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In this paper, we prove that the group of invertible Fourier-integral
operators of order 0 is a regular Fréchet-Lie group with the Lie algebra
V' =17, where &' is the totality of pseudo-differential operators of
order one with the real principal symbols. As stated in the preface
of [8], this is the main purpose of this series. So, this paper is the final
one of our series.

S1. Preliminaries and the statement of main theorem,

1.1. Notations.

Throughout this paper, we use mainly the same notations as in [8].
Let N be a closed C* riemannian manifold and TN and T*N be the tan-
gent bundle and the cotangent bundle of N respectively. A point of TN
(resp. T*N) is denoted by (z; X) (resp. (x; &)). Denote by T*N the com-
plement of the zero section in T*N, i.e., T*N—{0} in the notation of
[8]. A symplectic diffeomorphism @ of T*N is ecalled to be positively
homogeneous of degree one, if it commutes with multiplication by posi-
tive scalars. That is, if we write P as P(x; &) =(p.(x; &); @.(x; &), then
it satisfies @,(x; r8) =, (x; &), Px; r&)=rp,(x; &), for any r>0. )

Let 2§’ be the totality of symplectic diffeomorphisms of 7*N of
positively homogeneous of degree one. Then, we have proved that &=y
18 naturally identified with <,(S*N ), the group of all contact transfor-
mations on the unit sphere bundle S*N, and Z§ is a regular Fréchet-
Lie group (cf. [6] and Theorem 6.4 in [11]).

Now, in this paper, all derivatives of functions, tensors, etc., on TN,
T*N and S*N, ete. are taken by using a normal coordinate system at
the considered point (cf. [8], §1, and [9], §1, (15)).
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1.2. Fourier-integral operators.
We have restricted our concern to Fourier-integral operators on N
with the following expressions:

1.1) (Fou)x)=23 SS Mg (; &; X )e WP D-tlEldaln1 @0 (yy ) (,(%; £); X)dxdas
+(Kowu)(x) ,
where we use the following notations:

(F.1) v is a cut off function (cf. [8], p. 865) with the small breadth e,
0<e<r,/12, where r, is a small constant which depends only on the
riemannian metric of N (cf. §4.2). (u)(=; X)=v(x, *,X)u(-.X) (cf. [81,
p. 359).

(F.2) a(x; & X) is an element of i‘:,, a class of amplitude functions (cf.
[8], p. 366, (13)).

(F.3) KeC=(NxN) and Kou is an integral operator with the kernel
Kz, y) (cf. [8], (12)).

{\a(z; &)} is an appropriate partition of unity on T*N (ef. [8], p. 373)
such that A (x; 78) =\.(x; &) for any r>0, and A,(y; X)'s are quadratic
forms written in the form A,(y; X)=2.; AP (y)X*X? added to {P.(x; &) | XD
in order to make the phase function nondegenerate (cf. [8], pp. 366-368).

REMARK. There are in general a lot of ambiguities in the choice of
{A,} and hence {\.}. The expression (1.1) is one of the way of describing
operators whose wave front set is given by graph e T*(NX N) (ef, [2],
[31, [4], [14], [15D).

However, if @ is sufficiently close to the identity, one can set A,=0,
hence (1.1) can be written in the form:

(1.2) (Fou)(x)= SS a(@; & X)e~ <2010 () (@ (x; £); X)aXds+ (Kowu)(@) .

Moreover, we can always eliminate the variables X in the amplitude a
(cf. [8], § 4 and Corrections). Thus, (1.2) can be rewritten as follows:

1.3) Fa@)=|_ b e )+ Eeu)@) ,
where
1.4 vu(y; )= SN e~ (Y, 2u(2)dz,, WY=2.

Now, the above expression (1.3) can be written as a composition of
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more “elementary operators”. Remark that T*N is naturally diffeomorphic
to (0, =)xS*N. We denote by 5% the space of all C~ functions f on
[0, )X 8*N such that f(r, ) is rapidly decreasing as r—co. In other
words, by identifying [0, ) with [0, 1)- (cf. [8], p. 364 (10)), &% is the
space of all C~ functions on [0, 1]x S*N which are flat at {1} x S*N.
Also, &% is a Fréchet space and Z§ acts effectively and smoothly on
% by o*f(x; &)=flo(x; &), pe 2W, fe . Note that the amplitude
function b(x;¢) in (1.8) is an element of 2. (cf. [8], p. 865). For each
be 3%, we shall denote by b- the multiplication operator by b. Then, b.
is a continuous linear operator of % into itself.
Define maps 7: 54 —C=(N), and ¢: C=(N )— % as follows:

(1.5) wf@)= f o,

1.6) u(e; & =vu(x; &) (cf. (1.4)).
By the formula of Fourier transformation, we have
a.7) we=id .
Using these operators (1.5) and (1.6), one can write (1.3) by
(1.8) Fo=mobop*or+ Ko .

REMARK. (i) The above expression (1.2) or (1.8) still have ambi-
guities. Using F,, one can only know ® and the asymptotic expansion
of b. Namely, one can replace (b, K) by another (b, K’) to obtain the
same operator F, (cf. [8] and Corrections).

(i) By (1.7), the operator ¢r: S — % is a projection operator, i.e.,
(m)i=ex.

1.3. Main theorem.

Now, we shall state the main theorem. Let 1, V,, U, be a connected
neighborhood of the identity of =7, a neighborhood of 1 in 3%, a neigh-
borhood of 0 in C~(Nx N) respectively. Denote by U, V,, U,) the set
of all Fourier-integral operators of the form (1.8) such that o ell, ae V,,
Ke U, Note thatif U, V,, U, are sufficiently small, then every element
in N, V,, U,) is invertible and the inverse is again in k@, v, U). Also,
denote by G.&,° the group generated by N, VvV, U,). Then, Theorem B
in [9] shows that every element of G can be written in the form
(1.1).

Now, the goal of this paper is as follows:
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THEOREM A. G.=° is a regular Fréchet-Lie group.

REMARK. Once a manifolcl_structure is established on G .&7°, Proposi-
tion A in [10] shows that 1/ —1@1_ is its tangent space at the identity.
Hence, by Lemma 2.2 in [11], v/ —1Z" is the Lie algebra of G.&7".

§2. How to prove Theorem A.

2.1. Extensions of regular Fréchet-Lie groups.
Define a mapping @: G — 2 by

2.1 (F)=97', @eD{.

Then, in view of Theorem 5.5 in [9], @ is a well-defined homomorphism,
and the image of @ is the identity component of ={’. The kernel of
@ is GZ°, the group of invertible pseudo-differential operators of order
0 (cf. [8], (88)). Since 2 is naturally isomorphic to Z,(S*N), we have
an exact sequence as follows:

(2.2) 1—GFP — GF7," — D,(S*N)---»1,

where the dotted arrow indicates that the image of @ is an open sub-
group.

We note here that 2,(S*N) is a regular Fréchet-Lie group (cf. [6],
[11]) and also that G is a regular Fréchet-Lie group. Indeed, in [17],
we have seen that G, is a regular Fréchet-Lie group for m < —dim N—
1, and that G&° is a regular Fréchet-Lie group obtained by the inverse
limit of {GZP.,; m< —dim N—1}.

REMARK. In view of the arguments in [16], we can easily check
the following. For every m<0, G, is an open subset of Fo, and is
an FL-group (cf. [11]). The condition m<—dim N—1 is used only to
ensure the convergence of product integrals.

2.2. Mappings 7r,, a, associated with the extension (2.2).
Now, we define a mapping 7: U—- G5, by

(2.3) Y(P)=mop~*or.

Obviously, ®ov=id., and 7 gives a local closs section of (2.2). Define a
mapping 7 by

(2.4) (P, ¥)=V(@¥) V(@)Y () .
As 0: G2 is a homomorphism, r; is a mapping of U x 1 into GZF°.
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On the other hand, define a,(p, A), for every pell, Ae G by
(2.5) a(p, A)=7(@)'Av(p) e G .

Recall that the topology of G.° is obtained by the inverse limit of
{GFm; m=0}. Hence recalling Proposition 5.2 and Theorem 5.4 in [11],
to obtain Theorem A, we have only to show the following:

PROPOSITION 2.1. The mappings r, and ay, defined by (2.4) and (2.5)
respectively, have the following properties:

(Ext. 1) rnUXN->GF is a C° mapping of UxU into G A Sfor
every m=0.

(Ext. 2) anUXGF -G can be extended to a C= mapping of
UX GA,, into G, for every m=0.

REMARK. By the above proposition, we see also that there is G Py~
extension of the identity component of =, which is an FL-group for
each m=<0, and a regular Fréchet-Lie group for m<—dim N—1. We
shall denote this extension by G.=7,,. G.=7° is indeed the inverse limit
of {G. 7 m; m=0}.

2.3. Key propositions.
To prove (Ext. 1-2) in Proposition 2.1, we have to know first the
inverse of 7(p). To do that, set

(2.6) E(@)=n(@*otomop*),
then we shall show the following in § 6:

PROPOSITION 2.2. Notations being as above, we have

(@) <f @ is sufficiently close to the identity, then E(p) is a pseudo-
differential operator of order zero, i.e., 5(p) e F(N).

(b) E:U— A, defined by E(p) in (2.6), is smooth for every m=0.
Therefore, since E(id.)=1,

(¢) E(p) is imvertible if @ is sufficiently close to the identity.

By wusing Proposition 2.2, (¢), we obtain for sufficiently small
peZy,

(2.7) YP) T =E(P) (e .

Hence, if @, 4 are sufficiently close to the identity, then Z(@v) is inver-
tible. Thus, we obtain

(2.8) (P, ¥) = E(Py) T {(Pw) *er(py)* T HP ey e
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On the other hand, any A€ GZ*° can be expressed as follows:
(2.9) A=rna-¢t+ Ko,
where ae 32 and Ke C>(NxN). Hence, we have,

(2.10) o (@, A)=E8(@) 'n(p*emp* ) (@*a-p* ) (@*e-wp* )
+2(@) 'n(p*tKotp* ) .

Note that @*a-p*'=(p*a)-, and one may write

211) - a (@, A)=E(p) 'n(p*mp* ") (@*a)-(p*mp* )
+E8(p) 'n(@*cKomp* ™) .

The above computations show that operators of the form
p*wp*t,  (p*a)-, PHKomp*™

and their composition rules play an important role in studying 7, and a;.
Thus, we shall set up a certain class of operators M, containing p*rp*t
for every @ which is sufficiently close to the identity. I is indeed a Cc~
Fréchet manifold and a local semi-group with smooth semi-group opera-
tions (cf. §§4-6). Moreover, we shall see I is closed under the multi-
plication by #*a. This is indeed smooth with respect to ®, a and PeMM
(cf. §§6-7). Next, we shall prove that the “projection’: M — G P,
m<0, P—xP: is smooth (cf. § 6, Proposition 6.2).

Denote by E(@)=@*xp*~'. Then, E can be regarded as a smooth
mapping of N into M (cf. §6, 6.6). Thus, by using these smoothness
properties of M, we see that (2.8) and the first term of (2.11) are smooth.
To treat the second term of (2.11), we shall need the following proposi-

tion which will be proved in §6 as well as some other smoothness prop-
perties stated above:

PROPOSITION 2.8. For every ®e=2Zf, and KeC*N X N), put
A(p, K)=n(p*tKonp*'). Then, we get

(a) A(p, K) is a linear operator on C=(N) with C= kernel L(®, K)
(ef. Lemma 6.4).

() The mapping L: 2§ xC*(Nx N)—C=(Nx N) is smooth.

§3. Several properties of operators @*rp*~! and P*cKomrp*~1,

3.1. Kernel expression.
First, we shall compute the kernel of @*mrep*~' and @*:Komp*~.
Recall the definition of = and ¢ (cf. (1.5) and (1.6)). Then, we have
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@.1) ()@ =] 2w, we @y avay, fe s,

where +*y=Y implies -, Y=y. Let 7,(x;¢& v) be a smooth extension of
{&|+*y> onto T*Nx T*N such that

- @ g, Y =17 & Y), r>0.
Then, 7, has the following properties:

LEMMA 3.1. For given r,.>0 in (F.1), if d(z, y) <2r,/3, then T,(x; &, ¥)
has no critical point in (x; &) for every y and T,(x; &, ¥) has mo critical

point in y for every (x;¢&)€ T*N.

