Schur Indices of Some Finite Chevalley Groups of Rank 2, I

Zyozyu OHMORI

Tokyo Metropolitan University

Introduction

Let F_q be a finite field with q elements, of characteristic p. Let us consider the special orthogonal group $SO_{\mathfrak{b}}(q)$ of degree 5 over F_q , the conformal symplectic group $CSp_4(q)$ of degree 4 over F_q and the Chevalley group $G_2(q)$ of type (G_2) over F_q . If p=2, then $CSp_4(q) \simeq F_q^* \times Sp_4(q)$, and the irreducible characters of $Sp_4(2^f)$ were described by H. Enomoto [24]. The character table of $CSp_4(q)$, q odd, was obtained by K. Shinoda in [19] (according to him, the table had also been obtained by S. Reid independently). The characters of $G_2(q)$ were calculated by B. Chang and R. Ree [4] when $p \neq 2$, 3 and by Enomoto [7, 8] when p=2, 3 ([8] has not been published yet). The complete table of characters of $SO_{\mathfrak{s}}(q)$, q odd, seems to have not been obtained yet. However much information about it can be gotten from G. Lusztig's theory [15] on the classification of the irreducible representations of finite classical groups (see §3 below). the rationality-properties of the characters of these groups, R. Gow has proved in [10] that all the irreducible characters of $Sp_4(q)$, q even, have the Schur index 1 over the field Q of rational numbers. Therefore, if p=2, all the irreducible characters of $CSp_4(q)$ ($\simeq \pmb{F_q^*} \times Sp_4(q)$) and $SO_5(q)$ $(\simeq Sp_{*}(q))$ have the Schur index 1 over Q. In this paper we shall prove the following.

MAIN THEOREM. Suppose q is odd. Then all the irreducible characters of $SO_5(q)$, $CSp_4(q)$ and $G_2(q)$ have the Schur index 1 over Q.

It can be shown that all the irreducible characters of $G_2(2^f)$ also have the Schur index 1 over Q. This case will be treated in the subsequent paper.

Now let G be a simple adjoint algebraic group defined and split over F_q , and G(q) be the group of its F_q -points. If the rank of G is 1, then $G(q) = PGL_2(q)$, and if the rank is 2, then G(q) is a homomorphic image

of $GL_3(q)$, $SO_5(q)$, $CSp_4(q)$, $CO_4^{+,0}(q)$ ($\simeq GL_2(q) \times GL_2(q)$) or $G_2(q)$. It is known that all the irreducible characters of $GL_n(q)$ have the Schur index 1 over Q (A. V. Zelevinsky [23]), and the same is true for $CO_4^{+,0}(q)$. Therefore we get

COROLLARY. Let G be a simple adjoint algebraic group defined and split over F_q , of rank ≤ 2 . Suppose $p \neq 2$. Then all the irreducible characters of G(q) have the Schur index 1 over Q.

I wish to thank Professor H. Enomoto for sending me his preprint [8] and kindly showing me the character table of a Sylow 2-subgroup of $G_2(2^f)$, which has been very useful. I also thank Professor G. Lusztig for kindly teaching me the result (7.6) of [13]. Finally I thank Professor K. Shinoda for kindly showing me the manuscript for [19].

§ 1. Schur index of $G_2(q)$.

In this section we prove

THEOREM 1. All the irreducible characters of $G_2(q)$, q odd, have the Schur index 1 over Q.

First, we state two lemmas.

LEMMA 1 (Schur's Theorem). Let H be a finite group, K a field of characteristic 0 and ξ an ordinary character of H realizable in K. Then, for any irreducible character χ of H, the Schur index $m_K(\chi)$ of χ with respect to K divides the inner product $\langle \chi, \xi \rangle_H$.

LEMMA 2. Let H be a finite group, r a prime number dividing |H| and g an element of H of order r. Assume that there exists an element h of order r-1 such that $hgh^{-1}=g^{\nu}$, where ν is an integer such that ν mod r has order r-1 in $(Z/rZ)^*$. Then, for any irreducible character χ of H, $\chi(g)$ is a rational integer and $m_{\varrho}(\chi)|\chi(g)$.

For a proof of Lemma 1, see, for instance, W. Feit [9, 11.4]. The first assertion of Lemma 2 is well-known and easy to prove. The second one is implicitely proved in Gow [10, page 105]. However, since it plays an important role in the arguments below, we prove it here. Let $K = \langle g, h \rangle$ be the subgroup of H generated by g and h. By assumption, we have $K = \langle h \rangle \ltimes \langle g \rangle$ (semidirect product). Let λ be any linear character $\neq 1$ of $\langle g \rangle$. Then it is easy to check that λ^K is a rational-valued irreducible character of K. Since $\lambda^K | \langle h \rangle$ is the character of the regular

representation of $\langle h \rangle$ (as can be easily seen), by Lemma 1, we have $m_{\mathcal{Q}}(\lambda^K)=1$ and λ^K is realizable in \mathcal{Q} . Now let χ be an irreducible character of $\langle g \rangle$, and put $m=m_{\mathcal{Q}}(\chi)$. Then we can write: $\chi|\langle g \rangle = \sum_{\lambda} a_{\lambda} \cdot \lambda$, where the sum is taken over all linear characters λ of $\langle g \rangle$, and, for each λ , $a_{\lambda}=\langle \chi, \lambda^H \rangle_H$, which is divisible by m as we have seen above (cf. Lemma 1). From this we get an expression: $\chi(g)/m=\sum_{\lambda}(a_{\lambda}/m)\cdot \lambda(g)$, where the right-hand side is an algebraic integer and the left-hand side is a rational number. Hence $\chi(g)/m$ is a rational integer, and $m|\chi(g)$. This completes the proof.

In order to proceed our arguments we need some preparations. First, we quote from Ree [18] and Enomoto [7] the following (some notations are changed). Being R the root system of type (G_2) , the positive roots arranged in increasing order (with respect to some ordering in R) are: a, b, a+b, 2a+b, 3a+b and 3a+2b, where a and b are the simple roots. For $r \in R$, let X_r denote the corresponding root subgroup of $G_2(q)$ and x_r be an isomorphism of the additive group F_q^+ of F_q with X_r induced by a homomorphism ϕ_r : $SL_2(q) \rightarrow G_2(q)$, i.e., $x_{-r}(t) = \phi_r \begin{bmatrix} 1 & 0 \\ t & 1 \end{bmatrix}$, $x_r(t) = \phi_r \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}$, $t \in F_q$. For two elements g, h of a group, we put $[g, h] = g^{-1}h^{-1}gh$. Then (see Ree [18, (3.10)]):

$$[x_a(t), x_b(u)] = x_{a+b}(-tu)x_{2a+b}(-t^2u)x_{3a+b}(t^3u)x_{3a+2b}(-2t^3u^2) ,$$

$$[x_a(t), x_{a+b}(u)] = x_{2a+b}(-2tu)x_{3a+b}(3t^2u)x_{3a+2b}(3tu^2) ,$$

$$[x_a(t), x_{2a+b}(u)] = x_{3a+b}(3tu) ,$$

$$[x_b(t), x_{3a+b}(u)] = x_{3a+2b}(tu) ,$$

$$[x_{a+b}(t), x_{2a+b}(u)] = x_{3a+2b}(3tu) ,$$

$$[x_a(t), x_{a+b}(u)] = x_{a+b}(3tu) ,$$

$$[x_a(t), x_a(t)] = x_{a+b$$

Let $U=\langle X_r|r\in R,\ r>0>$ (a Sylow p-subgroup of $G_2(q)$), and put $B=N_{G_2(q)}(U)(N_*(\)$ denotes the normalizer). Then $B=H\ltimes U$, where H is a subgroup of B isomorphic to $F_q^*\times F_q^*$. One can write: $H=\{h(z_1,\ z_2,\ z_3)|z_1z_2z_3=1,\ z_i\in F_q^*\}$, and the multiplication in H is given by

$$h(z_1, z_2, z_3)h(z_1', z_2', z_3') = h(z_1z_1', z_2z_2', z_3z_3')$$
.

