ToxYO J. MATH.
VoL. 8, No. 1, 1985

Schur Indices of Some Finite CheValley Groups of Rank 2, 1

Zyozyu OHMORI

Tokyo Metropolitan University

Introduction

Let F, be a finite field with ¢ elements, of characteristic p. Letus
consider the special orthogonal group SO,(gq) of degree 5 over F,, the
conformal symplectic group CSp,(q) of degree 4 over F, and the Chevalley
group G.(q) of type (G,) over F,. If p=2, then CSp(q)=F¥x Sp,(q), and
the irreducible characters of Sp,(2”) were described by H. Enomoto [24].
The character table of CSp,(g), ¢ odd, was obtained by K. Shinoda in [19]
(according to him, the table had also been obtained by S. Reid indepen-
dently). The characters of G,(q) were calculated by B. Chang and R. Ree
[4] when p+#2, 8 and by Enomoto [7, 8] when p=2,3 ([8] has not been
published yet). The complete table of characters of SO,(q), g odd, seems
to have not been obtained yet. However much information about it can
be gotten from G. Lusztig’s theory [15] on the classification of the irre-
ducible representations of finite classical groups (see §3 below). As to
the rationality-properties of the characters of these groups, R. Gow has
proved in [10] that all the irreducible characters of Sp.(q), ¢ even, have
the Schur index 1 over the field @ of rational numbers. Therefore, if
p=2, all the irreducible characters of CSp,(q) (=F*x Sp,(q) and SO4(q)
(=Sp.q)) have the Schur index 1 over Q. In this paper we shall prove
the following.

MAIN THEOREM. Suppose q is odd. Then all the irreducible charac-
ters of SO4(q), CSp.(q) and G,(q) have the Schur index 1 over Q.

It can be shown that all the irreducible characters of G.(27) also have
the Schur index 1 over Q. This case will be treated in the subsequent
paper.

Now let G be a simple adjoint algebraic group defined and split over
F,, and G(q) be the group of its F,-points. If the rank of G is 1, then
G(g)=PGLy(q), and if the rank is 2, then G(g) is a homomorphic image
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of GLy(q), SO(a), CSp.(q), CO;*(q)(=GLy(q) X GL(q)) or Gy(g). It is known
that all the irreducible characters of GL,(g) have the Schur index 1 over
Q (A.V. Zelevinsky [23]), and the same is true for CO;}#*°(q). Therefore
we get

COROLLARY. Let G be a simple adjoint algebraic group defined and
split over F,, of rank =2. Suppose p+2. Then all the irreducible
characters of G(q) have the Schur index 1 over Q.

I wish to thank Professor H. Enomoto for sending me his preprint
[8] and kindly showing me the character table of a Sylow 2-subgroup of
G,(27), which has been very useful. I also thank Professor G. Lusztig
for kindly teaching me the result (7.6) of [13]. Finally I thank Professor
K. Shinoda for kindly showing me the manuseript for [19].

§1. Schur index of Gi(q).
In this section we prove

THEOREM 1. All the irreducible characters of G.(q), ¢ odd, have the
Schur index 1 over Q.

First, we state two lemmas.

LEMMA 1 (Schur’s Theorem). Let H be a finite group, K a field of
characteristic 0 and & an ordinary character of H realizable in K. Then,
for any irreducible character X of H, the Schur index mx(X) of X with
respect to K divides the inner product <X, & x.

LEMMA 2. Let H be a finite group, r a prime number dividing |H|
and g an element of H of order r. Assume that there exists an element
h of order r—1 such that hgh™'=g*, where v is an integer such that v
mod r has order r—1 in (Z/rZ)*. Then, for any irreducible character
X of H, X(g) is a rational integer and mo(X)|X(g).

For a proof of Lemma 1, see, for instance, W. Feit [9, 11.4]. The
first assertion of Lemma 2 is well-known and easy to prove. The second
one is implicitely proved in Gow [10, page 105]. However, since it plays
an important role in the arguments below, we prove it here. Let K=
{g, h) be the subgroup of H generated by g and k. By assumption, we
have K=<h) x<{g) (semidirect product). Let \ be any linear character
#1 of (g>. Then it is easy to check that A\* is a rational-valued irre-
ducible character of K. Since A¥|<h) is the character of the regular
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representation of (k) (as can be easily seen), by Lemma 1, we have
me(N*)=1 and A\* is realizable in Q. Now let X be an irreducible character
of {g>, and put m=my(X). Then we can write: X[{g> =3 a;°Nn, where
the sum is taken over all linear characters \ of (g}, and, for each Ny Q=
X, M), which is divisible by m as we have seen above (cf. Lemma 1).
From this we get an expression: X(g)/m=23; (a;/m)-\(g), where the right-
hand side is an algebraic integer and the left-hand side is a rational
number. Hence X(g)/m is a rational integer, and m|X(g). This completes
the proof. )