Now, ¢xr can be regarded as an integral operator with smooth kernel
v(x, y)e~ =& hence the kernel of @*trp*~' is given by (@*v)e~**° be-
cause of @*dydy=dydy, where (P*v)(x; &, ¥; ) =v(P:(x; &), P.(¥; 7).

Similarly, the kernel of ¢Kox is given by

3.2) ax(x; &, y)—_—s v(z, 2)K(z, y)e~ =94z |

Since y(z, 2)K(z, y) has a compact support in 2z, ax(x;&, y) is rapidly
decreasing in |£|. Hence, the kernel of @*¢cKonp*~' is given by

3.3) (P*ax)(x; &, ¥; 77)=ax(<P(x; &), Py; 1) .

3.2. A class of phase functions.

To unify 7, and @*7,, we introduce a class of functions, which cor-
respond to “phase functions” defined later.

Let z(x; & y; 1) be a smooth function on T*Nx T*N which satisfies

P.1) T(x; rs, y; sp)=rt(x; & y; ) for any r>0, s>0.

The above 7 is considered as a smooth function on [0, «)?x (S*N)? by
putting

(3.4) Z(r, s, %; €, y; N =1(x; r€, y;s7) .
For above 7, define a subset C(z) of T*Nx T*N by
8.5)  C@)={@;& y;n) e T*Nx T*N; V,,,7=0 or V., t=0} .

Then, C(z) is conic, that is, (x; &, y; ) € C(7) if and only if (x; r&, y; sn) €
C(z) for every r>0, s>0.
Consider the following property for z;
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P.2) C(z) is bounded away from the diagonal set if z#0.

It is obvious that 7, satisfies (P.1) and (P.2), and that such properties
are invariant under the action of =2, hence @*r, satisfies (P.1-2) for
every @ € 2.

However, what we shall need in the computation is not a general =

with (P.1-2) but o*z,, € 2§, or “0”. Thus, we have to consider @*z,
" more precisely.

First of all recall that each e &2 leaves the canonical 1-form @

invariant, where 6 is given locally by 6=> ¢&,dx*. This fact gives the
following:

LEMMA 3.2. For each ¢ e 2§, 9*7, can be written by
(P.3) P*T,=7,+Q(0)(*; &, ¥; 7)) ,
and Q vanishes at (x; &)= (y;n) up to the first derivatives.

PrROOF. Use a normal coordinate system (%% ---,%") at x and its
dual coordinate system (¢, --+, &,). Then, we get

El*y)=¢y' and 0=¢ay‘.

For pe 2§, we use a normal coordinate system and dual coordinate

system at @,(x; ¢). Denote o(y;7) by (@, -+, %", &, -+, §,). Then, letting
E=,(x; &), we have

{Py(; &)|+ = @, (y; P> =EF"* .
Remark that @¢*6=6 means that

200 _.  FOU _ £. [8], 2
ey, B0 Cf I8, @)

Put

oy*
07;

g*=—gi§;<o; Oy +-22(0; )1, —&) + Ho)w, 7—8)

where H(®)(y, n—¢) is the quadratic term with respect to y and n—¢.
Then, we have

P*T,={Ps(x; )| @, (y; D))
=&y +<&|H(P)(y, n—¢&)) .

So, Q(®) is given by the last term of the above equality. J
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3.3. A class &Z(z) of amplitude functions.

We define amplitude functions associated with z in 3.2. Let 7 be a
C- function on T*Nx T*N which satisfies (P.1-2) in 8.2. (Remark that
the Property (P.3) is not used in this section.)

For above 7, we denote by <#(z) the linear space of smooth functions
h on T*Nx T*N such that

(B.1) h is a C~ function on [0, )*x (S*N)? and all derivatives of h are
bounded.

(B.2) There exists a conic neighborhood V,, of C(z) on which h(r, x; &, y; )=
hix; v€, y; ), rE=¢, is rapidly decreasing as r— co.

Recall the kernels obtained in 8.1 and we know the significance of
the following:

LEMMA 3.3. (a) v(z, y) € F(z,). (b) P*ve F(p*t,) for any P 2.
(¢) P*ax(®; &, y; 1) € Z(0).

PrROOF. Since v=0 on a neighborhood C(z,), we get (a). (b) and (c¢)
are easily obtained by a direct computation of derivatives. O

3.4. Primordial operators.
Let 7 satisfy (P.1-2) in 3.2 and let a € &#(z). Consider the following
operator

(8.6)  P(a, 7)f(x; E)=Ssa(w; & Y; Pe TEOVT fly; Ndydn , fe FH .

By Lemmas 3.2-3, @*trp*~*, and @*:Kon@p*~' are written in the above
form (3.6), which will be called primordial operators in this paper.
Now, we can give a rigid meaning of (8.6) as an operator as follows:

PROPOSITION 3.4. Let 7 satisfy (P.1-2) and let ae (7). Then,
P(a, 7) ©n (3.6) defines a linear operator on 4 into itself.

ProOOF. Let ¢(x; &, y; 1) be a smooth function such that ¢(x; rg, y; sp)=
¢x; & ¥; M), r>0, >0, and ¢=1 on a neighborhood of C(z) and supp gC
V. (cf. (B.2) for the notation V,).

Divide (3.6) into two parts:

3.7) Pla, 0)f(w; &)= “ gaeFaydn+ SS (1—g)ae~*f dydy
=P, +P,.

Since gae** is rapidly decreasing in |&|, we see that P,e .5 for every
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fe . Now, consider P,., Remark that on the support of (1—g)a, ©

has no critical point in (y; 7). So, let

L.= 1+ir(Vyr-V;+4+V,z-V,)
1+74V .t

Then, L.e~*=e¢~* and the coefficients of the operator L. can be bounded
by »~! for sufficiently large »>0. So, P, can be written as

, r=lg, =& ;7)) .

@8  P@o=|_ [ a-sa@ -ty Lye by, seaydsad -

s.
Repeating the integration by parts, we see that P,(x;¢&) is rapidly

decreasing in |&|. Smoothness at r=0 of P,(zx;¢) follows from those of
¢(x; r€, y; 1) and a(x; r§, y; ) at r=0. O

Finally, we remark that in what follows we shall restrict our concern
to much narrower class of amplitudes. The main reason to do so is that
& (7) is not invariant under 2¢§". The restricted class is invariant under
2§ and contains 3%, though p*a ¢ >'¢% even if ae€Dg.

§4. Phase functions.

Now, to fix the restricted class of primordial operators, we shall
introduce a class of phase functions and study the properties of composi-
tions of phase functions induced by the composition of primordial opera-
tors.

4.1. Definition of phase functions.

Let & be the space of all C* functions 7 on T*Nx T*N satisfying
(P.1) in 8.2. Since such 7 is uniquely determined by the values on S*N x
S*N, we shall give a topology for & by using the C~ topology on S*Nx
S*N. Denote by &, the closed affine subspace of & defined by
(4.1) &, ={r €¥; t—7, vanishes on the diagonal set up to the first

derivatives} .
Remark that every 7 e, satisfies (P.2) and (P.3) in Lemma 3.2. 2
acts on & by the following: Given @€ 2, €&, we define a mapping
ev: TP xF—3 by :
4.2) ev(p, 7)=@*t(x; &, ¥; N) =7(P(; &), P(Y; 7)) .
Then, we have

LEMMA 4.1. The mapping ev: P x3—3 18 a C* mapping and
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1t leaves &, invariant.

PROOF. The smoothness of ev is obvious by that of composition of
mappings (cf. [1], [12], [5]). The invariance of &, follows from Lemma
3.1. |

4.2. Composition of phase functions.
. Given 7, 7,€¢, we define a composition z,Hz, as a function on
T*NxT*NxT*N by

(4.3) T, B 8 ¥, 2,0 =72 & ¥; D+(Y; ), 2 ) .

For a later use, we have to know at first the critical point and the
critical value of (4.3) with respect to (y; 7). However, this is not so easy
in general. Thus, we shall do this under the assumption that 7, 7,€%,
and they are sufficiently close to 7, Moreover, we shall restrict the
domain of z,Hz, onto d(x, y)<7,/2, d(x, z)<r/4, where r, is constant
depending only on the riemannian structure of N, which will be given
below.

On this restricted domain, one may set y=-,X, z=-,Y=-,Z and
(y; Y, p)=-,(X, Y, 1) by using the normal coordinate system at z. Y’
is given by Y'=8(@; Z, X)=8,(z; Z, X)(Z—X) (cf. [8], p. 360, (8)). The
constant 7, is defined by the supremum of r such that axS| =0 and S(z;
Z, X) are invertible matrices whenever d(z, z)<r. For the standard
sphere, r,=x/2 and for many riemannian manifolds, 7, is given as a half
of the injectivity radius.

Set 7,=7,+Q, (:=1, 2). Then, 7,M7, can be written in the form

4.4)  EIXD+|8@; Z, X))+ Qu; &, (X, 7))+ QX 1), 2 0) .
Thus, consider the equations

(4.5) dx(t,BT) =8+ 625 +8:Q,+5:Q,=0,

(4.6) 8,(t,B7,) =8; Z, X)+8,Q,+06,Q,=0

LEMMA 4.2. Suppose v, and 7z, are sufficiently close to 7, in &, and
suppose d(x, ¥)=r,/2, d(x, 2)<r,/4. Then, we obtain the following:

(i) The equation d,(r,H7,)=0 can be solved umiquely with respect
to 7. Let 7 be its solution. Then, T=7(x; ¢ ¥, 2;§) is C~ and N(x; rs,
Y, z; 8§)=ri](x; & ¥, 2; §) for any r>0, s>0.

(ii) There are constants C>0, M>0 such that

(4.7) 0,(m. BT Z Mgl +I7) if Ipl=Clgl or [p|=C4l .
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PrOOF. One may assume that there are smgll 0>0 and a constant
K>0 such that |0-(Q,+Q)|=d(&|+ 7)), K'=|0:S|<K, K'<|(0:9)7'=K.
By (4.5), we see easily that if 77 exists then # must satisfy

1 —1 v} 4 vy
?C lsl=I17"1=2Clgl, (X, TN=(y; 7])
for some constant C=2. Moreover, on this domain one may set

oozt~ 0.8l so({L+1) a0+
It follows that 0,.0x(z,H7,) is non-singular matrix on the conical domain:
d(x, ) =7/2, dz, 2)=r./4, (1/2)C'|¢|=|pl=2Cl¢].

Suppose Q,=Q,=0 in (4.5). Then, it has the unique solution 7=
—£(0x3). By means of the implicit function theorem (cf. [12], Lemma
4.9) on the above conical domain, we obtain the unique existence of 7.
Smoothness of 7 follows from the regularity of 4,9,.(r,H7,), and the
homogeneity of 7 follows from those of 7,, 7..

Now, suppose |[p|=C|¢| or |p|=C~'|¢|. Then, o,(z,H7,) cannot attain 0.
Hence, there must be a constant M such that [9,(z,Bz.)|=M¢|+17).

PROPOSITION 4.3. Suppose t,, 7, are sufficiently close to 7, in &,. If
d(x, Y =7/2, d(x, 2)<71,/4, then '

(i) the function t,B7, has only one critical point (¥.;7,), which is
non-degenerate;

(ii) the critical point (y.;7.) depends smoothly on (x;&, 2;%) and
satisfies

r>0, s>0;

4.8) {%(“‘ 78, 25 80)=.(%; &, 2; C)

N.(x; 18, 2; 80) =rn,(x; & 2; )

(iil) the critical value 7,,=(7,BT)(X; & Yo; Mo 2; &) has the properties
(P.1-3) in the variables (x; ¢, z; ).