For a positive root r, put $\omega_r = x_r(1)x_{-r}(-1)x_r(1)$. Then the action of H, ω_a and ω_b on U is given by (see Enomoto [7]; for two elements x, h of a finite group, we put $x^h = hxh^{-1}$):

	$oldsymbol{x}$	$x^{k(s_1,s_2,s_3)}$	x^{ω_a}	x^{ω_b}
(2)	$x_a(t)$	$x_a(tz_2)$	$x_{-a}(-t)$	$x_{a+b}(t)$
	$x_b(t)$	$x_b(tz_{\scriptscriptstyle 1}z_{\scriptscriptstyle 2}^{\scriptscriptstyle -1})$	$x_{3a+b}(t)$	$x_{-b}(-t)$
	$x_{a+b}(t)$	$x_{a+b}(tz_1)$	$x_{2a+b}(t)$	$x_a(-t)$
	$x_{2a+b}(t)$	$x_{2a+b}(tz_3^{-1})$	$x_{a+b}(-t)$	$x_{2a+b}(t)$
	$x_{3a+b}(t)$	$x_{8a+b}(tz_2z_3^{-1})$	$x_b(-t)$	$x_{sa+2b}(t)$
	$x_{3a+2b}(t)$	$x_{8a+2b}(tz_1z_3^{-1})$	$x_{3a+2b}(t)$	$x_{8a+b}(-t)$

Now every element $u \in U$ can be written uniquely as $u = \prod_{r>0} x_r(c_r)$, where the product is taken over all the positive roots r according as increasing order and the c_r are some elements of F_q . We recall that $u \in G_2(q)$ is a "regular unipotent element" if u is conjugate to some $\prod_{r>0} x_r(c_r)$ with $c_a \neq 0$ and $c_b \neq 0$.

PROPOSITION 1. Let u be unipotent element of $G_2(q)$. If p=2 or 3, we assume that u is non-regular. Then, for any irreducible character χ of $G_2(q)$, $\chi(u)$ is a rational integer and $m_{\varrho}(\chi)|\chi(u)$.

The assertion on the integralness of the value follows directly from the character tables in [4], [7], [8]. However we give here another proof. Let χ be an arbitrary irreducible character of $G_2(q)$ and put $m = m_{\mathcal{Q}}(\chi)$. First, Suppose u is regular. Let G be the Chevalley group suppose $p \neq 2, 3$. of type (G_2) over an algebraic closure of F_q . Then G is a simple adjoint algebraic group defined over F_q , and $G_2(q)$ can be identified with the group G(q) of F_q -points of G. As $p \neq 2$, 3, p is a good prime for G (see T. A. Springer and R. Steinberg [20, E-12, 4.3]), so that by J. A. Green, G. I. Lehrer and G. Lusztig [11, Theorem 3] we have $\chi(u)=0$, 1 or -1, and by Ohmori [17] $m|\chi(u)$. Suppose therefore u is non-regular $\neq 1$. We show that $u^p=1$ and that there exists an element $t \in N_{G_2(q)}(\langle u \rangle)$, of order p-1, such that $tut^{-1}=t^{\nu}$ (cf. Lemma 2). In view of Chang [3, (3.2), (3.9)], we may assume that u is one of the following elements: $x_b(1)$, $x_{a+b}(1)$, $x_b(1)x_{2a+b}(1)$, $x_b(1)x_{2a+b}(\lambda)$, $x_b(1)x_{3a+b}(\mu)$ and $x_b(1)x_{2a+b}(-1)x_{3a+b}(\zeta)$, where λ , μ and ζ are some elements of F_q . First, we prove that $u^p=1$. For the first four elements, the assertion is clear from the commutator relations (1). Suppose u=Then, using (1), we can check by induction on i that $x_b(1)x_{3a+b}(\mu).$

$$u^{i} = x_{b}(i)x_{3a+b}(i\mu)x_{3a+2b}\left(-\frac{i(i-1)}{2}\mu\right), \qquad 1 \leq i \leq p;$$

hence $u^p=1$. Suppose $u=x_b(1)x_{2a+b}(-1)x_{3a+b}(\zeta)$. Then, noting that

 $x_{2a+b}(c_{2a+b})$ commutes with $x_b(c_b)$ and $x_{3a+b}(c_{3a+b})$, we have:

$$\begin{split} u^i &= x_{2a+b} (-1)^i (x_b(1) x_{3a+b}(\zeta))^i \\ &= x_{2a+b} (-i) x_b(i) x_{3a+b}(i\zeta) x_{3a+2b} \Big(-\frac{i(i-1)}{2} \zeta \Big) \\ &= x_b(i) x_{2a+b} (-i) x_{3a+b}(i\zeta) x_{3a+2b} \Big(-\frac{i(i-1)}{2} \zeta \Big) \;, \qquad 1 \leq i \leq p \;; \end{split}$$

hence $u^p=1$. Next we find t. In view of (2), if $u=x_b(1)$, $x_{a+b}(1)$, $x_b(1)x_{2a+b}(1)$ or $x_b(1)x_{2a+b}(\lambda)$, we can take: $t=h(\nu, 1, \nu^{-1})$. If $u=x_b(1)x_{3a+b}(\mu)$ or $x_b(1)x_{2a+b}(-1)x_{3a+b}(\zeta)$, we can take: $t=x_b((1-\nu)/2)h(\nu, 1, \nu^{-1})$. In fact, using (2), we have by induction on i that

$$t^i = x_b \left(rac{1 -
u^i}{2}
ight) h(
u^i, 1,
u^{-i}) , \qquad 1 \leq i \leq p-1 ,$$

hence $t^{p-1}=1$, and by (1), (2), we have $tut^{-1}=u^{\nu}$. Therefore, by Lemma 2, we conclude that $\chi(u)$ is a rational integer and $m \mid \chi(u)$.

Secondly, suppose p=3. Let u be any non-regular unipotent element $\neq 1$. Then, using the results of Enomoto [6], we easily see that $u^3=1$ and find an element $t \in N_{G_2(q)}(\langle u \rangle)$, of order 2, such that $tut^{-1}=u^2$. Hence the assertion follows from Lemma 2.

Finally, suppose p=2. Let u be any non-regular unipotent element $\neq 1$. By Enomoto [6], u is conjugate to one of the elements: $x_3 = x_{3a+2b}(1)$, $x_4 = x_{2a+b}(1)$, $x_5 = x_{a+b}(1)x_{2a+b}(1)$, $x_6 = x_{a+b}(1)x_{2a+b}(1)x_{3a+b}(\eta)$ and $x_7 = x_b(1)x_{2a+b}(1)x_{3a+b}(\zeta)$, where η and ζ are some elements of \mathbf{F}_q . If $u = x_3$ or x_4 , then $u^2 = 1$ and the assertion is clear. Suppose $u = x_5$. Then, by (1), we have:

$$u^2 = [x_{a+b}(1), x_{2a+b}(1)] = x_{3a+2b}(1) = x_3$$
;

hence $u^4=1$. Put $t=x_{a+b}(1)$. Then, by (1), we have $t^2=1$ and $tut^{-1}=u^3$. Hence $D=\langle t,u\rangle$ is isomorphic to the dihedral group of order 8. D has five irreducible characters: four rational-valued linear characters and one character ϕ of degree 2 with $\phi(u)=0$. Hence $\chi(u)=(\chi|D)(u)$ is a rational integer. Moreover we see easily that, for any linear character χ of $\langle u \rangle$, χ^D is realizable in Q. Therefore, by a method similar to the proof of Lemma 2, we can prove that m divides $\chi(u)$. Suppose $u=x_6$. Put $t=x_{a+b}(1)$. Then, using (1), we see that $u^2=x_3$, $u^4=1$, $t^2=1$ and $tut^{-1}=u^3$. Hence by the same argument as above, we conclude that $\chi(u)$ is a rational integer divisible by m. Suppose finally $u=x_7$. Then $u^2=x_{3a+2b}(\zeta)$ and $u^4=1$. Put $t=x_b(1)$. Then, by (1), we have $t^2=1$ and $tut^{-1}=u^3$. Hence the assertion follows as in the case when $u=x_5$ or x_6 . This completes the proof of

Proposition 1.