In order to proceed our arguments we need some preparations. First,
we quote from Ree [18] and Enomoto [7] the following (some notations
are changed). Being R the root system of type (G,), the positive roots
arranged in increasing order (with respect to some ordering in R) are:
a,b, a+b, 2a+b, 3a+b and 8a+2b, where ¢ and b are the simple roots.
For re R, let X, denote the corresponding root subgroup of G.(9) and z,
be an isomorphism of the additive group F; of F, with X, induced by
a homomorphism ,: SLy(q) — Gs(q), ie., &_.() =4, [7} ‘1)] ()=, [3 f:l te
F,. For two elements g, h of a group, we put [g, hl=g~'h~'gh. Then
(see Ree [18, (3.10)]):

[2.(2), 2o(u)] =@ars(—EU)Do0ss( — CU) aa 15 (E*U) 30105 (— 28°0%) ,
[%(®)) ot s(U)] = Lr0s5(— 2EUNELs0 45 (BEU) L5042 (BtU?)

[2a(2), Trars(u)] =X 14(3tu) ,

[25(£), Tsass(U)] = Lgarns(tus) ,

[@a+5(2), Boq+6(U)] = Lsa105(BtU) ,

[x.(t), x,(w)]=1, for all the other pairs »,se R, r, s>0.

(1)

Let U=<X,|re R, r>0> (a Sylow p-subgroup of G,(q)), and put B=
Ng,(U)(N,( )denotes the normalizer). Then B=H x U, where H is a sub-
group of B isomorphic to F} X F¥. One can write: H={h(z, 2, 25)|%,2,2, =
1, z,€ F'§}, and the multiplication in H is given by

h(z,, 2., 2)h (2, 2:, 25) =h(2,21, 2,25, 2:25) .

For a positive root », put w,=x,(1)x_,(—1)z,(1). Then the action of
H, w, and @, on U is given by (see Enomoto [7]; for two elements z, &
of a finite group, we put x*=hzh™):
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x ot s152028) x% oo
a(?) %a(12:) z_o(—1) %4+5(8)
xs(t) xy(t2,2:") Lya+5(L) x_y(—1t)
(2) Lq4+5(t) %q+5(t2) Laa+5(t) z.(—1)
Lo +5(t) Laa43(t257) Zo4a(—1) ()
L3q+p(l) Lo rs(t2:257) xy(—1) La+25(L)
() Lo ro(t2:25 ) Lsa+25(t) Tsass(—1)

Now every element u € U can be written uniquely as w=]I,...(c,),
where the product is taken over all the positive roots r according as
increasing order and the ¢, are some elements of F,. We recall that
we€ Gy(q) is a “regular unipotent element” if u is conjugate to some
II.>0 z.(c,) with ¢,#0 and ¢, 0.

PROPOSITION 1. Let u be unipotent element of G.(q). If p=2 or 3,
we assume that u 18 non-regular. Then, for any irreducible character
X of G.(q), X(u) 18 a rational integer and mo(X)|X(w).

The assertion on the integralness of the value follows directly from
the character tables in [4], [7], [8]. However we give here another proof.
Let X be an arbitrary irreducible character of G.(q) and put m=meX). First,
suppose p#2,8. Suppose u is regular. Let G be the Chevalley group
of type (G,) over an algebraic closure of F,. Then G is a simple adjoint
algebraic group defined over F,, and G,(g) can be identified with the group
G(q) of F,points of G. As p#2,3, p is a good prime for G (see T.A.
Springer and R. Steinberg [20, E-12, 4.3]), so that by J. A. Green, G.I.
Lehrer and G. Lusztig [11, Theorem 3] we have X(u)=0, 1 or —1, and by
Ohmori [17] m|X(uw). Suppose therefore w is non-regular #1. We show
that u»=1 and that there exists an element te N, ({w)), of order p—1,
such that tut'=t" (cf. Lemma 2). In view of Chang [3, (3.2), (3.9)], we may
assume that u is one of the following elements: x,(1), z,.(1), £3(1)2%:0+5(1),
L5 (1) @0 45(N)s To(Dsars(8) aNA 25(1)@043(— 1)%sa45(8), Where N, ¢ and { are some
elements of F,. First, we prove that u?=1. For the first four elements,
the assertion is clear from the commutator relations (1). Suppose u=
%(1)%5045(2¢). Then, using (1), we can check by induction on ¢ that

UARS xb(i)xsa-f-b(iﬂ)msaﬂb( - ?'—(7";—1)[1 ) , 1=51<p;

hence u?=1. Suppose %=, (1)%0ss( —1)%s045(L). Then, noting that
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Z20+5(Coq+s) commutes with z,(c,) and %,.5(Csess), We have:
U =Ly 15(— D) *(@4(1)%s045(0))*

