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Introduction

The purpose of this note is to propose two metrics on a bounded convexdomain, which are projectively invariant and seem to have similar natureto the Blaschke metric.
To recall the Blaschke metric let us take a bounded convex domain

$\Omega$ in $R^{n}$ and consider the differential equation

$(\#)$ det $\partial^{2}u/\partial x^{i}\partial x^{j}=(-u)^{-n-2}$ on $\Omega$ , $u=0$ on $\partial\Omega$ .
Since this equation has the unique negative strictly convex solution asis shown in [13] for dimension 2 and [5] in general, we can define ametric $-(1/u)d^{2}u$ . This metric was first considered by Blaschke [1] andTzitzeica [16] and can be thought of a possible generalization of theHilbert metric of the ball. We call this shortly the Blaschke metric of
the domain $\Omega$ . This is known to be complete; [4], [14].

A bounded pseudoconvex domain in $C^{n}$ on the other hand has in
general several biholomorphically invariant metrics. We would like to
take two of them. One is the $Einstein- K\ddot{a}hler$ metric, which exist atleast under some smoothness condition on the boundary [6], and the other
is the Bergman metric. Let us pay our attention to the special case
where the domain is a tube over a cone $V$. In this case let $\Omega$ be a
nontrivial hyperplane section of the cone. Then these metrics have
special forms by the invariance and must have their correspondences on
$\Omega$ . Namely, on the one hand in Appendix $A$ , we show the Einstein-
Kahler metric on the tube domain corresponds to the Blaschke metricon $\Omega$ .

On the other hand in \S 1, corresponding to the Bergman kernel we
will define a kernel function on $\Omega$ . In the course of this we need to
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define the characteristic function of the domain $\Omega$ , which is nothing but
the restriction to $\Omega$ of the characteristic function of the cone investigated

in [17].
To be more precise, let $\Omega^{*}$ be the dual of $\Omega$ defined by $\Omega^{*}=int\{\xi\in R^{n}$ ;

$1+\langle x, \xi\rangle\geqq 0$ for $ x\in\Omega$ }. Then the characteristic function of $\Omega$ is by

definition

$\chi_{\rho}(x)=\int_{\rho*}n[(1+\langle x, \xi\rangle)^{-n-1}d\xi$

and the kernel function of $\Omega$ is defined to be

$k_{\rho}(x)=\int_{\rho}$. $(2n+1)$ ] $(1+\langle x, \xi\rangle)^{-2n-2}\chi_{\rho}.(\xi)^{-1}d\xi$

Using these functions we introduce in \S 2 two invariant metrics. Set
$v=x-1/n+1$ and $w=k^{-1/2n+2}$ for the moment. The metrics we are concerned
with are defined by

$\omega=-\frac{1}{v}d^{2}v$ and $\kappa=-\frac{1}{w}d^{2}w$ .

After the discussion of elementary properties of these metrics we will
prove the completeness in Theorem 1 and give some examples and ques-
tions. As a result we can see that both metrics can be thought of a
generalization of the Hilbert metric and have similar nature to the
Blaschke metric.

The third section is devoted to the investigation of the boundary

behavior of both the kernel function and the characteristic function.
The result is summarized in Theorems 4 and 5. In order to state
Theorem 4 we will assume $\Omega$ is a strictly convex bounded domain with
smooth boundary. Let $\phi$ be a defining function of $\Omega:\Omega=\{\phi<0\}$ . We set

$J(\phi)=\det\left(\begin{array}{ll}\phi_{ij} & \phi_{j}\\\phi_{i} & 2\phi\end{array}\right)$ .

Then

THEOREM 4. The characteristic function has an expansion

$\chi_{\rho}(x)=d_{n}\sqrt{J(\phi)}(-\phi)^{-(n+1)/2}+\sum_{1}^{[n|2]}\epsilon_{j}(-\phi)^{j-(n+1)/2}+0(A(\phi))$ ,

near $\partial\Omega$ , where $A(t)$ is a function defined to be 1 for even $n$ and log $t$

for odd $n$ , and $d_{n}$ is a constant depending only on $n$ . Moreover $\epsilon_{j}$ is a
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smooth function on $\overline{\Omega}$ whose boundary value is determined locally by the
geometrical data of $\Omega^{*}$ .

As for the function $k_{\Omega}$ , see Theorem 5.
The problem to look for the precise form of these coefficients $\epsilon_{j}$ using

affiine invariants of the boundary is not treated in general, since it will
need the invariant theory of the unimodular group which is not de-
veloped well for our use. The thing we can do in \S 4 is only to get in
Theorem 6 the coefficient $\epsilon_{1}$ in the special case in terms of the affine
scalar curvature of the boundary and the Fubini-Pick invariant. The
straightforward calculation for the kernel function seems to be hard and
is not discussed here.

In Appendix $B$ we will summarize some facts on the affine geometry
of a hypersurface which is necessary to the computation in \S 4.

The author wishes to thank the referee for pointing out an incomplete
argument in the proof of Theorem 1 of the first manuscript.

\S 1. Characteristic function and kernel function of a bounded con-
vex domain.

Let $\Omega$ be a bounded convex domain in $R^{n}(x)$ and $V_{\Omega}$ be the cone
over $\Omega$ given by $V_{\Omega}=\{(tx, t);x\in\Omega, t\in R^{+}\}$ . $\Omega$ is identified with the set
$\{t=1\}$ . We denoted by $u$ the unique convex solution of $(\#)$ on $\Omega$ . Set
$\xi_{i}=u_{i}$ and $f=-u+\sum\xi_{i}x^{i}$ . Since $u$ is strictly convex, $f$ is a function of
$\xi=(\xi_{i})$ and is called the Legendre transform of $u$ . It is known in [2],
[14] that this function $f$ defines a hyperbolic affine hypersphere in the
dual cone of $V_{\Omega}$ . Independent of this fact Vinberg [17] defined a metric
using the characteristic function on every nondegenerate convex cone.
In the special case when $\Omega$ is projectively homogeneous we can see that
the above transform is an isometric embedding of $\Omega$ into the dual cone.
So it is natural to transplant Vinberg’s construction to our bounded
domain. This is one of our aims in this section and in the next section.
On the other hand, as we have proved in Appendix $A$ , the Blaschke
metric mentioned in Introduction is exactly related to the $Einstein- K\ddot{a}hler$

metric on the tube domain $D$ over $V_{\Omega}$ . This latter metric is generally
supposed to behave at the (ideal) boundary like the Bergman metric.
Moreover the Bergman kernel function of $D$ can be defined on the real
part $V_{\Omega}$ by [12], [11]. So we want to describe this kernel function on
the domain $\Omega$ . This is the second aim.

Now we are going to give some definitions. In the following we
work on a slightly more general domain: a convex domain $\Omega$ in $R^{n}(x)$
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containing no straight line.
Let $V=V_{\rho}$ be the cone over $\Omega$ . Let $V^{*}$ be the dual cone of $V$.

When the closure 9 contains the origin, it is the cone over some domain
$\Omega^{*}$ . In a concrete form we set

$\Omega^{*}=int$ {$\xi eR^{n};1+\langle x,$ $\xi\rangle\geqq 0$ for $ x\in\Omega$ } ,

and call it the dual of $\Omega$ . When the domain $\Omega$ is a non-degenerate

convex cone from the start, then $\Omega^{*}$ is nothing but the dual cone of $\Omega$ .
If $\Omega$ contains the origin and is bounded, then $\Omega^{*}$ is also bounded and
contains the origin. In this case, setting

(1.1) $H(\xi)=\sup\{\langle x, \xi\rangle;x\in\Omega\}$ ,

which is called the support function of the domain $\Omega$ , we can see
$\Omega^{*}=int\{H(-\xi)\leqq 1\}$ .

EXAMPLES. 1. $\Omega=\{|x|<1, x\in R^{n}\}$ then $\Omega^{*}=\{|\xi|<1, \xi\in R^{n}\}$ .
2. $\Omega=\{|x|<1, |y|<1\}\subset R^{2}$ then $\Omega^{*}=\dagger|\xi+\eta|<1,$ $|\xi-\eta|<1$ }.
3. $(\Omega_{1}\times\Omega_{2})^{*}=the$ convex hull of $\Omega_{1}^{*}\times\{0\}\cup\{0\}\times\Omega_{2}^{*}$ .
Let $V$ be a non-degenerate convex cone. Recall that the characteristic

function $\chi_{V}$ of $V$ is defined by the integral

(1.2) $\chi_{V}(x)=\int_{\gamma}.e^{-\langle ae,\epsilon\rangle}d\xi$ ,

and that the Bergman kernel of $V+iR^{n+1}$ is written as $K_{V}({\rm Re} z)$ up to a
constant where $K_{V}$ is defined by the integral

(1.3) $K_{V}(x)=\int_{V}$. $ e^{-\langle g\xi\rangle}\chi_{\gamma}.(\xi)^{-1}d\xi$

Assume $V=V_{\Omega}$ for a convex domain $\Omega$ . Then these functions $\chi_{V}$ and $K_{V}$

are determined by their restrictions to $\Omega$ . To see this, set $V_{\rho}=\{y=$

$(tx, t);xe\Omega,$ $teR^{+}$ } and $V^{*}=V_{\Omega}.=\{\eta=(s\xi, s);\xi\in\Omega^{*}, s\in R^{+}\}$ . Then

(1.4) $\chi_{\gamma}(y)=\int_{V}$. $ e^{-\langle\gamma,\eta\rangle}d\eta$

$=\int.d\xi\int_{0}^{\infty}s^{n}e^{-t\cdot(1+\langle g,\rangle)}ds$

$=t^{-n-1}\int_{\rho}$. $n$ ] $(1+\langle x, \xi\rangle)^{-n-1}d\xi$ .
So we introduce
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DEFINITION 1. The characteristic function of a convex domain $\Omega$ in
$R^{n}$ containing no straight line is the function $\chi_{\Omega}$ defined by

(1.5) $\chi_{\Omega}(x)=\int_{L}$ . $n$ ] $(1+\langle x, \xi\rangle)^{-n-1}d\xi$

where $ d\xi$ is the usual Lebesgue measure on $R^{n}(\xi)$ . The kernel function
of the domain $\Omega$ is the function $k_{\Omega}$ defined by

(1.6) $k_{\Omega}(x)=\int_{c}$. $(2n+1)$ ] $(1+\langle x, \xi\rangle)^{-2n-2}\chi_{c}.(\xi)^{-1}d\xi$ .
When $\Omega$ is a cone, we have two characteristic functions defined by

(1.2) and (1.5). But both are identical. In fact by (1.5) it is equal to

$\int_{\gamma*}(n+1)!(1+\langle y, \eta\rangle)^{-n-2}d\eta=\int_{R^{+}\times\Omega}.(n+1)](1+st(1+\langle x, \xi\rangle))^{-n-2}s^{n}dsd\xi$

$=t^{-n-1}\int_{\rho}$. $n[(1+\langle x, \xi\rangle)^{-n-1}d\xi=x_{V}(y)$ by (1.4).