We can now prove Theorem 1. Assume that $p \neq 2$. For the notation of the characters of $G_2(q)$, we follow Chang and Ree [4] and Enomoto [7].

LEMMA 3 (Chang and Ree [4] and Enomoto [7]). If $p \neq 2$, 3 (resp. p = 3), then except for two characters X_{19} and \bar{X}_{19} (resp. $\theta_{12}(1)$ and $\theta_{12}(-1)$) all the other irreducible characters are real and hence have the Schur indices at most two. X_{19} and \bar{X}_{19} (resp. $\theta_{12}(1)$ and $\theta_{12}(-1)$) are complex conjugate of each other and $Q(X_{19}) = Q(\bar{X}_{19}) = Q(\zeta_3)$ (resp. $Q(\theta_{12}(1)) = Q(\theta_{12}(-1)) = Q(\zeta_3)$). Hence $m_Q(X_{19}) = (m_Q(\bar{X}_{19}))$ (resp. $m_Q(\theta_{12}(\pm 1))$) divides 6. Here, for an irreducible character ξ of a finite group and a field K of characteristic 0, $K(\xi)$ is the field generated over K by the values of ξ , and ζ_3 is a primitive cubic root of 1.

If p=3, the assertion on the values can be checked immediately from the character table (see Enomoto [7]). Suppose therefore $p\neq 2$, 3, where the assertion is not so immediate from Chang and Ree [4]. In the list of the characters of $G_2(q)$ in page 412 of [4], reading from the top, characters X_1, X_2, \dots, X_{12} are Q-linear combinations of generalized characters $X_{\alpha}(\pi_{\alpha})$, $\alpha=1, 2, a, b, 3, 6$ (see [4, pages 399-402]). Therefore, to see that X_1, X_2, \dots, X_{12} are real, it suffices to check that the $X_{\alpha}(\pi_{\alpha})$ are real. In view of the table of the values of $X_{\alpha}(\pi_{\alpha})$ in [4, pages 409-10], for doing so, it suffices to check that the functions $\widehat{\pi}_{\alpha}$, $\alpha=1, 2, a, b, 3, 6$, are real. By the definition, for each α , the function $\widehat{\pi}_{\alpha}$ on H_{α} is defined by

(see [4, pape 396]). We note that each W_{α} contains the element w_2 , where $h(z_1, z_2, z_3)^{w_2} = h(z_1^{-1}, z_2^{-1}, z_3^{-1})$ (see [loc. cit.]). Therefore, for each α , we have:

$$\begin{split} \widehat{\pi}_{\alpha}(h) &= \frac{1}{2|C_{W_{\alpha}}(h)|} \Big\{ \sum_{\mathbf{w} \in W_{\alpha}} w \pi_{\alpha}(h) + \sum_{\mathbf{w} \in w_{2}W_{\alpha}} w \pi_{\alpha}(h) \Big\} \\ &= \frac{1}{2|C_{W_{\alpha}}(h)|} \Big\{ \sum_{\mathbf{w} \in W_{\alpha}} w \pi_{\alpha}(h) + \sum_{\mathbf{w} \in W_{\alpha}} w_{2}w \pi_{\alpha}(h) \Big\} \\ &= \frac{1}{2|C_{W_{\alpha}}(h)|} \Big\{ \sum_{\mathbf{w} \in W_{\alpha}} w \pi_{\alpha}(h) + \sum_{\mathbf{w} \in W_{\alpha}} w \pi_{\alpha}(h^{-1}) \Big\} \end{split} ,$$

which is clearly real. Next, the characters X_{18} , X_{14} , ..., X_{18} , X_{19} and \bar{X}_{19} are Q-linear combinations of the $X_{\alpha}(\pi_{\alpha})$ and the four class functions

 $Y_i(1 \le i \le 4)$ (see [4, page 402]). The functions Y_1 and Y_2 are rational, and Y_3 and Y_4 are complex conjugate of each other and take values in $Q(\zeta_3)$. But, if X is any one of the characters X_{13}, \dots, X_{18} , the coefficient of Y_3 and that of Y_4 coincide with each other, so that X is real. If $X = X_{19}$ or \overline{X}_{19} , the coefficient of Y_3 is different from that of Y_4 , so that X is not real and $Q(X) = Q(\zeta_3)$. The assertion on the Schur indices follows from the following.

LEMMA 4 (M. Benard and M. M. Schacher [1]). If χ is an irreducible character of a finite group and K is a field of characteristic 0, then $K(\chi)$ contains a primitive $m_K(\chi)$ -th root of 1. Especially, if χ is real, then $m_Q(\chi) \leq 2$ (The Brauer-Speiser Theorem).

The roots of 1 contained in $Q(\zeta_3)$ are 1, -1, ζ_3 and $-\zeta_3$. Therefore, by Lemma 4, $m_Q(\chi)|6$ if $\chi=X_{19}$, \bar{X}_{19} , $\theta_{12}(1)$ or $\theta_{12}(-1)$, and $m_Q(\chi)\leq 2$ otherwise. This proves Lemma 3.

LEMMA 5 (Chang and Ree [4] and Enomoto [7]). Let χ be any irreducible character of $G_2(q)$, q odd. Then if $p \neq 3$ (resp. p=3), the greatest common divisor of the values of χ at all unipotent elements (resp. all non-regular unipotent elements) of $G_2(q)$ is equal to the p-part of $\chi(1)$. Hence $m_{\mathcal{Q}}(\chi)$ divides a power of p.

This can be checked directly from [4] and [7] (cf. Ohmori [16, Theorem C]). The assertion on the Schur indices follows from Proposition 1.

By Lemmas 4, 5, except for two characters $\theta_{12}(1)$ and $\theta_{12}(-1)$ in case p=3, we find that all the other characters have the Schur index 1 over Q. Suppose therefore p=3, and let us consider the characters $\theta_{12}(1)$ and $\theta_{12}(-1)$. Let V be the subgroup $\langle x_b(1)\rangle X_a X_{a+b} X_{2a+b} X_{3a+b} X_{3a+2b}$ of U, and let $\varepsilon_{\kappa}=\varepsilon(\kappa,1,1)$, $\kappa=\pm 1$, be two linear characters of V which is defined in [7, page 197]; we see at once that $Q(\varepsilon_{\kappa})=Q(\zeta_3)$, $\kappa=\pm 1$, (see [loc. cit.]).

LEMMA 6. One has $\langle \theta_{12}(\kappa)|V, \varepsilon_{\lambda}\rangle_{v} = \delta_{\kappa\lambda}$, $(\kappa, \lambda = \pm 1)$, where $\delta_{\kappa\lambda}$ denotes Kronecker's symbol.

Assume that Lemma 6 is proved. Then, since ε_{κ} , $\kappa = \pm 1$, are realizable in $Q(\theta_{12}(\kappa))$, $\kappa = \pm 1$, by Lemma 1, we have $m_Q(\theta_{12}(\kappa)) = 1$, $\kappa = \pm 1$, and the proof of Theorem 1 is finished.

Let $P=B\cup B\omega_a B$ be the parabolic subgroup of $G_2(q)$ generated by B and ω_a . Then we find from [7, pages 197 and 205] that $\theta_4(\kappa)=(\varepsilon_{\kappa})^P$, $\kappa=\pm 1$. Hence it suffices to prove

LEMMA 7. $\langle \theta_{12}(\kappa)|P, \theta_4(\lambda)\rangle_P = \delta_{\kappa\lambda}, \kappa, \lambda = \pm 1$ (cf. [7, page 205]).

