subgroup Wz of W by

W=7, X« e X O X B X o2+ XEGpCW

which is isomorphic to 631 X oo XSG X W(Cu) X ++- X W(C,,). We call Wy
the horizontal permutation subgroup associated to B, and W3 the vertical
permutation subgroup associated to B.

1.2 To construct irreducible representations of W, we use following

THEOREM 1 (c.f. [2; Th. 1.23, 1.24]). Let G be a finite group and
H,, H, be two subgroups of G. @, is a linear character of H, over C i=
1, 2. R=CI[G] the group ring of G

1
hheR
H) hez;.{i%( )h €

4;=Re, the left ideal of R generated by e,. Suppose H,NH,={1}. Then

{4 4rr=dim Hom, (4, 4)=1

‘t=

of and only if

(1.1) Jor each o in G—H,H, there exists y in H,No'H,c such that
P:(y) =P, (oyo™) .

In this case the common minimal left ideal in 4 and 4 18 Re.e, (= Re,e,).
N.B. 4=Ind%, #7* as R-modules.

We now define four linear characters 1, ¢, 7, ¢ of W. First of all
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we express W as a semi-direct product. Let H={(g, ***, 0, and N=
{z,, -+, T.> be the two subgroups of W, where g,=(1, i+1)(—1%, —(i+1))
and 7;=(j, —j). Then N is a normal subgroup and W=HxN. We
define 1, ¢, 7, & as

1(o)=1(z)=1, elo)=¢(t)=—1,
po)=—1, 7(z;)=1, glo)=1, ¢&r)=-1.

We use the same notations as the restrictions of them to the subgroup
W,. Now we can state the main theorems in this note.

THEOREM 2. For B in BTabf, we have

1. {Ind%,1, Indyze)z=1. We write the common irreducible component
as p.

2. (Indy, ¢ Indyz7==1. We write the common irreducible com-
ponent as .

8. t,=/Q¢ and 7 and Yz are realizable over Q.

THEOREM 3. For Band B’ in BTab%, the following three conditions
are equivalent.

a) The shape of B is equal to the shape of B’.

b) =< as R-modules.

c) t,=!; as R-modules.

From Theorem 8 and Proposition 1 every irreducible representation
of W appears in {lz}secnras: and the shapes of B parametrize the equi-
valence classes.

1.3 To prove Theorem 2, we use

LEMMA 2. For B in BTab: and g in W, we have

1. gWBg—1= WnB'

2. Wyn Wz={1}.

3. ge WyWs if and only if WyNgWsg~'={1}.

4. If ge W—WyWs, then WzNgWsg™ has an element of the form
(%, —1) or (a, b)(—a, —Db).
This lemma can be shown in a quite similar way to [2; Lemma 2.1, 2.2].

PROOF OF THEOREM 2. We apply Theorem 1 for (H, @,)=(Ws, 1)
and (H,, @,)=(Ws, ¢). As (i, —1)=rt; and (a, b)(—a, —b) is conjugate to
g;, the condition (1.1) is satisfied by Lemma 2.4. 2. is also proved by
setting (H,, @.)=(Wj, &) and (H,, ®,)=(W3, ). 3. is clear by construction.

1.4 To prove Theorem 3, we use
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LEMMA 8 (c.f. [2; Th. 1.22])). G is a finite group and H; a subgroup
of G for i=1,2. o, is a linear character of H; over C, and /,=Re,,
e;=(1/|H,|) Zpen, Pi(R)h for i=1, 2 where R=C[G] is the group ring. Then

s 4> r=4{double coset H,oH,|Vy € H,N 67 H,0—@,(y) = p,(cyo")} .

PROOF OF THEOREM 3. If B and B’ have the same shape, then
there exists g in W such that B’=gB, therefore p=¢p. If the shape
of B is (\, ¢£) and the shape of B’ is ', ¢, we set

1 1
e, = , 0= gla)o ,
W .,§Ba =W ,§§ ()
’ 1 ’ 1
e, = g, o= e(o)o .
Y W ZWB Y Wy | <5 (9)

Then {(Re,, Re;) =<, 4) and {(Re,, Re.>={sp, .

