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Introduction

Let $G$ be a noncompact connected real semisimple Lie group with
finite center. An irreducible unitary representation is called square
integrable if its matrix coefficients are square integrable with respect
to the Haar measure on $G$ . Let $(\pi, H)$ be a square integrable irreducible
unitary representation of $G$ (see, for instance, Theorem 4.5.9.3 in [8]).
There exists a positive constant $d_{\pi}$ such that

(0.1) $\int_{a}(\pi(x)\phi, \psi)\overline{(\pi(x)\phi,\psi’)}dx=d_{\pi}^{-1}(\phi, \phi)\overline{(\psi,\psi^{\prime})}$

for all $\phi,$ $\psi,$ $\phi,$ $\psi^{\prime}$ in $H$, where $dx$ is the Haar measure on $G$ . The
identity (0.1) is called the Schur orthogonality relation for the represen-
tation $\pi$ .

Our main purpose in this paper is to give an analogous result to this
relation for certain non square integrable unitary representations of $G$ .
We shall state our results more precisely. Let $K$ be a maximal compact
subgroup of $G$ . The coset space $G/K$ is a Riemannian symmetric space.
Let $d(p, q)(p, q\in G/K)$ be the distance from $p$ to $q$ . We define $d(x)$ ,
$x\in G$ by $d(x)=d(xo, 0)$ where $0$ is the origin of $G/K$.

THEOREM I. Let $(\pi, H)$ be an irreducible unitary representation of
G. We assume that there exists a K-finite vector $\phi_{0}$ in $H$ such that

$ 0<\lim_{*\rightarrow+0}\epsilon\int_{a}|(\pi(x)\phi_{0}, \phi_{0})|^{2}e^{-ed()}tdx<\infty$

Then for each K-finite vectors $\phi,$ $\psi,$ $\phi^{\prime},$ $\psi^{\prime}$ in $H$, we have
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$\lim_{*\rightarrow+0}\epsilon\int_{a}(\pi(x)\phi, \psi)\overline{(\pi(x)\phi^{\prime},\psi^{\prime})}e^{-*d(ae)}dx=d_{\pi}^{-1}(\phi, \phi^{\prime})\overline{(\psi,\psi)}$

where $d_{*}$ is a positive constant which is independent of $\phi,$ $\psi,$ $\cdots$

REMARK 1. When $G$ is of real rank one, the irreducible components
of a reducible principal series representation of $G$ satisfy the assumption
in Theorem I (cf. Lemma 1.4 in [4]). Applying the same arguments as
in \S 3 [4], we can prove that all unitary principal series representations
with regular infinitesimal character satisfy our assumption.

We shall state our proof briefly after the following preparations.
Let $\mathfrak{g}_{c}$ be the complexification of the Lie algebra $\mathfrak{g}$ of $G$ . Canonically
the universal enveloping algebra $u(\mathfrak{g})$ of $\mathfrak{g}_{c}$ acts on $C^{\infty}(G)$ to the left and
right. We denote the left (resp. right) action on $C^{\infty}(G)$ by $bf$ (resp. $fb$)
for $f$ in $C^{\infty}(G)$ . Let us define a subspace $H(G, \chi)$ of $C^{\infty}(G)$ , for a given
character $\chi$ , by the following;

a function $f$ in $C^{\infty}(G)$ belongs to $H(G, \chi)$ if $f$ satisfies
(0.2) (1) $zf=x(z)f$ for all $z$ in 3, (2) $\lim_{\epsilon\rightarrow+0}\epsilon\int_{a}|(b_{1}fb_{2})(x)|^{2}e^{-\iota d(g)}dx$

is finite for each $b_{1},$ $b_{2}$ in $u(\mathfrak{g})$ .
The space $H(G, \chi)$ is a topological G-module with the seminorm $|$ $|$ defined
by $|f|^{2}=\lim_{e\rightarrow+0}\epsilon\int_{a}|f(x)|^{2}e^{-\cdot d(ae)}dx,$ $f\in C^{\infty}(G)$ (see Lemma 2.4). Consider an
irreducible unitary representation $(\pi, H)$ of $G$ satisfying the assumption
in Theorem I. We denote by $H_{\pi}(G)$ the subspace of $C^{\infty}(G)$ which is
generated by K-finite elements of $\pi$ , and define a Hermitian form $(, )$ on
$H_{\pi}(G)$ by