In order to know the inner products, we have to know the relation between the conjugacy classes of P and those of $G_2(q)$. Since $\theta_4(\kappa)$, $\kappa=\pm 1$, vanish outside of the unipotent elements (see [7, Table III-2, page 221]), in view of [7, Table III-1, page 217], it suffices to check only the classes of P denoted by $A_{65}(t)$ and $A_{66}(t)$ in [loc. cit.]. Set $S=(F_q^*)^2$ and $N=F_q^*-S$. For $t\in F_q^*$, put $u(t)=x_a(1)x_{8a+b}(1)x_{8a+2b}(1-t)$. Then u(t) belongs to the class $A_{65}(t)$ (resp. $A_{66}(t)$) if $t\in S$ (resp. $t\in N$) (see [7, page 217]). We have

LEMMA 8. If t=1, then u(t) belongs to the class A_{82} of $G_2(q)$. If $t \neq 1$ and $1-t \in S$ (resp. $1-t \in N$), then u(t) belongs to the class A_{41} (resp. A_{42}) of $G_2(q)$.

We find from (2) and (1) that

$$u(t)^{\omega_b} = x_{a+b}(1)x_{3a+2b}(1)x_{3a+b}(t-1)$$

$$= x_{a+b}(1)x_{3a+b}(t-1)x_{3a+2b}(1) .$$

Suppose t=1. Then $u(t)^{\omega_b}=x_{a+b}(1)x_{3a+2b}(1)$. Hence, by (2), we have $(u(t)^{\omega_b})^{\omega_a}=(x_{a+b}(1)x_{3a+2b}(1))^{\omega_a}=x_{2a+b}(1)x_{3a+2b}(1),$

which belongs to the class A_{32} . Suppose therefore $t \neq 1$. Put $y = x_b(1/(1-t))$. Then, by (1), we have

$$\begin{split} (u(t)^{\omega_b})^{\mathbf{y}} &= x_{a+b}(1) x_{3a+b}(t-1)^{\mathbf{y}} x_{3a+2b}(1) \\ &= x_{a+b}(1) x_{3a+2b} \Big(\frac{1}{t-1} (1-t) \Big) x_{3a+b}(t-1) x_{3a+2b}(1) \\ &= x_{a+b}(1) x_{3a+b}(t-1) \ . \end{split}$$

First, suppose $1-t \in S$. Then $1-t=z^2$ for some $z \in F_q^*$. Put $h=h(1, z^{-1}, z)$. Then, by (2), we have

$$\begin{split} ((u(t)^{\omega_b})^{\mathbf{y}})^{\mathbf{h}} &= (x_{a+b}(1)x_{3a+b}(t-1))^{\mathbf{h}} \\ &= x_{a+b}(1)x_{3a+b}(z^{-2}(t-1)) \\ &= x_{a+b}(1)x_{3a+b}(-1) \text{ .} \end{split}$$

Hence u(t) belongs to the class A_{41} . Next, suppose $1-t \in N$. Let γ be an element of F_q^* of order q-1; $\gamma \in N$ and we have $N=\gamma S$. Hence we have $1-t=\gamma w^2$ for some $w \in F_q^*$. Putting $h'=h(1, w^{-1}, w)$, by (2), we have

$$\begin{split} ((u(t)^{\omega_b})^y)^{h'} &= (x_{a+b}(1)x_{3a+b}(t-1))^{h'} \\ &= x_{a+b}(1)x_{3a+b}(w^{-2}(t-1)) \\ &= x_{a+b}(1)x_{3a+b}(-\gamma) \ . \end{split}$$

Hence u(t) belongs to the class A_{42} . This proves Lemma 5.

Now we define:

$$i=|\{t\in S|u(t) \text{ belongs to the class }A_{41}\}|$$
 , $j=|\{t\in S|u(t) \text{ belongs to the class }A_{42}\}|$, $m=|\{t\in N|u(t) \text{ belongs to the class }A_{41}\}|$, $n=|\{t\in N|u(t) \text{ belongs to the class }A_{42}\}|$.

Since |S| = |N| = (q-1)/2, we find from Lemma 5 that i+m=(q-1)/2-1=(q-3)/2 and j+n=(q-1)/2. Using these equalities, we can now prove Lemma 7. Denote by E (resp. F) a complete set of representatives of the unipotent classes of $G_2(q)$ (resp. P). For two elements g, h of $G_2(q)$, we shall write $g \sim h$ if g is conjugate to h in $G_2(q)$. Then we have:

$$\begin{split} &\langle \theta_{12}(\kappa)|P,\,\theta_{4}(\lambda)\rangle_{P} \\ &= \frac{1}{|P|} \sum_{g \in P} \theta_{12}(\kappa)(g)\theta_{4}(\lambda)(g^{-1}) \\ &= \sum_{g \in F} \frac{1}{|Z_{P}(g)|} \theta_{12}(\kappa)(g)\theta_{4}(\lambda)(g^{-1}) \\ &= \sum_{g \in E} \theta_{12}(\kappa)(g) \sum_{\substack{k \in P \\ k \sim g}} \frac{1}{|Z_{P}(k)|} \theta_{4}(\lambda)(h^{-1}) \\ &= \frac{1}{3} q(q^{2}-1)^{2} \cdot \frac{1}{q^{g}(q^{2}-1)(q-1)} \cdot \frac{1}{3} q(q-1)(q^{2}-1) \\ &- \frac{1}{3} q(q^{2}-1) \cdot \left\{ \frac{1}{q^{5}(q^{2}-1)} \cdot \frac{1}{3} q(q-1)(q^{2}-1) + \frac{1}{q^{5}(q-1)} \cdot \left(-\frac{1}{3}q\right)(q^{2}-1) \right\} \\ &- \frac{1}{3} q(q^{2}-1) \cdot \left\{ \frac{1}{q^{5}(q-1)} \cdot \left(-\frac{1}{3}q\right)(q-1) + \frac{1}{q^{4}(q-1)} \cdot \left(-\frac{1}{3}q\right)(q-1) \right\} \\ &+ \frac{1}{3} q \cdot \left\{ \frac{1}{q^{6}} \cdot \left(-\frac{1}{3}q\right)(q-1) + \frac{1}{q^{5}} \cdot \frac{1}{3}q + \frac{1}{q^{4}} \cdot \frac{1}{3}q \right\} \\ &+ \frac{1}{3} q(q+1) \cdot \left\{ \frac{1}{2q^{4}} \cdot \frac{1}{3} q(q+1) + \frac{1}{2q^{4}} \cdot \left(-\frac{1}{3}q\right)(q-1) + \frac{1}{q^{4}} \cdot \frac{1}{3}q \right\} \\ &+ i \cdot \frac{1}{q^{4}} \cdot \frac{1}{3}q + m \cdot \frac{1}{q^{4}} \frac{1}{3}q \right\} \\ &- \frac{1}{3} q(q-1) \cdot \left\{ \frac{1}{2q^{4}} \cdot \left(-\frac{1}{3}q\right)(q-1) + \frac{1}{2q^{4}} \cdot \left(-\frac{1}{3}q\right)(q-1) \right\} \end{split}$$

$$\begin{split} &+j\cdot\frac{1}{q^4}\cdot\frac{1}{3}q+n\cdot\frac{1}{q^4}\cdot\frac{1}{3}q\Big\}\\ &+\frac{1}{3}q\cdot\frac{1}{3q^2}\cdot\frac{1}{3}q\\ &+\left(\frac{1}{3}q+q\zeta_3^{\kappa}\right)\cdot\frac{1}{3q^2}\cdot\frac{1}{3}q\left(1+3\zeta_3^{-\lambda}\right)\\ &+\left(\frac{1}{3}q+q\zeta_3^{-\kappa}\right)\cdot\frac{1}{3q^2}\cdot\frac{1}{3}q\left(1+3\zeta_3^{\lambda}\right)\\ &+\left(\frac{1}{3}q+q\zeta_3^{-\kappa}\right)\cdot\frac{1}{3q^2}\cdot\frac{1}{3}q\left(1+3\zeta_3^{\lambda}\right)\\ &=\frac{13}{27}+\frac{1}{27}\{(1+3\zeta_3^{\kappa})(1+3\zeta_3^{-\lambda})+(1+3\zeta_3^{-\kappa})(1+3\zeta_3^{\lambda})\}\\ &=\frac{13}{27}+\frac{1}{27}\{-4+9(\zeta_3^{\kappa-\lambda}+\zeta_3^{\lambda-\kappa})\}\\ &=\delta_{\kappa\lambda}\;,\quad (\kappa,\lambda=\pm1). \end{split}$$

This completes the proof.

