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Introduction

In this article we shall study the nonlinear wave equation:

utt_uzx:‘—g(u)_i"h(x’ t) ’ (xr t) € (O’ TC)XR ’
(1) (0, t)=u(x, t)=0, teR,
u(z, t+2x/a)=u(x, t) , (x, )e(0, m)XR,

where g(s) is a continuous function on R such that g(0)=0 and that
h(z, t) is a given (27/a)-periodic function of ¢{. Here a>0 is a number

such that the set:
(2) {*—a’k*; je N, ke Z}

is a discrete set of R.
We shall consider the existence of weak solutions of (1) without

assumptions of monotonicity and Lipschitz continuity of g(s). Let A be
the differential operator 92—42 acting on functions which satisfy the
Dirichlet boundary conditions in z and which are (2x/a)-periodic in ¢.
Assume that g(s) has at most linear growth and let N be the Nemytskii

operator defined by
(Nu)(zx, t)=g(u(x, t)) for all welL®.
Now our main theorem is as follows.

THEOREM 1. Let B,7e R, B<7Y be two and consecutive eigenvalues
of A, and suppose that there exist numbers 6>0 and 0=0 such that

(3) B+o= gi”gv—a for |s|=p .
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Then for all h in a dense subset 5 of L*? (1) has a weak solution (or
equivalently, L*-closure of {Au— Nu; u € D(A)}=L?.

When « is a rational number, H. Hofer [3] proved the denseness of
the range {Au— Nu;u € D(A)} under the assumption of global Lipschitz
continuity of g(s). He reduced this problem to an abstract variational
one in a Hilbert space and applied his general theory. Our result is an
extension of his result, because we don’t assume any Lipschitz condition
on g(s). Instead of the variational methods, we approximate the wave
equation (1) by telegraph equations:

gy — Uge + U, =g(u) + h(z, T) , (x,t)e (0, r) xR,
(4) u(0, t)=u(x, t)=0, teR,
w(z, t+2r/a)=u(x, t) , (x,0)e (0, m) xR,

for ¢€>0. The advantages of this method are as follows: under weak
condition on g(s) we can construct approximate solutions and we don’t
need the decomposition of the space L* as the other methods.

When €@ and g¢g(s) is monotone, we can prove that the operator
Au— Nu is surjective. That is, we have the following theorem.

THEOREM 2. In addition to the hypotheses of Theorem 1, assume
acQ and g(s) or —g(s) is mondecreasing. Then the operator Au— Nu
%8 surjective, that 1is,

‘ L*={Au— Nu; u € D(A)} .
More precisely, for h € L?, let u* be the solutions of the telegraph equations

(4). Then there exists a subsequence u‘* (¢,—0) which converges weakly
wn L*® to a weak solution w € L* of the wave equation (1).

§1. Telegraph equations.

We first introduce some function spaces. Let C. be the real vector
space of arbitrarily often continuously differentiable functions in (0, 7) X R,
which are (2z/a)-periodic in t€ R and satisfy (0, t)=wu(r, t)=0 for all
te R. We denote by L? the completion of C. with respect to the norm

lleell = (w, ),

where (u, v)=§9u'vdxdt, 2=(0, )% (0, 27), and hv H! the completion of
C. with respect to the norm

Nl = Clloell® 4 [loae||* + [l 1™
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We can observe that the set of functions:
{sin jx exp takt; je N, ke Z}

is dense in L®* and in H!. Then we can define a selfadjoint linear
operator A and a closed linear operator A, (¢>0) in L* by

D)={ueLhu@, )= 5  wusinjoe™™ ()=t

where 3, (2—ak?)|unl’ <o},

Gk NxZ
Au= (,-,m%vxz (jz—azk“‘)uj,, sin jx et
for all wu(w, t)=> u; sin jxe**** € D(A) ,
D(A)=D(A)NH;,
Au=Au+eu, for all we D(A,) .
By the assumpfion (2), the set of the eigenvales of A:
o(A)={*—a’k*; je N, ke Z}
is a discrete set of R.

DEFINITION.
(i) For a given h e L? a function u € L? is said to be a weak solution
of the wave equation (1), if and only if

ueD(A), Au=Nu+h .

(ii) For a given he L? a function u € L* is said to be a weak solution
of the telegraph equation (4), if and only if

ue DAYNH,, Au=Nu-+h.