PrROOF. We substitute 7' =7"(z; &, ¥, 2; {) into (4.6). Note that 4,.(r,H
7o)(@; &, ¥; 7, 2; ) is homogeneous of degree zero with respect to &. Sup-
pose @, =@Q,=0. Then, (4.6) has the unique solution X,=2Z, i.e., y,=z.
Recall that 030, (r,H7,) is invertible. Hence, the implicit funetion theo-
rem (cf. [12], Lemma 4.9) implies (i). The uniqueness of (y,;%,) and the
homogeneity of 7, 7, yields (ii), which indicates that z,, satisfies (P.1).
As for (P.2), (P.3) in (iii), we may consider near the diagonal set. Put
(#;0)=(x; &), ie., <.(Z,{')=-,0,8) in (4.5) and (4.6). Then, the first
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derivatives of @,, @, vanish at (y; 7)=(x; &), so we get « (X, N)=1+,00, &)=
(x; ¢). Hence, the Taylor expansion of (X,, 7,) with respect to (Z,8) at
0, &) is

X =aZ+b—1)+---,

{77:=5+cZ+d(é—C’)+--- :

Substituting this into 7z,, we see that 7, has the properties (P.2) and
(P.3). ]

4.3. Properties of the critical value of z,@z,.

Next, we shall observe the critical value 7, more carefully. Choose
a C* function 4 on R such that =1 on [¢{|{<r,/5 and +=0 on [t|=r/4,
and define a function ¢(z, 7,) by

(4.9) (1, T) =P (@, 2))T(®; &, 2; )+ A —y(d@®, 2))7(x; & 2) -
¢ can be regarded as a function of 7, z,, By Proposition 4.3, we see also

LEMMA 4.4. c(z, 7)) €8, for t, t, sufficiently close to 7,. ¢ is a C=
mapping of U, x U, into &, such that c(z, 7,) =1, where U., s a small
neighborhood of 7, in &,.

- PROOF. The desired smoothness follows from the implicit funetion
theorem (cf. [12], Lemma 4.9). The property c(z,, 7,) =7, is obtained by
the computations in the case @,=Q,=0. O

The following is a special case of Proposition 4.3.

COROLLARY 4.5. Let t€%, be sufficiently close to z,. Then, c(z, z,)
does mot involve the {-variable, i.e., c(z, t,) =c(T, T,)(@; &, 2). Moreover, it
18 written in the form t(x; &, 2)+ Q(x; &, 2), where Q satisfies Q(x; &, x)=0,
(0Q/02) z=0(®; &, *,4)=0.

Now, set T=7,H7,—c¢(7, 7,). Using Proposition 4.3 and Lemma 4.2,
we have the following properties of 7.

COROLLARY 4.6. With the same motations as in Proposition 4.3, T
has the following properties:

(T.1) T(x; ¢ y; 7, 2; 0) is positively homogeneous of degree 1 in 6=
(& 1) and degree zero in (.

(T.2) There are constants C>0, M>0 such that |6,T|=M(l&|+|n]) if
7 =Cgl or Ipl=Clel. o

(T.3) If (1/2)C'lg|=|p|<2Cle|, them on any conical subset in T*N X
T* N T*N bounded away from the critical set {(x; &, ¥.; ., 2; 0)}, there is
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5>0 such that |V, T|=6 on (1/2)C'<|n|=2C, where T'=T(x; &, y; 1, 2; ).

PROOF. We have only to show (T.3). Since T has no critical point
on the considered domain and (x; &, ¥; 7, 2; £) moves in a compact set,
we see the existence of 6>0. O

4.4. Normal form of T.

We continue to assume that 7, 7z, are sufficiently close to 7, in &,
and let =, be as in 4.2. Let (y,;7,) be the critical point in the domain
d, y=r/2, d(x,2)=r/4. Recall that if Q,=Q,=0, then (y,;7.)=
«o(Z, —£@xS) " z=z). Therefore, one may assume that there is 6>0 such
that | X,—Z|=0, |77;+5(ax§)“‘|§5[5| in general, whenever z,, 7, are suffici-
ently close to z,.

Denote by D, the domain given by

(4'10) D,,={(x; & 'z(z(, 77’): ’,(Z, C’)); |X|§7~1/2s |Z|§T1/4,
17" +£(025)7| =0l¢l} -

Obviously, (x;¢&, «.(X., 1), 2; {) € D,. Moreover, the index of the critical
point (¥.; 7.) is the same as that of 7,7z, and hence 0. Thus, by a suit-
able change of coordinate on a neighborhood of (¥.; 7.), T can be expressed
in the form —<7»’'—7,|X—X,>. This is known as the Morse lemma. How-
ever, the proof of the Morse lemma shows more precisely the following:

PROPOSITION 4.7. Suppose that 6>0 18 sufficiently small. There are
an open meighborhood D' of D, and a C~ diffeomorphism ¥ of D' into
(1%*N)8 such that T(x; ¢, y; 9, 2; 0 =(; &, T,(*); Tu*), 2;0) and satisfy the
Sfollowing

(i) #(D)>D. .

(ii) Y78 ys ), 2, 80)=Y.(%; & ¥; 7, 25 0),

V(a5 v8, y; ), 25 80) =1V (x5 & ¥; ), 2; Q) Sor any r>0, 8>0.

(iii) ¥ depends smoothly on t,, T..

(iv) T*T=—<(p—7i| X—X,).

The above proposition will be proved in several lemmas below. At
first, denote T,=7,B7,—c(7y 7,). Since the c}itical point (¥,; 9,) =+ .(X.,, B.)
in this case, is given by (X, 7))=(Z, —£(0xS)'|x=z), We see that

Ty(@; & (X, 7), 2; ) =<6—7'S\(x; Z, X)| X—Z)
={—=00xS)|x=z—7'S\(x; Z, X) | X—X.) ,

where S(x; Z, X)=8,(z; Z, X)(Z—-X). Using Si(x; Z, Z)= —ax§|x=z, we see
that T, can be written in the form
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Ty=—@' =0 | X—=X)+S,(X—-X,)*,
where S,=8S,(; ¢, +.(X, 7), 2; ) and S,=0(7’)).

LEMMA 4.8. On a neighborhood D' of D,, T(x;&, (X, %), 2;{) can
be written as

T=A\n =70+ (—I+A) () — )X — X)) +(S, + A)(X — X.)*

where A,=A,(x; & (X, ), ;) and A,, A,, A; are positively homogeneous
of degree —1, 0, 1, respectively with respect to the combined wvariable
0=, ') and of degree 0 with respect to {. Moreover, if T,—7T,, To— Ty
then |A,||6|—0, |A,|—0, |4,/|0] >0 uniformly on D'.

Proof is easy by using Taylor’s theorem at (X,, 7).
Now, consider a quadratic form A(s, X) on R*X R" such that
h=Pge;+(0;+1)s X+ R,; X' X7,
where (6% is the identity matrix.

LEMMA 4.9. Suppose |li| and |P“R,| are sufficiently small for all <,
7, k, l. Then there are matrices (al), (f}) depending smoothly on (PY),
1%, (R.;) such that

h=(&+a,;X)(fiX*+ P¥)
and |fi—0oi are sufficiently small.

Proof has been done by using the implicit function theorem (cf.
[10], pp. 243-244). We have only to solve

(4.11) FH+ PY(f kR, ;=05+1}
and set A= (f—l)kaj. D

Set (a,;)=9(P, 1, R), (f))=¥(P, 1, R) and apply the above lemma to
our — T, then, we have the following:

LEMMA 4.10. On the domain D', —T can be expressed in the form
—T= <77'—772‘+¢(A1, Asy A)X—X) |V (A, A,y A)X—X,)— A, —72))

Moreover, ®(A,, A,, A,) (resp. T(A, A,, A;)) 1s positively homogeneous of
degree 1 (resp. 0) wn the variable 6 and @, T are positively homogeneous
of degree 0 im the variable {'. ‘ '
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PrROOF. We have only to show the second statement. Recall the
homogeneity property of A,. Since (P*)=—A4, ({)=—A4, R;,)=—(S,+
Ay, the equation (4.11) shows that (f}) is positively homogeneous of
degree 0 with respect to 4. Hence, by the equality a=f"'R, we get
the desired property. O

PrROOF OF PROPOSITION 4.7. Now, set

{v"—v:=77’—77:+¢(A1, 4, A)(X-X,),

4.12 >
12 X—X,=¥(A, Ay A)X—X,)—A,(7—70) .

The estimates for A,’s in Lemma 4.8 yield that the Jacobian D(77, X)/D(7’, X)
never vanishes. So the above equation can be solved reversely with
respect to (X, ') by using the implicit function theorem. Moreover, by
the implicit function theorem given in [12], Lemma 4.9, we see that

{77’=77’(w; & X, 7, 2,5 Ay, A, Ay)
X=X(x; 57 'z(Xr n_’)’ 2; C; Au A2’ Aa)

are smooth. Thus, remarking that Ai’_s depend smoothly on 7, 7,, we
see 7', X depend smoothly on (x; ¢, -.(X, 7"), 2; &, 7, 7,). Since 7,, 7, are
sufficiently close to z,, one may assume that the domain of 7', X contains

D,. ]
§5. Amplitude functions (blown up symbols).

In this section, we shall fix a class of amplitude functions of
primordial operators. Roughly speaking, functions in such a class are
obtained by the blowing up of usual amplitude functions. The main
reason for using such functions is to make the class invariant under the
natural action of =" and to make it closed under the multiplication.

5.1. Compactification of T*N.
Recall that T*N is naturally diffeomorphic to R, xS*N, where R, =
(0, ©). Hence for a positive integer k,
(T*N)Ys=T*Nx -+ x T*N

S———

k

can be viewed as R% x(S*N)*. Here, we shall give a compactification
of R%.

Take a positive constant K, K>1. For each integer I, 0<I<k, and
each [-tuple of ordered integers I=(z,, ---, %), 1<%, -+, 1,<k, which are
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mutually distinct. (If =0, we write simply by I=g.) We define a
subset 4, ; by

Ak,l={(31’ %y Sk) € Rl—:—; sing_ly stng—lstj_p j=2’ Sty l, and
0<s;=K for jeI}.

Then, it is easily seen that U, ?nommﬂgd,,,,=R’i. Define maps % ,: 4, ;—
o0sisk
[0, K]* for I=(i,, +++, 3)%= D, by

v
(5°1) ik,I(sv ) sk)=(’r—17 ty * 0y ttly Tty tk) ’

where

(5 2) {1’:8(1; tzz=S,;1/Si2, cen, til=3£l_1/3” , and

s;=t; for g1, -+, 1.
Moreover, for I=@, we define 4, , by
(5.3) T, o(8y * 0, 8)=(ty, +++, &), s;=t; for j=1,.--,k.

REMARK. (i) We put a coordinate on 4, , by using variables »
t,, +++, &. But one of these is not used for each I (see List 5.1). (ii) To
give a compactification of R*, we use the variable ! instead of r.

To simplify the notation, we often write (f, ---, ¢) by ¢ a point
(@13 &1+ o+ @3 &) of (T*N)* by (x; ) and point (x,; &, - -, x,; &) of (S*N)*
by (x; f), respectively.

By attaching r~'=0, ¢,=-..=%,=0, we obtain a compactification of
R:. Remark that the above compactification of R, is natural two points
compactification [0, o].