(0.3) $(f, g)=\lim_{l\rightarrow+0}\epsilon\int_{a}f(x)\overline{g(x})e^{-\iota d(g)}dx$ for $f,$ $g$ in $H.(G)$ .
In our proof of Theorem I, one difficulty is to show that $(, )$ is positive
definite. To overcome this difficulty, we characterize $H(G, \chi)$ in the follow-
ing Theorem II and Theorem III. We define $N=\{f\in H(G, \chi);|f|=0\}$ ,
$L^{2}(G)=the$ set of all square integrable functions on $G$ .

THEOREM II. Let $H(G, \chi)$ be the subspace of $C^{\infty}(G)$ defined by (0.2).
Then $N=H(G, \chi)\cap L^{2}(G)$ .

THEOREM III. Assume that there exists an element $f_{0}$ in $H(G, \chi)$

such that $|f_{0}|>0$ . Then the character $\chi$ is not real regular (for the
definition of real character, see \S 7).
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Theorem II and III are proved by an estimation for the solutions
of ordinary first order differential equations combining with Tauberian
theorem of Hardy-Littlewood.

Let us now state our proof of the fact: $(, )$ is positive definite on
$H_{\pi}(G)$ . Let $\chi$ be the infinitesimal character of $\pi$ . Since $H(G, \chi)$ is a $\mathfrak{g}-$

module (cf. Lemma 5 in [4]), we see that $H_{\pi}(G)\subseteqq H(G, \chi)$ . Let $N$ be the
null space as in Theorem II, and assume that $N\neq 0$ . Then the G-module
$N$ is decomposed into the square integrable irreducible representations of
$G$ . Consequently, by a result of Harish-Chandra (cf. [7], Proposition
15.13), $\chi$ is real. Therefore, by Theorem II, we get $N=0$ . Hence the
Hermitian form $(, )$ in (0.3) is positive definite.

Finally we shall state an application of Theorem I. Let $\mathfrak{C}(G)$ be the
Schwartz space in the sense of Harish-Chandra. A distribution $T$ on $G$

is called tempered if it extends to a continuous linear form on $\mathfrak{C}(G)$ .
THEOREM IV. Let $(\pi, H)$ be the same as in Theorem I. We define

a distribution $\theta_{\pi}$ on $G$ by $\theta_{\pi}(f)=trace\int_{a}f(x)\pi(x)dx$ , for all $C^{\infty}$-functions
$f$ on $G$ with compact support. Then $0_{\pi}$ is tempered.

REMARK 2. For the case where $(\pi, H)$ is square integrable, Harish-
Chandra proves that the character of $\pi$ is tempered. By Theorem I, we
can prove Theorem IV applying the same arguments as in Theorem
10.2.1.1 in [9].

The contents of this paper are as follows. After the preparations in
\S 1, we introduce the function spaces $H(G, \chi)$ and $H_{\tau}(G, \chi)$ in \S 2 which
are closely related to the representations considered in Theorem I. We
shall prove in this section that $H(G, \chi)$ is a topological G-module with a
seminorm. We also study in \S 3, the differential equations concerning the
functions in $H(G, \chi)$ and $H_{\tau}(G, \chi)$ . Throughout in \S 3, \S 4 and \S 5, we esti-
mate the asymptotic behaviour at infinity of K-finite functions in $H_{\tau}(G, \chi)$ .
Furthermore in \S 4, we shall give the proofs of Theorems II and III. In
\S 6, we study the Schur orthogonality relations of a non square integrable
irreducible unitary representation of $G$ . Finally in \S 7, we shall show
that the parabolic subgroup of $G$ along which some K-finite function in
$H(G, \chi)$ has nonzero constant term is uniquely determined by $\chi$ .