These are equivalent to the usual definition of weak solutions in the
distribution sense.
Let L, be a closed linear operator in L* defined by

D(L)=DA)NH, ,
Lu=Au -%(e 47w for all weDL,),

where B, Ye R, B<7 are two consecutive elements of o(4). Then we
have

LEMMA 3. L, has a bounded inverse
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L. L*— D(A)N H}
and satisfies

(5) ILuls 2ol for all welr,

(6) L u|| g ZC, ||| for all uwelL?.
SKETCH OF PROOF. We find

1
witoes Gl — () @7 T

for all u=3] u, sin jx e*** ¢ L2,
Since 8, 7 are two consecutive numbers in o(4)={j2—ak®; jeN, ke Z},
we have

L7 u=

451N jres*t |

jﬂ—a%z—-;-(/sw) g—;-(v—ﬁ) for all (j,k)e NxZ,

and there exists a number C,>0 such that

il <C, forall (j,keNxZ
G—al—QR @yt = oral @k '
Hence we can get the desired inequalities.
Now we can solve the telegraph equations.

THEOREM 4. Assume that g(s), B, ¥ and & satisfy the hypotheses of
Theorem 1.
Then for all heL? the telegraph equation (4) has a weak solution
u' € D(A)NHL. Moreover, there exists a number R>O0 that is wndependent
of €0 and satisfies

(7) |l |=R  for all €>0.
PROOF. We define a nonlinear operator T.: L*— L* by
T,u=L.‘1<Nu—%(,8+7)u+h> for all uel:.
Then (4) is equivalent to u=T.u.

Since (6) holds, it follows from Sobolev’s lemma that 7, is compact and
continuous in L*. And by the assumption (3), we get

”Nu—%(,@+7)u“§(7;'8 —a)||u||+c :
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Hence by (5), we find

| Zull=|

Lo Nu—L(g+7u+h)|
g%{”;ﬁ —3)llull+C .

If we choose R>0 large enough, for all >0 the ball of radius R centered
at the origin is mapped into itself by the compact operator 7.. Then
the results follows from Schauder’s fixed point theorem.

§2. Proof of Theorem 1 and a remark.
To prove our theorems we shall use the following lemma.

LEMMA 5. For all we D(A)N H: and heC., we have

(8) (Au, u,)=(u, u)=0,
(9) (Nu, u,)=0,
(10) (h, up)=—(h¢, u) .

Now we shall prove Theorem 1.

PrOOF OF THEOREM 1. By Theorem 4, for a given h € C. there exists
u* € D(A)N H} such that

Aut+eus=Nu*+h .
Taking L* scalar product with u;, we find
(Aw®, up) +e||uil]*= (Nu', u) + (h, i) .
Using Lemma 5 and (7), we get

&llu|l*= — (B, u)

= kel llue]]
=Rkl .
Therefore it is easily seen that
eu;——0 strongly in L? as e—0,
Au*— Nu*=h—ecu;—h strongly in L? as e—0 .

Hence any h € C. belongs to L*-closure of {Au— Nu;u € D(A)}. Since C.
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is dense in L2, the proof is completed.

REMARK 1. Even if g(s) doesn’t satisfy the growth condition (38), if
the solutions u* of the telegraph equation (4) are a priori bounded in
L?, we can prove the denseness of the range {Au— Nu;u € D(A)}. For
example, using P.J. McKenna’s a priori estimates, we have the following.

THEOREM (cf. P.J. McKenna [4]). Let a=1andlet B8,7e R, B<7<0
be two comsecutive etgenvalues of A. Then there exists a constant >0
with following property. If g(s) is continuous and satisfies

B—)\.+B§M§¥—3 Jor all s=—p,
8

B-2F7+5§gis)_s_7+x—6 for all s=p,

Jor some constants 6>0 and =0, then
L*=L*closure of {Au— Nu; u € D(A)} .

P. J. McKenna [4] assumed the monotonicity of g(s) in addition to the
hypotheses of the above theorem and proved the existence of a solution
of (1) for all h e L’

§3. Proof of Theorem 2 and remarks.

To prove Theorem 2 we shall use the following lemma.

LEMMA 6. Suppose that a 18 a rational mumber. Let {u,}v., be a
sequence in D(A) such that

Au,—> Au, u,—u weakly in L* as n— oo,
then we have
(Au,, u,)— (Au,u) as m—— oo .

PrOOF. We can see that A is a self-adjoint operator with the closed
range:

R(A)=span{sin jx e***; *—a’k*+#0, (j, k) e NX Z} .
Thus L* admits an orthogonal decomposition L*=R(A)PN(A) where
N(A)=span{sin jx e***; *—a*k*=0, (J,k)e NxXZ}
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is the kernnel of A. Hence A~ is well-defined from R(A) into R(A) and

- 1 ..
A l'v"'-—: Z '—_-2—-———;":—2'03]‘ sin jx eiakt
j2—a?k?20 )" — KX

for all v= 3, v, sinjxe* e R(A).