Similarly we can prove $K_{V}=k_{V}$ for a cone $V$.
We list examples. Calculations are lengthy and omitted. Here $u$

denotes the solution of $(\#)$ on $\Omega$ .
EXAMPLES 4. $\Omega=\{|x|<R\};u=-R^{-1/n+1}(R^{2}-|x|^{2})^{1/2}$ , $\chi=n$ ] $b_{n}R(R^{2}-$

$|x|^{2})^{-(n+1)/2}$ where $b_{n}$ is the volume of unit n-ball, $k=b_{n}x^{2}$ where $b_{n}$ is a
constant depending only on $n$ .

5. $\Omega=\{|x|<1, |y|<1\};x=8(1-x^{2})^{-1}(1-y^{2})^{-1}$ ,

$k=8\{(1+x^{2})(1-y^{2})^{2}+(1+y^{2})(1-x^{2})^{2}-4(1-x^{2})(1-y^{2})\}((x^{2}-y^{2})(1-x^{2})(1-y^{2}))^{-2}$

$+16(x^{2}-y^{2})^{-\theta}$ log $\{(1-y^{2})(1-x^{2})^{-1}\}$ .
When $|x|=|y|$ , take limits which can be seen to be finite.

6. $\Omega=a$ simplex in $R^{n}=\{l_{1}>0, \cdots, l_{n+1}>0\}$ where $l_{i}$ are linear forms.
$u=c(l_{1}\cdots l_{n+1})^{1/n+1},$ $x=c^{\prime}u^{-n-1},$ $k=c^{\prime}u^{-2n-2}$ where $c$ , c’ and $c$ are constants.
For calculations see [14] and Proposition 3.

PROPOSITION 1. Let $\Omega_{1}$ and $\Omega_{2}$ be convex domains containing no
straight lines and assume $\Omega_{1}\subset\Omega_{2}$ . Then $\Omega_{2}^{*}\subset\Omega_{1}^{*}$ and

$\chi_{\rho_{1}}(x)\geqq\chi_{\Omega_{2}}(x)$ and $k_{\Omega_{1}}(x)\geqq k_{\Omega_{2}}(x)$

for $x\in\Omega_{1}$ .
PROOF. We set $ l=1+\langle x, \xi\rangle$ . Let $x\in\Omega_{1}\subset\Omega_{2}$ . By definition
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$\chi_{o_{1}(x)=}\int_{\rho_{1}^{*}}n]l^{-n-1}d\xi\geqq\int_{\rho_{2}^{*}}n$ ! $l^{-n-1}d\xi=x_{\rho_{2}}(x)$ .

Similarly $x_{D_{1}}*(\xi)\leqq\chi_{\Omega_{2}}*(\xi)$ for $\xi e\Omega_{2}^{*}$ . Hence

$ k_{\rho_{1}}(x)=\int_{0_{1}^{*}}(2n+1)]\iota^{-2n-2}x_{o_{1}}*(\xi)^{-1}d\xi$

$\geqq\int_{\rho_{2}^{*}}(2n+1)]l^{-2n-2}x_{\rho_{2}}*(\xi)^{-1}d\xi$

$=k_{o_{2}}(x)$ .
COROLLARY 1. Let $\Omega$ be a bounded convex domain. Then both func-

tions $\chi_{\rho}$ and $k_{\rho}$ tend to infinity at the boundary.

PROOF. For any boundary point $ ye\partial\Omega$ there exists a simplex which
contains $\Omega$ and has $y$ at its boundary. Then Example 6 implies the
assertion by Proposition 1.

We can get more precise estimates when the domain is strictly con-
vex and smooth:

PROPOSITION 2. Assume $\Omega$ is a strictly convex bounded domain with
$C^{2}$-boundary. Then there exist constants $c_{i}$ and $r$ depending on $n$ and
the domain such that

$c_{1}d(x, \partial\Omega)^{-(n+1)/2}\leqq\chi_{\rho}(x)\leqq c_{2}d(x, \partial\Omega)^{-(n+1)/2}$ ,
$c_{s}d(x, \partial\Omega)^{-n-1}\leqq k_{\Omega}(x)\leqq c_{4}d(x, \partial\Omega)^{-n-1}$

for $d(x, \partial\Omega)<r$ . Here $d(x, \partial\Omega)=\min\{d(x, y);ye\partial\Omega\}$ .
PROOF. For a boundary point $y$ , we denote by $r(y)$ (resp. $R(y)$) the

maximum (resp. minimum) radius of the ball which is contained in $\Omega$ (resp.

is containing $\Omega$) and is tangent to $\partial\Omega$ at $y$ . We put $r=\min\{r(y);y\in\partial\Omega\}$

and $R=\max\{R(y);y\in\partial\Omega\}$ . Choose a point $ x\in\Omega$ such that $d(x, \partial\Omega)<r$ .
Let $y$ be the point in $\partial\Omega$ with $d(x, y)=d(x, \partial\Omega)$ . Pick an inscribing or
circumscribing ball $B_{i}$ or $B_{0}$ at $y$ . We may assume the radius $B_{i}$ is $r$ .
Then by Proposition 1

$\chi_{B}(x)\geqq\chi_{\rho}(x)\geqq\chi_{B_{t}}(x)$ .
Now Example 4 shows

$\chi_{p_{i}}(x)\leqq n[b_{n}r^{-tn-1)/2}d(x, \partial\Omega)^{-(n+1)/2}$

and
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$\chi_{B_{\rho}}(x)\geqq n]b_{n}2^{-(n+1)/2}R^{-(n-1)/2}d(x, \partial\Omega)^{-(n+1)/2}$ .
These inequalities imply proposition for $\chi_{\Omega}$ . The proof for $k_{\Omega}$ is similar.

We next see the projective invariance of characteristic functions and
kernel functions.

Let $A=\left(\begin{array}{ll}a_{l}^{j} & a^{f}\\a_{i} & a\end{array}\right)$ be a projective transformation acting as $Ax=$

$((a_{i}^{\dot{f}}x+a^{j})/(a_{i}x+a))$ . Assume $a_{i}x+a>0$ for $ xe\Omega$ , i.e. $(a_{i}/a)e\Omega^{*}$ , and
$a^{j}\xi_{j}+a>0$ for $\xi\in\Omega$ , i.e. $(a^{\dot{f}}/a)\in\Omega$ . The equality

(1.7) $(a_{i}x+a)(1+\langle Ax, \xi\rangle)=(a^{\dot{f}}\xi_{j}+a)(1+\langle x,\cdot {}^{t}A\xi\rangle)$ ,

implies $(A\Omega)^{*}={}^{t}A^{-1}\Omega^{*}$ . Then we have

PROPOSITION 3.

$\chi_{A\Omega}(Ax)=(\det A)^{-1}(a_{i}x^{i}+a)^{n+1}\chi_{\Omega}(x)$ ,

$k_{A\Omega}(Ax)=(\det A)^{-2}(a_{i}x+a)^{2n+2}k_{\Omega}(x)$ .
PROOF. For $\xi\in(A\Omega)^{*}$ , set $\eta={}^{t}A\xi\in\Omega^{*}$ . Then $ d\xi=(\det A)^{-1}(a^{\dot{f}}\xi_{\dot{f}}+a)^{n+1}d\eta$ .

Substituting this into the integrand of the defining equation of $\chi_{AO}$ we
have the first equality. This equality for the domain $(A\Omega)^{*}$ is

$\chi_{(A\Omega)}(\xi)=\det A(a^{\dot{f}}\xi_{\dot{f}}+a)^{-n-1}\chi_{o*}({}^{t}A\xi)$ .
Using this we have the second equality.

REMARK 1. In Corollary 1 we have assumed the boundedness of the
domain. But Proposition 3 implies that this assumption can be replaced
by the projective equivalence to a bounded domain.

Vinberg defined in his paper [17] the *-mapping from a non-degenerate
convex cone to its dual. For $x\in V_{\Omega}$ , its $*$-image, which we denote here
by $x^{o}$ , is defined as follows:

$x^{o}=$ -grad log $\chi_{V}(x)$ .
For $xe\Omega\subset V_{\Omega}$ , we set as its $*$-image $x^{*}=\Omega^{*}\cap the$ half line through $x^{Q}$

and the origin. By simple argument we see that

(1.8) $x^{*}=$ -grad $\chi(x)\{(n+1)\chi(x)+\langle x$ , grad $\chi(x)\rangle\}^{-1}$

By the deflnition of $\chi$ it then holds that

(1.9) $x^{*}=(\int_{\Omega}$. $\xi l^{-n-2}d\xi)(\int_{\Omega}$. $l^{-n-2}d\xi)^{-1}$ .
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Namely, $x^{*}$ is the centre of gravity of $\Omega^{*}$ with respect to the measure
$ l^{-n-2}d\xi$ . Since the mapping $0$ is a diffeomorphism of $V_{\rho}$ onto $V_{\Omega}.$ , we have

PROPOSITION 4. The mapping *is a difeomorphism of $\Omega$ onto $\Omega^{*}$

and equivariant under projective transformations: $(Ax)^{*}=(A)^{-1}x^{*}$ .
PROOF. The projective equivariance follows from the affine equiva-

riance of the mapping $0$ by [17], p. 352. Note that the straightforward
proof using (1.7) and (1.9) is also possible.

Also Vinberg has shown that $x^{oo}=x$ provided that the cone is affinely
homogeneous. From this fact we can see

PROPOSITION 5. $x^{**}=x$ if $\Omega$ is projectively homogeneous.

For the sake of later use we introduce another functions: p-th
characteristic function $x_{p}=x_{\rho_{p}}$. by

(1.10) $\chi_{p}(x)=\int_{\rho}$. $ p!(1+\langle x, \xi\rangle)^{-p-1}d\xi$ ,

for $p=1,2,$ $\cdots$ . The function $\chi_{n+1}$ has appeared in the definition of $x^{*}$ ,
(1.9). It is easy to get an equality

(1.11) $1+\langle x, x^{*}\rangle=(n+1)\chi(x)\chi_{n+1}(x)^{-1}$ .
EXAMPLE 7. $\Omega=\{|x|<1, |y|<1\}\subset R^{2}$ . Then

$\chi_{p}(x, y)=\left\{\begin{array}{ll}\frac{4(p-2)!!}{x^{2}-y^{2}}\{(1+x)^{1-p}-(1+y)^{1-p}+(1-y)^{1-p}+(1-x)^{1-p}\}, & p\geqq 2,\\\frac{4}{x^{2}-y^{2}} log \frac{1-y^{2}}{1-x^{2}} & p=1.\end{array}\right.$

EXAMPLE 8. $\Omega=\{|x|<R\}$ in $R^{n}$ .
$\chi_{p}(x)\sim b_{n.p}R^{2p-2n+1}(R^{2}-|x|^{2})^{-p+(n-1)/2}$

for $p\geqq n/2-1$ , where $b_{n,p}=b_{n}n$ ]] $(2p-n-1)!!,$ $b_{n}=the$ volume of the unit
n-ball.