\S 1. Notations and preliminaries.

Let $G_{c}$ be a connected complex semisimple Lie group and $G$ a con-
nected noncompact real form of $G_{c}$ . By $\mathfrak{g}_{c}$ and $\mathfrak{g}$ , we denote the Lie
algebras of $G_{c}$ and $G$ respectively. For each subalgebra $\mathfrak{h}$ of $\mathfrak{g}$ , we
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denote the complexification of $\mathfrak{h}$ by $\mathfrak{h}_{c}$ and the universal enveloping algebra
of $\mathfrak{h}_{c}$ by $u(\mathfrak{h})$ . Then the algebra $u(\mathfrak{h})$ acts on the set of all $C^{\infty}$-functions
$C^{\infty}(H)$ on $H$ ($H$ is the analytic Lie subgroup of $G$ with Lie algebra $\mathfrak{h}$)

to the left (resp. to the right) as follows; for each $X$ in $\mathfrak{h}$ ,

$(Xf)(x)=\frac{d}{dt}f(\exp tXx)|_{t=0}$ $(resp$ . $(fX)(x)=\frac{d}{dt}f$($x$ exp $tX$ ) $|_{t=0})$

for $x$ in $H$ and $f$ in $C^{\infty}(H)$ . We shall denote these actions of $u(\mathfrak{h})$ by $bj$

and $fb$ (or resp. $f(b;x)$ and $f(x;b)$) for $b$ in $u(\mathfrak{h})$ . Let $\tilde{\mathfrak{a}}$ be a Cartar
subalgebra of $\mathfrak{g}$ . We denote the root system of $(\mathfrak{g}_{c},\tilde{\mathfrak{a}}_{c})$ by $\Phi(\tilde{\mathfrak{a}})$ , the
Weyl group of $(\mathfrak{g}_{c},\tilde{\mathfrak{a}}_{c})$ by $W(\tilde{\mathfrak{a}}_{c})$ and the ring of all $W(\tilde{\mathfrak{a}}_{c})$-invariant poly.
nomial functions on the dual space of $\Phi$ by $I(\tilde{\mathfrak{a}})$ . For each root $\alpha$ in $\Phi(\tilde{\mathfrak{a}})$

we put $\mathfrak{g}_{a}=\{X\in \mathfrak{g}_{c};ad(H)X=\alpha(H)X, He\tilde{\mathfrak{a}}_{c}\}$ . Then we have $\mathfrak{g}_{c}=\tilde{\mathfrak{a}}_{c}\oplus\sum_{\alpha e\phi_{(*)}^{\vee}}\mathfrak{g}_{l}$

and dim $g_{\alpha}=1$ .
Consider a positive root system $\Phi^{+}(\tilde{\mathfrak{a}})$ of $\Phi(\tilde{\mathfrak{a}})$ , and put $\mathfrak{n}^{+}=$

$\sum+\wedge \mathfrak{g}_{\alpha},$ $\mathfrak{n}^{-}=\sum_{-\alpha e\phi t_{0)}^{\sim}}+\mathfrak{g}_{\alpha}$ . Then we have $\mathfrak{g}_{c}=\mathfrak{n}^{+}\oplus\tilde{\mathfrak{a}}_{c}\oplus \mathfrak{n}^{-}$ . Let 8 be $tht$

center of $u(g)$ . Then there is a unique isomorphism $\gamma=\gamma_{/a}\backslash $ of $\int$ to $u(\tilde{\mathfrak{a}}$

which is called the Chevalley isomorphism, such that

(1.1) $z-\gamma(z)eu(g)n^{+}$ for all $z$ in $\int$ .
Let $\rho$ be one half the sum of all positive roots in $\Phi(\tilde{\mathfrak{a}})$ . Regard $u(\tilde{a})a|$

the algebra of polynomial functions on the dual space $\tilde{\mathfrak{a}}_{e}$ , and define