Suppose (n, )=\, ). We claim one of the left side of the above
inequalities is zero. First of all, suppose n#)\'. Let k be the smallest
7 such that A, #\;. We may assume A\, >)\,. For cc W, we set B”"=¢B'.
Then the shape of B” is (\/, ). If there is a letter i both in B, and
B!’ up to multiple of +1, then (i, —4) e Wg.N W,. Otherwise the letters
in B, and B, are equal up to +1 and the same for B, and B;’. There-
fore A|=[\'| and |¢|=|¢/|, and W3.N W, is conjugate to a subgroup of
&,. In this case, there are letters a, b in the same row of B, and in
the same column of B). For if there aren’t such letters, it happens
n=N, for all ¢ and this contradicts the condition >N, Then
(@, b)(—a, —b) is in Wz, N W,. As WeNo*Weo=0"(Wz.N Wz)o we get
(Re,, Re;»=0 by the Lemma 3.

In the case pu+y', we also get by the same way (Re, Re)>=0 or
(Re,, Re;)=0. Therefore the equivalence a)=b) is proved. b)=c) is clear.

S2. Explicit formula for irreducible characters.

In this section we calculate the character of irreducible representa-
tion f;.

2.1 Ind¥, 1.

LEMMA 4. G s a finite group and H is a subgroup of G. Let v
be the character of Indé 1. Then for a in G,

_1Ca)|- |HNE,|
Yy(a)= H
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where Cy(a) is the centralizer of a and Y, is the conjugacy class of a
wm G.

PROOF. See e.g. [2; Lemma 3.1}.

LEMMA 5. If a in W=WI(C,) has cycle type (a; B)=(1%2%...;
1012%...), then

.| n!

= - X On—Lai—L bj
1aq,! 272a,! - - -143,1 2.23,1 . . .

and
|ICw(a)| =1%a,! 27a,! - - -118,1 2528, ... x 2E«s*Zh5
We write N(a; 8)=|t.|.
ProoF. Similar with [2].
Take B in BTab: of shape (A, ¢). Set H=W;,. Then
2.1) H=&; X&,, X+ X W(Cp) X W)X+ .

Therefore |H|=2%# I, \!II; (#;!). There is an onto map @ according
to (2.1)

o0: HNt,— {(a;, Dij» 4:5) With condition (2.2)} .

@.;, Dy, 4i; are non negative integers for 1=1, j=mn,
(2.2) z:“ Ja =N s E;,"‘ jp"'+§;‘ JQi=1

§a¢;+§‘l D=0, Z‘lqi,:B,- .

If he HNY, and h=h.h,---hih;--- according to (2.1), then h; has cycle
type 1°u2%z and h; has cycle type (17a27«...;1%2%...). More over

1070ty Py 9= 11 Pl T N, 00
where

(Z’. jag;)!

1eag,, | 2%20q,,) - - )

Pla,)=

Therefore

lHn ta|= 7\:1! 7\:2! . "ul! #2! s Z ]_;I 1 H 2/41—2’}(p¢j+q"-)

1a1+512a2+52... (2.2) au!. ee 4 pn!...qu!... :
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Using lemma 4, 5, if we define ¥, .=Indy, 1,

! ! .
Vul@)= >, (H @y 11 B! ) X 2F;%5 .
@D\ Ayl Qplecs TPy Dl @yl Qleee

Therefore we get
THEOREM 4. For a in W= W(C,) of tyve (a; ),
II Qe +y @)« II (y*¥)e= 3, ¥, u(a)a’y”
i [ |

Al+1pl=n
tuezl

where
eV =gttt
Yy =yityi+-- 4y,
xlzxilxém . .xiﬂ. ,
Y =yiysze - Yar,

Z,. 18 the set of mon megative integers, and %, *++, Tny, Yy, ***, Yu GTE
variables.

If we set ¥ .=Ind}, ¢ then ¥, ,.=7,,.Q¢ and using £(a)=(—1)%% we get
THEOREM 5. For a in W= W(C,) of type (a; B),
II @z +y)« I (=y“)e= > T ua)xy” .
<

1A+ 181=n
n
2,#ez+

2.2 Schur function and X, ..
For a partition A=y, Ay o045 M)y M2 N+ =N, =0, we consider a
polynomial S,(x) in x,, «,, -, x, defined by

8,() = A0 +3)

40)
where
wil x{2 .« e w{n
ll. l2 PR l‘ll»
An=|" T m for I=(l, 1, -+, L)

l
xh gl e gln

and 6=(n-—-1,n—-2,.--,0).
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S;(x) is a symmetric polynomial in z, ---, , and these S;(x) form a Z-
base of the ring of symmetric polynomials with coefficient in Z when )\
runs all the partitions.