We can apply the most of the preceding arguments to these functions.
Among others we have

PROPOSITION 6. Let $\Omega$ be a bounded strictly convex domain with
smooth boundary. Then there exi$st$ constants $c_{1}$ and $c_{2}$ for each $p\geqq n/2-1$

such that
$c_{1}d(x, \partial\Omega)^{-p+(n-1)\beta}\leqq\chi_{p}(x)\leqq c_{2}d(x, \partial\Omega)^{-p+1n-1)/2}$ .
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Using this proposition and (1.11), we have

PROPOSITION 7. Under the same assumption of Proposition 6, the
value $ 1+\langle x, x^{*}\rangle$ tends to zero as $x$ tends to the boundary.

REMARK 2. We should remark here that it might be useful to
investigate function

$\int_{\Omega}$. $k$ ] II $\xi_{i}^{a}(1+\langle x, \xi\rangle)^{-k-1}d\xi$

as Gindikin did in [11] in the case of convex cones.
We give one more proposition which seems to be a composition

formula.

PROPOSITION 8. Let $\Omega_{1}$ and $\Omega_{2}$ be bounded convex domains containing
the origin in $R^{n}$ and $R^{m}$ respectively. Let $\Omega$ denote the join of $\Omega_{1}$ and
$\Omega_{2}:\Omega=\{(tx, t, (1-t)y)\in R^{n+\prime n+1};x\in\Omega_{1}, y\in\Omega_{2}, t\in(O, 1)\}$ . Then $\Omega^{*}=\{((1+\tau)\xi$ ,
$\tau,$ $\eta$) $;\xi\in\Omega_{1}^{*},$ $\eta\in\Omega_{2}^{*},$ $\tau\in(-1, \infty)$ } and

$u_{\Omega}(x, t, y)^{n+n+2}=t^{n+1}(1-t)^{m+1}u_{\rho_{1}}(x)^{n+1}u_{\Omega_{2}}(y)^{n*+1}$

$\chi_{\Omega}(x, t, y)=t^{-n-1}(1-t)^{-m-1}\chi_{\Omega_{1}}(x)\chi_{o_{2}}(y)$

$k_{\Omega}(x, t, y)=t^{-2n-1}(1-t)^{-2m-1}k_{\Omega_{1}}(x)k_{\rho_{2}}(y)$ .
PROOF. The form of $\Omega^{*}$ can be checked easily. Then

$\chi_{\Omega}(x, t, y)=\int_{\Omega_{1}^{l}\times(0,\infty)\times\Omega_{2}^{*}}\frac{(n+m+1)!\tau^{n}d\xi d\tau^{\prime}d\eta}{((1-t)(1+\langle y,\eta\rangle)+\tau’ t(1+\langle x,\xi\rangle))^{n+n\cdot+2}}$

where $\tau’=1+\tau$ . Next integrate the right side first on $\tau^{\prime}$ and use the
identity

$\int_{0}^{\infty}\frac{(m+n+1)!\tau^{n}}{(1+a\tau)^{m+n+2}}d\tau=n]m]a^{-n-1}$ ,

then we have the formula for $\chi_{\Omega}$ . To show the formula for $k_{\rho}$ , it is
necessary to compute $\chi_{o*}$ . By definition

$\chi_{\Omega^{s}}(\tau\xi, \tau, \eta)=\int_{\rho_{1^{\times}}(0,1)\times\Omega_{2}}\ovalbox{\tt\small REJECT}((1+\langle y,\eta\rangle)+t(\tau(1+\langle x, \xi\rangle))-(1+\langle y, \eta\rangle))(m+n+1)!t^{n}(1-t)f*dxdtdy$ .
Using the identity

$\int_{0(t+c)^{\alpha+\beta}}^{t^{\alpha-1}(1-t)^{\ell-1}}1\ovalbox{\tt\small REJECT} t=B(\alpha, \beta)(1+c)^{-\alpha}c^{-\beta}$

and first integrating on $t$ we come to
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$x=\tau^{\prime-n-1}x*(\xi)\chi_{g_{g}*(\eta)}$ .
Substituting this identity to the defining integral of $k_{\rho}$ , we have the
formula for $k_{\rho}$ . As for $u_{\rho}$ see [14].

\S 2. Projectively invariant metrics on a bounded convex domain.

In this section we define Riemannian metrics making use of functions
$\chi_{\Omega}$ and $k_{\rho}$ and discuss some elementary properties.

Let $\Omega$ be a convex domain containing no straight line and $\chi$ and $k$

be functions defined in \S 1.

DEFINITION 2. We will define symmetric two forms $\omega$ and $\kappa$ by

$\omega=-x^{1/n+1}d^{2}(x^{-1/n+1})$ ,
(2.1)

$\kappa=-k^{1/2n+2}d^{2}(k^{-1/2n+2})$ .
PROPOSITION 9. Both $\omega$ and $\kappa$ are positive definite and define

Riemannian metrics on $\Omega$ .
PROOF. We have set $ l=1+\langle x, \xi\rangle$ . By the definition of $\chi$ we see for

a $eR^{n}=TJ$ ,

$\langle gradx, a\rangle=-\int(n+1)\downarrow\langle\xi, a\rangle l^{-n-2}d\xi$ ,

and

$\langle d^{2}x, a\times a\rangle=\int(n+2)]\langle\xi, a\rangle^{2}l^{-n-\epsilon}d\xi$ .
Since $\omega=(1/(n+1))x^{-2}${$\chi d^{2}x-(n+2)(n+1)^{-1}$ grad $\chi\times grad\chi$ }, we have only to
say the part $\{$ $\}$ is positive. But this is equal to

$n](n+2)](\int l^{-n-1}d\xi\int\langle\xi, a\rangle^{2}l^{-n-3}d\xi-(\int\langle\xi, a\rangle l^{-n-2}d\xi)^{2})$

which is non-negative by Schwarz inequality. This is in fact positive
because $l^{-n-1}$ and $\langle\xi, a\rangle^{2}l^{-n-8}$ are not proportional. The case $\kappa$ is treated
in the same way.

EXAMPLE 9. $\Omega=\{|x|<R\}$ . Then, consulting Example 4, we have
$\omega=\kappa=-(1/u)d^{2}u=the$ Hilbert metric of $\Omega$ .

In order to show the completeness we prepare

PROPOSITION 10. Let $\Omega_{1}$ and $\Omega_{2}$ be convex domains containing no
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straight lines. Assume $\Omega_{1}\subset\Omega_{2}$ . Then for $x\in\Omega_{1}$ ,

$\chi_{\Omega_{1}}(x)\omega_{\Omega_{1}}(x)\geqq\chi_{\rho_{2}}(x)\omega_{\rho_{2}}(x)$

$k_{\rho_{1}}(x)\kappa_{\Omega_{1}}(x)\geqq k_{\Omega_{2}}(x)\kappa_{\Omega_{2}}(x)$ .
PROOF. We will set $f=l^{-(n+1)/2}$ and $g=\langle\xi, a\rangle l^{-(n+S)/2}$ . Define, for $x\in\Omega_{1}$

$ P(t)=\int_{0_{1}^{*}}(tf+g)^{2}d\xi$ ,

$Q(t)=\int_{0_{2}^{*}}(tf+g)^{2}d_{\xi}$ .

Then obviously $P(t)\geqq Q(t)\geqq 0$ . Hence min $P(t)\geqq\min Q(t)$ . But, using
notations in proof of the previous proposition, we have

min $P(t)=\frac{n+1}{n!(n+2)!}\chi_{\Omega_{1}}(x)\omega_{\Omega_{1}}(x)(a, a)$

and a similar equality for $Q(t)$ . This implies the proposition. The proof
for $\kappa$ is similar by the use of Proposition 2.

THEOREM 1. Let $\Omega$ be a strictly convex bounded domain with $C^{2}-$

boundary. Then the metrics $\omega$ and $\kappa$ are complete.

PROOF. For every boundary point $p$ we choose a circumscribing ball
$B_{p}$ which contains $\Omega$ and tangents to $\partial\Omega$ only at $p$ . Since the boundary
is of class $C^{2}$ and strictly convex, we may assume that the ball $B_{p}$ is
chosen so that its radius is independent of $p$ ; say $R$ . Now fix $p$ and set
$B=B_{p}$ . Then, by the previous proposition, we first have

$x_{\Omega}\omega_{\Omega}\geqq x_{B}\omega_{B}$

on $\Omega$ . Let $l$ be the inner normal at $p$ . Then Proposition 2 implies that
there exist constants $c$ and $c_{1}$ independent of $p$ such that

$\chi_{B}(q)/\chi_{\Omega}(q)\geqq c$

for any point $q$ on the line $l$ and with $d(p, q)<c_{1}$ . Next take an euclidean
coordinate system $(x^{1}, \cdots, x^{n-1}, x)$ at $p$ so that $l$ becomes the x-axis. Then
an easy check using the explicit form of $\omega_{B}$ shows that

$\omega_{B}=(\frac{1}{4x^{2}}+o(\frac{1}{x}))dx^{2}+\sum(\frac{1}{2Rx}+o(\frac{1}{x}))dx^{i}dx^{i}$

on $l$ near $p$ . Here note that the coefficients of $0(1/x)$ depends only on
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the radius $R$ . Hence letting $y(q)=d(q, \partial\Omega)$ for $ q\in\Omega$ and making use of
above estimates we have

$\omega_{\Omega}\geqq\frac{cdy^{2}}{8y^{2}}$

near the boundary. From this estimate follows the completeness of $\omega_{\rho}$

immediately. The proof for $\kappa_{\rho}$ is carried out in the same way.
The next question is to compare these metrics with the Blaschke

metric. The answer in a special case is

THEOREM 2. (a) The metrics $\omega$ and $\kappa$ are projectively invariant.
(b) Assume $\Omega$ is projectively homogeneous. Then $\omega=\kappa=-(1/u)d^{2}u$ .