Since our compactification is complicated, we shall list up the exact
domains and used variables of 4,; for the case k=2, 3 for our later use:

LisT 5.1. (A) k=2;

4o 6={(t,, t,); 0<¢,, .=K},

4,y ={(r, t.); 0<r™, ,<K},

dy, 0y ={{, 7); 0<r™, {, <K},

4y, 0={(r, r/t); 0<r", t,<K},

Az,(2,1)={('r/tu r);0<r, t,=<K}.
B) k=3;

dy,o={(t, &, t,); 0<t, =<K, 1=1, 2, 3},

dy, oy ={(r, &, t5); 0<r7, t,, =K},

dy, oy ={(,, 7, t); 0<r~Y, £, L, =K},

As,(8)={(tv t, 7); 0, iy, tzéK}y
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ds, a0 ={(r, 7[t;, ); 0<r7, 1, t,=K},
dy, o n={(r[t, 7, ); 0<r~, ¢, =K},
dy, 0.0 =1, 7, T/ts); 077, £y =K},
Aa,(s,2)={(tv rity, ); 0<r, §, .= K},
ds, 6,0 ={(r/t, L, r); 0<r, t, ,=K},
As,(1.8)={(r! t21 "'/ts); 0<,’.—1’ tzy tng},
Ay, 00,0 =11, T[ts, T[t:1); 077 L, =K},
Ay, 0,80 =1{(1, T[tsts, T/[Ts); 0<r™, t, ,=K},
As.(2,1,8)={(’r/t1’ 7, ’r/tlts); 0<’l"_1, tu tséK},
s, 2,5, ={(r[tts, 7, T[ty); 0<r7, L, =K},
ds, 51,0 ={(r/[t,, T[tL,, r); 0<r™, t, ,= K},
Ay, 3,2, ={(r[t;Le r/t, r); 0<r7, t, L, = K}.

Now, by the identification (T*N Y= R* x (S*N)* and the above com-
pactification of R*, we get a compactification of (T*N)" Namely, for
I=@, -+, %), Ik, we use a set A,,,x(S*N)" and a map %, ;Xxid.: 4, X
(S*N)*—[0, K]¥*x (S*N)* and compactify (T*N)" Hereafter, we shall use
the same notations 4, ; and %, instead of 4, ;X (S*N)* and %,,xid..

5.2. The class of amplitude functlons ak,

Now, each C= function f on (T*N ) can be regarded as a function

on R" X (S*N)* and therefore, we write it by the same letter fif it is
not confused, i.e

6.4) f8, x;H=f@isd, o maab),
8=(8y +++, 8), (H=@s&, -, 258) .

For I=(i,, ---, %), l<k, consider i;}*(f|4:,1), where 1, , is defined by (5. 2)

and (5.3). We often write by f.1 instead of i;3*(f|4.,) for the sake of
simplicity.

DEFINITION 5.2. feC=(T*N)¥) is called an amplitude function, if
the following conditions are satisfied:

(A.1) For each I=(i, -+, i), 0<I<k, f., can be extended smoothly at
=0 (j=1, -+, k).

(A.2) For each I=(i, -+, 3), OLI=E, fx.r has an asymptotic expansion

as follows:

(5.5) Foalr™, 8, x5 6)~ 3, At, 3 81
where A1, x; £) are C~ functions on [0, K]*~* X (S*N)*.

REMARK. The condition (5.5) means that fi ; is smooth at r=-co



FRECHET-LIE GROUPS 19

DEFINITION 5.3. (i) We denote by a* the totality of amplitude
functions which satisfy (A.1) and (A.2) in the above definition. -

(ii) For each I=(i, -+, 7;), 0<I<Fk, we denote by d*, the totality
of C= functions f; ; on [0, K]*x (S*N)* such that for non-positive integer
m, f~,,,, has the following asymptotic expansion:

(5.6) Fea~ 3 At x; 819, A;€ C=([0, K] X (S*N)¥) .

(iii) For small ¢, :++, &_,>0, denote by a*(,, -, &,._,) the space of
all functions fea* such that

(5.7) fx; =0 if d(z, 2,,,)>¢;, for some =1, -+, k—1.

REMARK. By Definition 5.8 and the remark in 5.1, f(x; &) €a' if and
only if it satisfies, for ¢>0

@) f(¢, ;&) =f(x; t&) can be extended smoothly on [0, =) x S*N;

(b) f has an asymptotic expansion, for large >0, f~3.<, A;(x; &)ri.

Next, we shall put a system of norms on a*. Let fea*. Then, for
every I=(1,, - -+, %,), I+, and any non-positive integer m, f, ;=1:%*(f|4s.;)
in (5.5) can be written in the following form: For fixed C~ function ¢(r)
such that ¢(r)=0 on 0=<r=<2K-, and =1 on r=3K"', we have

(5.8) Fra=9(( 3 At x; Br)+ Frai(r™ 8, x5 8)

where f;,_, €k, _..
Let |4,|, be the C°-norm on [0, K]*~* X (S*N)*.

DEFINITION 5.4. For each function f,; on [0, K]*x (S*N)*, we define
a norm || £y zllm.., 820, m=<0, I+, as follows:

(5'9) ka,l”m,s= Z {Aj’s+ DfI,m—-lDa ;
msSi<0
6.10) | Frmill=_ sUp  [(L+7) " /0r) Do Froma
(238 € (e

where D, .. is the derivative on [0, K]**x (S*N)* by using a normal
coordinate system.

DEFINITION 5.5. For each fea* we define a norm | fl., s=0,
m=0 by

(6.11) f o= ,_ 3

={tq,cce,

”fk,]”m,u+ HfN(Z)”a ’
1}

where ||f5]l, is the C*-norm of Ff,=1;%(f|4.0) on [0, K]*X (S*N)*, and
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the summation of the first term of (5.11) is taken by all l-tuple of mutu-
ally distinet indices in {1, ---, k}.

For every m=0, the system of norms {||:|..;8=0,1,2, ---} gives a
topology T, on a*. We denote by a%, the completion of (a%, T,). An
element of af,, will be called an extended amplitude function on (T*N)k.
It is not hard to see that N, a’.,=a*. Thus, we define the inverse
limit topology for a*. As a result, a* has a Fréchet structure by above

system of morms. Also, we denote by af.(e, ---, &_,), for m<0, the
closure of a*(e, ---, &,_,) in a%,,.

REMARK. By the definition of amplitude functions, it is easily seen
that a* is invariant under any permutation of variables.

5.3. Properties of a*.

In the following, we shall investigate the differentiability of some
operations on a*.

Given f, gea*, denote by f-g the natural pointwise multiplication

of f and ¢g. Then, it is easily seen that f-gea*. Moreover, we have
the following:

LEMMA 5.6. The multiplication map M:a*xa*—a*, defined by
M(f, 9)=f-g, can be extended to a continuous bilinear mapping of ak., x
at., into at.,, for every m=0.

For each a*, k=1, a*! can be embedded smoothly in a* as follows:
Let p;: (T*N)*—(T*N)** be the projection defined by, for j=1, ---, £,

vV Vv
(5°12) pg(x; f):(ml; 619 D] xj; ejv ey Ty ek) ]
where a\é,-, E,. mean that x;, &, are omitted.

For p;, we have the following:

LEMMA 5.7. Given fea*!, pffea*. Moreover, the mapping p}:
a*~'—a* can be extended to a continuous linear mapping of al;' imto
at., for every m=0.

ProoF. Let I=(%, -+, 1;) be l-tuple of indices. By the remark in
5.2, we may assume that 7,<%,<:--<4%;,. Then, for any fea*', we have
(6.13) (@} ; -
fk—l.l(r-lv tu D) tj’ c 0y tlu L5 gu *e 0y Xjs ejy secy Xpy 55) ’ ng;
\4 -~ v Vv 2 o .
_ fk—l,f((’r/tig —l’ tu ) tj9 * Y tk; Xy 51’ RPN PN Ej, ey Ly Ek) y J=,
v Vv

= v .
fk—l,l('r_ly ty e, t{,,,_lv tj’ ti,'ti,,H_lr ce ey by Ly S * Lis &gy =
T3 €x) s J=1m (MZ2).
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From this, we get the lemma. |

Next, we give a diagonalized operation. Given positive integer 7,
1=i¢=<k—1, define a map d,: (T*N)ex (T*N) ! by
(5.14) d.(x; &) =(x; S 20 Ti5 Eiy Tiy Euiy Xy Eivry * 0 0y Ly &) -

Denote by d}:a**'-—a* the pull-back mapping induced from d,. By a
similar computation as above, we get the following:

LEMMA 5.8. For every fea*™, d*fea* (t=1, -+, k—1). The map-
ping df:a**'—a* can be extended to a continuous linear mapping of
atat into ab,, for every m<o0.

Now, for fea* gea*, define a map [X: ak X a¥’ —ak++'-1 by
(0.15)  FIXII@:; & ¢+ -0y Bhrrrms) Erinrey)

=S@s; &1+ vy B3 E)I@a3 Ers * 7 *y Banr—13 Enrrs) -

Namely,
(5.16) , flzg=dl’:M(p;:,k’+kf’ DE e +29)
Hence, from Lemmas 5.7-8, we have the following:

COROLLARY 5.9. The mapping X: akxa* —a***' -1 can be extended to
a continuous bilinear mapping of ak,, X afmy tnto ali¥' ! for every m=0.

Finally, we shall state the differentiability of the action of 2% on
a*. Namely, we get the following:

LEMMA 5.10. For each @ € 2 and feat, P*f 18 an element of at.
Moreover, the mapping ev: ZP xa*—a*, defined by ev(®, f)=p*f can
be extended to a C~ mapping of D X, into ak,, for every m=0.

PROOF. Let pe 2. Write o(z; &) by (p,(x; 5);%({0; &). Putting‘
p(; &) =|p,(x; )|, we see p(x; £>0 and ® maps (r,2;8) to (u(x; &)r,
P(x; £)), where &(w; &)= (p(x; &); p(w; &) 'py(w; &). Hence, we have

G.17) @iy -, w 1E) =L @iy B); pla Ery-Dyay &), - - -,
Pu(@e; &) 1on; E)ra- Dol &) .
Thus, for any I=(,, -+, 3), i, <--- <%, we have
(G18) (@ el 1, x5 B)= Fo (1 EIP) €, P 8), -+, Plaas &)
where t/=¢t, for i¢I, and try = 02(,; &)t (e &), - - -, L= p(@,,_;
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é},_l)tq/p(x,,; e?i,). For the other case of I, the computation is smilar. By
the differentiability of (5.18) for each I, we obtain the desired results. []

5.4. Local amplitudes.
For our later use in §7, we shall modify Lemma 5.10 to a certain
local form. First of all, we remark the following:

LEMMA 5.11. Suppose f€ C°°((1°‘*N )?) satisfies the following conditions:

(LA.1) f=0if |gF+p*<s R, or |¢gl/In=C or Inl/lel=C, C=1;

(LA.2) Put F(r, 8, z; &, y; ) =f(x; r(cos 6)¢, y; r(sin 6)7). Then F has
an asymptotic expansion

F~§, A6, % &, y; Dri (r>0) .
Then, fea’.

PROOF. Set f(r, 7. ;& u; N)=f(x; r&, y; ), and recall List 5.1.
On 4,0, 45, 4a, ), there is no problem because f; ; on each domain is iden-
tically zero. Hence, we have only to check that forjt, r, x; &, y; ) and
fr, rlt, x; &, y; 7)) have asymptotic expansions requested in Definition 5.2.
However, these functions are zero whenever t<C*or t=C. Thus, we
have the desired expansion by using (LA.2). O

Now, denote by D., the domain {(x; &, -.(X, 7)); | X[=¢, le—n'|<o(lg|+
|7’])}, where ¢>0, 6>0. We consider C= functions f such that supp fC
D,, and f satisfies (LA.1-2) in the above lemma. For such a class of
functions, we give the restricted topology of ai.

Let ¥ be a C= diffeomorphism of D,, into an open neighborhood of
D,, such that ¥(x; s ¥; )= 18, Uy v¥,) where T,=¥.(;¢, ¥; 7).
Such a class of diffeomorphisms can be topologized by the standard C=
topology by which it turns out to be an open set of a Fréchet space.
For such ¥, and for such f defined above, ¥*f is again a C= function
on (To'*N )* satisfying (LA.1-2). Moreover, by the smoothness of composi-
tions, we have

LEMMA 5.12. Notations and assumptions being as above, ¥*f is smooth
with respect to ¥ and f for every m=0.

§6. Proof of Theorem A.

In this section, we shall prove Propositions 2.2-3 and finally give the
proof of Theorem A by assuming the smoothness property of some oscil-
latory integral (cf. Proposition 6.1). This smoothness property will be
proved in the next section.
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6.1. Contraction integrals.