§ 2. Schur index of $CSp_4(q)$.

Let k be an algebraic closure of F_q . Let $G=CSp_4$ be the group of all matrices $g \in GL_4(k)$ such that ${}^tgJg = \lambda_gJ$ for some $\lambda_g \in k^*$, where $J = \begin{bmatrix} 0 & s \\ -s & 0 \end{bmatrix}$, $s = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. Then G is a connected, reductive algebraic group which is defined and split over F_q and has the connected centre k^*1_4 . In this section we shall prove

THEOREM 2. All the irreducible characters of $G(q) = CSp_4(q)$, q odd, have the Schur index 1 over Q.

Let M be a connected, reductive algebraic group defined over F_q . Assume that the centre of M is connected and p is a good prime for M. Let Γ_M be the Gel'fand-Graev character of M(q) (see, for instance, Green, Lehrer and Lusztig [11]). Then, for an irreducible character χ of M(q), we shall say that χ is regular (resp. semisimple) if $\langle \chi, \Gamma_M \rangle_{M(q)} \neq 0$ (resp. $p \nmid \chi(1)$). By Ohmori [17], if M splits over F_q , any regular or semisimple character has the Schur index 1 over Q.

Now assume that $p\neq 2$. Then, since G is of type (C_2) , p is a good prime for G, and any regular or semisimple character of G(q) has the Schur index 1 over Q. Sinoda has shown in [19] that an irreducible character χ of G(q) is regular if and only if $\chi(1)$ is, as a polynomial in q, of degree four. Thus the remaining characters are: $\tau_2(\lambda)$, $\lambda \in F_q^* = \operatorname{Hom}(F_q^*, C^*)$, and $\theta_i(\lambda)$, $\lambda \in F_q$, $1 \leq i \leq 4$. We have $\tau_2(\lambda) = \theta_0(\lambda) \cdot \tau_2$ and $\theta_i(\lambda) = 0$

 $\theta_0(\lambda) \cdot \theta_i(1)$, $1 \le i \le 4$, where the $\theta_0(\lambda)$ are the linear characters of G(q) (see [19, pages 1399 and 1416]). Hence it suffices to show that τ_2 and the $\theta_i(1)$, $1 \le i \le 4$, have the Schur index 1 over Q.

PROPOSITION 2. Let χ be any irreducible character of G(q). Then, for any unipotent element u of G(q), $\chi(u)$ is a rational integer and $m_{Q}(\chi)|\chi(u)$.

When u is regular, the assertion can be proved by the method similar to the proof of Proposition 1, §1. Therefore, we may assume that u is non-regular. Then u is conjugate to one of the following:

$$u_1 = \begin{bmatrix} 1 & & 1 \\ & 1 & \\ & & 1 \\ & & & 1 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} 1 & & 1 & \\ & 1 & & 1 \\ & & 1 & \\ & & & 1 \end{bmatrix}$, $u_3 = \begin{bmatrix} 1 & & -\gamma_1 \\ & 1 & \\ & & 1 \\ & & & 1 \end{bmatrix}$,

where γ_1 is a fixed non-square in F_q^* (see [19, page 1376]). Put

$$t = egin{bmatrix} 1 & & & \ & 1 & & \ & & \mathbf{v} & \ & & & \mathbf{v} \end{bmatrix}.$$

Then one checks easily that $u^p = t^{p-1} = 1$ and $t^{-1}ut = u^p$. Hence, by Lemma 2, $\chi(u)$ is a rational integer and $m_{\varrho}(\chi)|\chi(u)$.

LEMMA 9 (Shinoda [19]). For any irreducible character χ of G(q), there is a unipotent element u such that $|\chi(u)|$ is equal to the p-part of $\chi(1)$. Hence $m_o(\chi)$ divides a power of p.

First assertion follows from [19]. The second assertion follows from first one and Proposition 2.

Now put $s=\operatorname{diag}(\nu, -\nu, -\nu, \nu)$. Then $s^{p-1}=1$ and s^i belongs to the class A_0 (resp. B_0) if i is even (resp. odd) (see [19, page 1375]). Therefore we have:

$$\begin{split} \langle \tau_2, \, \mathbf{1}_{\langle \mathfrak{s} \rangle} \rangle_{\langle \mathfrak{s} \rangle} &= \frac{1}{p-1} \Big\{ \frac{p-1}{2} q(q^2+1) + \frac{p-1}{2} (q^2+1) \alpha_0(-1) \Big\} \\ &= \frac{(q^2+1)(q\pm 1)}{2} \not\equiv 0 (\text{mod } p) \quad (\text{note that} \quad \alpha_0(-1) = \pm 1); \end{split}$$

$$\begin{split} \langle \theta_1(1), 1_{\langle \mathfrak{s} \rangle} \rangle_{\langle \mathfrak{s} \rangle} &= \frac{1}{p-1} \Big\{ \frac{p-1}{2} \cdot \frac{q(q+1)^2}{2} + \frac{p-1}{2} \cdot \frac{(q+1)^2}{2} \Big\} \\ &= \frac{(q+1)^8}{4} \not\equiv 0 (\bmod{p}); \\ \langle \theta_2(1), 1_{\langle \mathfrak{s} \rangle} \rangle_{\langle \mathfrak{s} \rangle} &= \frac{1}{p-1} \Big\{ \frac{p-1}{2} \cdot \frac{q(q-1)^2}{2} + \frac{p-1}{2} \cdot \frac{-(q-1)^2}{2} \Big\} \\ &= \frac{(q-1)^8}{4} \not\equiv 0 (\bmod{p}); \\ \langle \theta_3(1), 1_{\langle \mathfrak{s} \rangle} \rangle_{\langle \mathfrak{s} \rangle} &= \frac{1}{p-1} \Big\{ \frac{p-1}{2} \cdot \frac{q(q^2+1)}{2} + \frac{p-1}{2} \cdot \frac{q^2+2q-1}{2} \Big\} \\ &= \frac{q^8+q^2+3q-1}{4} \not\equiv 0 (\bmod{p}); \\ \langle \theta_4(1), 1_{\langle \mathfrak{s} \rangle} \rangle_{\langle \mathfrak{s} \rangle} &= \frac{p-1}{2} \Big\{ \frac{p-1}{2} \cdot \frac{q(q^2+1)}{2} + \frac{p-1}{2} \cdot \frac{-q^2+2q+1}{2} \Big\} \\ &= \frac{q^8-q^2+3q+1}{4} \not\equiv 0 (\bmod{p}) \;. \end{split}$$

Hence, by Lemma 1, if χ is any one of τ_2 and $\theta_i(1)$, $1 \le i \le 4$, $m_Q(\chi)$ is coprime to p. Hence, by Lemma 9, $m_Q(\chi) = 1$. This completes the proof of Theorem 2.