PROOF. Let $A=\left(\begin{array}{ll}a_{i}^{\dot{J}} & a^{j}\\a_{i} & a\end{array}\right)$ be a projective transformation as before.
Write $m(x)=a_{i}x^{i}+a$ . Proposition 3 shows $\chi_{\rho}(x)^{p}=(\det A)^{p}m(x)\chi_{AO}(Ax)^{p}$

and $k_{\rho}(x)^{p/2}=(\det A)^{p}m(x)k_{\lrcorner\rho}(Ax)^{p/2}$ where $p=-1/n+1$ . Assume two
functions $f$ and $g$ are related as $f(x)=m(x)g(y)$ where $y=Ax$ . Then cal-
culations show $a\partial y^{k}/\partial x^{\dot{f}}+a_{j}\partial y^{k}/\partial x^{i}+m\partial^{2}y^{k}/\partial x^{i}\partial x^{j}=0$ and, hence, $f_{i\dot{g}}dx^{i}dx^{j}=$

$mg_{ij}(y)dydy^{\dot{f}}$ . This implies $-(1/f)d^{2}f=-(1/g)d^{2}g$ . Therefore we have
the projective invariance of $\omega$ and $\kappa$ . Since the solution $u_{\rho}$ of $(\#)$ also
satisfies $u_{\Omega}(x)=(\det A)^{p}m(x)u_{4\Omega}(Ax)$ , which is shown in [13], we have,
assuming $\Omega$ is projectively homogeneous, the equalities $u(x)=Cte$ . $\chi(x)^{p}=$

$Cte$ . $k(x)^{p/2}$ . Hence the assertion (b).

EXAMPLE 10. Let $\Omega$ be a simplex in $R^{n}$ . The projective transforma-
tion group of $\Omega$ is abelian and isomorphic to $R$“. It acts simply transi-
tively. Hence the metric is complete and flat.

In [17] Vinberg considered the metric $-d^{2}$ log $\chi_{V}$ for a non-degenerate
convex cone $V$. When $V=V_{\Omega}$ , there is a relation between this metric
and $\omega_{\rho}$ .

Let the coordinate of $V_{\rho}$ be $(y, t)$ so that $ x=y/te\Omega$ . Then by (1.4)
we have

$\chi_{V}(y, t)=t^{-n-1}\chi_{\rho}(y/t)$ .
By a straightforward computation we have

(2.2) $-(n+1)d^{2}$ log $\chi_{\gamma}(y, t)=\omega_{\Omega}(x)+(d$ log $\chi_{V})^{2}$ ,

(see the computation in Appendix A). Now fix a positive constant $c$ and
define a mapping $f_{l};\Omega\rightarrow V$ by $c_{0}(x)=the$ unique point in $V$ such that
$t^{-n-1}\chi_{\rho}(x)=c$ . Then we have
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PROPOSITION 11. The mapping $ f_{t}\ddagger(\Omega, (1/(n+1))\omega_{\rho})\rightarrow$ ( $V,$ $-d^{2}$ log $\chi_{\gamma}$) is
isometric. The image of $f_{o}$ is a level hypersurface of $\chi_{\gamma}$ .

REMARK 3. The level hypersurface of $\chi_{\gamma}$ is written as $t=\rho(y)$ . Let
$v$ be the Legendre transform of $\rho$ with respect to $y:v=\rho-y\partial\rho/\partial y^{i}$ .
Then $v$ can be regarded as a function of $\eta_{i}=\partial\rho/\partial y^{i}$ . We put $\omega_{0}=-(1/v)d^{2}v$ .
Then it is immediate to see $\omega=\omega_{0}$ rewriting $\omega_{0}$ in terms of $x=y/t$ .

REMARK 4. Making use of the p-th characteristic functions, we can
define metrics analogously and prove Theorem 1. These metrics are
shown to be affinely invariant, but Theorem 2 does not hold generally.

PROBLEM 1. It is necessary to compute the curvature tensor of $\omega$

and $\kappa$ . With consideration of the boundary behaviour of functions $\chi$

and $k$ discussed in \S 1 and \S 3, it is plausible to prove that the curvature
tensor tends to that of negative constant curvature at the boundary.
As for the related result see Appendix $B$ of [15].

\S 3. Boundary behaviour of the characteristic function and the
kernel function.

The aim of this section is to find the asymptotic form of functions
$\chi$ and $k$ near the boundary in the case that the boundary hypersurface
is strictly convex and smooth. The result is Theorems 4 and 5.

Throughout this section, we suppose that $\Omega$ is a strictly convex
bounded domain with smooth boundary which contains the origin.

Recall the support function $H_{\Omega}(\xi)=\sup\{\langle x, \xi\rangle;x\in\Omega\}$ . Since $\Omega$ is
strictly convex, there exists for any $\xi$ a unique point $ y(\xi)\in\partial\Omega$ with
$ H_{\Omega}(\xi)=\langle y(\xi), \xi\rangle$ . Let $g:\partial\Omega\rightarrow S^{n-1}$ be the euclidean Gauss map defined by
$g(y)=the$ unit outward normal vector at $ y\in\partial\Omega$ . Then it is easy to see

$y(\xi)=g^{-1}(\xi/|\xi|)$ .
Hence $H_{\Omega}(\xi)$ is smooth on $R^{n}-\{0\}$ . From this fact and the remark that
$\Omega^{*}=\{\xi eR^{n};H_{\Omega}(-\xi)<1\}$ , we have

PROPOSITION 12. The boundary of $\Omega^{*}$ is smooth and equal to
$\partial\Omega^{*}=\{\xi\in R^{n};\langle y(-\xi), \xi\rangle=-1\}$ .

We will extend the $*$-mapping to $\partial\Omega$ : for $ y\in\partial\Omega$ put $y^{*}=\lim_{x\rightarrow y}x^{*}$

which is well-defined by Proposition 7. Then

PROPOSITION 13. The map $\xi\rightarrow y(\xi)$ is the inverse of the $*$-mapping
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at the boundary.

With these preparations we shall proceed to find the asymptotic
behaviour of the characteristic function near the boundary. Fix a
boundary point $ y\in\partial\Omega$ . Set $ x=ky\in\Omega$ for $0\leqq k\leqq 1$ . Assume $d(x, y)=$

$d(x, \partial\Omega)$ for $k$ near 1. Put $ l.(\xi)=1+\langle\cdot, \xi\rangle$ as before. Then

(3.1) $l_{x}(\xi)=kl,(\xi)+(1-k)$ .
Choose coordinate $(x)$ so as $x^{1}=\cdots=x^{n-1}=0$ at $y$ and $y^{n}:=x^{n}(y)>0$ .
Then $l_{v}(\xi)=1+y^{n}\xi_{n}$ . Denote $\eta=y^{*}\in\partial\Omega^{*}$ . By definition

(3.2) $\eta_{n}=-1/y^{n}$ .
Now write $l(\xi)=l_{v}(\xi)$ and set $\sigma=-\eta_{n}d\xi_{1}\cdots d\xi_{n-1}$ . Then

(3.3) $d\xi=\sigma\wedge dl$ .
When $\xi$ varies in $\Omega^{*}$ , then $l$ varies from $0$ to some positive constant
$b=b(y)$ depending on $y$ . With these notations, we have

$\chi_{\Omega}(x)=\int_{c}$ . $n$ ] $ l_{x}(\xi)^{-n-1}d\xi$

$=|_{0}^{b}n](kt+(1-k))^{-n-1}dt\int_{\cap\{l=t\}}\sigma$ .
Let us first estimate

$ A(t):=\int_{\cap\{l=\}}\sigma$

when $t$ is near zero. Choose $\xi^{\prime}=(\xi_{1}, \cdots, \xi_{n-1})$ so as $\xi_{i}=0$ at $\eta$ . Then the
boundary $\partial\Omega^{*}$ near $\eta$ can be written as

$\xi_{n}=\eta_{n}+\sum a_{i\dot{g}}\xi_{i}\xi_{j}+\sum_{2<|\alpha|<N}a_{\alpha}\xi^{\alpha}+0(|\xi|^{N})$ .
Here $N$ is a certain integer which will be fixed later. The range of
indices $i,$ $j,$ $\cdots$ is from 1 to $n-1$ and $\alpha$ is a multiindex with the conven-
tion $\xi^{\alpha}=\xi_{1}^{1}\cdots\xi_{n-1}^{i,-1}$ for $\alpha=(i_{1}, \cdots, i_{n-1})$ . After the change of coordinates
by an orthogonal transformation on $\xi^{\prime}$ we may set

(3.4) $\xi_{n}=\eta_{n}+\sum\xi^{2}/a_{i}^{l}+\sum_{|\alpha|<N}a_{a}\xi^{\alpha}+0(|\xi^{\prime}|^{N})$

or equivalently,

(3.4) $l=y^{n}(\sum\xi^{2}/a^{2}+\sum_{|\alpha|<N}a_{\alpha}\xi^{\alpha}+0(|\xi^{r}|^{N}))$ .
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Let $(r, \theta)$ be the polar coordinate system of $\xi$ : $\xi_{i}=rf_{i}(\theta)$ and $ d\xi^{\prime}=d\xi_{1}\cdots$

$d\xi_{n-1}=\gamma^{n-2}drdS(\theta)$ , where $dS(\theta)$ is the area element of the unit sphere.
In this coordinate system the section of $\partial\Omega^{*}$ by a hyperplane $\{l=y^{n}\rho^{2}\}$

can be written as
$\xi_{i}=a_{i}r(\theta)f_{i}(\theta)$

where

(3.5) $r(\theta)=\rho(1+\sum\epsilon_{p}\rho^{p}+0(\rho^{N-2}))$ .
Define $\delta_{p}$ by

(3.6) $r^{n-1}=\rho^{n-1}(1+\sum\delta_{p}\rho^{p}+0(\rho^{N-2}))$ .
LEMMA 1. $\delta_{p}$ is a polynomial of $f_{i}$ with $a_{\alpha}$ as coefficients. The

degree modulo 2 of each monomial is equal to $p$ modulo 2.