T CDENOE NG PN ERUUSR N
=y~ Dass O (XY, 15ip;

hence u?=1. Next we find t. In view of (2), if u=a,(1), %ass(1), 2(1)%s0rs(1)

or 2;(1)®,(\), we can take: t=h(y, 1,v7"). If %u=2,(1)%e. () or

Ly (1)%z045(— D%se44(C), We can take: t=x,((1—v)/2)h(», 1, v™). In fact, using

(2), we have by induction on 7 that

t“':ac,,(l—zvi)h(v", 1,9, 1<isp—1,

hence t*~*=1, and by (1), (2), we have tut*=wu*. Therefore, by Lemma
2, we conclude that X(u) is a rational integer and m|X(u).

Secondly, suppose p=38. Let u be any non-regular unipotent element =
1. Then, using the results of Enomoto [6], we easily see that «*=1 and
find an element t e Ng,,,({w)), of order 2, such that tut—*=wu’. Hence the
assertion follows from Lemma 2.

Finally, suppose p=2. Let u be any non-regular unipotent element==1.
By Enomoto [6], » is conjugate to one of the elements: %=y u(1), z,=
Baa+5(1)y B5=L043(1)%z045(1), Lo =L a45(1)%2043(1)%s0+5() aNA 27 =24(1)@44+5(1)Ls0+4(E),
where 7 and { are some elements of F,. If u==x, or x,, then u*=1 and
the assertion is clear. Suppose w=x,. Then, by (1), we have:

U= [®445(1), Togrs(1)]=2s012(1) =125 ;

hence u*=1. Put t=x,,,(1). Then, by (1), we have =1 and tut'=u?.
Hence D= (%, u) is isomorphic to the dihedral group of order 8. D has
five irreducible characters: four rational-valued linear characters and one
character ¢ of degree 2 with ¢(u)=0. Hence X(u)=X|D)(w) is a rational
‘integer. Moreover we see easily that, for any linear character x of (u),
A\? is realizable in @. Therefore, by a method similar to the proof of
Lemma 2, we can prove that m divides X(u). Suppose u=ux,. Put t=
Z,+5(1). Then, using (1), we see that u*=ux,, u*=1, *=1and tut*=wu°. Hence
by the same argument as above, we conclude that X(u) is a rational integer
divisible by m. Suppose finally u=2x,. Then u’=2,..,s&) and u*=1. Put
t=w,(1). Then, by (1), we have t*=1 and tut'=u®. Hence the assertion
follows as in the case when uw=x, or x,. This completes the proof of
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Proposition 1.

We can now prove Theorem 1. Assume that p+#2. For the notation
of the characters of G,(q), we follow Chang and Ree [4] and Enomoto

[7]. :

LeEMMA 3 (Chang and Ree [4] and Enomoto [7]). If p+#2, 3 (resp. p=3),
then except for two characters X, and X,, (resp. 6,(1) and 6,.(—1)) all
the other irreducible characters are real and hence have the Schur indices
at most two. X, and X,, (resp. 0,,(1) and 6,,(—1)) are complex conjugate
of each other and Q(X,)=Q(X,)=Q(,) (resp. Q0:(1)=Q(6:(—1))=Q(,).
Hence mo(Xw)(=mo(Xy)) (resp. mo(0,.(+1))) divides 6. Here, Jor an ir-
reducible character & of a finite group and a field K of characteristic
0, K(¢) is the field generated over K by the values of ¢, and §, is a primi-
tive cubic root of 1.

If p=3, the assertion on the values can be checked immediately from
the character table (see Enomoto [7]). Suppose therefore p+2, 3, where
the assertion is not so immediate from Chang and Ree [4]. In the
list of the characters of G,(q) in page 412 of [4], reading from the
top, characters X, X,, -+, X;; are Q-linear combinations of generalized
characters X,(7,), a=1,2, a, b, 8, 6 (see [4, pages 399-402]). Therefore, to
see that X,, X,, -+, X,, are real, it suffices to check that the X,(x,) are
real. In view of the table of the values of X,(x,) in [4, pages 409-10],
for doing so, it suffices to check that the functions #,, a=1, 2, a, b, 3, 6,
are real. By the definition, for each a, the function #, on H, is defined
by

a 1
=—_ a h’ ’ @ 9
7 .(h) Co ) wgw'ivn (h) he H,

(see [4, pape 396]). We note that each W, contains the element w,, where
h(z,, 2, 25)"2=h(z", 27, 2z5") (see [loc. cit.]). Therefore, for each a, we have:

Rulh) =z S+ 3, wr ()}

2|CWa(h)| weW,y wewaW,
_ 1
= ST e+ 5, )