REMARK. As is stated in [19, page 1399], the characters $\theta_i(1)$, $0 \le i \le 5$, are the unipotent characters of $G(q) = CSp_4(q)$, and θ_0 , $\theta_{i+8} = \theta_i(1)|Sp_4(q)$, $1 \le i \le 5$, are the unipotent characters of $Sp_4(q)$ determined by B. Srinivasan in [21]. We have

$$1_B^{G(q)} = \theta_0(1) + 2\theta_1(1) + \theta_3(1) + \theta_4(1) + \theta_5(1)$$
.

Hence, by a theorem of C. T. Benson and C. W. Curtis [2], the characters $\theta_i(1)$, $0 \le i \le 5$, are realizable in \mathbf{Q} . The character $\theta_2(1)$ is the cuspidal unipotent character of G(q). Lusztig has shown that $\theta_2(1)$ can be realized in an l-adic cohomology space of an algebraic variety over \mathbf{F}_q (see [13]); as a consequence, he proved that $\theta_2(1)$ is realizable in \mathbf{Q} (see [13, (7.6)]). Similarly, the characters θ_i , $9 \le i \le 13$, are realizable in \mathbf{Q} .

On the other hand, Gow showed in [10] that each θ_i is contained in a certain induced module with multiplicity one, and derived from this that if q is an even power of p, the θ_i have the Schur index 1 over Q (see [10, Theorem 7]). In fact, for example, we have $\langle \theta_2(1), \theta_2^0(1, -1)^{\sigma(q)} \rangle_{\sigma(q)} = 1$, where $\theta_2^0(1, -1)$ is an irreducible character of B (see [19, page 1381]; we can prove that $\theta_2^0(1, -1)$ is realizable in Q).

§ 3. Schur index of $SO_{5}(q)$.

Let G be $SO_{\mathfrak{b}} = \{g \in SL_{\mathfrak{b}}(\bar{F}_q)|^t gJg = J\}$, where

$$J {=} egin{bmatrix} 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 \ 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 \end{pmatrix}.$$

In this section we shall prove

THEOREM 3. All the irreducible characters of $SO_5(q)$, q odd, have the Schur index 1 over Q.

In the rest of this section we assume that $p \neq 2$. To get an information about the characters of $G(q) = SO_{\delta}(q)$, we apply Lusztig's theory [15] to G.

For a connected, reductive algebraic group M defined over F_q , we denote by M^* its "dual group" (see P. Deligne and G. Lusztig [5, 5.21]); M^* is again a connected, reductive group defined over F_q . We have $G^* = Sp_4$. For the future usage, we adopt here the following matrix realization of Sp_4 : $Sp_4 = \{g \in SL_4(\bar{F}_q) | gA^tg = A\}$, where

$$A = \left[egin{array}{cccc} 0 & 1 & 0 & 0 \ -1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & -1 & 0 \ \end{array}
ight].$$

Let \mathscr{E}_{σ} be the set of pairs $((s), \rho)$ of a semisimple class (s) of $G^*(q) = Sp_*(q)$ and a unipotent character ρ of $H(s)(q) = (Z_{\sigma^*}(s))^*(q)$. For an integer m, we define $m_{p'}$, by $m = m_{p'}p^a$, $(m_{p'}, p) = 1$. Then, as a special case of [15], we get:

THEOREM 4 (Lusztig; also cf. [14]). There exists a bijection $((s), \rho) \rightarrow R_{s,\rho}$ of \mathscr{C}_{G} with the set $G(q)^{\hat{}}$ of irreducible characters of G(q) such that:

(i)
$$\deg R_{s,\rho} = \frac{|G(q)|_{p'}}{|H(s)(q)|_{n'}} \cdot \deg \rho \ ;$$

(ii) $R_{1,\rho} = \rho$ for any unipotent character ρ of G(q);

(iii) for each $((s), \rho) \in \mathcal{E}_{g}$, $R_{\bullet,1}$ (resp. $R_{\bullet,st}$) is semisimple (resp. regular), where 1 (resp. St) denotes the principal (resp. Steinberg) character

of H(s)(q), and conversely, every semisimple (resp. regular) character χ of G(q) can be expressed as $\chi = R_{\bullet,1}$ (resp. $\chi = R_{\bullet,st}$) for some semisimple class (s).

Now we quote from Srinivasan [21] the following list of semisimple classes of $G^*(q) = Sp_4(q)$:

(1			Order of centralizer
Notation		Number of classes	
$A_1 = (1_4)$		1	$q^4(q^2-1)(q^4-1)$
-		1	$q^4(q^2-1)(q^4-1)$
$A_1'=(-1_4)$		(~2 1)/A	q^2+1
$B_{\scriptscriptstyle 1}(i)$ i	$\in R_1$	$(q^2-1)/4$	$q^2 - 1$
$B_{\scriptscriptstyle 2}(i)$ i	$\in R_{\scriptscriptstyle 2}$	$(q-1)^2/4$	•
	, $j\in T_{\scriptscriptstyle 1}$, $i\! \neq\! j$	(q-3)(q-5)/8	$(q-1)^2$
$D_3(i,j)$	$j \in T_2, \ i \neq j$	(q-1)(q-3)/8	$(q+1)^2$
$D_4(i,j)$	$f \in T \text{if } T$	(q-1)(q-3)/4	$q^2 - 1$
	$j \in T_2, j \in T_1$,-	$q(q+1)(q^2-1)$
$B_{\scriptscriptstyle 6}(i)$ i	$i \in T_2$	(q-1)/2	- 1-
$B_{\scriptscriptstyle 8}(i)$ i	$f \in T_1$	(q-3)/2	$q(q-1)(q^2-1)$
	$z \in T_2$	(q-1)/2	$q(q+1)(q^2-1)$
-1(-)	$z \in T_2$	(q-1)/2	$q(q+1)(q^2-1)$
- 1(-)	=	(q-3)/2	$q(q-1)(q^2-1)$
- 3(-)	$t \in T_1$. =	$q(q-1)(q^2-1)$
$C_3'(i)$ i	$z \in T_1$	(q-3)/2	
D_1		1	$q^2(q^2-1)^2$
~ 1	-	(1.0 1/4/~2 1))	
	R_{i}	$_1 = \{1, 2, \cdots, 1/4(q^2-1)\}$,

 R_2 is a set of $1/2(q-1)^2$ distinct positive integers i such that θ^i , θ^{-i} , θ^{qi} , θ^{-qi} are all distinct, where θ is an element of $F_{q^2}^*$ of order q^2-1 ,

$$T_1 = \{1, 2, \dots 1/2(q-3)\}$$
 and $T_2 = \{1, 2, \dots, 1/2(q-1)\}$.

First, let us consider the class $A_1=(1_4)$. By Theorem 4, (ii), we find that the characters of G(q) associated with A_1 are precisely the unipotent characters of G(q): $\theta_0=1_G$, θ_9 , θ_{10} , θ_{11} , θ_{12} and $\theta_{13}=St_G$, where we borrow the notation of the unipotent characters from Srinivasan's list [21] (note that SO_5 is of type (B_2) , Sp_4 is of type (C_2) and $(B_2)=(C_2)$).

Secondly, consider the class $A'_1=(z)$, $z=-1_4$. As is stated in [5, page 157], there is a natural isomorphism

$$\operatorname{Hom}(G(q)/\pi(\widetilde{G}(q)),\ ar{m{Q}}_{i}^{*})\!\simeq\!Z(G^{*})(q)\!=\!\langle z
angle\!=\!(\simeq\!Z/2Z)$$
 ,

where $\pi: \widetilde{G} \to G$ is the simply connected covering of the derived group of G, l is a fixed prime number $\neq p$ and Q_l is an l-adic number field. Let θ_z be the character of $G(q)/\pi(\widetilde{G}(q))$ corresponding to z. Then, by [15, (7.5.5) and (7.8.3)], regarding θ_z as a character of G(q), we have

$$\theta_i' := R_{A_1',\theta_i} = \theta_z \cdot \theta_i$$
 (i=0, 9, 10, 11, 12, 13).