PROOF. It is enough to see this fact for $\epsilon_{p}$ . We proceed by induc-
tion on $p$ . Since

$\epsilon_{1}=-\frac{1}{2}\sum a_{ijk}a_{i}a_{j}a_{k}f_{i}f_{\dot{f}}f_{k}$ ,

the Lemma is true for $p=1$ . Let $p>1$ . By the substitution of (3.5)
into (3.4), we can see $\epsilon_{p}$ is a sum of monomials like

$\epsilon_{p_{1}}\cdots\epsilon_{p_{j}}a_{\alpha}f^{\alpha}a^{\alpha}$

for $1\leqq p<p,$ $|\alpha|=k$ and $p_{1}+\cdots+p_{j}=p+2-k$ . Hence the order modulo
2 of this monomial with respect to $f_{i}$ is equal to $p_{1}+\cdots+p_{j}+$

$k(mod. 2)=p(mod. 2)$ .
Let now $\theta^{o}$ be the antipodal point of $\theta$ . Then $f_{i}(\theta^{o})=-f_{i}(\theta)$ and

$dS(\theta^{o})=dS(\theta)$ . This Lemma implies $\int\delta_{p}dS(\theta)=0$ for odd $p$ . Hence we
have

(3.7) $\int_{\downarrow?\cdot\cap\{l=y^{n}\rho^{2}\}}d\xi^{\prime}=(\prod a_{i}/n-1)\rho^{n-1}(\omega_{n-2}+\sum\gamma_{\dot{f}}\rho^{2j}+0(\rho^{N-2}))$

where $\gamma_{j}=\int\delta_{2j}dS(\theta)$ . Set $\gamma=2^{n-1}/\prod a_{i}^{2}$ which is the Gauss curvature of
$\partial\Omega^{*}$ at $\eta$ and put

(3.8) $c=2^{(n-1)/2}\omega_{n-2}\gamma^{-1/2}/(n-1)=\omega_{n-2}\prod a_{i}/(n-1)$ .
Then rewriting (3.7), we get
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(3.9) $A(t)=(c/y^{n})(t/y^{n})^{(n-1)/2}+\sum_{\dot{g}=1}^{N-1}(\gamma_{\dot{f}}^{\prime}/y^{n})(t/y^{n})^{l+(n-1)/2}$

$+0(t^{N+(n-1)/2})$

for another $N$, where

(3.10) $\gamma_{\dot{f}}=(\prod a_{i}/n-1)\gamma_{j}$ .
Let us recall

$\chi_{\rho}(x)=n!\int_{0}^{b}(kt+1-k)^{-n-1}A(t)dt$ .

Putting $\epsilon=(1-k)/k$ and $t=\epsilon s$ , we have

$\int_{0}^{b}(kt+1-k)^{-n-1}t^{*}dt=k^{-n-1}\epsilon^{n-n}\int_{0}^{b/1}(s+1)^{-n-1}s^{n}ds$ .
Note that this is of order $\epsilon^{n-n}$ as $\epsilon\rightarrow 0$ for $m<n$ . Moreover this integral
over $|b,$ $\infty$ ) is finite independent of $\epsilon$ for $m<n$ . Hence, by the formula
$B(m+1, n-m)=\int_{0}^{\infty}(s+1)^{-n-I}s^{n}ds$ , we have

(3.11) $\chi_{\rho}(x)=n$ ] $cB(\frac{n+1}{2}$ , $\frac{n+1}{2})(y^{n})^{-(n+1)/2}k^{-\prime\cdot-1}\epsilon^{-(n+1)/2}$

$+\sum_{j<(n+1)\beta}n!^{\gamma_{j}B}(j+\frac{n+1}{2},$ $\frac{n+1}{2}-j)(y^{n})^{-j-(n+1)/2}k^{-n-1}\epsilon^{j-(n+1)/2}$

$+0(A(\epsilon))$ ,

where

(3.12) $A(\epsilon)=\left\{\begin{array}{ll}1 & for even n\\log \epsilon & for odd n.\end{array}\right.$

Now we know $d(x, y)=d(ky, y)=(1-k)y^{n}$ . Therefore we have proved

THEOREM 3. For $x$ near $\partial\Omega$ , choose $y=y(x)$ so that $d(x, y)=d(x, \partial\Omega)$ .
Then

(3.13) $\chi_{\Omega}(x)=d_{n}\gamma(y)^{-1/2}d(x, \partial\Omega)^{-(n+1)/2}$

$+\sum_{j=1}^{l2J}^{\mathfrak{c}n}\delta_{j}(y)d(x, \partial\Omega)^{j-(n+1)/2}+0(A(d(x, \partial\Omega)))$ ,

where $d_{n}=n$ ] $2^{(n-1)/2}\omega_{n-2}B((n+1)/2, (n+1)/2)/(n-1)$ and $\gamma(y)$ is the Gauss
curvature of $\partial\Omega^{*}$ at $y^{*}$ . Moreover $\delta_{\dot{f}}’ s$ are constants determined locally
by the geometrical data of $\partial\Omega^{*}$ at $y^{*}$ .
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REMARK 5. We have

(3.14) $\delta_{1}=n[(B(\frac{n+3}{2},$ $\frac{n-1}{2})\gamma_{1}^{\prime}+\frac{n+1}{2}cB(\frac{n+1}{2},$ $\frac{n+1}{2}))$ .
The constant $d_{n}$ is equal to $\pi^{(n-1)/2}(n-1)$ ]]($n$ : odd) or $\pi^{n/2}2^{-1/2}(n-1)$ ] $\downarrow(n$ :
even).

We shalI next study the first term of the above expression. Let
$G$ be the Gauss curvature of the boundary $\partial\Omega$ at $y$ . Then

PROPOSITION 14. $G=\gamma^{-1}$ .
To prove this identity, write $\partial\Omega$ near $y$ as

$x^{n}=f(x^{1}, \cdots, x^{n-1})$ , $y=(0, \cdots, 0, y^{n})$ .
Then the Gauss map $g$ is defined by

$g(x)=(f_{1}, \cdots, f_{n-1r}-1)/a$ ; $a=(1+\sum_{1}^{n-1}f_{i}^{2})^{1/2}$ .
Setting $\xi=x^{*}$ , we have $g(x)=\xi/|\xi|$ . Hence,

$\xi_{n}=-|\xi|/a$ and $\xi_{i}=f_{i}|\xi|/a$ .
This implies $f_{i}(x)=-\xi_{i}/\xi_{n}$ for $1\leqq i\leqq n-1$ . Let $u$ be the Legendre trans-
form of $f$:

$u=f-\sum xf_{i}$ .
Then $u=-1/\xi_{n}$ because $1+\langle x, \xi\rangle=0$ by definition. Therefore the
$*$-mapping Is given by the formula
(3.15) $\xi_{n}=-1/u$ , $\xi_{i}=f_{i}/u$ .
Here note that

(3.16) $f(0)=0$ and $\xi_{i}(0)=0$ .
The iacobian of this mapping restricted to $\partial\Omega$ is

$\partial\xi_{\dot{f}}/\partial x^{i}=f_{i\dot{g}}/u-f_{j}u_{i}/u^{2}$ .
Hence $(\partial\xi_{l}/\partial x^{i}(0))<0$ by the concavity of $f$ and (3.16). Next regard $\xi_{n}$

on $\partial\Omega^{*}$ as the function of $\xi$ \ddagger $\xi_{n}=v(\xi_{1}, \cdots, \xi_{n-1})$ . Then

$\partial v/\partial\xi_{i}=\frac{1}{u^{t}}\partial u/\partial\xi=-\frac{1}{u^{2}}\sum x^{k}f_{kj}\partial x^{i}/\partial\xi_{i}$
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From this we have

(3.17) ..
$\partial v/-\partial\xi(0)=0$ .

Taking one more derivation we have

(3.18) $\partial^{2}v/\partial\xi\partial\xi_{j}(0)=-f^{ij}(0)$ ,

where $(f^{ij})$ is the inverse matrix of $(f_{ij})$ . But by (3.16) and (3.17) we
have

$G=\det(-f_{j})$ and $\gamma=\det(\partial^{2}v/\partial\xi\partial\xi_{\dot{f}})$ .
Then (3.18) implies Proposition 14.

The second step is to rewrite the expansion in terms of a defining
function of the boundary. Let $\phi$ be a strictl $Y$ convex defining function
of $\partial\Omega$ near $y:\partial\Omega=\{\phi=0\}$ and $\Omega=\{\phi<0\}$ . With coordinates $(x^{1}, \cdots, x^{n})$ as
before, taking derivatives we have

(3.19) $\phi(y)=0$ , $f_{ij}(0)=-\phi_{i\dot{g}}J\phi_{n}(y)$ .
Hence $G(y)=\det(\phi_{j}/\phi_{n})$ . At the same time. we have

$\phi(x)=-d(x, y)\phi_{n}\langle y)+0(d(x, y)^{l})$

near $y$ . HenceJ
(3.20) $\sqrt{G}d(x, y)^{-(n+1)/2}=(\phi_{n}^{2}$ det $\phi_{i\dot{g}})^{1./2}((-\phi)^{-(n+1)/2}+0(\phi^{-(n-1)/2}))$ .
Let us introduce an operator $J$ by

(3.21) $J(\phi)=$ -det $\left(\begin{array}{ll}\phi_{\alpha\prime} & \phi_{\beta}\\\phi_{a} & 2\phi\end{array}\right)$ ; $1\leqq\alpha,$ $\beta\leqq n$ .

Then in the present coordinate
$J(\phi)(y)=\phi_{n}^{2}$ det $\phi_{\dot{f}}(0)$ .

Therefore, getting above discussions together, we have

THEOREM 4. The characteristic function $\chi$ has the expansion
$\iota$

(3.22) $\chi_{\rho}(x)=d_{n}J(\phi)^{1\prime 2}(-\phi)^{-\{n+1)/2}+\sum_{\dot{g}=1}^{[n12]}\epsilon_{j}(-\phi.)^{i-(+1)/2}+0(A(\phi))’\cdot.$

. $\backslash $

’

near $\partial\Omega$ , where $A$ is the function defined by ,(3.12).

PROBLEM 2. $\epsilon_{j}’ s$ are functions $- on\overline{\Omega}-\vee\backslash $ but not defined uniquely in this
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setting. The value of $\epsilon_{j}$ at $\partial\Omega$ also depends on the choice of $\phi$ . However,
in consideration of the projective invariance of $\chi$ , it is highly desirable
to determine $\epsilon_{j}$ uniquely using affine or projective invariants of the
boundary hypersurface $\partial\Omega$ . In the next section we will compute the
value $\delta_{1}$ in (3.13) using the boundary data.

REMARK 6. The differential operator $J(\phi)$ is iust a real analogue of
the operator $I(v)$ of complex Songe-Amp\‘ere type, which is introduced
and studied by C. Fefferman in [9]. Here

$I(v)=\pm\det\left(\begin{array}{ll}v_{i\overline{j}} & v_{\overline{j}}\\v_{i} & v\end{array}\right)$ ,

where derivations are with respect to complex variables. The important
fact which we should mention here is that the equation $(\#)$ in Introduc-
tion is transformed to

(3.23) $J(\phi)=1$ on $\Omega$ , $\phi=0$ on $\partial\Omega$ ,

setting $u=-(-\phi/2)^{1/2}$ and vice versa. The discussion which is analogous
to that in [9] can be carried out. We would like to treat the operator
$J(\phi)$ in another paper.