__ 1 -1
= 2|Cwa(h)|{wewawn“(h)+v§awz"(h )} ,

which is clearly real. Next, the characters X, X, -+, Xis X and X,
are Q-linear combinations of the X,(x,) and the four class functions
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Y.(1=1=<4) (see [4, page 402]). The functions Y, and Y, are rational,
and Y, and Y, are complex conjugate of each other and take values in
Q(%,). But, if X is any one of the characters X, -, X, the coefficient of
Y, and that of Y, coincide with each other, so that X is real. If X=X,
or X,, the coefficient of Y, is different from that of Y;, so that X is not
real and Q(X)=Q(;). The assertion on the Schur indices follows from
the following.

LEMMA 4 (M. Benard and M. M. Schacher [1]). If X is an irreducible
character of a finite group and K is a field of characteristic 0, then
K(X) contains a primitive mg(X)-th root of 1. Especially, if X is real,
then mqo(X)=2 (The Brauer-Speiser Theorem).

The roots of 1 contained in Q(Ca) are 1, —1,{, and —{¢,. Therefore,
by Lemma 4, me(X)|6 if X=X, X, 0,(1) or 6,(—1), and me(X)<2 other-
wise. This proves Lemma 3.

LEMMmA 5 (Chang and Ree [4] and Enomoto [7]). Let X be any irre-
ducible character of G,(q), ¢ odd. Then if p+3 (resp. p=3), the greatest
common divisor of the values of X at all unipotent elements (resp. all
non-regular unipotent elements) of G.(q) is equal to the p-part of X(1).
Hence my(X) divides a power of p.

This can be checked directly from [4] and [7] (cf. Ohmori [16, Theorem
C]. The assertion on the Schur indices follows from Proposition 1.

By Lemmas 4, 5, except for two characters 6,(1) and 6,,(—1) in case
p=3, we find that all the other characters have the Schur index 1 over
Q. Suppose therefore p=3, and let us consider the characters 6,(1)
and 6,(—1). Let V be the subgroup <{,(1)>X,X,. sXz0+sXs0+6Xsarss OF U,
and let e.=e(x,1,1), k=41, be two linear characters of V which is
defined in [7, page 197]; we see at once that Q(s,)=Q(,), k=+1, (see
[loc. cit.]).

LEMMA 6. One has OBV, €Dv=0., (K, h\==%1), where 6., denotes
Kronecker’s symbol.

Assume that Lemma 6 is proved. Then, since ¢,, £= +1, are realizable
in Q(0.:(x)), k==x1, by Lemma 1, we have my(f,,(k))=1, £==+1, and the
proof of Theorem 1 is finished.

Let P=BUBw,B be the parabolic subgroup of G,(q) generated by B
and @,. Then we find from [7, pages 197 and 205] that 6,(x)=(c.)?, k=
+1. Hence it suffices to prove
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LEMMA 7. {0.(K)|P, 0,(\))p=0u, £, v=*%1 (cf. [7, page 205]).

In order to know the inner products, we have to know the relation
between the conjugacy classes of P and those of G.(q). Since 64,(x), k=
*1, vanish outside of the unipotent elements (see [7, Table III-2, page
221)]), in view of [7, Table III-1, page 217], it suffices to check only the
classes of P denoted by Ag.(t) and A,(t) in [loc. cit.]. Set S=(F*)? and
N=F;—S. For tec Fy, put u(t)=2,(1)%s+5(1)%ss+2s(1—t). Then u(t) belongs
to the class Ay () (resp. Ag(t)) if teS (resp. te N) (see [7, page 217)).
We have

LEMMA 8. If t=1, then wu(t) belongs to the class Ay, of G.(q). Ift+#1
and 1—te S (resp. 1—te N), then u(t) belongs to the class A, (resp. A,)
of Gy (q).

We find from (2) and (1) that

U() =L 45(1)Psa426(1) @045t — 1)
=La15(1)Zsa+5(E — 1)Xs0125(1) .

Suppose t=1. Then u(t)»=2,,,(1)®:x(1). Hence, by (2), we have
(U(t)*) "= (X445(1)sa225(1)) " = X30.45(1) &30 12(1) ,

which belongs to the class A,,. Suppose therefore t1. Puty=2x,(1/(1—1)).
Then, by (1), we have

(U(2)*?)" = L4014 (1) 5015 (E — 1) %55155(1)
=443(1) x3a+2b<t.} 1 11— t)>x8a+b(t — Dga405(1)
=La1p(1)Zs010(t—1) .

