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Introduction

Let R be an Artinian local ring with the maximal ideal m. Then
it is classical and well known that R is Gorenstein if and only if I(a)+
1(0: a)=I(R) for each ideal a of R, where 0:a denotes the annihilator
of a and (M) denotes the length for an Artinian R-module M (cf. [1]).
However in general we can say nothing about which is greater I(a)+1(0: a)
or [(R) and so in this note we shall tackle with the question, introducing
a certain invariant ¢(M) for R-modules M (see Definition 1.1). In [2]
the author defined the value t(a)=I(R/0: a)/l(a) for a non-zero ideal a of
R (for convenience we set £(0)=1) and gave the upper bound, the lower
bound and other several properties of this value. Furthermore, he
defined ¢(M) for an Artinian R-module M and mentioned that similar
results can be obtained, passing to idealization, for ¢(M). In the present
note, we will treat this value #(M) directly.

At first we will prove inequalities 1/»r(M)<t(M)<r(M) for any non-
zero Artinian R-module M, where »(M) denotes the dimension of the
socle of M as a vector space over the residue field of R, that is »(M)=
dimg/,(0: m),,=1(0: m),. We will also consider the value T(M)=Supy t(N),
where N runs over all R-submodules of M. Then from the above in-
equalities we obviously have 1<T(M)<r(M). And it will be proved that
TM)=r(M) if and only if »(M)=1 if and only if t(N)=1 for each R-
submodule N of M, which gives the classical result above mentioned
when M=R. Next we will give an example which shows the above in-
equalities are the best possible in some sense. In the rest of the note
we will study about when T(R)=1 or for what q, t(a)<1. '

Throughout this note let R denote an Artinian local ring with the
maximal ideal m. An R-module will always means a finitely generated
R-module. ' o
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§1. Definitions and main theorems.

DEFINITIONS 1.1
For an R-module M, we define
tM)=t(M)=1 if M=0,
=l(R/0: M)/I(M) if M=+0

and T(M)= Tg(M)=Supy t(N), where N runs over all E-submodules of M.
We denote the socle of M by Soc(M)=(0:m), and set r(M)=
dimg, Soc(M). Let p(M) denote the number of elements in a minimal

system of generators for M.
We begin with the following

PROPOSITION 1.2.

Let M be an R-module.

(1) If mM=0, then t((M)=1

(2) If M is cyclic, then t(M)=1.

ProoF. (1) This is obvious.
(2) Recall R/0: M=M, as M is cyeclic.

COROLLARY 1.3.
If m*=0, then T(R)=1.

Now we will prove

THEOREM 1.4.
Let M be a non-zero R-module. Then we have

1/r(M)=t(M)=r(M)

and hence
1=sTWMEr(M) .

ProoOF. First, we have an exact sequence

(1) 0— R/0: M—— Homz(M, M) .

Let E=E(R/m) be the injective envelope of the residue field R/m.

we have an exact sequence

(2) 0—s M— Er®

Then

by [3], where E*® denotes the direct sum of (M) copies of E. From

(2) also we have an exact sequence
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(3) 0—— Homy(M, M)—— Hom,(M, E) ™ .

Hence by (1) and (8) we have [(R/0: M)=r(M)I(Homz(M, E)). Since
l{Homz(M, E))=l(M) by [3], we get t(M)=r(M).
On the other hand, we also have the following exact sequence from

)
0— Hom(R/0: M, M)—s Homy(R/0: M, E) 0 .

Note that Hom.(R/0: M, M)=M and we get I(M)<r(M)I(R/0: M). Thus
we have 1/r(M)=<t(M).

REMARK. See [2] for another elementary proof with no help of
Matlis duality.

THEOREM 1.5.

Let M be an R-module. Then the following conditions are equivalent:
(1) T(M)=rM)

(2) r(M)=1

(3) tN)=1 for each submodule N of M.

PROOF. (1)=>(2)f Since the set of values ¢(NN), where N runs over
all submodules of M, is finite, there exists a submodule N of M such
that ¢{(N)=r(M). Similarly as in the proof of Theorem 1.4, we have

R/0: N=—Hom(N, N)=——Hom(N, M)=—Hom(N, E)"** .,

Compairing the length, t(N)=7r(M) implies R/0: N is isomorphic to
Hom(N, E)**, Since R is local, »(M) must be 1.
(2)=(@1) and (3): For each non-zero submodule N of M, we have
r(N)=1. Hence by Theorem 1.4, {(N)=1 and so T(M)=1=r(M).
(8)=(2): By the assumption, ¢((0: m),)=1/I((0: m),)=1, hence r(M)=
1.