Let us next consider the kernel function. Calculation is carried out
similarly. Let $ y\in\partial\Omega$ and set $\eta=y^{*}\in\partial\Omega^{*}$ . Choose coordinates $x=(x^{\prime}, x^{n})$

and $\xi=(\xi, \xi_{n})$ as before. We want to estimate $k_{\Omega}(x)$ for $x=ky$ as $k$ tends
to 1. Assume, for simplicity, $y^{n}=1$ . We have set $l=1+\xi_{n}y^{n}=1+\xi_{n}$ .
$\partial\Omega^{*}$ is written as

$l(\xi)=\sum\xi_{i}^{2}/a_{i}^{2}+0(|\xi|^{3})$

near $\eta$ . Let $\xi$ be one point on $\{l=t\}$ . Then $\xi_{n}=t-1$ . For this $\xi$ we
can pick up a boundary point $\zeta e\partial\Omega^{*}$ so that $d(\xi, \partial\Omega^{*})=d(\xi, \zeta)$ . If $\xi$ is
sufficiently near $\eta$ , then $\zeta$ is unique and satisfies

$\zeta_{i}-\xi_{i}=(t-l(\zeta))\partial l/\partial\xi_{i}(\zeta)$ .
Hence we have

$d(\xi, \zeta)=|t-l(\zeta^{\prime})|(1+0(|\zeta|^{2}))$

and

$ d_{\xi}’=(1+0(|\zeta^{\prime}|^{2}))+0(t-l(\zeta))d\zeta$

Let $\gamma(\zeta)$ denote the Gauss curvature of $\partial\Omega^{*}$ at $\zeta-$ Then by Theorem 3,
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we know

$\chi_{\rho}.(\xi)=d_{n}\sqrt{\gamma(\zeta)}d(\xi, \zeta)^{-(n+1)/2}+0(d(\xi, \zeta)^{-(n-1)/2})$ .
Consequently, for sufficiently small $t$ and hence for small values of $\xi^{\prime}$

and $\zeta^{\prime}$ , we have

$\chi_{\rho}.(\xi)^{-1}d\xi^{\prime}=\frac{1}{d_{n}\sqrt{}\gamma(0)}|t-l(\zeta)|^{(n+1)/2}(1+0(|\zeta^{\prime}|^{2}))+0(|t-l(\zeta^{\prime})|)d\zeta^{\prime}$ .

Now use the polar coordinate $\zeta_{i}=arf_{i}(\theta)$ . Then $ d\zeta^{\prime}=\prod$ a$ir^{n-2}drdS(\theta)$ .
When $\xi$ varies on $\{l=t\}\cap\Omega^{*}$ , then $\zeta^{\prime}$ varies on $\{l(\zeta^{\prime})<t\}$ and $r$ moves from
zero to $r(\theta)$ , where

$r(\theta)=\sqrt{t}+0(t)$ .
Hence we have

$\int_{\{l=t\}\cap\rho*}\frac{d\xi^{\prime}}{\chi}=\int\prod adS(\theta)\int_{0}^{r(9)}\frac{1}{d_{n}\sqrt{}\gamma(0)}(t-l(\zeta^{\prime}))^{(n+1)/f}(1+0(t))r^{n-2}dr$ .
Let us change the variable $r$ to $s=r^{2}$ . Then $l(\zeta^{\prime})=s+0(s^{\prime 2})$ and $s(\theta)=$

$t+0(t^{8/2})$ , and we have

(3.24) $\int_{\chi}^{d}\angle^{\prime}=\frac{e_{n}}{\gamma(0)}t^{n}(1+0(t^{1/2}))$ ,

where

$e_{n}=\sqrt{}\overline{\gamma(0)}\prod a\omega_{n-l}B(\frac{n-1}{2},$ $\frac{n+3}{2})/2d_{n}$ .

But using equalities for $d_{n}$ and $\gamma(0)$ we know

(3.25) $e_{n}=\frac{n+1}{2(n!)}$ .

Thus we have, by definition,

$k_{\rho}(x)=\frac{(n+1)(2n+1)!}{2(n!)\gamma(0)}\int_{0}(kt+1-k)^{-2n-2}(t^{n}+0(t^{n+1/2}))dt$ .

From this we get by the same reasoning as before,

$k_{\rho}(x)=(n+1)!$

$2\gamma(0)$
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However we have already rewritten $\gamma(0)^{-1/2}d(x, y)^{-(n+1)/2}$ in terms of th$e$

defining function $\phi$ of the domain, (3.20). We finally have
THEOREA 5. Let $\Omega=\{\phi<0\}$ be a strictly convex bounded domain withsmooth boundary in $R^{n}$ . Then the kernel function has an expansion

$k_{\rho}(x)=\frac{(n+1)!}{2}J(\phi)(-\phi)^{-n-1}+0(\phi^{-n-1/2})$

near the boundary.

REMARK 7. More careful arguments show that $k_{\rho}(x)$ has an expansion
$((n+1)]/2)J(\phi)(-\phi)^{-n-1}’+\sum_{1\leqq j\leq n}\overline{\epsilon}_{j}(-\phi)^{-n-1+j}+0(\log(-\phi))$ , where $\overline{\epsilon}_{\dot{f}}|_{\partial\Omega}$ is de-termined locally.

PROBLEM 3. We will continue Problem 2. Let us recall the function
$u$ defined by $(\#)$ . In [13], Loewner and Nirenberg showed in dimension2 that, for a smooth and strictly convex bounded domain $\Omega$,

$t$.
$c_{1}d(x, \partial\Omega)\leqq u^{2}(x)\leqq c_{2}d(x, \partial\Omega)$ , $c_{8}\leqq|gradu^{2}|\leqq c_{4}$

for some positive constants $c_{i}$ . These are true for any dimension by themax mum principle for the equation det $u_{ij}=(-u)^{-n-1}$ (e.g. [5]). Henceit is reasonable, referring the asymptotic expansion of the Bergman
kernel due to Fefferman, to expect $u^{2}$ can be a defining function of thedomain at the certain order of differentiability. So, besides the studyof the boundary regularity of the function $u$ , it is desirable to expand
$k$ with respect to $u$ .

\S 4. Explicit value of $\delta_{1}$ .
We compute in this section the value $\delta_{1}$ which is the coefficients ofthe second term of the expansion (3.13) of the characteristic function.The computation is simple in principle but is complicated. So we willwrite here only the sketch.
In order to do calculations, we assume the boundary $\partial\Omega$ is writtenas

$x^{n}=f(x^{1}, \cdots, x^{n-1})$ , $y=(0, \cdots, 0,1)$

where

(4.1) $f(x)=1-\frac{1}{2}x^{i}x^{i}+\frac{1}{6}a_{ijk}x^{i}x^{\dot{f}}x^{k}+\frac{1}{24}a_{ijkl}x^{i}x^{\dot{f}}x^{k}x^{l}+0(|x|^{b})$ .
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We use the convention that repeated indices are summed from 1 to $n-1$ .
Then by a somewhat lengthy calculation, the dual hypersurface $\partial\Omega^{*}$ is
given by

(4.2) $\xi_{n}=-1+\frac{1}{2}\xi\xi_{i}+\frac{1}{6}b_{jk}\xi_{5}\xi_{\dot{f}}\xi_{k}+\frac{1}{24}b_{ijkl}\xi_{i}\xi_{\dot{f}}\xi_{k}\xi_{l}+0(|\xi|)$ ,

where

$b_{ijk}=-a_{ijk}$ ,
(4.3)

$b_{ijkl}=a_{jkl}+2(\delta_{i\dot{g}}\delta_{kl}+\delta_{ik}\delta_{jl}+\delta_{il}\delta_{\dot{g}k})$

$+(a_{ijn}a_{kln}+a_{ikn}a_{jt*}+a_{ln}a_{\dot{g}kn})$ :

Using this expression we can compute the coefficients $\epsilon_{p}$ defined in (3.5)

as follows. Set

(4.4) $b_{8}=\frac{1}{6}b_{ijk}f_{i}f_{j}f_{k}$ ; $b_{4}=\frac{1}{24}b_{ijkl}ff_{\dot{f}}f_{k}f_{l}$ ,

where $f’ s$ are angular coordinates. Then we have

(4.5) $\epsilon_{1}=-\sqrt{2}b_{\epsilon}$ , $\epsilon_{2}=5b_{s}^{2}-2b_{4}$ .
Repeating the calculation in \S 3, we have

(4.6) $A(t)=\frac{2^{(n-1)/2}}{n-1}\omega_{n-2}t^{(n-1\}_{l}2}+2^{(n-1)/2}t^{(n+1)/l}\int(\epsilon_{2}+\frac{n-2}{2}\epsilon_{\iota}^{f})dS$

$+0(t^{(n+8)/2})$ .
Here note that

$\epsilon_{l}+\frac{n-2}{2}\epsilon_{1}=(n+3)b_{3}^{2}-2b_{4}$ .

Let $b=the$ volume of the unit $(n-1)$-ball. Then we know the following

formulae.

(4.7) $\int f_{i}^{2}f_{j}^{2}dS(\theta)=\left\{\begin{array}{ll}\frac{b}{n+1} & i\neq j\\\frac{3b}{n+1} & i=j\end{array}\right.$
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(4.7)
$\int f_{i}^{l}f_{\dot{f}}^{2}f_{k}^{2}dS(\theta)=\left\{\begin{array}{ll}\frac{b}{(n+3)(n+1)} & i, j, k\neq\\\frac{3b}{(n+3)(n+1)} & i=j\neq k\\\frac{15b}{(n+3)(n+1)} & i=j=k.\end{array}\right.$

Hence we have

$36\int b_{3}^{2}dS=\frac{b}{(n+3)(n+1)}\{(9\sum_{f}b_{iij}b_{jkk}+6\sum_{ii,,k\neq,\dot{g},k\neq}b_{jk}b_{i_{\dot{J}}k})$

$\times 3(6\sum_{i\neq j}b_{ii}b_{ijj}+9\sum_{i\neq\dot{g}}b_{iij}b_{iij})+15\sum b_{iti}b_{iii}\}$

$=\frac{b}{(n+3)(n+1)}(9b_{iij}b_{jkk}+6b_{ijk}b_{ijk})$

and

24 $\int b_{4}dS=\infty n+13b$iikk .

Consequently the coefficient of the second term of $A(t)$ is

$\gamma_{1}=\frac{2^{(n-1)/2}b}{12(n+1)}(3b_{iij}b_{jkk}+2b_{ijk}b_{ijk}-3b_{iikk})$ .