First, suppose 1—te S. Then 1—t=2* for some z€ F*. Put h=h(l, 27, 2).
Then, by (2), we have

(@) = (@451 25045 (E— 1))
=4+(1)Zs04(27%( — 1))
=%445(1)%s045(—1) .
Hence u(t) belongs to the class A,. Next, suppose 1—teN. Let v be
an element of Fy of order ¢—1; ve N and we have N=+vS. Hence

we have 1—t=7w* for some weF}. Putting A'=h(1, w, w), by (2),
we have
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(@) = @444(1)sq15(E— 1))
=Lo43(1)Zs0s(w*(t—1))
=a1s(1)Ts015(—7) .
Hence u(t) belongs to the class A,,. This proves Lemma 5.
Now we define:

1=|{t € Slu(t) belongs to the class Ay},

J=|{t e Slu(t) belongs to the class A},

m=|{t € N|u(t) belongs to the class Al ,

n=[{t € N|u(t) belongs to the class A,}| .
Since |S|=|N|=(¢—1)/2, we find from Lemma 5 that i+m=(q—1)/2—1=
(¢—3)/2 and j+n=(g—1)/2. Using these equalities, we can now prove
Lemma 7. Denote by E (resp. F') a complete set of representatives of

the unipotent classes of G.(q) (resp. P). For two elements g, & of G.(q),
we shall write g~h if g is conjugate to h in G,(¢). Then we have:

0:2(R)IP, 6,(\)) 5

_1 -
=17 S 0a®@0.0)G™)

1
= __—-012 4 —1
”2;., 7 (£)(@)6.(\) (g™

1
= [/ —U, h™!
Z0:00) 5 00007y

B R R o P VUSSR C)
— @1 {2 Fe-D@- D=L - (~2a)@ -1}
———{l,rq(qz—l) : {m . (—%—q)(q—l)+q4(dl_1) : (—-—;—q>(q—1)}
+%q - {% . (——sl—q)(q—l)nt% . éq+£; . —;,-q}
+2a(@+D) o 390 D5 (—3o)a-v+L - Lo
+ioLogarm. L1
—-gq(q—l) 2}14 (-—%q)(q—l)+?}1¢ (—%q>(qf1)
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.1 1 1 1
11 .1
+ —
31 3¢ 37
+(Fa-+azs) - Equ._;Tq(Hsc,—z)
+(%q+qc )-3%1—2'-;70(1+3C§)
=181 1482 +887H + 1 +38) (1 +8LD)
27 27
13

1o, 1 £—1_ pi-x
=5 27{ —4+9E + &)

=0a, (& A==l

This completes the proof.

§2. Schur index of CSp,(q).

Let k be an algebraic closure of F,. Let G=CSp, be the group of

all matrices g € GL,(k) such that *gJg=\,J for some A\, ck*, where J=

_23 , =[(1) 3] Then G is a connected, reductive algebraic group

which is defined and split over F, and has the connected centre k*1,. In
this section we shall prove

THEOREM 2. All the irreducible characters of G(q)=CSp,(q), g odd,
have the Schur index 1 over Q.

Let M be a connected, reductive algebraic group defined over F\.
Assume that the centre of M is connected and p is a good prime for M.
Let I',, be the Gel’fand-Graev character of M(q) (see, for instance, Green,
Lehrer and Lusztig [11]). Then, for an irreducible character X of M(g),
we shall say that X is regular (resp. semisimple) if <X, I'w)u#0 (resp.
p ¥ X(1)). By Ohmori [17], if M splits over F,, any regular or semisimple
character has the Schur index 1 over Q.

Now assume that p+=2. Then, since G is of type (C,), p is a good
prime for G, and any regular or semisimple character of G(g) has the
Schur index 1 over Q. Sinoda has shown in [19] that an irreducible
character X of G(q) is regular if and only if X(1) is, as a polynomial in
g, of degree four. Thus the remaining characters are: .(\), NeEF}=
Hom(F*, C*), and 6,(\), e F,, 1=i=4. We have 7,(\N) =0,(\) - T, and ,(\) =
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6,(\)-0;,(1), 1=i<4, where the 6,(\) are the linear characters of G(g) (see
[19, pages 1399 and 1416]). Hence it suffices to show that 7, and the
0,1), 1=1=4, have the Schur index 1 over Q.

PROPOSITION 2. Let X be any irreducible character of G(q). Then,

Jor any wunipotent element u of G(g), X(w) s a rational integer and
Mo(D)|X(u). |

When w is regular, the assertion can be proved by the method similar
to the proof of Proposition 1, §1. Therefore, we may assume that u
is non-regular. Then u is conjugate to one of the following:

1 1 1

1

Then one checks easily that u?=¢*"'=1 and t‘ut=u". Hence, by Lemma
2, X(u) is a rational integer and mo(X)|X(u).

LEMMA 9 (Shinoda [19]). For any irreducible character X of G(q),
there is a unipotent element w such that |X(u)| 18 equal to the p-part of
X(1). Hence mo(X) divides a power of p.