Thirdly, consider the classes $B_1(i)$, $i \in R_1$. Fixing any $i \in R_1$, let $B_1(i) = (s)$. Then H(s) is a torus, and hence H(s)(q) has pricisely one unipotent character: $1_{H(s)}$. Therefore the character associated with $B_1(i)$ is $R_{B_1(i),1} := R_{s,1}$. As to the classes $B_2(i)$, $B_3(i,j)$, $B_4(i,j)$ and $B_5(i,j)$, the situation is similar. If (s) is any one of the classes $B_6(i)$, $B_8(i)$, $C_1(i)$, $C_1(i)$, $C_3(i)$ and $C_3(i)$, then H(s) is a connected, reductive group of semisimple rank 1, so that H(s)(q) has precisely two unipotent characters: $1_{H(s)}$ and $St_{H(s)}$. Therefore the characters associated with (s) are $R_{s,1}$ and $R_{s,2}$.

Therefore the characters associated with (s) are $R_{s,1}$ and $R_{s,St}$. Finally, consider the class $D_1=(s)$, $s=\begin{bmatrix}1_2\\-1_2\end{bmatrix}$. We have $Z_{G^s}(s)=SL_2\times SL_2$, hence $H(s)=PGL_2\times PGL_2$. Hence H(s)(q) has four unipotent characters: $1=1_{PGL_2}\times 1_{PGL_2}$, $\rho_1=1_{PGL_2}\times St_{PGL_2}$, $\rho_2=St_{PGL_2}\times 1_{PGL_2}$ and $S_t=St_{PGL_2}\times St_{PGL_2}$. Therefore the characters associated with D_1 are: $R_{D_1,1}$, R_{D_1,ρ_1} , R_{D_1,ρ_2} and $R_{D_1,St}$. Thus the characters of $G(q)=SO_5(q)$ are as follows:

Character		Degree	Number
$\theta_0 = 1_{SO_{5}}$		1	1
$ heta_{ exttt{9}}$		$q(q+1)^2/2$	
θ_{10}		$q(q-1)^2/2$	1
$ heta_{11}$		$q(q^2+1)/2$	1
$ heta_{12}$		$q(q^2+1)/2$	1
$ heta_{\scriptscriptstyle 13} = St_{\scriptscriptstyle SO_{\scriptscriptstyle B}}$		q^4	1
$\theta_0' = \theta_z$		1	1
$\theta_9' = \theta_z \cdot \theta_9$		$q(q+1)^2/2$	$\overline{1}$
$\theta_{10}' = \theta_z \cdot \theta_{10}$		$q(q-1)^2/2$	1
$\theta_{11}' = \theta_z \cdot \theta_{11}$	en j	$q(q^2+1)/2$	1
$\theta_{12}' = \theta_z \cdot \theta_{12}$		$q(q^2+1)/2$	_ 1
$\theta_{13}' = \theta_z \cdot \theta_{13}$		q^4	$ar{f 1}$
$R_{\scriptscriptstyle B_1(i),1}$	$i\in R_{\scriptscriptstyle 1}$	$(q^2-1)^2$	$(q^2-1)/4$
	i \in $R_{\scriptscriptstyle 2}$	$q^4 - 1$	$(q-1)^2/4$
$R_{{\scriptscriptstyle B_3(i,j),1}}$	$i,j\in T_{\scriptscriptstyle 1},i\! eq\! j$	$(q+1)^2(q^2+1)$	(q-3)(q-5)/8
$R_{\scriptscriptstyle B_4(i,j),1}$	$i,j\in T_{\scriptscriptstyle 2},i\! eq\! j$	$(q-1)^2(q^2+1)$	(q-1)(q-3)/8
$R_{\scriptscriptstyle B_5(i,j),1}$	$i\in T_{\scriptscriptstyle 2}$, $j\in T_{\scriptscriptstyle 1}$	$q^4 - 1$	(q-1)(q-3)/4
$R_{\scriptscriptstyle \mathcal{B}_{6}(i),1}$	$i\in T_2$	$(q-1)(q^2+1)$	(q-1)/2
$R_{B_{6^{(i)},St}}$	$i\in T_2$	$q(q-1)(q^2+1)$	(q-1)/2
$R_{\scriptscriptstyle B_8(i),1}$	$i\in T_{\scriptscriptstyle 1}$	$(q+1)(q^2+1)$	(q-3)/2
$R_{\scriptscriptstyle B_8(i),St}$	$i\in T_{\scriptscriptstyle 1}$	$q(q+1)(q^2+1)$	(q-3)/2
$R_{\scriptscriptstyle C_1(i),1}$	$i\in T_{\scriptscriptstyle 2}$	$(q-1)(q^2+1)$	(q-1)/2
$R_{c_1(i),St}$	$i \in T_{\scriptscriptstyle 2}$	$q(q-1)(q^2+1)$	(q-1)/2
$R_{c_1^{\prime}(i),1}$	$i\in T_{\scriptscriptstyle 2}$	$(q-1)(q^2+1)$	(q-1)/2

Character		Degree	Number
$R_{C_{f 3}(i),St} \ R_{C_{f 3}(i),St} \ R_{C_{f 3}(i),St}$	$egin{aligned} i \in T_2 \ i \in T_1 \ i \in T_1 \end{aligned}$	$q(q-1)(q^2+1) \ (q+1)(q^2+1) \ q(q+1)(q^2+1)$	(q-1)/2 (q-3)/2 (q-3)/2
$egin{array}{l} R_{C_{3}^{\prime}(i),1} \ R_{C_{3}^{\prime}(i),St} \ R_{D_{1},1} \ R_{D_{1}, ho_{1}} \end{array}$	$egin{aligned} oldsymbol{i} \in oldsymbol{T}_1 \ oldsymbol{i} \in oldsymbol{T}_1 \end{aligned}$	$(q+1)(q^2+1) \ q(q+1)(q^2+1) \ q^2+1 \ q(q^2+1) \ q(q^2+1)$	(q-3)/2 $(q-3)/2$ 1 1
$R_{\scriptscriptstyle D_1, ho_2} \ R_{\scriptscriptstyle D_1, St}$		$q^2(q^2+1)$	1

Now let us prove Theorem 3. As $G=SO_5$ has the trivial centre and $p(\neq 2)$ is a good prime for G, by Ohmori [17], all the semisimple and regular characters have the Schur index 1 over Q. Among the unipotent characters θ_i , i=0, 9, 10, 11, 12, 13, the θ_i , i=0, 9, 11, 12, 13, are in the principal series (i.e. contained in $1_{B(q)}^{G(q)}$, where B is a Borel subgroup of G defined over F_q), so that, by the theorem of Benson and Curtis [2], they are realizable in Q. θ_{10} is cuspidal unipotent, so that, by Lusztig [13, (7.6)], it is also realizable in Q. Next, since $\theta_z^2=1$, θ_z is realizable in Q. Hence each $\theta_i'=\theta_z\cdot\theta_i$ is realizable in Q. The remaining characters are R_{D_1,θ_1} and R_{D_1,θ_2} . Let T be the diagonal maximal torus of G:

$$T = \{ \text{diag}(1, x, y, x^{-1}, y^{-1}) | x, y \in F_q^* \}$$
.

Let γ be an element of F_q^* of order q-1. Let θ be the character of T(q) defined by

$$\theta(\operatorname{diag}(1, \gamma^i, \gamma^j, \gamma^{-i}, \gamma^{-j})) = (-1)^i$$
.

Let R_T^{θ} be the Deligne-Lusztig character of G(q) associated with the pair (T, θ) (Deligne and Lusztig [5]), we prove

LEMMA 10. One has the decomposition:

$$(\sharp) R_T^g = R_{D_1,1} + R_{D_1,\rho_1} + R_{D_1,\rho_2} + R_{D_1,St}.$$

Assume that (\sharp) is proved. A Borel subgroup B of G over F_q can be chosen so that $B \supset T$. Then we have $R_T^{\theta} = \operatorname{Ind}_{B(q)}^{G(q)}(\tilde{\theta})$, where $\tilde{\theta} = \theta \circ (B(q) \to T(q))$ $(B(q) \to T(q))$ is the natural map) (see [5, Proposition 8.2]). Hence, as $\theta^2 = 1$, R_T^{θ} is realizable in Q. Therefore, by Lemma 1, we have $m_Q(R_{D_1, \rho_i}) = 1$, i = 1, 2.