Using identities (4.3), we get

(4.8) $\gamma_{1}=-\frac{2^{\{n-1)/2}b}{12(n+1)}(3a_{iikk}+4a_{ijk}a_{ijk}+6(n^{2}-1))$ .

Inserting this identity into the formula (3.14), we get

(4.9) $\delta_{1}=-\frac{2^{(n-\S)/2}}{12}\pi^{(n-1)/2}\tau(\frac{n-1}{2})(3a_{iikk}+4a_{ijk}a_{i\dot{g}k})$ .
Let us next see the meaning of the quantity $Q$ defined by

(4.10) $Q=3a_{ikk}+4a_{ijk}a_{ijk}$ .
For this purpose we will need the affine unimodular invariants of the
hypersurface. We have given in Appendix $B$ some of definitions and
calculations. The first one we need is the Fubini-Pick invariant $F$

defined by
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(4.11) $F=a_{ijk}a_{i\dot{g}k}-\frac{3}{n+1}a_{i\dot{g}}a_{jkk}$ .

The second one is the affine scalar curvature $R$ defined by

(4.12) $R=\left\{\begin{array}{l}\frac{n-2}{n+1}a_{ii\dot{g}\dot{g}}+(\frac{1}{4}-\frac{n-2}{n+1})a_{jk}a_{uk}-(\frac{3}{4(n+1)}+\frac{(n-1)^{2}-1}{(n+1)^{2}})a_{i\dot{f}}a_{jkk}\\n\geqq 3\\n=2\end{array}\right.$

$a_{1111}$

The third one is the affine normal vector $\nu$ . We do not repeat its
definition. But note that in the present case one has

\langle 4.13) $\nu=(-\frac{1}{n+2}a_{i1},$ $\cdots,$ $-\ovalbox{\tt\small REJECT}^{1}1n+2$

at the point $(0, \cdots, 0,1)$ . On the other hand one can see that by certain
unimodular transformation of the space $R^{n}$ , it is always possible to find
a coordinate system $(x^{i})$ so that the defining function $f$ has the property
$a_{itk}=0$ for $1\leqq k\leqq n-1$ , namely so that the affine normal vector coincides
with the euclidean normal vector at the point $(0, \cdots, 0,1)$ . Relative to
this coordinate system, we have

$F=a_{ijk}a_{i\dot{g}k}$

(4.14) $R=\frac{n-2}{n+1}a_{ijj}+(\frac{1}{4}-\frac{n-2}{n+1})F$

for $n\geqq 3$ . Hence

(4.15) $Q=\left\{\begin{array}{ll}\frac{3(n+1)}{n-2}(R-\frac{F}{4})+7F & n\geqq 3\\3R & n=2.\end{array}\right.$

Now we have proved the following

THEOREM 6. Fix $ x_{0}\in\Omega$ and $ y_{0}e\partial\Omega$ , Assume (1) $d(x, y_{0})=d(x, \partial\Omega)$ for
any point $x$ on the line $\overline{x_{0}y_{0}},$ (2) the affine normal vector to $\partial\Omega$ at $y_{0}$ is
equal to the euclidean normal vector and (3) the Gauss curvature of $\partial\Omega$

at $y_{0}$ is equal to 1. Then

$\chi_{\rho}(x)=d_{n}d(x, \partial\Omega)^{-(n+1)/2}-\frac{2^{(n-8)/2}}{12}\pi^{(n-1)/2}\Gamma(\frac{n-1}{2})Qd(x, \partial\Omega)^{-(*-1)/2}$

$+0(B(d(x, \partial\Omega)))$
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for $x\in\overline{x_{0}y_{0}}$ , where $B(t)=t^{-(n-\S)/2}$ for $n\geqq 4$ , log $t$ for $n=3$ and 1 for $n=2$ .
Appendix

A. The $Einstein-K\ddot{a}hler$ metric on a tube domain and the Blaschke
metric.

Let $\Omega$ be a bounded domain in $R^{n}(x)$ and $V_{\rho}$ be the cone over $\Omega$

given by $V_{\rho}=\{(tx, t);x\in\Omega, t\in R^{+}\}$ . $\Omega$ is identified with the set $\{t=1\}$ .
We denoted by $u$ or $u_{\Omega}$ the unique negative convex solution of the equa-
tion $(\#)$ . Associated with this we define a function $v$ on $V_{\Omega}$ by

(A.1) $v(tx, t)=-4b$ log $(-tu(x))+a;b=(n+1)/2(n+2)$ , $a=2b$ log $b$ .
Let $D=V_{\rho}+\sqrt{-1}R^{n+1}$ be the tube domain over $V_{\rho}$ . The aim of this
Appendix A is to prove the following

THEOREM $a$ . The form $i\partial\overline{\partial}v$ define $s$ a complete Einstein-Kahler metric
on $D$ .

REMARK. Cheng and Yau have shown in [6] the unique existence of
the complete $Einstein- K\ddot{a}hler$ metric on domains in $C^{n}$ belonging to a
fairly large class; for example, $C^{2}$-weakly pseudoconvex bounded domains
and tube domains of the form $B+\sqrt{-1}R^{n}$ , where $B$ is bounded and
convex. The existence proof of the solution is also due to them.
Theorem a explains the relation between them in a special case.

Choose coordinates $(z^{1}, \cdots, z^{n+1})$ so that ${\rm Re} z^{i}=y$ , $1\leqq i\leqq n$ , and
${\rm Re} z^{n+1}=t$ . We have set $y^{i}=tx^{i}$ . In the sequel $1\leqq i,$ $j\leqq n$ and $z=z^{n+1}$ .
Summation convention is used. Derivatives with respect to $x^{i}$ are
denoted simply with indices: $u_{i}=\partial u/\partial x^{i}$ and so on. Differentiating (A.1)
we have

$\partial^{2}v/\partial z^{i}\partial\overline{z}^{j}=-b(\log u)_{ij}/t^{2}$

$\partial^{2}v/\partial z^{i}\partial\overline{z}=(b/t^{2})(u_{i}/u+x^{i}(\log u)_{ij})$

$\partial^{2}v/\partial z\partial\overline{z}=(b/t^{2})(1-2x^{i}u_{i}/u-x^{i}x^{j}(\log u)_{ij})$ .
These identities imply $i\partial\overline{\partial}v$ is positive definite and

det $\partial\overline{\partial}v=(-1)^{n}(b/t^{2})^{n+1}u^{-n}$ det $u_{ij}$ .
On the other hand $e^{(n+2)}‘‘=(-tu)^{-2(n+1)}e^{-(n+2)a}$ . Since $ a=(n+1)/(n+2)\times$

log $(n+1)/2(n+2)$ and det $u_{ij}=(-u)^{-n-2}$ we have
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det $\partial\overline{\partial}v=e^{(n+2)v}$ .
This shows $i\partial\overline{\partial}v$ is $Einstein- K\ddot{a}hler$ .

Next we will see the completeness using the completeness of the
Blaschke metric $-(1/u)d^{2}u$ ([4], [14]). Set $z^{i}=y^{i}+\sqrt{-1}w$ and $z=t+\sqrt{-1}s$ .
Since $v$ is real we can devide $i\partial\overline{\partial}v$ into two parts: $i\partial\overline{\partial}v=ds_{\iota}^{2}+ds_{2}^{2},$ $ds_{1}^{2}$ is
containing only $dy$ and $ds_{2}^{2}$ is containing only $dw$ and $ds$ , and both are
positive semidefinite. Now suppose $c$ is a divergent curve in $D$ . We want
to see the length of $c$ is infinite. Let $c_{1}$ be the projection of $c$ into $V_{\rho}$ .
Assume $c_{1}$ is bounded in $V_{\Omega}$ . Then ${\rm Im} c$ is unbounded and the coefficients
of $ds_{2}^{2}$ are bounded since they are combinations of derivatives of $u$ which
are bounded near $c_{1}$ . Hence the length of $c$ is greater than the length
of ${\rm Im} c$ relative to $ds_{2}^{2}$ which is infinite. Next assume $c_{1}$ is divergent.
Let $c_{2}$ be the radial projection of $c_{1}$ into $\Omega=\{t=1\}\subset V_{\rho}$ . Calculations
show

(A.2) $\frac{1}{b}ds_{1}^{2}=-\frac{u_{ij}}{u}dxdx^{j}+(\frac{u_{i}}{u}dx^{i}+\frac{dt}{t})^{2}$ .

If $c_{2}$ is divergent, then the length of $c_{2}$ is infinite by the completeness
of $-u^{-1}d^{2}u$ . If $c_{l}$ is bounded, then the t-coordinate of $c_{1}$ tends to $0$ or
$\infty$ . Since $ds_{1\sim}^{2}>b(dt/t)^{2}$ , the length of $c_{1}$ is infinite in this case. Therefore
in any case we have seen the length of $c$ is infinite.

The equation (A.2) implies

COROLLARY $b$ . The hypersurface in $V_{\Omega}$ defined by $tu=$ -constant
with the induced metric is isometric to $(\Omega, -(b/u)d^{2}u)$ .

It would be a natural question to examine the $Einstein- K\ddot{a}hler$ metric
on a Siegel domain of the second kind in view of Theorem $a$ . The result
is Proposition $d$ which we now describe. Let $D$ be a domain in $C^{n}$ .
Suppose the existence of an $Einstein- K\ddot{a}hler$ metric $i\partial\overline{\partial}v$ , where $v$ is a
plurisubharmonic solution of the equation

(A.3) det $\partial\overline{\partial}v=e^{(N+1)}$ “ on $D$ , $ v=\infty$ on $\partial D$ .
By the uniqueness of a plurisubharmonic solution we know

LEMMA $c$ . Let $A$ be an affine automorphism of D. Then

$v(Az)+(N+1)^{-1}$ log Jac $A|^{2}=v(z)$ .
We will apply this lemma to a Siegel domain of the second kind.