First assertion follows from [19]. The second assertion follows from
first one and Proposition 2.

Now put s=diag(y, —v, —v, v). Then s*'=1 and s* belongs to the
class A, (resp. B,) if ¢ is even (resp. odd) (see [19, page 1375]). Therefore
we have:

(To L= p—1 q(q2+1>+£g-1—<q2+1>ao<—1>}

pil{ 2

=@ilgi—-§2$0(mod p) (note that a(—1)==+1);
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R T s

2 2 2 2
=(—qi:11—)3$0(modp);
_ 1 (p—1 q@-1¢_ »—1  —(¢g—1)
OO, lyw=ot {25 T+ 25 —

==L +0(mod p);

— *+1 -1 ¢+2¢—1
05(1), Loy = i—l_l{p 1. 9@+, » .9 t+2q }

2 2 2 2
= q3+q2—‘|1—3q—1 2% 0(mod p) ;
_p—=1{(p—1 q@+1) »-—-1  — *4+2q+1
<04(1)’ 1(Q)><->—‘ 2 { 2 2 + 2 2 }
- qs—q21-3q+1 #0(mod p) .

Hence, by Lemma 1, if X is any one of 7, and 4.(1), 1=i=4, me(X) s
coprime to p. Hence, by Lemma 9, mo(X)=1. This completes the proof
of Theorem 2.

REMARK. As is stated in [19, page 1399], the characters 6,1), 0=
1<5, are the unipotent characters of G(q)=CSp,(q), and 6, 0..s=0.1)|Sp.(q),
1<i<5, are the unipotent characters of Sp,(q) determined by B. Srinivasan
in [21]. We have

59 =0,(1)+26,(1) +6,5(1) +6,1) +6,(1) .

Hence, by a theorem of C.T. Benson and C. W. Curtis [2], the characters
6,(1), 0<i<5, are realizable in Q. The character #,(1) is the cuspidal
unipotent character of G(¢). Lusztig has shown that 6,(1) can be realized
in an l-adic cohomology space of an algebraic variety over F, (see [13]);
as a consequence, he proved that 6,(1) is realizable in Q (see [13, (7.6)]).
Similarly, the characters 6,, 9<1<13, are realizable in Q.

On the other hand, Gow showed in [10] that each @, is contained in
a certain induced module with multiplicity one, and derived from this
that if ¢ is an even power of p, the 6, have the Schur index 1 over Q (see
[10, Theorem 7]). In fact, for example, we have <{6)(1), 631, —1)69% 0 =1,
where 61, —1) is an irreducible character of B (see [19, page 1381]; we
can prove that 631, —1) is realizable in Q).
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§3. Schur index of SO,(q).
- Let G be SO,={(g e SL,(F,)|*gJg=J}, where

1 0 0 0 07
0 0010
J={0 0 0 0 1
010 00
0 01 0 0]

In this section we shall prove

THEOREM 8. All the irreducible characters of SOy(q), q odd, have the
Schur index 1 over Q.

In the rest of this section we assume that p#2. To get an infor-
mation about the characters of G(9)=804(q), we apply Lusztig’s theory
[15] to G.

For a connected, reductive algebraic group M defined over F,, we
denote by M* its “dual group” (see P. Deligne and G. Lusztig [5, 5.21]);
M* is again a connected, reductive group defined over F,. We have G*=
Sp,. For the future usage, we adopt here the following matrix realization
of Sp,: Sp,={g e SL,(F,)|gA'9=A}, where

0 1 0 0
-1
A 0 0 0
0 0 0 1
00 -1 0

Let &, be the set of pairs ((s), p) of a semisimple class (8) of G*@g)=
Sp.,(@) and a unipotent character © of H(s)(q)=(Z4(s))*(q). For an integer
m, we define m,., by m=my,p* (m,, p)=1. Then, as a special case of
[15], we get:

THEOREM 4 (Lusztig; also cf. [14]). There exists a bijection ((s), p)—
R, . of &4 with the set G(Q)" of irreducible characters of G(q) such that:

. G(@)l, .
i) deg R, , =—1G@ls . gog 5 -
( “TTHe@, P
(ii) R,,=p for any unipotent character o of G(q);
(iil) for each ((s), p) € &, R,, (resp. R,;) is semisimple (resp. re-
gular), where 1 (resp. St) denotes the principal (resp. Steinberg) character
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of H(s)(q), and conversely, every semisimple (resp. regular) character X
of G(q) cam be expressed as X=R,, (resp. L=R, ) fo'r some semisimple

class (8).
Now we quote from Srinivasan [21] the following list of semisimple

classes of G*(@)=Sp.(9):
Order of centralizer

Notation Number of classes
A=Q1) 1 a(¢*—1)(¢*—1)
Al=(-1) 1 ¢(¢—1)(¢*—1D)
B,(7) 1€ R, (*—1)/4 *+1
By(%) ie R, (g—1)/4 ¢—1
By, j) % jeTyi#J (g—38)(g—5)/8 (g—1)
B, 5 % jeT,i#J (@—1)(g—3)/8 (g+1)
B4, 3) 1€TyjeT, (@—1)(g—3)/4 ¢—1
Bst) 1eT; (¢—1)/2 g(g+1)g*—1)
Bt) teT (@—3)/2 q(g—1)(¢*—1)
C(i) 1eT; (@—1)/2 q(g+1)(@—1)
10 ieT, (@—1)/2 g(g+1)(¢*—1)
Cy(7) ieT, (@—3)/2 q(g—1)(¢*—1)
0 1€ T, (g—3)/2 q(g—1)(¢*—1)
D, 1 (g —1)*

R1={1’ 2 .- 1/4(q2'—1)} ’

R, is a set of 1/2(g—1)* distinct positive integers ¢ such that 6%, 67,
6%, 6 are all distinct, where 6 is an element of F; of order ¢*—1,

T1={1! 2’ ¢ '1/2(q—3)} and T2={1, 27 *t 1/2((1_1)} .

First, let us consider the class A,=(1). By Theorem 4, (i), we find
that the characters of G(g) associated with A, are precisely the unipotent
characters of G(q): 8,=1g, Os, 010y O11s Or2 and 6,,=St;, where we borrow the
notation of the unipotent characters from Srinivasan’s list [21] (note that
SO, is of type (B.), Sp, is of type (C,) and (B,)=(Cy).

Secondly, consider the class Al=(z), z=—1,. As is stated in [5, page
157], there is a natural isomorphism

Hom(G(q)/7(G(q)), @) =Z(G*)(q)=<z>=(=Z[22) ,

where 7: G—G is the simply connected covering of the derived group
of G, | is a fixed prime number #p and Q, is an l-adic number field. Let
6, be the character of G(q)/7r((~¥(q)) corresponding to z. Then, by [15,
(7.5.5) and (7.8.8)], regarding 6, as a character of G(g), we have
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0;:=R41,0¢=‘9z'0i (¢=0, 9, 10, 11, 12, 13) .

Thirdly, consider the classes B\(v), i€ R,. Fixing any i€ R,, let B,(i)=
(8). Then H(s) is a torus, and hence H(s)(q) has pricisely one unipotent
character: 15,. Therefore the character associated with B,(7) is Bp .=
R,,. As to the classes B,(3), By(3, j), Bi(t, 7) and By(s, 7), the situation is
similar. If (s) is any one of the classes By(1), By(3), C,(%), Ci(3), Cy(z) and
Ci(7), then H(s) is a connected, reductive group of semisimple rank 1, so
that H(s)(q) has precisely two unipotent characters: 1z, and Stg,.
Therefore the characters associated with (s) are R,, and R, .

Finally, consider the class D,=(s), s=[12_1 We have Z,.(s)=SL, x
SL,, hence H(s)=PGL,x PGL,. Hence H(s)(q) haszfour unipotent characters:
1=1p,,% lpgz,, 0, = 1paz, X Stpaz,zy 0, = StPGL2 X1pgr, and S, = Stpaz,2 X Stpar.2~
Therefore the characters associated with D, are: R, ,, Ry, 0, Rp, e, and
Rp,,s:»  Thus the characters of G(g)=S0,(q) are as follows:

Character Degree Number

Gy=150, 1 1

05 q(g+1)/2 1

610 q(q—1)"/2 1

7 q(g*+1)/2 1

012 q(¢*+1)/2 1

013=Sts05 q 1

6o=0, 1 1

0y=0,+6, 9(g+1)/2 1

01=0,-61 9(g—1)"/2 1

0;1 = 0z * 011 Q(q2 + 1)/2 1

012=06,+0,, a(g*+1)/2 1

0;8202'018 q 1

RBl(i),l 1€ R, (¢°—1) (°—1)/4
sz(t),1 1€ R, 9‘—1 (g—1)°/4
By 4, jeT, i#5 (@+1)"(g*+1) (g—3)(g—5)/8
Bpupa % JjeTy ig (@—1)"(¢*+1) (@—1)(¢—3)/8
Rpun, 1€T,jeT, ¢—1 (g—1)(g—38)/4
Rpyiy 1€T, (@—1)(¢*+1) (g—1)/2
RBe(t),St 1€ T, q(g—1)(¢*+1) (g—1)/2