PROOF OF LEMMA 10. Let $W=N_G(T)/T$ be the Weyl group of G (with respect to T). Then $W=\langle \sigma, \tau | \sigma^4=\tau^2=1, \tau\sigma\tau=\sigma^3 \rangle$ (\simeq the dihedral group

of order 8), where the action of W on T is given by:

$$\sigma \colon \operatorname{diag}(1, x, y, x^{-1}, y^{-1}) \to \operatorname{diag}(1, y^{-1}, x, y, x^{-1}) \\ \tau \colon \operatorname{diag}(1, x, y, x^{-1}, y^{-1}) \to \operatorname{diag}(1, y, x, y^{-1}, x^{-1}) \ .$$

W acts on T(q)^=Hom $(T(q), \bar{Q}_l^*)$ by $\eta^w(t) = \eta(t^w)$ $(\eta \in T(q)^{\hat{}}, t \in T(q))$. For $\eta \in T(q)^{\hat{}}$, we put $W(\eta) = \{w \in W | \eta^w = \eta\}$. Let M be a G(q)-module which affords $R_T^{\hat{}} = \tilde{\theta}^{G(q)}$. Then, by Yokonuma [22, Théorème 5.7], we have an isomorphism $\operatorname{End}_{G(q)}(M) \simeq \bar{Q}_l[W(\theta)]$. It is easy to check that $W(\theta) = \{e, \sigma^2, \tau\sigma, \tau\sigma^3\}$, an abelian group of order 4. Hence $R_T^{\hat{}}$ is multiplicity-free and the sum of four irreducible characters. Let T' be the diagonal maximal torus of $G^* = Sp_4$:

$$T' = \{ \operatorname{diag}(x, x^{-1}, y, y^{-1}) | x, y \in \bar{F}_q^* \}$$
.

T' is isomorphic to T^* , and we shall identify T' with T^* . Then there is a natural isomorphism $\alpha:T(q)^{\smallfrown} \rightrightarrows T^*(q)$ which commutes with the action of W ([5, (5.2.4)]; cf. also W. Kilmoyer [12, Theorem (2.1)]), where we identify W with $N_{G_*}(T^*)/T^*$. As $\theta^2=1$, $\theta\neq 1$ and $|W(\theta)|=4$, up to W-conjugacy, we may assume that $\alpha(\theta)=s=\begin{bmatrix}1_2&0\\0&-1_2\end{bmatrix}\in D_1$. In terms of [5, (5.21.5)], the G(q)-conjugacy class of (T,θ) corresponds to the $G^*(q)$ -conjugacy class of (T^*,s) . Hence $R^{\theta}_T=R^s_{T^*}$ (see [15, 7.5]). In view of the way of the constrution of the bijection $R: \mathscr{C}_G G(q)^{\smallfrown}$ in [15, pages 160-1], we find that every irreducible component of $R^s_{T^*}$ is of the form $R_{D_1,\theta}$ for some unipotent character ρ of H(s)(q). But the group $H(s)(q)=PGL_2 \times PGL_2$ has exactly four unipotent characters 1, ρ_1 , ρ_2 and St. Therefore we must have

$$R_{\scriptscriptstyle T}^{\scriptscriptstyle g}\!=\!R_{\scriptscriptstyle T*}^{\scriptscriptstyle g}\!=\!R_{\scriptscriptstyle D_1,1}\!+\!R_{\scriptscriptstyle D_1,\rho_1}\!+\!R_{\scriptscriptstyle D_1,\rho_2}\!+\!R_{\scriptscriptstyle D_1,St}$$
 .

This completes the proof of Lemma 10.

References

- [1] M. BENARD and M. M. SCHACHER, The Schur subgroup II, J. Algebra, 22 (1972), 378-385.
- [2] C. T. Benson and C. W. Curtis, On the degrees and rationality of certain characters of finite Chevalley groups, Trans. Amer. Math. Soc., 165 (1972), 251-274.
- [3] B. Chang, The conjugate classes of Chevally group of type (G_2) , J. Algebra, 9 (1968), 190-211.
- [4] B. Chang and R. Ree, The characters of $G_2(q)$, Instituto Nationale di Alta Mat., Symp. Mat., XIII (1974), 395-413.
- [5] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math., 103 (1976), 103-161.
- [6] H. Enomoto, The conjugacy classes of Chevalley groups of type (G_2) over finite fields

- of characteristic 2 or 3, J. Fac. Sci. Univ. Tokyo, Sect. I, XVL (1970), 497-512.
- [7] H. ENOMOTO, The characters of the finite Chevalley group $G_2(q)$, $q=3^f$, Japan. J. Math., 2 (1976), 191-248.
- [8] H. Enomoto, The characters of Chevalley groups of type (G_2) over finite fields of characteristic 2, to appear.
- [9] W. FEIT, Characters of Finite Groups, Benjamin, New York, 1967.
- [10] R. Gow, Schur indices of some groups of Lie type, J. Algebra, 42 (1976), 102-120.
- [11] J. A. GREEN, G. I. LEHRER and G. LUSZTIG, On the degrees of certain group characters, Quart. J. Math. Oxford Ser., 27 (1976), 1-4.
- [12] W. Kilmoyer, Principal series representations of finite Chevalley groups, J. Algebra, 31 (1978), 300-19.
- [13] G. Lusztig, Coxeter orbits and eigenspaces of Frobenius, Inventiones Math., 38 (1976), 101-159.
- [14] G. Lusztig, Classification des représentations irréductibles des groupes classiques finis, C. R. Acad. Sci. Paris, Sér. A, 284, 473-475.
- [15] G. Lusztig, Irreducible representations of finite classical groups, Inventiones Math., 43 (1977), 125-175.
- [16] Z. Ohmori, On the Schur indices of GL(n,q) and SL(2n+1,q), J. Math. Soc. Japan, 29 (1977), 693-707.
- [17] Z. Ohmori, On the Schur indices of reductive groups II, Quart. J. Math. Oxford Ser., 32 (1982), 443-452.
- [18] R. Ree, A family of simple groups associated with the simple Lie algebra of type (G_2) , Amer. J. Math., 83 (1961), 432-462.
- [19] K. Shinoda, The characters of the finite conformal symplectic group, CSp(4, q), Comm. in Algebra, 10 (13), (1982), 1369-1419.
- [20] T. A. Springer and R. Steinberg, Conjugacy Classes, in "Seminar on Algebraic Groups and Related Finite Groups", by A. Borel et al., Lecture Notes in Mathematics 131, Springer-Verlag, Berlin-Heiderberg-New York, 1970.
- [21] B. Srinivasan, The characters of the finite symplectic group Sp(4, q), Trans. Amer. Math. Soc., 131 (1968), 488-525.
- [22] T. Yokonuma, Sur le commutant d'un représentation d'un groupe de Chevalley fini II, J. Fac. Sci. Univ. Tokyo Sect. I, XVI (1969), 65-81.
- [23] A. V. Zelevinsky, Representations of Finite Classical Groups-A Hoph Algebra Approach, Lecture Notes in Mathematics 869, Springer-Verlag, Berlin-Heidelberg-New York, 1981.
- [24] H. Enomoto, The characters of the finite symplectic group $Sp_4(q)$, $q=2^f$, Osaka J. Math., 9 (1972), 75-94.

Present Address:
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCES
TOKYO METROPOLITAN UNIVERSITY
FUKAZAWA, SETAGAYA-KU, TOKYO 158