Let $V$ be a non-degenerate convex cone $\cdot inR^{n+1}$ and $F:CxC^{m}\rightarrow C^{n+1}$ be
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a V-hermitian form, i.e. $F(w, w^{\prime})$ is C-linear in $w$ and $F(w, w’)=F(w’, w)$,
$F(w, w)\in\overline{V}$ and $F(w, w)=0$ if and only if $w=0$ . Then the set $D=$

$D(V, F)=\{(z, w)\in C^{n+1}\times C^{n} ; {\rm Re} z-F(w, w)\in V\}$ is a Siegel domain of the
second kind. The domain $D$ has automorphisms $\tau_{a},$ $m_{k}$ and $t_{b}$ defined by

$\tau_{a}(z, w)=(z+a, w)$ $a\in iR^{n+1}$

$m_{k}(z, w)=(k^{2}z, kw)$ $k\in R^{+}$

$t_{b}(z, w)=(z+2F(w, b)+F(b, b),$ $w+b$) $beC^{m}$ .
Since Jac $t_{b}=1$ , Lemma $c$ shows $v(z, w)=v(z-F(w, w)),$ $0$). Jac $\tau_{a}=1$ implies
$v$ is independent of ${\rm Im} z$ . Hence we can write $v(z, w)=U({\rm Re} z-F(w, w))$

for some function $U$ on the domain $V$. Jac $m_{k}=k^{2n+2+m}$ shows that
$U(\underline{y})=U(k\underline{y})+(2n+m+2)(n+m+2)^{-1}\log k$ for $\underline{y}\in V$. Set $U_{1}(\underline{y})=$

exp $(-(n+m+2)(2n+m+2)^{-1}U(\underline{y}))$ . Then $U_{1}(k\underline{y})=kU_{1}(\underline{y})$ . Now let $\Omega$ be
a bounded hyperplane section of the cone $V$ and choose a coordinate
system $(y, t)\in R^{n+1}$ such that $V=\{(tx, t);x\in\Omega, t\in R^{+}\}$ as before. Then
$U_{1}$ can be written as $U_{1}(y, t)=-tu(y/t)$ for a function $u(x)$ on $\Omega$ . All of
the above imply

(A.4) $v(z, w)=-(\frac{2n+m+2}{n+m+2})\log(-tu(y/t))$ ,

where ${\rm Re} z-F(w, w)=(y, t)$ . The next thing to do is to rewrite the
equation (A.3) in terms of $u$ , which can be done routinely. Let us
write the i-th component of $F$ as $F(w, w^{\prime})^{i}=a_{\alpha\overline{\beta}}^{i}w^{\alpha}\overline{w}^{\beta},\overline{a_{a\overline{\beta}}^{i}}=a_{\beta\overline{\alpha}}^{l}$ . Then the
result is

(A.5) det $u_{ij}=(\frac{n+m+2}{2n+m+2})^{n+m+1}(-u)^{-n-2}$ det $(-u_{i}a_{\alpha\overline{\beta}}^{i}-(u-u_{i}x^{i})a_{a_{\beta}^{\wedge}}^{n+1})$ on $\Omega$ ,

$u=0$ on $\partial\Omega$ .
Namely we have

PROPOSITION $d$ . The equation (A.3) on a Siegel domain $D(V, F)$ is
reduced to the equation (A.5) on $\Omega$ .

Hence the existence of a convex solution of (A.5), which seems to
be not yet proved, implies the existence of the $Einstein- K\ddot{a}hler$ metric
on $D(V, F)$ .

B. Affine invariants–Appendix to \S 4.

One can refer the book [11 for the affine geometry of surfaces in
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$R^{\epsilon}$ . To give a sketch of fundamental definitions in general $dimen8ion$ ,
we follow papers [3], [4], [10] and [7].

Let $M$ be a hypersurface in $R^{n+1}$ . Let $x:M\rightarrow R^{n+1}$ denote its
embedding. $R^{n+1}$ is equipped with the unimodular affine $8tructure$ ,
especially the determinant $(\cdots)$ . Let $e_{\alpha},$ $1\leqq\alpha\leqq n+1$ , be a unimodular
affine frame: $(e_{1}, \cdots, e_{n+1})=1$ . Write

$dx=\sum\omega^{\alpha}e_{\alpha}$

(B.1)
$de_{\alpha}=\sum\omega_{\alpha}^{\prime}e_{l}$ .

The structure equations are
$\sum\omega_{\alpha}^{a}=0$

(B.2) $d\omega^{\alpha}=\omega^{\beta}\wedge\omega_{l}^{\alpha}$

$d\omega_{\alpha}^{\beta}=\omega_{\alpha}^{\gamma}$ A $\omega_{\gamma}^{\prime}$ .
Choose $e_{1},$ $\cdots,$ $e_{n}$ that are tangent to $M$. Then $\omega^{n+1}=0$ and $ d\omega^{n+1}=\omega^{i}\wedge$

$\omega_{i}^{n+1}=0$ along $M$. Here and later the range of indices is $1\leqq i,$ $j,$ $\cdots\leqq n$ .
We have

(B.3) $\omega_{i}^{n+1}=h_{ij}\omega^{j}$

for some symmetric form $h_{j}$ . Now assume $M$ is locally strongly convex
so that the matrix $(h_{i\dot{g}})>0$ . Then, setting $H=\det h_{ij}$ , we define

(B.4) $\Pi=H^{-1/n+2}h_{ij}\omega^{i}\omega^{j}$ .
This form is affinely invariant and defines a Riemannian structure on $M$,
which is called the affine metric of $M$. We next choose $e_{n+1}$ with the
property that

$(n+2)\omega_{n}^{n}\ddagger_{1}^{1}+d$ log $H=0$ .
This is always possible, [8] p. 21, and we set

(B.5) $\nu=H^{1/n+2}e_{n+1}$ .
This vector is also affinely invariant and is called the affine normal
vector. With this choice of a frame, we have $d\omega_{n}^{n}\ddagger_{1}^{1}=0$ and we can write

(B.6) $\omega_{n+1}^{i}=-l^{l}\omega_{\dot{f}}^{n+1}$ .
for some symmetric $l^{ij}$ . The quadratic form

(B.7) $III=l_{j}\omega\omega^{j}$ ; $l_{ij}=h_{ik}l^{k}’ h_{nj}$ ,



INVARIANT METRIC 77

is called the third fundamental form. The scalar function

(B.8) $L=\frac{1}{n}$(the trace of III with respect to II)

is called the affine mean curvature.
We next choose the frame so that $H=1$ ; see [10]. Hence $\omega_{n}^{n}\ddagger_{1}^{1}=0$ .

Let us define a symmetric tensor $h_{ijk}$ by

(B.9) $h_{ijk}\omega^{k}=dh_{ij}-h_{ik}\omega_{k}^{\dot{f}}-h_{jk}\omega_{k}^{i}$ .
Then the connection form $\overline{\omega}_{i}^{\dot{f}}$ associated with the fundamental form $\Pi$ is

(B.10) $\overline{\omega}_{i}^{\dot{f}}=\omega_{i}^{j}+\frac{1}{2}h^{jk}h_{ikm}\omega^{n}$ ,

where $(h^{jk})$ is the inverse of $(h_{ij})$ . Making use of this equaIity and
above definitions we can compute the curvature tensor $R_{ijkl}$ . The result
is

(B.ll) $R_{jkl}=\frac{1}{2}(l_{jl}h_{ik}-l_{il}h_{jk}-l_{jk}h_{il}+l_{ik}h_{jl})+\frac{1}{4}(h_{jkm}h_{iln}-h_{ikm}h_{jln})h^{r*n}$ ,

see [3], [4]. From this, scalar curvature $R$ is

(B.12) $R=n(n-1)L+\frac{1}{4}F$ .

Here

(B.13) $F=h_{ijk}h^{ijk}$

is the Fubini-Pick invariant.
Now let us turn to the situation of \S 4. The hypersurface is defined

by $x^{n+1}=f(x^{1}, \cdots, x^{n})$ . We are working around the point $y=(0, \cdots, 0,1)$ .
Set $C=\det f_{ij}$ and $c=C^{-\iota/n(n+2)}$ . Define a frame $(e_{1}, \cdots, e_{n+1})$ by

$e_{i}=c(0, \cdots, 0,1, 0\vee, \cdots, f)$

(B.14)
$e_{n+I}=c^{-n}(0, \cdots, 0,1)$ .

Then we have $h_{ij}=c^{n+2}f_{j}$ and

(B.15) $\nu=e_{n+1}+nc^{-n-2}c_{j}f^{\dot{g}k}e_{k}$

is the affine normal vector, where $c_{j}=\partial c/\partial x_{j}$ and $(f^{jk})$ is the inverse of
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$(f_{ij})$ . Moreover following definitions we have

(B.16) $lij=\frac{c^{-2n-2}}{n+2}((\log C)_{k}f^{ki})_{*}f^{jn}+\frac{c^{-2n-2}}{(n+2)^{2}}(\log G)_{k}(\log C)_{n}f^{ik}f^{jn}$ ,

and

(B.17) $h_{ijk}=nc^{n+2}(c_{i}f_{jk}+c_{\dot{f}}f_{ki}+c_{k}f_{i\dot{g}})+c^{n+l}f_{i\dot{g}k}$ .
We next evaluate the quantities at $y$ . Since $f_{ij}(0)=\delta_{ij}$ , we have

$c(O)=1$ and $c_{j}(0)=-a_{iij}/n(n+2)$ . So we have (4.13). The equalities (4.14)

follow from (B.16) and (B.17).

We finally remark that we can always choose the frame so that the
affine normal vector coincides with the euclidean normal vector.
Consider the hypersurface $\{x^{n+1}=f(x^{1}, \cdots, x^{n})\}$ with $f(x)=(1/2)a_{j}x^{i}x^{j}+$

$(1/6)a_{ijk}x^{i}x^{j}x^{k}+\cdots$ and introduce new coordinates $(X^{1}, \cdots, X^{n+1})$ by $x=$

$p^{\ell}X^{n+1}+p_{\dot{f}}^{i}X^{\dot{f}}$ and $x^{n+1}=pX^{n+1}$ . Then the surface is written as $\{X^{n+1}=$

$g(X^{1}, \cdots, X^{n})\}$ , where $g(O)=g_{i}(0)=0$ . Setting $g(X)=(1/2)b_{ij}X^{i}X^{j}+$

$(1/6)b_{ijk}X^{i}X^{j}X^{k}+\cdots$ , we have equalities

$pb_{ij}=a_{nn}p^{n}p_{\dot{f}}^{n}$ ,
(B.18)

$pb_{ijk}=\frac{2}{3}a_{nn}p^{n}(p^{n}b_{jk}+p_{j}^{n}b_{k}+p_{k}^{n}b_{i;})+a_{lnn}p_{i}^{l}p_{\dot{f}}^{n}p_{k}^{n}$ .

From this, supposing $a_{ij}=\delta_{i\dot{g}r}$ we get

(B.19) $pb_{iik}=(\frac{n+2}{6}p^{j}+pa_{iij})p_{k}^{;}$ .
Then it is always possible to find a transformation so as $b_{iik}=0,1\leqq k\leqq n$

and this proves the assertion.
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Added in Proof. The Problem 1 is solved: The metrics $\omega$ and $\kappa$ are
of asymptotically negative constant curvature. Relative to Problems 2
and 3, it is possible to expand the function k with respect to the function
u up to the first order making use of the Fubini-Pick invariant. The
precise statement will appear elsewhere.