(a) Choose ¢, 6,>0 so that ¢,<r,/4, where r, is given in §4. Recall
the definition of a’(¢,, ¢,) and a,,(¢,, &,) (cf. Definitions 5.3 and 5.5). Let 7,
7. be elements of &, which are sufficiently close to 7. Given a ea’(e, ¢,),
consider the following integral

(6.1) <ae—ir1&3rz>(x; E’ z; C)=OS _.SS a(x; E’ Y; 77’ 2; C)e_‘ﬂmfz(z=e;”;’7";5)dyd7] .

The above integral can be defined as the oscillatory integral for any
fixed (x;¢), (2;{) and it will be called the contraction integral of a by
7, H7,. o

First of all, we state the following, which will be proved in §7:

PROPOSITION 6.1. (i) For 7, r,€¢, sufficiently close to 7o, and
a €a’(e, &), {ae 182y can be written by

(6.2) @e™ 122 (35 ¢, 2; ) =b(x; ¢, 2; Qe v @amo |
where b € a’(e,+¢,) and c(t, 7,) is defined in (4.9).

(ii) For a sufficiently small neighborhood U, of 7, in &, the map-
ping A(a, 7, 7;)=b can be extended to a C> mapping of a,, (e, &)X U, x U,
into at, (e, +¢&,) for every m=<0.

(b) Next integral is much simpler than the above case (a). Now,
we denote by a’(eo, &,) the totality of a €a® such that

(6.3) a@; & ¥; M, 2, 0)=0 for d(y, z)>e, .

Denote by ai,,(co, &) the closure of a*(eo,¢,) in a,, for each m=<0. For
a €a’(o, &), we consider the following integral

(6.4) Cae~*) (x; &, z; C)=Os—SS a(x; & Y; 1), 2; Qe 0w Dgydy |

As in the case of {ae~"12%) (6.4) is well-defined as an oscillatory integral,
which will be called also the contraction integral of a by 7,. This integral
has the following property:

PROPOSITION 6.2. (i) For every acaeo,¢,), {ae~*%) 1is contained
n ad.

(ii) The mapping {(xe~*"): a%(co, &,)—a> can be extended to a con-
tinuous linear mapping of al, (oo, &) into a%,, for every m=<0.

(iii) If ae€a’(, &) is rapidly decreasing in |g|, then so is {ae~*)
wn &, . '
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PrOOF. (iii) is trivial, since {(ae~**) is defined as an oscillatory inte-
gral. To prove (i), (ii), we have only to repeat the standard technique
on each local coordinate system 4,, (cf. List 5.1), by finding operators
L such that Le—*°=e~*° and repeating the integration by parts. We
omit here the precise procedure of these, for these will be discussed again
more precisely in the next section §7. O

6.2. Connection between a' and Dg¢.

In the previous papers, pseudo-differential operators of order 0 have
been defined as operators with symbols contained in 3¢ (ef. [16]). Here,
we shall remark the same operators can be defined by using a€a' instead
of aeDl.

Recall the definition of a* and the remark in 5.2. Given a€a', we
define a linear operator Q(a) on C=(N) as follows:

(6.5) @ayu)@)=0s— || at@; (e, ve- o uty)aae -

Now, fix a C~ function ¢(x; &) on T*N such that ¢=1 on |¢|=K and
¢=0 on |¢|=2K where K is a positive constant. Divide (6.5) into two

parts:

6.6) (Q@)w) (@) = S S save-oudyds+ S S (1— @)ave—*oudyds
= Q1 + Qz .

Since (1—¢)avei"c (cf. [8], p. 865), Q. is a pseudo-differential operator
of order 0, because 7,(x; ¢, ¥)=<¢|**y) on supp (1—g¢)av. By Kuranishi’'s
technique (ef. [10], p. 269), we can eliminate the y-variable in the ampli-
tude (L—g)ay and obtain a pseudo-differential operator with the amplitude
contained in >\¢.

On the other hand, @, is smoothing operator with the kernel

(6.7) qu(x, y):S ¢(x; e)a(w; E)v(x, y)e—tro(z:e.v)de ,

which is obviously smooth. Hence recalling how we defined the norm
Il |l on the space Z*° and using Lemma 1 in [16], we obtain easily the
following:

LEMMA 6.3. Let aca’. Then, Q(a) 18 a pseudo-differential operator
of order zero on N and the mapping Q:a'— F° can be extended to a
continuous linear mapping from al,., into F,, for every m=0.
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6.3. Proof of Proposition 2.3.
For KeC~(NxN) and e =, we shall consider the following
operator '

(6.8) Mp, K)=p*Konp*—'y 54— 5, .

Then, recalling the statement of Proposition 2.3, we have A(p, K)=
Ton(@, K)ot. By (8.3), we have

6.9) Mo, K)N)@ 9= | @ an@: & v mirw; mavan ,
where
ax(x; & Y) =SS v(x, 2)K(z, y)e~*¢"*"gqz .

First, we compute \(@, K). Then, we have for u e C=(N) that

(6.10)  (A(@, K)eu)(x; &) =m A(p, K)(&; & ¥; 1, 2)e” 0oy (2)dydndz

where
(6.11) A(p, K)(x; & ¥; 1, 2)=(P*ax)(®; & ¥; DY(¥, 2) .

By Corollary 5.9 and Lemma 5.10, we see A(p, K)€a¥(c, ¢) and A(p, K)
is rapidly decreasing in |¢], for so is ax. Hence by Proposition 6.2, we
have (A(p, K)e™*™) ea® and rapidly decreasing in |¢|]. Moreover this is
smooth with respect to ¢ and K.

Since A(p, K)=mo\(®, K)o¢, the kernel of A(p, K) is given by

(6.12) Lig, K)(a, 2= CAlp, ez ¢, 21t ,

which is obviously smooth on NxN. Thus, we get the following, which
proves Proposition 2.3:

LEMMA 6.4. Let KeC*(NXN)and p € 2. Then, Ap, K)=r )Mo,
K)oc¢ is an linear operator with a smooth kernel L(p, K) defined by
(6.12). Moreover the mapping L: Z{ x C*(Nx N)—C=(Nx N) is a smooth
mapping.

6.4. Reduction form of some oscillatory integrals.

Before proving Proposition 2.2, we shall remark some properties of
a certain oscillatory integral. Namely, consider the following linear
operator on C=(N):
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(6.13) (e, Dy @)=| a@; & e = uayas

where a(x; &, ¥) € a’(¢) and T €4, do not involve n-variable and 7 is suffici-
ently close to z,.
Remark that on the support of a, 7(x; & +.Y) can be expressed as

(6.14) (@ & . Y)=¢|Y)+{1R@; & YYD =Y +QY?
=¢|I+QY)Y) .

Since 7—17, is small and |Y|<e, one may assume that I4+Q(x; ¢, Y)Y is
an invertible matrix. Set &'=£(I4+QY). Then by the implicit function
theorem (cf. [12]), & can be expressed as a C* function ?',(w; &', ¥) depending
smoothly on 7. Let D(¢) be the domain {(z; ¢, ¥) € (T*N) X N; d(x, y) <¢}.
Then 7. is actually a C~ diffeomorphism of D(e) onto itself and positively
homogeneous of degree 1. Hence, we have the following:

LEMMA 6.5. For ted, sufficiently close to t, there exists a C~ dif-
feomorphism ¥, of D(e) onto itself such that T¥r=1, and ¥, is positively
homogeneous of degree one. Moreover, ¥, is smooth with respect to T under
the C> topology for V..

Now, using the abo#e lemma, we rewrite (6.13) as follows:
(6.15) (¢(a, Du)(@)= SS (Tra)(x; &, y)|det DT Je~* o= Vy(y)dyd¢ ,

where we see easily that (T*a)det D¥. €a*(c) and does not involve
7-variable, and (¥*a)|det D¥.| depends smoothly on 7 (cf. Lemma 5.10).

Thus, using Kuranishi’s technique, one can eliminate the y-variable
in the amplitude (F*a)/det D¥.. Thus, by the same computation as in
6.2, we obtain the following: ‘

LEMMA 6.6. (i) For red, sufficiently close to z,, and a € a*(e) which
do mot conmtain mN-variable, p(a, ) ts a pseudo-differential operator of
order 0. (ii) The mapping p:aie)xXd—F° can be extended to a C~
mapping of ai .,(€) X, into Fo,, where ai(e) is the totality of aca’(e)
which does not involve n-variable and a3, .., () is its closure in ai,,(e).

6.5. Proof of Proposition 2.2.
Denote by E(®), for p € 2§, the linear operator on &

(6.16) E(p)=p*rp*~ (cf. 2.3) .

Recall the argument in 8.1. E(@) is an integral operator with a smooth
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kernel @*ve~*¢*, By Lemma 4.1, ¢*r,€d, and by Lemma 5.10, @*v € a*(¢)
if @ is sufficiently close to the identity. Moreover, Z(p) of (2.6) is writ-
ten as wE(@), hence we have

(6.17) E@w@=|| Be)w & pu@ars,
where
(6.18) B(p)(@; & 2) =Py e~ "= w) .

Note that @o*v[X]y €a’(e, ¢) and does not involve {-variable. Then, using
Proposition 6.1, we have

(6.19) B(p)(x; &, 2)=b(@)(x; & z)e~ 0™ | b(p) € a*(2e).

It is easy to see that b(@) does not involve {-variable, because @*v[Xv
and @*r,H7, do not.

Also by Lemma 4.4, we have c(p*r, 7,) €7, is sufficiently close to
7,(x; &, ?), if @ is sufficiently close to the identity. Thus, by Lemma 6.6,
we get Proposition 2.2, (a), (b). Proposition 2.2, (¢) is obvious, because
Z(id.)=id. and G&#}, is an open subset of 7, for every m=0.

6.6. Proof of Theorem A.

Now, we shall give the proof of the main theorem. As in 2.3, recall
the operators =,, a; in (2.8), (2.11). We denote by I the pairs (a, 7)
where aca’(e), ze U,, a sufficiently small open neighborhood of 7z, in &,.
By using Fréchet structures on a’(e) and &, I captures a structure as
an open set of a Fréchet space. Associating with a ea*(e) and z€ U,,
we consider, a primordial operator on .5 of the form

(6.20) (Pa, T)f)(x; &)= SS a(x; & Y; Pe T =EVD fy; p)dydy) ,

and this plays an important role in the observation of »; and a;. Namely
remark that

(6.21) 1P, ¥)=E(py) 'nE(py)E(P) ,
(6.22) ap, A)=E(p) 'nE(p)p*a-E(p)+E(p) A, K) ,

where A=rmat+Ko, a€dl, KeC*(NxN). Remark also that E(pvy),
E(p) are primordial operators written in the form (6.20).
First of all, we shall observe (6.21). Remark that
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(6.23)  (E(py)E(®)f)(x; &)
= “ (Py)* v XA P*v)(®; &, ¥; 1, 2; Qe e¥*0Be*of(z; {)dydndzdC .

By the result in § 4-5, we have (py)*v X @*v € a’(e, ¢) and (py)*z,, P*T,€
if ¢, 4 are sufficiently close to the identity. Therefore, Proposition 6.1
can be applied in this case, and the kernel of (6.23) is given by the con-
traction integral

(6.24) (@)D R Prre-e¥ 20y =b(@, y)etetrp oo

for some b(®, v) €a*(2¢). Thus, by Lemma 4.4, Proposition 6.1 and Lemma
5.10, we obtain the following:

LEMMA 6.7. There exists a meighborhood V of the identity in 2
such that the mapping of V XV into a*(2e) X &, defined by (@, )~ (b(®, ¥),
c((P¥)*7e, P*70)) i (6.24) i3 a smooth mapping of VXV into a2,,(2¢) x &,
Sfor every m=0.

Now, we shall compute wE(py)E(p). Set 7’=c((pv¥)*T, $*7,) in the
above notation. Then, we obtain

(6.25) (E(@y) E(p)ew)(x)
=SS b(@, ¥)(x; &, ¥; NY(Y, 2)e BV EEYIDY (N dzdyd) .
Thus

6.26)  (E@pE@@=| G, v)Rve- 5@ ¢, uleade .