72— a2k20

Since « is a rational number, we have

Uf;"ﬁ}c;lgca for all (j, k) e Nx Z with j'—ak*=0 .
—

So we find

A || m=C||v]] for all ve R(A),
ie.,

|Pul|m=C||Aul| for all uweD(A),

where P: L*— R(A) is the orthogonal projection. Suppose that w,— u,
Au,—Au weakly in L* as n— . Then there exists a constant C>0
which is independent of »# such that

Pu, |l m=C for all neN.
It follows from Sobolev’s lemma that
Py,—— Pu strongly in L? as n—— o .
Since A is a self-adjoint operator, we obtain

(A, u,)=(Au,, Pu,)
— (Au, Pu)=(Au,u) as m——> oo ,

Thus the proof is completed.

PrROOF OF THEOREM 2. By Theorem 4 there exists a solution u‘e
D(A)N H} of

11) Aut+eu;=Nu'+h .

Taking L* scalar product with Au*, and by (8), we have
| Aw||*=(Nu*+h, Au) .

Hence by (7) we get
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(12) | Aw*|| = || Nuf+hll
=C.

By (11) and (12) we obtain
(13) llewtl| =C .

Using the estimates (7), (12) and (13), we can extract a subsequence

€,—0 such that

U —— U , Aur»— Au , g, Uit —— weakly in L’

for some u € D(A) and ve L*. Then we have for any ¢ € C.,
(e.ui*, p)=—¢.(u', ¢,) .
Letting ¢,—0, we have
(v, ¢)=0 for all ¢eC..
Since C. is dense in L?, we have
v=0,
i.e.,
g uir——0 weakly in L?.
From Lemma 6 we get
(14) (Au's, u*»)— (Au, u) .

We set n=sign(8+7), then Ag(s) is a nondecreasing function.
have

MNu*— Ng, u*—£)20 for all zelL?,
i.e.,
(15) MAu*4-eui—h— N&, u*—£)=0 for all gel?.
Passing to the limit in (15), we obtain by (8) and (14)
MAu—h—Ng, u—£)=0 for all gelL?.

Hence we

Now we shall use Minty’s device. For € L? and >0, set g=u—7.

After dividing by z we get
MAu—h— Nu—1t4), 4)=0 .
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Letting —0, we have
MAu—h—Nu, 4)=0  for all el?.
Hence we conclude that
Au=Nu-+h .

REMARK 2. Using the telegraph equations, we can prove many
existence theorems, which is obtained by the variational methods, under
the condition where g(s) interacts with one eigenvalue of A. For example,
we can prove the following theorem due to H. Brezis [1].

THEOREM (H. Brezis [1]). Assume g(s) is nondecreasing and satisfies
lg(8)|=7Is|+C, secR, for some constants Y<3 and C .
Assume f(x, t) € L= admits a decomposition of the form
fx, &)= f*(x, t)+ f**(z, ¢)
with
|\, 7@ @@+ —pt—a)dedt=0

Sfor all 2r-periodic p(t) € L% (R), and

g(— )+ f** (2, )< g(c0)—0 , Sor some 6>0, for all z, t .

Let u* (€>0) be a weak solution of the telegraph equation:

Upe — Uea +eU+g(u) =fz, t) , (x, t)e (0, )X R,
u*(0, t)=u'(x, t)=0, teR,
u'(w, t+2r)=u'(x, t) , (x,t)e (0, 7)XR .

Then there exists a subsequence u‘» (e,—0) which converges weakly in L*
to a weak solution u € L= of the wave equation:

utt_uam+g(u) =f(x’ t) ’ (x’ t) € (07 n') XR ’
(0, t)=u(x, t)=0, teR,
w(x, t4+27)=ulx, t) , (x,t)e (0, 7)) X R .

REMARK 3. Theorem 2 and Remark 2 can be extended to the equa-
tions of the form
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utt—uzz_*'F(w’ tr u) =O .

REMARK 4. If we assume the Lipschitz condition:

B+3__<_,-‘M:5_(1)§7—3 for all u=#v,
u—v

then the sequence of solutions u* of the telegraph equations (4) converges
strongly in L* to the unique solution u € L* of the wave equation Q).

REMARK 5. There exists a solution of the wave equation (1) that
is not a limit of solutions u* of the telegraph equations (4). For example,
let =1 and we shall consider

(16) Au+ Nu=0,
am Aut+eui+ Nu'=0,
where g(s) is nondecreasing and satisfies

g(0)=0,

Taking L* scalar product of (17) and wu{, we get by (8), (9) and the
monotonicity of g(s)

u*'=0 for all &>0.

On the other hand, J. M. Coron [2] proved the existence of a nontrivial
solution of the wave equation (16).
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