If we take M=R, we get the classical result. Namely

COROLLARY 1.6.
R is Gorenstein, that is r(R)=1, if and only if I(R)=Il(a)+1(0: a) for
each tdeal a of R.

Now we will show that the inequalities in Theorem 1.4 are the best
possible in some sense.

ProPoOSITION 1.7.
For any integer r=2 and any small real number e>0, there exists
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an Artinian local ring R of r(R)=r.and r—e<T(R)<r.

PrOOF. Let K be a field, X*,Y, (¢=1, ---, n, k=1, -+-, ) be inde-
terminates and

R=K[X® Y,|1=1=n, 1Zk=sr]/I=K[z{®, y,]

where I=(X*|1<isn, 1Sk=<r)+ (Y, -, Y ) H(XP Y 1<i#j<n, 15k
rN+H(XPY,~XPY,;|1=<1, j<n, 1=<k=7) and z{¥, y, are the images of X,
Y., respectively. Then R is an Artinian local ring with the maximal
ideal m=(2{®, y,|1<i<n, 1<k<7r). We have m*=(x*y,, -+, 2"y, and m*=0.
Hence l(R)=rn+n+7r+1. And since (0: m)=m?, r(R)=[(0:m)=r. Now
let a=(y,, -+, ¥,)- Then we have (0: a)=a and ma=m?, so l(a)=I1(0:a)=
n+r. Therefore t(a)=(rn+1)/(r+n)=r—{(r*—1)/(r+n)}. Thus we obtain
a required example taking » large enough.

§2. When ta)<1?

In this section we will study when T(R)=1 or for what a, t(a)<1.
Of course if R is Gorenstein, T(R)=1 (cf. Cor. 1.6), but the converse
is not true in general, see Example 2.2. Hence the research on rings
R with T(R)=1 may have some interest. ’

First of all we note

PrOPOSITION 2.1.

For an R-module M, if there exists an m € M such that (0: M)=(0: m),
then t(M)<1.

ProoF. t(M)=UR/0: M)/U(M)=l(R/0: m)[l(M)=l(Rm)/[I(M)<1.

EXAMPLE 2.2.

Let K be a field, X,, -+, X, be indeterminates and R=K[X,, ---, X,]/
Xy oo X)"=K|x, +++, ,]. Then, for any feR we have (0: f)=
(x, +++, 2,)* for some k. Hence for any ideal a=(f, .-+, f,.) of R,
(0: a)= Ni-, (0: £)=(0: f,) for some ¢t. So we have T(R)=1 by Prop. 2.1
and obviously R is not Gorenstein for n, m=2.

Now let K and X, .-+, X, be as above, M=(X,, -, X,) be a maximal
ideal of the polynomial ring K[X,, -+, X,] and Q be an M- primary ideal
generated by monomials of X,’s. Andlet R=K[X,,:--, X, ]/Q=K][x,,*--,2,].
Can we say T(R)=1? Unfortunately we cannot claim so: even for graded
ideals a of B, we may have the case t(a)>1 (cf. Example 2.11). But for
ideals a of R generated by monomials of z,’s, we always have t(a)<1.
Namely
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PROPOSITION 2.3. ‘
Let R and a be as above. Then we have t(a)<1.

PROOF. Let S=K[X,,---, X,]/(XA, .-, Xi»)=K[x,, -+, ©,] and we can
put R=S/B and a=A/B, where A=(M,, ---, M,) is an ideal of S generated
by monomials M,’s of x,’s and B=(N,---, N,) is an ideal of S generated
by monomials N,’s of z’s in A. Let V={0)={, ---,1)|l,e NU{0},
Oéltéai} and Mt= xiil, ) xk"= w(li)’ (li) = (ltu "t ltn) e V. Then l(A)=
#HD e Viz® e A} =4[V, {(D) € VIT)=D)}], where (b)<(c) means b,=c, for
k=1, ---, n. Let N;=«"# and we have ¢V M,e (N, ---, N,)=x"M, e (N,)
for some j=(l)+(,)=(m;) for some j. Thus we have I(S/B: A)=I(S)—
UB: A) =US)—U(Ni—, (B: M) = #(V)—#[Ni. {D e VID)+ (@)= (m;) for some
JH=%Ui, {De VID)+1)Z(m;) for each j}]. On the other hand I(a)=
I(A)—Il(B)=#[Ui_,{) e V|t)=(,) for some © and (I)Z(m;) for each j}l.
Since t(a)=I(R/0: a)/l(a)=1(S/B: A)/l(A/B), to prove t(a)<1 we have only
to prove the following

LEMMA 2.4.