Since 7’ is sufficiently close to 7,, one can apply Proposition 6.1 again
and obtain

(6.27) (@, v)Rve B0 = (@, y)e " | b(@, v) € a*(3e) .

Remark that (e, 4) does not involve {-variable. Hence, by Lemma 6.6
we see that nE(py)E(®p) is a pseudo-differential operator of order 0 and
the amplitude depends smoothly on (@, 4). This proves the smoothness
of r(®, ¥), because the smoothness of (@)~ has been already obtained
in 6.5.

Next, we shall consider (6.22). The smoothness of the second term
has been given in 6.3 combined with Proposition 2.2. Thus, we have
only to consider the first term. However, the smooth dependence of
E(p)p*a:E(®) can be easily seen by the similar way as the above argu-
ment. Hence, we complete the proof of Theorem A. O
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Now, what remains to be proved is only Proposition 6.1. Though
the proof of Proposition 6.2 is not precisely given, the detail of the com-
putations on each coordinate neighborhood can be naturally understood
from the computations in the next section.

§ 7. Contraction integrals.
Our goal in this section is to prove Proposition 6.1 in §6.

7.1. Contraction integral {ae *18%),
Let 7, 7, be elements of # and are sufficiently close to z,. Given
a € a’(e, &,), recall the following integral:

(7.1) {ae B2y = (O — SS a(x; & Y; N, 2; Qe nEREETREOqy 4y |

The above integral is defined as the oscillatory integral. Now, we shall
show Proposition 6.1 by several steps as below.
Put as in 4.3

(7.2) T(x; & y; ), 2 O =7,B.(%; & ¥; 1), 2; O)—c(zy, T)(@; &, 2; 0) .
Let &® be the set of all functions 7 such that
T(w; & y; M, 23 Q) =1,B7:(; & ¥ W, 2; O)—7o(x; &, 2; 8)

where 7,€4d, (i=1,2,3). One can define the factor topology on #® by
using that of &.
Also, rewrite (7.1) by the following:

(7.3) (ae™8%) = A(a, Ty, T.)(@; &, 2; (e~ om0
where
(7.4 A, 7 w0 =0s—|| at@; &, v; 9, 2 Qe-rerernsoayay .

Therefore, to prove Proposition 6.1, we may prove the following:

PROPOSITION 7.1. Notations being as above, we have

(1) For 7, ., €8, sufficiently close to t,, and a € a’(e,, &,), the integral
A(a, Ty, T) €a%(E,+&,).

(ii) The mapping A:a%e, &)x U, x U,,—a*(e,+¢,), defined by (7.4)
can be extended to a C> mapping from &, (e, &) X% U, x U,, into ai, (e, +&,)
Jor every m=<0.
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As an easy remark, if the integral (7.4) can be defined, then it is
easily obtained that A=0 on d(x, 2)>¢,+¢,.

The above proposition will be proved by dividing the integral into
several domains D, and by expressing A by A;. So, in what follows,
we shall denote by Lem. A the same statement as in Proposition 7.1
replacing A by A;. If Lem. A holds for every j, then so does Prop-
osition 7.1.

First, we take a positive constant R and fix it. Let w; be a C=
funetion on (T*N)* such that w,=0,

(7.5) wx; & ¥; =1 on d(x, ¥)<e, and PI+|7=SRY2,
where -.(X, 7)=(y; 7) and
(7.6) supp wxC{(x; & ¥; ) € (T*NY; d(z, ¥)=2¢, |+ 7' ’= R} .

Using wz, we divide (7.4) into two parts;

(7.7) A(a, 7, 7,)=08— SS (l—wR)ae—‘T-i-“ wgae—"T
=An+A4., -

Remark that the second term A, in (7.7) is integrable in the usual
sense. Hence, a direct computation shows that Lem. A_, holds.

REMARK. In fact, A _,(x; &, 2;{) is bounded in |{| and rapidly decreas-
ing in |&|.

Next, we divide A, in (7.7) into several parts. First, let ¢(x; ¢, ¥;
7, 2; ) be a C~ function on (f*N )® satisfying

(i) suppgc{(x; & y; 7 2 C); dx, y)=r};

(ii) ¢=0 and ¢=1 on |[p—7,|=8,¢l/2 and =0 on [p—7,|=0d./¢[, where
(¥.; 3.) is the critical point given by Proposition 4.8 and 4, is chosen to
be a sufficiently small constant.

(iii) ¢(x; rg, ¥; v, 25 80)=¢(x; &, ¥; M, 2; C) for any 7, 8>0.

Then, it is easily obtained that the critical point of T which is the
same as that of r,H7, obtained in Lemma 4.3, is contained in supp ¢.
Therefore, we get ‘

(7.8) An(a, 7, T2)= SS sa'e T +0Os— SS 1—g¢)a'e™*T
=A'+ A%,

where o/=(—wya. Easily, ¢a’, (1—¢)a’ €a’(c, ) by Lemmas 5.6-7.
Moreover, we divide A? in (7.8) by using a partition of unity: Namely
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we choose functions +, (1=1, 2, 3) with the following properties:

(7.9) iz:lqhsl , Y,€ab;

and
supp ¥, C{(®; & ¥; 9, 2 ) € (T*N); [n|=C¢l}

(7.10) supp 4. C {(x; &Y 2 0) e (T*N); —%—C“Ielélvl éZClel} ,
supp v C{(®; & ¥; 9, 25 §) € (T*N)%; 9| =Clegl} ,

where C is chosen in Corollary 4.6. Now, we put
(7.11) A*=0s— SS Wil —@)a'e~T + Os— SS ol —P)a'e—T

+O0s— S S (1 —g)a’e T
= A+ A4 A,
Using Lemmas 5.7-8, we summarize the following:

LEMMA 7.2. Suppose that ¢, e, <7r,/4 and fix functions @z, ¢, ¥, (1=
1, 2, 3) defined as above. Then we have

(1) The mapping a—a’ =(1—wz)a can be extended to a C mapping
on at,, (&, &) for every m=0.

(ii) Apla, 7, 7,) in (7.8) can be written by

(7.12) A (a, 7, T,)=A'+ A+ A2+ ABE
where |
(7.13) A‘=SS c.(x; & Yy M, 2, Qe TEEVInEDgydy |

(7.14) A“=Os—SS C.,(%; & Y3 W, 7; Qe~T@EVEOqydy , (1=1, 2, 8),

where ¢,;=¢(l~wzr)a, ¢;=1—wg)(1—g)¥.a aré elements in a*(e, &,) respec-

tively and

(7.15)  suppe,CDi={(®; & ¥; 7 2 0) € (T*N); dw, y)Se, d(y, 2)<é,,
&7+ = B2, [p—n.|<d.lgl},

(7.16) supp ¢, CD,,= {(w; & Y M 2 0) € (T*NY; d(x, y)<e,, dy, z)sez,
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e+l P2 B2, =7 Z50lel, Inl=Cel}

(TAT)  supp ., Dye={@; & ¥; 7, 7 ) € (T*NY; dw, y)Se,, dly, D Ses
e+ P = 2, =7 250,

SC-lel<iml=2Clel}

(1.18)  subP s Dua={(@; & 43 7, 2 O € (T*N)%; d(, ¥) e, d(¥, 2)Sen
P+l P2 R, Iy =7 223l Il = Clel} -
(iii) Moreover, ¢, c.. (1=1, 2, 3) € a’(e,, &) depend continuous-linearly

on a in a,, topology.

7.2. Lem. A

First, we remark that A' is integrable in the usual sense. We shall
check the conditions (A.1-2) in Definition 5.2 by using coordinate system
{4} (cf. List 5.1 for k=2). Now, we may take R by R>4K. Then,
4, ,Nsuppec,=@ and we have only to investigate the four cases: 4, ,,

A2.(2)) AZ,(1,2)’ AZ,(2,1)‘
On 4,.,: By using the variables (7, ¢) in 4, ,,, we have

(A, t, @ &, 2; €)=S§D1 ci(@; 7€, y; 7, 2; th)em TerEinsibayay |
By Proposition 4.7, if we take 6, as a sufficiently small constant, we get
(7.19) (AN w0 ¢, 2 &, 2; f)=“pi ci(x; v&, y; 7, z; t8)e*V X -Xayay
where ¢/=(co®)det DP|, D,=9P'D,. Setting =(1/r)y, we get
(A, (™ 8, 23 8, 2, 0)
— SS rel(x; vE, y; 77, 2; tf)ewﬁl-q;(z;?.z;é‘)lx-x,,m’e‘,s;?»dydﬁ ,

where -« (X, #')=(y; #). Consider the function ci(x; r€, y; v, z; t§). By
using Proposition 4.7 (ii), we have
ci(x; €, y; 1, z; ) =cy(w; vE, By (x; &, y; T, 2; &); r@u(x; &, 43 7, 2; ©), 2; 10)
x |det D&(x; &, y; 7, z; ),
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where &(y; 'rﬁl moves in D,. Thus, using (4.12), we have C'||0;S"||—
No,=|7'|=C|loxS~!||+ Né, for certain constants C, N>0 depending on the
riemannian structure. Since X, Z are sufficiently small, we put

(7.20) =, E=P, T=t,
and define a function p by
o T, T, ;& y3 ) 2 Q) =clla; F/TDE;, u; 75, 2 TL) .
Then, p is C~ on 4,,,,. By putting 7”"=7"—7, and X"=X—X,, we get
(A, w(r ™, t, @3 &, 2; 8)
= otcrimy, @1 1, 258, X, ), 2 Qe Eopapax
Using the Taylor expansion of o(---) with respect to X” and integration
by parts, we get
(7.21) (A0 t, z; &, 2, ) ,
=3 2108.030(r T, 171, 4, 03 &, X, B), 25 O gymg (—im) 1o
+R,_,,

where R, _, is the remainder term obtained by Taylor expansion and is
of order O(r™~'). Moreover, use that o can have the asymptotic expan-
sion with respect to . Then (A.1-2) are obvious.

On 4;,,: Also, use the variables in 4, ,, and the notation as in above.
Then, we have

(7.22) (Ao, ¢ 2; &, 2; f)=§§pl ci(x; B8, y; 1, z; rE)e~ T vnsrbayay |

By Proposition 4.7, we have

(A t, @ &, 2, 0)= SSD cl(@; &, y; 7, z; r)er rswhibir—xyeidsbogy gy |
i

where ¢,=(c, o ®)|(Det DP)|. Also, by using Proposition 4.7 (ii), we get

ci@; t&, y; 1, z; Q) =c\(x; &, By(; t€, y; 1), 2; ©); Bo(w; 1€, w3 0, 23 ©), 2; )
x |det DO(x; &, y; 1, 2; )| .