We define a class function X; ., on W= W(C,) as follows. If ¢ in W
has cycle type (a; B), then

(2.3) IT (& +y“) 1 @ —y ) =2 X3, i(@)Si(®)Su(¥) -

THEOREM 6 (Orthogonality). Let (A, t) and (w, o) be in &,. Then

1 1 if O, g)=(=, o)
== 2, Xu@)X, ()=
| W] 2 T @esla) {0 if O, )#(x, ) .

PrOOF. We set M,={AM =Ny =n,=0}. Itis known c.f. [2] that

ZZM S:(x)S;(2) = ﬁ e@ ™z (™) /m)

2.4) :
E Sﬂ(y)Sp(’u))z H e(y(m)w(m)/m) )
HeM, i1
If we Set
Xm — M Y™ — M
2 ’ 5 ,
Zm = gtm g gpm W —gm gy
then
(2.5) X im) Zim) + Y W(,,.) — g g m) +y(m)w(,,.) .

Let 6, be the n-th homogeneous part of 33; ncx, S:(®)S:(2)Su(¥)Ss(w) with
respect to # and y. Using (2.4) and (2.5) we get

8= S S, X u(@)Xeo(@)Si(@)Su®)S(2)Se(w) -

|W| a e, dew
(7,0) € F o
Therefore we have Theorem 6.

2.3 The relation between 7, and X, ,.
For a in W of cycle type (a; B),

IT @z¥ +y ) II (—y)e=2 T u(a)a’y*” ,
II(XP+ YY) [ (XY =Y)o=3 X, o(@)S(X)S,(Y) .
If we set X?=2" and Y*¥=z"%+y"*, then
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X4+ Y9=294y? and XW-Y¥W=—y9,
Therefore
2 U5ty =3 Xe oS(2)S,(, ¥)
By [4; I (5.9), (6.7)]
So(®, ¥)= 3, S2)S,(¥) ,
S:(#)S:(®) = Srue(®) |

where 7 x7 is the skew diagram as the Diagram 1, and S,.(y¥) and S...(x)
are skew Schur polynomials. More over by [4; I (5.138)]

Di1AGRAM 1

the coefficient of z* in S,.(x) is K,_. ;.
Therefore we have
THEOREM 7.

wl’l,# = Z K#:gxx,(’

n,peﬁ‘”

where

Al
Kn,g—" Z sz‘,l P/t,ﬂgo .

TCpe

K?%*#% has following properties. We define linear order > on partitions.
A pre==N =, *+, Ny = ey @DAd N>l .

We also define a linear order relation on the set <2, of pairs of parti-
tions as follows.
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|7 <[n|
(m, )=\, ) ==4or |z|]=[A| and =>\
- lor 7=\ and p=p.
ProrosIiTION 2. 1. If Ki5+0, then (A, p)=(w, o).
2. Kii=1.
3. K}i=K3i, Kut=

3

'
These are clear from the definition of K, , c.f. [4].

N. B. The formula proved in [1; Theorem III. 5] is essentially equal
to Theorem 7. The equality is proved by a combinatorial argument.

THEOREM 8. X, . is the character of t;,.

Proor. From Theorem 6 =X, . is an irreducible character. But by
Theorem 7, X,. is a real character. By definition f,, appears in 77 ,.
(¢, n) is the maximum element in 2. As X,,.=¥5.=¢ and ¥,,=¢, it
follows that X,,=1!,. Using Theorem 7 and Proposition 2 inductively
according to the linear order on &%, we get !, ,=X; .

2.4 Nakayama’s formula for W= W(C,).
Let @ in W have cycle type (a; B8). Then by definition

I & + ¢TI (x(t)__y(t))ﬁt_——_-u,mzely X;,:(a)Sx(x)S(y) .

If a,=1, let @’ be the element in W taken off an even cycle pair of
length v from a. a’ has cycle type (a’; B), where a;=«a, for 7#v and
a,=o,—1. As

wg.g X1,:(a)S;(2)S(¥) = (& +y™) W)Z Xr,0(a")S(2)S,(y) ,

n—v

we have
Xy,u(@)= Zl Xio, u(@’)+ Ztu Xan_0(@)

where v,=(0,0, ---, 2,0, ---)€ Z", v in the i-th factor, and extend X, .
for A, ¢ not partitions as in [2; Th. 3.11]. If B,=1, let a” be the
element in W taken off an odd cycle of length 2u from a. a’ has cycle
type (a; B'), where B;=p8; for i#u and B,=8,—1. We also have

X1,u(a)= ; xz_ut.#(a”) - E‘: Xan_u(a”)

where u,=(0, 0,---, %, 0,---) € Z*, w in the ¢-th factor. These correspond
to Murnaghan’s formula. Therefore we get
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THEOREM 9.