For Vi={(De VIO+U)E(m;) for each j}CV we have #(V,U---U
Vos#{Vin)U ---U V,(n,)};, for each n, such that ()+n,) €V, where
Vin)={D+n)e V|0 e V}.

PROOF. We may assume =2 without loss of generality. Looking

a,

V. (n®)

I (n®) V, (n) J
| (n®) ,

FIGURE 1

V.

Vi
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at the section by a plane parallel to the X, X,-plane, we may also assume
n=2 then the assertion is now clear (see the above Figure 1).

T. H. Gulliksen [4] has proved that I(R)<I(M) for any faithful R-
module M if »(R) is not greater than 3. His result is restated in Theorem
2.7 below. Here we will give another (but essentially the same as his)
proof of this fact for the sake of completeness.

First we prove

LEmMMA 2.5.

Let 0-M'—->M—-M"—0 be an exact sequence of R-modules such that
t(MHZ1 and t(M'")E1. If trix(0: M'J0: M)Z1 or tgi.(0: M”/0: M1,
them we have t(M)=1.

PrOOF. Since tz(L)=tg.(L) if L is an R/a-module, we may assume
that M is faithful. Then, since (0: M’')(0: M")=0, we have (0: M"\<
0: (0: M"”) and (0: M")<O0:(0: M'). Hence the assumption that ¢(0: M")
or t(0: M")=1 implies that 1(0: M")+1(0: M")<I(R). Thus I(M)—I(R)=
IMHY+IM"Y-UR)=ZUM"Y+10: M")—UR)+(AM")+1(0: M) —1(R)=0, since
t(M'") and t(M")<1. Therefore we have t{(M)<1.

COROLLARY 2.6.
Let M be an R-module of u(M)=2 and {m, m,} be a set of minimal
generators for M. If tg/.x(0: m,/0: M)=1 for i=1 or 2, then t(M)Z1.

PrROOF. M'=Rm, and M"=M/Rm, are both cyclic and hence t(M’)
and t(M")=1 by Prop. 1.2. Thus the assertion follows directly from the
above lemma.

THEOREM 2.7 (Gulliksen)
Let M be an R-module. If r(R/0: M)<3, then we have t(M)<Z1.

Proor. First, we may assume that M is faithful. Now, if the as-
sertion is not true, we can take a counter example M of minimal length.
Then for each non zero submodule M’ of M, we have (0: M’)#0 and
0: M/M")+0. Let {m, ---, my} be a set of minimal generators for M
and M; the submodule of M generated by all m,’s except m,. Then
(0: M,+mM)+0 for each 2 and DL, (0: M, +mM)<(0: mM)=(0: m). There-
fore we have d=p(M)<r(R)<3. When d=1, obviously ¢{(M)=1 by Prop.
1.2. If d=2, since r(R)<3, we have dim(0: M,+mM) or dim(0: M,+mM)=
1, that is 7(0: M,) or r(0: M,)=1. Thus t(0: M,) or t(0: M,)=1 by Theorem
1.4. Hence {(M)=<1 by Cor. 2.6. Therefore we must have d=3 and in
this case @i, (0: M,+mM)=0:mM)=(0:m) and we have (0:mM=
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=1 (0: My+mM)M =33, (0: M,+mM)m,= 3., (0: M,+~mM))m=(0: m)m,
where m=m,+m,+m, Changing the set of generators for M, we may
take m=m,. So we get an exact sequence

0—— (0: Rm,+mM)—> (0: mM) — (0: m)M ——0 .

Since (0: M,+mM)@P(0: M;+mM)<(0: Rm,+mM), dim(0: Rm,+mM)=2 and
hence dim(0:m)M=1. If we have Soc(M)=(0: m)M, then ¢(M)=1 by
Theorem 1.4, which is a contradiction and the proof will be completed.
So we have only to prove this (this is Lemma 1 of [4]). If Soe(M)=
(0: m)ME@PN for some N+#0 then there exists an r+#0e R such that 0=
rMS NS Soc(M), since (N: M)#0. Hence rmM=0 and so rm=0. There-
fore 0=rM<(0: m)M N N=0, which is a contradiction.

Now, we have two cases where T(R)=1 that follow from the above
theorem.

ProPOSITION 2.8.
If (R)Z6, then T(R)=1.