Re . 1€ T, (¢+1)(¢°+1) (g—3)/2
Rpyi,ee  1€T, 2(g+1)g°+1) (g—38)/2
Rcl(tm 1€ T, (@—1)(¢*+1) (¢—1)/2
Rcl(t),sz 1e€T, q(g—1)(g*+1) (g—1)/2
Rci(t),l teTy - (g—1)(¢*+1) (¢—1)/2
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Character Degree Number
Re;o,st 1e T, q(g—1)(¢*+1) (g—1)/2
Ry 1 1€T, (@+1)g*+1) (@—3)/2
Reyn,se i1eT, q(g+1)(¢*+1) (q—3)/2
Ry 1eT, (@+1)¢g*+1) (g—3)/2
Rows €T, q(g+1)g*+1) (g—3)/2
Rpl,x *+1 1
Ry, 0, q(g*+1) 1
RDI,Pg q(¢*+1) 1
Ry, s *(¢*+1) 1

Now let us prove Theorem 3. As G=S0, has the trivial centre and
p(+2) is a good prime for G, by Ohmori [17], all the semisimple and regular
characters have the Schur index 1 over Q. Among the unipotent characters
6, =0, 9, 10, 11, 12, 13, the 4, i=0, 9, 11, 12, 13, are in the principal series
(i.e. contained in 153, where B is a Borel subgroup of G defined over
F,), so that, by the theorem of Benson and Curtis [2], they are realizable
in Q. 6, is cuspidal unipotent, so that, by Lusztig [18, (7.6)], it is also
realizable in Q. Next, since 6:=1, 0, is realizable in @. Hence each 6;=
6,-0, is realizable in Q. The remaining characters are Ry, and Ry ,,.
Let T be the diagonal maximal torus of G:

T={diag(@, =, ¥, ™, ¥y lx, y € F{} .
Let v be an element of F} of order ¢g—1. Let 6 be the character of T'(q)
defined by
6(diag(l, ¢, ¥4, v, ) =(—-1)" .
Let R’ be the Deligne-Lusztig character of G(q) associated with the pair
(T, §) (Deligne and Lusztig [5]), we prove
LEMMA 10. One has the decomposition:
( # ) Rz‘=R01,1+RD1,P1+RD1,P2+RD1,St .

Assume that (%) is proved. A Borel subgroup B of G over F, can be
chosen so that BOT. Then we have R}=Ind${%(d), where G =0-(B(q)—
T(q)) (B(g)— T(q) is the natural map) (see [5, Proposition 8.2]). Hence, as
6*=1, R’ is realizable in Q. Therefore, by Lemma 1, we have mo(Rp,,»,)=1,
=1, 2.

PrOOF OF LEMMA 10. Let W=N4(T)/T be the Weyl group of G (with
respect to T). Then W={(o, tlo*=7"=1, ror=0%) (=~the dihedral group
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of order 8), where the action of W on T is given by:

o:diag(l, , y, v, y~) —diag@, ¥y, x, ¥, )
z: diag(1, x, y, 7%, y~") —diag(1, y, 2, ¥y, 27 .

W acts on T(q)"=Hom(T(g), @) by 7"(t)=7(t*) (e T(q)", te T(q)). For
neT(g9)", we put Wn)={we Winp*=%}. Let M be a G(q)-module which
affords R7;=6°?. Then, by Yokonuma [22, Théoréme 5.7], we have an
isomorphism Endg,,(M)=@Q,[W(9)]. It is easy to check that W(§)=
{e, 0*, 7o, 76°}, an abelian group of order 4. Hence R’ is multiplicity-
free and the sum of four irreducible characters. Let 7" be the diagonal
maximal torus of G*=Sp,:

T'={diag(z, 7, y, y )|z, y € F*} .

T’ is isomorphic to T*, and we shall identify 7’ with 7*. Then there
is a natural isomorphism a:T (¢)” = T*(g) which commutes with the
action of W ([5, (5.2.4)]; cf. also W. Kilmoyer [12, Theorem (2.1)]),

where we identify W with N, (T*)/T*. As 6*=1, 61 and |W(6)|=4, up

to W-conjugacy, we may assume that a(§)=s= 32 1 € D,. In terms of
2

[5, (5.21.5)], the G(g)-conjugacy class of (T, #) corresponds to the G*(q)-
conjugacy class of (T*, s). Hence R)=Rj. (see [15, 7.5]). In view of the
way of the constrution of the bijection R: &,~G(g)" in [15, pages 160-1],
we find that every irreducible component of R:. is of the form Ry, »
for some unipotent character o of H(s)(q). But the group H(s)(q)=
PGL,x PGL, has exactly four unipotent characters 1, o, p. and St.
Therefore we must have

R;' =R;n=RD1’1 + RDlrpl -+ Rpl,pz +RD1,St .

This completes the proof of Lemma 10.
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