Since || may be estimated by [ <K, put

~

(7.23) F=r, t,=t, .=y .
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We see that
o, T, T, 3 &, w3 9, 23 8)=cllz; T.E, u; 1., 23 70)

is smooth on 4; 4. So by using Taylor expansion, we get (A.1-2).
On 4,.:: Using variables in 4, and using Proposition 4.7, we have

(21)2,(1,2)(7_1a t, x; g, ' 8) .
:SS c;(x; ,,.g, v; 7]’ z; (,r/t)’c)ei(,)'_n;;(z:?.z'.f)Ix—xc(z:?.né\))dydﬂ .
~JdJp; :

By changing variables #=(1/r)y, we have
(7.24) (A, ua(r ™ t, 25 8, 2, 0)

= [ cttas r&, w3 0, 2 Crpppgen st x=‘”“">r"dyd77,

where C“HaxS"II—N61§|77]§C||6134||+N51. Put
(7.25) F=rlfl, L=, T=t.
Then, we get
or, T, Ty 2 &, w3 T 2 Q) =cllws (F/TE, v; 7, 2 FIEENE)
is smooth on 4,10, where
s vE, u; 17, 2 (r[HE) =, ré, O3 &, v 7, 2 0); r®(x; &, v; 7, %: ),
z; (r/t)%)\det D®(x; &, y; 7, 2; 0)| -

Therefore, by using Taylor expansion of o, we get (A.1-2) in 4, .
On 4,,,: Using variables in 4, ,,, and using Proposition 4.7, we have

(A e ¢ 23§, 2 0) |
=S§D C (r/t)& ¥; 1, 7 rE)esr -t abix-Tombabayay |
where cl—-(clo(l))l(det D(D)l By changing varlables ('r/t)77 7, we have
(7.26) (A‘)2 et ;8 2, 8)
=\{ ctt@s (18, v (rit, 23 7Dt -mitsisbiz-rtly
X (r/tyaydy,

where C-1(|0xS~|| — No, <7 =C|0x8"||+ N8,
If |7|/t=K, then we put
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(7.27) F=rlfil/t, T=t, L=I7lt.
Therefore,

(7.28) o, T, By @ &, s T, 2 Q) =cilw; FIEEDE, s 7, 5 (FIENE)
is smooth on 4, ,,,. Also, if |f|/t=K"", then we put

(7.29) - C F=r, =17, t,=t/|7| -

Therefore | | |
(1.80) o E, a3 &, w3 7y 2 D) =cilw; F/EEE, ;s (7T, 2 7E)
is smooth on 4, 4,,. Here

cl(m; (r[0E, y; (rIt)T, 23 1) =cy(w; (rIt)E, Bi(w; &, w3 T, 2; &); (r/O)Pas; &, Kz
7, 2; £), #; rQ)|det Dd’(x g, Kk 7,2 0)| .

Applying Taylor expansion for both cases (7. 28) and (7.30), we get (A.1-2)

in Az (2,1)°
Lastly, we have to check the differentiability of A' with respect to

a, 7, and 7,. It is easily seen by differentiating (7.19), (7.21), (7.24) and
(7.26) directly with respect to a, 7,, 7. and by the same computations as
above. _ ~ o ]

7.3. Lem. A*?,
We shall consider the integral A*!' in Lemma 7.4, i.e.,

A¥(x; &, 2; §) =0s— SS (%3 & Y3 7, 2 C)e“‘“”‘“‘”""’d;yliv ,

where ¢, ,"is defined by (7.14). To check the differentiability of A* with
respect to a, 7, and 7,, we shall formally differentiate A*»' with respect
to a, 7, and 7,. Then, it is easily seen that these derivatives can be
written by the sum of the following integrals, for |I|=0,

(1.31)  ViA*@; ¢, 2, 0)= Os—SScézf @3 & Y5, 2; Qe TV Elayay |

where ci:7’ can be deseribed as follows:
(a) exi'=¢,,(T"), |
(o) (T)V'=(T)H .- (Th)*, Tied?,
() @,,€a’e, s,) and satisfies the same conditions for ¢,, in (7.16).
Now, we shall prove that Lem. A*' holds.
We shall observe A*' (or V'A*') for each chart {4,;}. Remark that
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on support of ¢,,, we have |¢?=R?/2(1+C™®). Therefore, if we take R=
V2KA+C?), then supp ¢; ;N 4;,,=@ and supp ¢;; N4, ,=. So, we shall
only investigate V'A*' for the cases 4,,), 44 and 4 e,y-

On 4, ,: Use the coordinate on 4, . Then, we have

S~ -~ ~
(7.32) (VA (r Y ¢, x5 6, 2, Q)
| =Os—SS ckT'(x; v, ¥; 7, z;t0)e-T@rbvinsthgyay |
Dg,y
Setting n=1r7, we get
N -~
(VP A, (Y, ¢, ; &, 25 §)
= SS kT @ rE, s ), 75 tD)e T sdpnayady
I71sc—1
where
T (x; 1€, y; 17, 23 10) =&, 1(x; 7€, y; v, 2; tEPN(T'(x; &, 43 7, 2, Q)
By Corollary 4.6, (2), we put

7.33 =0T &y 7 200,
(789 0, T(; &, u; 7, 2 O

Then, Lye~*T=e *T and |0,T|=M. Using the integration by parts, we get
a4 ~ ~
(VIA2,1)2'(1)(,'.—1’ tr x; 5,- z; C)
=SSI5I“_1 P LA, (; 1€, v; 17, 2 XT3 &, v; 7, 2 O))]
. e—trT(a:?.v:ﬁ,:;e)dydﬁ ,

where L} is the adjoint operator of L,. Since K can be chosen as suf-
ficiently large number, we put

(7.34) ?=’rlﬁ| ’ 2‘1=|ﬁl ’

SH
Il
o~

Then, the function o defined by

o, T, B 13 &, 43 7, 23 ©) =0,.(; (FIEDE, w3 79, 25 TL)
is smooth on 4, ,,. By choosing m sufficiently large, we have
(7.35) (GUA, ,=O(r—¥) for any N=0.
Also, by a similar computation, we get

(7.36) DEs ot et (V A, o =O(*) for any NO0.

1Sy %s
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On 4, ,.: Use the coordinate on 4;,05: Then, we have
o~ ~
(7.37) (VIA»), a0 8, 3 €, 23 0)
=OS—SS ch?'(x; rE, y; N, 2; (,,./t)f)e—tr(z;r?,v;mz;(r/t)?)dyd77 ]
Setting »=1r7, we have
/l\gx -1 A 4
(VA" )y, uo(r ™ 8, 3 €, 25 0)
- ngs  el'(w; v, y; v, 25 (r[t)0)e T wbwinnbpngyafy |
VAF-{iae
where
cxl'(w; v8, y; 17, 25 (r/O0) =, (wirE, y; 7, 2; (P[P (T (s €, 43 7, 2; D)) .

By Corollary 4.6 (2), we use the operator L; in (7.33). Remark that by
putting

(7-38) F='r]’77' ’ ?1=|ﬁl ’ ’tvs::t ’
the function
OF L T, B, w8, 43 3, 23 ) =,.(; FIT)E, u; 75, 23 FIEEDE)

is smooth on 4, ,,,. The same computation as in (7.85) gives

(7.39) (VIAZ'I_)z.u.z) =0(r"),
a4
(7°40) D(‘:',t,z'.?,z;f)(lez'l)z, (1,2) = O(”'-‘N) ’

for any N=0.
On 4, .,: Use the coordinate on 45,0, Then, we get
a4 a~ A
(7.41)  (V'A*) 00074 8, x5 &, 25 )

=OS'—SSD cé:{r(x; (’i’/t)g, y; v’ z; ’rg)e_”(z;('/t)?’ym’z"e)dydﬂ .
2.1

Set »=(r/t)7j, and we have
a4 “~ ~
(VIA* ), o n(r ¢, @5 &, 25 0)

=), s ST 0108, 43 (10T, 25 rE)ems T ety ayay
s

where
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oI (s (r[8)E, y; (r[6)F], 23 7€)
=8,.(x; (r[t)E, y; (r[t)T], 2; rC)(r/t)‘”(T’(x & v C))’

Put -

T42) L 10, T 8,37, 1 0):0,
N "0, T , 43 7, % O

Then, Lye~*"/"T=¢~*"/*T and |0,T(x; £ v, 7,z OHi=M on Supp ¢, by Corol-
lary 4.6. Thus, we get, for any m=0,

- (@4{")242,1@“'- B LF)™[ck™ (z; (r[0E, y; (r[t)T], 2; rC)]

7

X (,’./t)ne-t(r/e)T(z:e.v:v.s:C)dydﬁ .
Put as in (7.37)-(7.40), we get

(7.43) - (@), o, =O0(r-"t) for any N=20.
and similarly

(7.44) D& ¢ o2V A Ve, .0 =00"¥ tN)

for any N 20

What we have shown in the above argument is any formal differen-
tials of A*' with respect to (a, 7,, 7») are well-defined in a’*(e, &) and these
differentials are continuous. To prove the differentiability of A* Ya, 7, To),
we have to take the formal:Taylor expansion and compute the remainder
term (cf. [12]). However, the estimation of the remainder term can be
obtained by the oscillatory integrals of the remainder term of Taylor
expansion of the integrand A*' by similar computations as above. Thus,
we obtain Lem. A*'. O

7.4. Lem. A*%.
Now, we shall consider the integral A** in Lemma 7.4. As in 7.3,

to consider the differentiability with respect to a, 7, 7., We have only

to consider the following integral, for [I|=0,

(7.45)  V'A™™x; ¢, 2; C)=OS—SS cI'(x; &, Y M, 25 Qe T nsldydy

Dy,3

where ci'7’ can be described as follows:
(a) c5 =0, (T,
() (T")=(T)h -+ (T)*, Ti:ed?,
(¢) &.,c€0ae, &) and satisfies the same condition for ¢,; in (7.18).
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Now, we shall prove that Lem. A** holds by observing A*® on each
chart {4, ,} |
On 4,,: Use the coordinate on 4, 5. Then, we have

A~ T R R o N
(VIA®Y), 4(t,, t,, ; &, 2; C)=Os—gg cii'(@; t.€, vy 7, 2; t.l)e~ Tt vinnndyyay |

Now, we divide the above integral into two parts. Namely, by using a
cut off function y(y; 7)) such that supp ¥(y; Nc{ty; n) e T*N; [p|< K}, we
get

(1.46)  (VA™), o(ts t, 7 &, 23 )
___SS l T'(w tlE! v; 1], 2; tzc)e—iT(x t1€ Yin,zs ’2°)dyd7]

+0s— “ A —)eki’(@; 8.8, ¥; 7, 2; t,0)e~ T tbwins ""dydv
N
— (VlAz 3)2 2 + (V1A2 3)2

It is easily seen that the first integral (V'A2 .0 18 dlfferentlable function

in (¢, t, x; &, 2; &) by using the coordinate ds,5. For (V‘A2 5.2, use the
operator ° ‘

7.47 i Ly = 30, T(; tlé,Ay; 0, 2;8)-6, .
(74D 10,T(x; t.€, y; 1, 2; I

Then, Lre *"=e*7 and |6, T(x; t.£, ¥; ), 2;0)|=M|7'|>0 on 4,,. By using
Ly and the fact that ¢, ,(x; t.£, v; 7, 2; t.) is differentiable on 4,5, We get

~~
(V‘A2 )%.0 is differentiable on (¢, ¢, x; &, z; £) and therefore (V‘A2 N0 1S
differentiable on (¢, t,, «; &, 2; §).
- On 4,,: Use the coordinate on Ve Then, we get

A~ n ~
(VIA2’8)2,(1)(T—17 tr x; 59 z; C)
=Os;....'._,SS cé f{'(x; r§, i 77’ z; tf)e““”"?”””"”‘A’dydv .
Putting n=77, we have
~ ,. . R
(7.48)  (VIA*), ,(r Y t, 2, &, 2; §)
=OS_SS c; g'l(x; ré‘, v; ,rﬁ, z; tf)e—ﬂ'?(5;?.73},3:2)rnd‘yd1‘]’ Y
where

cis (s vE, y; 7, 25 t0) =0, 4(w; vE, y; v, 2; L) T'(x; &, y; 7, 23 D))t
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and [7"|=C>0. Now, we use L, in (7 .33). Integrating by parts, we have
o~ ~ a
(VPA), (7, ¢, %5 €, 25 Q)
=0s— “ (LEY™(chE' (z; vE, y; ), 2; t8))e-trT b Dpngyafj .

Put
(7.49) F=r, t.=1/17| , to=t .
Then, &,4; &, ¥; 1, z; t0) is smooth on 4, .. Therefore, we get
o~
(7.50) (V'A**), ,=O0(r~F) for any N=0.
Similarly, we have
~
(7.51) D& ¢ 0.0ty (VP A, ,=0(r"") for any N=20.
On 4, ,: Use the coordinate in 4, ,. We have
S~ -~ a
(VPA), (17, t, %35 €, 25 Q)
=Os—SS oiT'(x; 88, 3 1, 7 v Tk vneayay

where |7|=Ct. By using a cut off function (y; %) defined for 4,, in
(7.46), we divide the above integration as

@52 (VA= oo +0s—{|  a—picire

ctsin1=K Igl2 K1

= (VlAz’s);, @+ (VIAM):' @
Use the fact that &,.; t&, ¥; 7, z; r) is smooth with respect to (»7, |71,
t, ;& u; 9,20 0/11\4_1/3,(,,, if [p|<K. Then, (V'A**)},; is smooth and is O(1).
Next, consider (V'A>®) ,. Put, if |p|/r=K,

(7.53) F=pl, L=t, T=pl/r;
and if /52K,
(7.54) F=r, L=F, t=r/p.