Proor. If 1(0:m)=1, then T(R)=1 by Theorem 1.4. So we may
assume [(0: m)=2 and hence [(0: a)=2 for each ideal a of R. And if
ma=0, t(a)=<1 by Prop. 1.2, so we may have ma=+0 and [(0: ma)<5. There-
fore r(R/0: a)=1(0: ma/0: a)<3. Thus t(a)<1 by the above theorem.

PropoOsSITION 2.9.
Let emb-dim(R)=p(m)<3. In this case, ©f m’M=0, then t(M)<1.
Therefore if m*=0, then T(R)=1.

PROOF. We may assume mM=0 by Prop. 1.2. Then m*M =0 implies
(0:mM)=m and (0: M)2m*’. So (0: mM)/(0: M) is a homomorphic image
of m/m’. Therefore »(R/0: M)=1(0: mM/0: M)<I(m/m*)=p(m)<83, which
implies {(M)<1 by Theorem 2.7.

In case of p(m)=4 we have

PrOPOSITION 2.10.
If p(m)=4 and m*=0, then T(R)<5/4.

PROOF. Let a be an ideal of R such that ¢(a)=T(R)>1. Then since
am*=0, we have an exact sequence

0——(0: a)/n?* >m/m? »0: am/0: a—0 .

If m*co: a; then r(R/0: a)=1(0: am/0: a)=1(m/m*) —1(0: a/m*) <83 and ta)=1
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by Theorem 2.7. So we have (0:a)=m? and t(a)=I(R/w*)/l(a)=(1+ p(m))/
l(@)=5/l(a). On the other hand, if amcan(0:m), then there exists an
acan(0:m) and a¢am. Then we may take a as a member of minimal
generators for a and a=(a)+a’. Then 0:a=0:a’ and hence t(a)<t(a’).
Therefore we have am=an(0: m)==Soc(a). If l(am)=1, t{(a)=1 by Theorem
1.4 and hence l(am)=2. Thus l(a)=p(a)+l(am)=4 and t(a)=5/4.

So if R is an example with the smallest I(R) such that T(R)>1, it
is hoped that I(R)=7. Indeed, we have such an example with I(R)=7,
pm)=4 and m*=0:

ExAMPLE 2.11 (S. Endo)

Let K be a field, X, Y, Z, W be indeterminates and R=KI[X, Y, Z, W}/
(X2, Y2, 28, W2, XZ, XW,YZ,YW)=K]|z, ¥, 2, w]. Then m=(x, y, 2, w), m*=
(zy, zw), m*=0 and U(R)=7. Let a=(x+z2, y+w). Then am=m’=(0: a).
So l(a)=4 and l(0: a)=2, hence #(a)=5/4. Of course T(R)=t(a)=5/4 by
the above proposition.

§3. Problems.
(1) Let R[t]=R[T]/(T?, where T is an indeterminate.

ProBLEM 3.1.

Find examples of rings R such that T(R)<T(R[t]). The author also
tried to do in vain. Let us give here a few remarks which may illustrate
this problem.

PROPOSITION 3.2.
If a<b are ideals of R, then a+bt is an ideal of R[t] and we have
Min(t(a), t(b)) <tgpe(a+bt) <Max(t(a), ¢(6)) and hence T(R)=T(R[I]).

ProoF. It is easily seen that tg.(a+bt)=((R/0: a)+I(R/0: b))/((a)+
1(6)), since 0: (a+5t)z;=(0: B)z+(0: a),t-thus the assertion follows.

More generally we have

PROPOSITION 3.3.

- Let R—S be a local homomorphism of two Artinian local rings
such that S is a flat R-module and M be an R-module. Then we have
to(M)=1t(MQz S) and T(R)=T(S).

LEMmA 3.4.

Let M be an R-module and N be an S-module. Then we have
(MR N)ZI(M)lg(N/mN) where m is the maximal ideal of R, and
the equality holds if N is R-flat.
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PPooF. We have an exact sequence of S-modules
O—)mM @ N— M @ N— (M/mM) @ N—0

where (0—) is the case that N is R-flat. Hence we have l{((MQN)<
ls(mM @z N)+ pu(M)l(N/mN). Hence we get the assertion.

PROOF OF PROP. 8.3. Since S is R-flat, we have an exact sequence
0—(0: M)®,S—S—Homz(M, M)R.S and also we have Hom (M, M)RS=
Homy(M ®: S, M®rS). Therefore we have (0: M ®zS)s=(0: M) XS and
15(0: M @z S)=1,(0: M)l (S/mS) by the above lemma. Hence t,(M&®,S)=
(5(S) —15(0: M Q7 S))/ls(M @z S)=(UR)—1(0: M))/U(M)=1tz(M).