Xy, u(at; B)=F5§.‘.(2) sign (INX;_r,(a—v; B)+FGHZ@ sign (INX;,x_r(a—v; B)
= 3 sign (MX_r.«a; B—u)—reHE(m sign (INX;,x_r(a; B—u)

T'eH, Q) u

where H,(\) 13 the set of hooks of length v in » and sign(I")=(—1)" if

’'=m+1

|

e

and n—I" means the diagram taken off I" from A and packed the gap.
EXAMPLES.

Hrﬂq

)=-%p U 0 for u=2

=“%1H¢3x ()

e (. ') X (s) for v=3

—-xu,¢(¢: ) for u=2
=1.

Hn

or u=1

Using Theorem inductively we get

COROLLARY 1.

dim X, o=y (1) = I—I-j—"—l'Td( Yd(ze)

where d(\) is the dimension of the irreducible representation of &,
corresponding to the partition .

§3. The I-set of irreducible representations of W(C,).

3.1 W-graph.

For a Coxeter group (W, S), the notion of W-graph was introduced
in [8]. Consider a triple o=, I, ) where I'=(I", ') a graph with
vertex set I° and edge set I'!, I: *—<*(S) a mapping from vertex set
to the powerset of S, p: IxI°—Z a mapping from the set of ordered
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pair of vertices to the set of integers, such that
{x, y}e " if and only if either pu(x, )0 or p(y, 2)+#0 .
Let ¢ be an indeterminate and A=Z[q"% ¢~*]. For « in I we define ,
(seS) by
—x s€ I(x)
qr+g'” py, )y se¢l(x) .

sel(y)

7,(2)= 1

o is a W-graph if {z,} induce a representation of the Hecke algebra
of (W, S) over A. If we specialize ¢'* to 1, we get a representation X,
of Z[|W].

DEFINITION. We call I(x) x € I"° the I-set of p (including multiplicity).
3.2 [I-set.

THEOREM 10. I-set is determined only by the represemtation X,.
More over it can be given explicitly by {Xilw,, ly,> (J runs all the subset

of S).
N. B. W, is the subgroup of W generated by the elements in J.

ProoF. Let p=(I", I, #) be a W-graph of a Coxeter group (W, S)
and JCS. We define two numbers A,(J) and B.(J) by

A()=#{reMI(x)cJ}
B,(J)=#z e I'"|I(x)=J} .
Then I-set is determined by B,(J). But by definition
A,(J )=K§J B,(K) .

Using inversion formula, we get
B,(J)= IEJ (—1)V-KIA(K) .
Therefore it is enough to determine A,(J). Now the theorem is proved
by the following
LEMMA 6. A J)={lw;, lyw;> where J=S—J.
The above lemma follows by the fact

Koy 1) =#{w e I"|I(x)= 0} .
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3.3 Now consider the case W= W(C,). W is Coxeter group with
generator set S={s,, s;, -, s,}, where s,=(, i+1)(—1, —(i+1)) for i<n
and s,=(n, —n).

As stated in §1, 2 the irreducible representations of W are para-
metrized by the set of double partitions <#,. For (), ) in &, we define

D, is a Young tableau of shape \
D, is a Young tableau of shape p
BTab; y=4D=(D,, D,)| the entries in D, and D, are -

exactly 1 to n, D, and D, are
standard

Then it is easily proved that
#BTabz,#zﬁ-llﬁl—'d(x)d(p)=dim Xiu (c.f. Cor. 1) .

So it is natural to set I"=BTab; .

For D=(D,, D,) in BTab,,., we set
I(D)={s;|t, i+1e D, and ¢ is in the upper rows than i+1}

U{sl%, 2+1€e D, and ¢ is in the upper rows than ¢+1}
U{sjte D, and ©i+1¢€ D,}
U{Sn|neD2} ¢

THEOREM 11. I(D) De BTab, . is the I-set of X; ..

PrROOF. Using a special formula for Theorem 7, Stanley [5; Prop. 6.2]
proved by a combinatoiral argument that

{Xa,mw Indiys 1> =#{D € BTab, I(D)CJ} .
The left hand side is equal to Ay, (J), therefore the theorem follows.
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