Then, &,.(x; t&, ¥; 7, 2; rl) is smooth on 4, .5 and 4, z. Use also L7
defined in (7.47), and we get

~7
(7.55) (VEA=R): ,,=0(1) .
I~
Therefore, (V*A*?), ,,=0(1). Similarly, we get
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(7.56) D§ :4,0:6(VIA>®), o, =0(1) .
On 4,,,,: Use the coordinate in 4, .. We have
IN -~ A
(VIA®®)y 0 o(r™ 8, 3 €, 25 ©)

=OS-SS cé:g"(x; rg’ Y; 77’ z; (,r/t)z)e-—ﬂ'(s:r@wm,z;(r/t)f)dydv .

Setting n=1r7%, we get
l 8
(757) (V'A® )2,(1,2)
=0s— SS; O rE, ys 0T, (r/t)8)rme-rrwbviindayay |
7

where
b (w; r€, y; v7], 23 (r[6)0) = 4(x; vE, y; 7, 75 (/)P N(TV (a3 &, ¥; 7, 23 ) .

Use L, in (7.33) and note that |3,T(x; &, v; 7, 2; )| = M(1+|7|) because
of Corollary 4.6 and also 32T (x; &, y; 7, 2; O)|<C.(1+17]). Therefore, inte-
grating by parts, we have

(1.58) (VA" o(@; 7&, 2; (r/t)E)
=SS (LEY™[E,.o(x; ¥, y; v, 2; (r/OOQ)r* " (T (w; &, ; T, 2; Q)]
X e—irT(z;?.ﬂ;i,z;e)dydﬁ .

Put, if [Jlt=K,

(7.59) F=r, =1/l , ta=tl7l ;
and if |Ft=K",
(7.60) F=r, t.=1/7|t, t,=t.

The amplitude function ¢,; in (7.58) is smooth in (r, ¥) on 4; .., and
4,152 for the cases (7.59) and (7.60), respectively. We have

0,=0; , 0, = 1710z, for (7.59)

7.61 ~
( ) 0,=0;, 0= ——]t'-t23;2+azs for (7.60) .

Remark that for the case (7.60), we get (1/t)<K|7j|. Differentiating (7.58)
in (¢t & 20, we get, by taking m so large,

o~ .
(7.62) Dg . 22,6(VIA*®), 00y =0(~") for any N=0.

:::::
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On 4, .,: Use the coordinate on 4, ,,. Then, we get
Sias, 2 ,.fF
(VPA*), 00(r 8, 25 €, 25.0)
=Os—§§ obT(w; (r[0)E, y; 7, 23 rE)em T b aydy |
Set p=(r/t)7j, and we have
I~ : ~ - .
(7.63) (VIA*), (7 8, 25 €, 25 ) ‘ Coe
=Os—“l. chT'(w; ([, y; (rt)F, z; ¥E)etrT bl
7|C
X (r/t)"dyd7] , ' 8
where

o (; (D&, y; (r[t)F, 23 70)
=8yu(@; (r/V)E, ¥ ('r/t)v, 50T & v 7, 2 ()‘(r/t)'” -

Now, put ‘
(7.64) F=r, T=t, L=17.
Then, the function

oy B w3 & U3 By 7 O = e /208, v; (72, )7, 2 70)
is smooth on 4, ... Since 9,=0; and 9,=0;,, we have
(7.65) |0202D 3:8,2:6)C 2.5l SCapa  fOr some constant ¢, ;.. -

Use L, in (7.42), and the fact that if |7|=C,

10, T(x; &, v; 7, 2; O = M7l ,
|02 T(x; &, y; 7, z; Q)| =C.A+1T]), lal21,

for some constants C.,. Integratmg by parts with L;, we have -

(7.66) (V‘A e, . n('r‘ Lt a8 2 0)= O(T'NtN)
and .

(7.67) D(':'.t,u?,:;:‘)(lez's)z,(2.1) =0(r~"t") ,
for any NZO

By the same reasoning as in the last paragraph of Lem. A*!, we can
see the differentiability of A*® with respect to (e, 7, 7.). |
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7.5. Lem. A*%.

Lastly, we shall consider the 1ntegral A*? in Lemma 7 4. Asin 7. 3-4,
to consider the differentiability with respeet to a, 7, 7., we have to
consider the following integral; for |I|=0, ,

(7.68) ViA»(z; &, z; C)=OS—?§SD el (x; 5, y, 7), 2; C)e‘”‘”'e""ﬂ""’dydﬂ , |
2,2 )

where c¢i’7’ can be descrlbed as follovvs

(a) cé'{'-':czz(T’)t

(b) (T")Y=(T)h --- (To)*, Ties?,

(¢) @&,.€a’e, &) and satisfies the same condltlon for Cp in (7.17).

Now, we shall prove that Lem. A** holds: :

Remark that on support of Co sy WE have le|* = R*/2(1 +4C“’) Therefore
if we take R=1V"2(1+4CH)K, supp C; ;N 4y =@ and supp ¢;;N Ly, ;s =3. So,
we have only to consider A** on the domains 4, ), 4, 4,2 and 4; .

On 4,.: Use the coordinate on 4, .. Then, we have

(V'A“’2)2,m('r'“. t, x; &, 2 Cf)=Os—SS b (s 7€, y; 1, 23 t)e—T@rhuinaud qyqy

Set =17, and we have

(1.69) (VLA (0 b, 23 8, 23 ©)

SS ek (w78, y; 1T, 25 tl)e T et vinbayaf ,
; (1/2)0—1slnis20 .
where ‘

bl (w; €, y; 77, 2; 18) =, u(w; 7€, y; 7, 25 LE) (T (; &, y; 7, 2; O)r'V1 .
Remark that the above integral is well-defined. Now, put
a0 Lo=U0T@é v 7, 200, +3:T@: & y; 7, 2 0ol |

: r[|0,T(x; &, ¥; 7, 2; OI*+10:T(w; &, v: 7, 2; OF]
By Corollary 4.6, |3,T]“’+|3;]‘T|2g§>0, and we get easily
(7.71) Ve T; & u; 7, 2, DISC.A+IT) , laj=1.

Then we get
(VIA 2)2 (1)(7'_1’ t x 51 Z C) .
(LE*y™[ch T (z; 7€, y; 7, 2; tD)r"]e-rT@bwinadgyqf |

=

' Ssumo—lsmszc

Put as follows:
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7 — |5 =17, fo=t, if |7
(7.72) {" il , |71 ;a t, if |[fl=sK
8

F=r, .=1/|7 , =t, if (=K.

Then, amplitude function &,, in (7.69) is smooth on 4, ., and 4, . for
each case in (7.72) respectively. Therefore, we get

Yl
(7.73) (VIA*»), (,=0(r"") for any N=0.
By the same computations as above, combining (7.71), we have

(7.74) Dt nitets(VAP), o, =O(") for any N20.

:::::

On 4,,,.: Use the coordinate on 4, .. Then, we have

Y d ~ .
(VPA* ) 00(r™, £ 23 €, 2 Q)
=0s— SS cki'(@; €, y3 7, 25 (r[t)D)e~ Tt wmmnmDayay |

Set p=r7, and we get

S~ ~ ~
(7.75)  (V'A»)), u0(r™ ¢, a3 6, 25 Q)
rebl (x; vE, y; v, 2; (r/t)l)e- T hinadayqd |

Womerssise
where

ck3'(x; v, y; v, 25 (r/0)0)=Co(w; 7€, y; 7, 2 (r/)OrN (T (5 &, v; 7, 2 §)
Put as follows:
=t, if |j|sK,

ts
{sztlﬁl , if ]ﬁ]gK_l ’ lﬁlt—s-K ’
t, if [Jl=zK7, [fit=K".

F=rl7j|, 't"l:lﬁl ’
(7.76) F=r, L=1/|fjl,
F=r, t.=1/lfjlt, (

Then, the following functions p, o', 0" are smooth on 4, s, 4;u,.s and
ds,1,3,2, Tespectively:

o(F, ’51, z‘m 5 g’ Y, 7;7\'7 Z, z)=az,z(x; (7/?0?, Y, ?%r A (?/'51{3)5)
R R for ds, 21,8 »
7.77) O'F T, T 13 &, 43 7, 2 ) =0C,0(a; 7E, y; (BT, 23 (FIT,E,)E)
for 4. ,
0" F T, Ty #3 &, s 7, 23 ©)=C,0(a; 7E, w; FILINT, 2 (FIT)E)
for 4, ., -
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Also, we have
ar=lﬁ|a; ’ at::ais on 4.
(7.78) 0,=0;, 0, = l'771653 on 4.z
0,=07 , 0,= —(Ez/t)aiz'*'aia on 4y s, -

Remark that in the case 4;,,., (1/t)<K|7|<2KC. Use L{ in (7.70) and
Lax technique. So, we get

(7.79) (VA ., =O(r-¥) for any N=0,
and
(7.80) Diy vt (T2, , =O(r—") for and N=0.

On 4,,: Use the coordinate in 4, ,,. Then we have
/l\/ ~
(VIA*), o (7, 8, 23 &, 25 0)
=OS-SS cé:gl(w; (T/t)g, y; v, z; ,rf)e—tT(aﬂ(T/t)g,ﬂ;v,z:re)dydv .
Set by (r/t)jj=7, and we get
a4 ~ PS
(7.81)  (V'A* ) e0(r % 8, 256, 2, 0)
W o . oltrdre emt v e, & )
(1/2)C~1gin!520

A - A
X e—i(r/t)T(m,E,v.ry,z.c)dydv ,

=

where

(7.82)  ckl'(m; (r/)E, y; (r/8)F, 2z; r)
=8&,.(x; (r/O)E, y; (r[)F, z; rO)(T")w; &, y; 7, z; (/)™ .

Put as follows:

(7.83)
F=r, t,=t, i;=rr|77|/t, if rft=sK,
F=r, %=t, L=1/7, if rifitzK", =K,
F=@/Of, ti=t, L=7/t, if rfitzK", |JI<K, IftsK,
F=r, =7, L=t/j, if rfljtzK—", |JIK, [Flt=K".

Also, the following functions o, o', 0", 0"’ are smooth on 4; 4., 45512,
4y 08,1, and 4y 5., for each case of (7.83) respectively.
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(7.84)
o, B, By 23 & 43 7, 23 D)=l FIEIE, w3 T, 25 70) on dyuy >
o'(F?, i;, '{2: x; ?, Y, ?77; 25 E)—’-’az,z(m; ('7‘/{1)'?’?; (?/5172)73, Z; 78) on ds s, s
0", Ty T 3 &, U3 B, 23 ©) =aa(r; FITINE, w3 7, 2; (FITNE) on dyesn

)

0" (F 1, Ty, T 3 8, 43 7y 2 O =Con(; (FITTE, y; (FITT, 25 Wf) n 4y -
Remark that |

a,=a;+(|ﬁ|/t)a;2 ’ . at=ail—({2/t)aiz for 4. »

(7.85) ar=a;~’ 0, =0%, _ for 4,512 »

2, =(I7l/t)oz , az=a§1—(ts/t)a?3 » for 4y, >

0,=05 , 0= ‘(Ez/lﬁl)aig for ds ez -
Use L® in (7.70) and Lax technique. So, we get
(7.86) (FTAe), . =O(Y") for any N0,
and

S
(7.87) D s ait 65 (VA )y 0,y =O(r~"t")  for any Nz0.
By the same reasoning as in the last paragraph of Lem. A*?, w"e can see
the differentiability of A®? with respect to (a, 7, 7s)- o O
By 7.1-7.5, we obtain Proposition 6.1, cﬁompletelly-. O
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