In case m*=0, T(R)=1 by Cor. 1.3 and easily we also have T(R[t])=1.
For the ring R given in Example 2.11, this is the case T(R)=T(R[t]) too:

PrOPOSITION 3.5.

Let R=K][z, y, z, w] be the ring gwen in BExample 2.11. Then we
have T(R)=T(R[t]). :

PROOF. We denote the maximal ideal of R and S by m=(x, ¥, z, w)

and M=(x, y, 2, w, t), respectively. Let A be an ideal of S and {a,+b.t,
*+, ag+bgt} be a set of minimal generators for . We have to show

that #)=T(R)=5/4. If d=1 or »(A)=1, we have nothing to say by
Prop. 1.2 and Theorem 1.4. So we may have d=2 and r(A)=2, since
7(S)=2. In this case Soc(S)=(0: M)A and ls(S/0: A) =12, since l(S) 14.
Hence we may have [(A)<9. If a, gm, a;+bit is a unit of S and hence
we may have a,e€m for each <.

Case 1. There exists an b,¢m, say b, ¢ m.

In this case we may take A=(a,+t, a,, +--, ag). If a,=0, then A=
(@ =+, @3)+St and {(A)<=T(R) by Prop. 3.2. So we may have a,+0.
Let a,em®. If every a,em? then MA=m¢, and [(A)=d+6. On the other
hand MAS(0: A) and 1(0: A)=6. Therefore (A=8/(d+6)<1. If there
exists an @, ¢ n’, say a,¢ m’, then we may take U=(w-+t, z, a;, -+, @)
Since (at, yt, zt, wt, xy) SMA, (A)=d+7. Thus d=2, and (at, 2t, wt)S
(0: A) and 1(0: A)=5. Hence t(A)<1. In case of a,¢m?, we can take
U=(x+t, a, -+, a;). If there exists an a, ¢ m?, say a,¢m?, then we may
assume that a,=y or z without loss of generality. In both cases we
have () =d +7, since (xt, yt, zt, wt, xy) or (xt, y(x+1t), zt, wt)SIMA. Hence
d=2 and [(0:A)=4, since (zt, wt) or (xt, 2t)=(0: A). Therefore t(A)=<
10/9<5/4. Thus we may have every a,em? In this case (xt, y(x+10),
zt, wt)SMA and (xt, zt, wt)S(0: A) and we have (A)=d+6=8 and
1(0: A)=5. Hence {(AN)<9/8<5/4.
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Case 2. Every b,em.

In this case m*=(xy, zw)<(0: A) and [(0: A)=4. Hence we may have
CUA=<T. Now let a,¢m® for i<e and a;em’ for e<j=d. If e=3,
I(A)=8. Hence we have ¢<2. When e=2, we may take a,=z and
a,=vy or z without loss of generality. And also we may take b,, b, € (2, w)
in first case or b,, b, € (¥, w) in second case. In first case (xt, yt, xy)SMA
and [(A)=d+5. Hence we have d=2 and I(0: ¥)=6, since (2t, wi, Yy, 2w)<
(0: ). Thus #A)=8/7<5/4. In another case (wxt, zt, zy, zw)<=MA and
I(A)=d+6=8, that is the case already covered. When e¢=1, we may
take a,=z, a,€(zw) and b;€(y, 2, w). Then we have [(¥)=6, since
(xt, xy) SIMA, and 1(0: A) =7, since (¢, 2t, wi, 2y, zw)<(0: A). Therefore we
have t(N)<7/6<5/4. When e¢=0, (zy, 2w, xt, yt, zt, wt)+(0: (b,, - -, b2))ES
(0: 9). Thus if d=8, we have t(N)<6/6<5/4. If d=2, then we may
have (z, w) or (y, w)<(0: (b, b)) and I(S/0: A)<4. Thus {(A)=1.

(2) From now on, (R, m) denotes a Noetherian local fing of dimen-
sion d with the maximal ideal m. We also define the invariant T(R) of
R by T(R)=Sup T(R/q), where q runs over all parameter ideals of R.

PROBLEM 3.6.

Explore this invariant T(R). For example
(a) Is T(R)=Sup, T(R[T]/(T™))?, or more generally is T(R)=T(R[T])?
(b) Is T(R) always finite?
(¢) Characterize the local ring R of T(R)=1.

When d=dim R<3, Goto-Suzuki [5] have shown that the type of R,
that is Supr(R/q) where q runs over all parameter ideals, is finite and
hence T(R) is finite if d=<3.
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