(1.2) $\mu_{\mathfrak{g}/\alpha}^{\sim}(z)(\lambda)=\gamma_{/a}\backslash (z)(x-\rho)$ for each linear form $\lambda$ on $\tilde{\mathfrak{a}}_{c}$ and $z$ in $\int$ .
Then $\mu_{\iota/}^{\backslash }$ is an algebra isomorphism of $\int ontoI(\tilde{\mathfrak{a}})$ which is called $th|$

Harish-Chandra isomorphism.
Let $P$ be a parabolic subgroup of $G$ (for simplicity $P$ is said to $b$

a p.s. $g.r$ . of $G$). Then we have the Langlands decomposition $P=MAA$
where $A$ is a split component of $P,$ $N$ is the unipotent radical of $P,$ $Z(A$

is the centralizer of $A$ in $P$ and $M$ is a closed subgroup of $G$ which $i$

isomorphic to $Z(A)/A$ . We shall denote the root system of $(P, A)$ , th
Lie algebras of $M,$ $A,$ $N$ respectively by $\Phi(A),$ $\mathfrak{m},$ $\mathfrak{a},$

$\mathfrak{n}$ . Let $p$ be a
element in $P$ and $Ad(p)|$ . the restriction of $Ad(p)$ to $\mathfrak{n}$ . Define a functio
$d_{P}$ on $P$ by

(1.3) $d_{P}(p)=(\det(Ad(p)|_{u}))^{1/2}$ .
We see that there is a unique linear form $\rho_{P}$ on $\mathfrak{a}$ such that

(1.4) $d_{P}(a)=\exp(\rho_{P}(\log a))$ for all $a$ in $A$ .
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Let $K$ be a maximal compact subgroup of $G$ with Lie algebra $f$ and $\theta$

the Cartan involution corresponding to $K$. We fix a minimal p.s. $g.r$ . $P_{0}$

of $G$ with $\theta$-sta le split component $A_{0}$ and denote the Langlands decom-
position of $P_{0}$ by $P_{0}=M_{0}A_{0}N_{0}$ . A p.s. $g.r$ . $P$ of $G$ is called standard if $A$

is contained in $A_{0}$ . We see that any p.s.g.r. of $G$ is conjugate to a
standard p.s. $g.r$ . under an inner automorphism of $K$ (cf, for instance $G$ .
Warner [8]).

Let $P=MAN$ be a standard p.s. $g.r$ . of $G$ . We put $m_{1}=m\oplus \mathfrak{a}$ . Then
$\mathfrak{m}_{1}$ is reductive having the same rank as $\mathfrak{g}$ . Consider a Cartan subalgebra
$\tilde{\mathfrak{a}}$ of $\mathfrak{g}$ containing $\mathfrak{a}$ . Choosing a positive root system $\Phi^{+}(\tilde{\mathfrak{a}})$ suitably we
have $\Phi(A)=$ {$\alpha|_{\alpha};\alpha\in\Phi^{+}(\tilde{\mathfrak{a}})$ and $\alpha\not\equiv 0$ on $\mathfrak{a}$ } where $\alpha|_{a}$ is the restriction of
$\alpha$ to $\mathfrak{a}$ .

Let $\gamma_{w_{1}/\alpha}\backslash $ be the Harish-Chandra isomorphism of $8(\mathfrak{m}_{1})$ into $I_{u},$ $(\tilde{\mathfrak{a}})$ ,
$I_{t\mathfrak{n}_{1}}(\tilde{\mathfrak{a}})$ is the ring of all polynomial functions on the dual space of $a$.invariant under the Weyl group of $((\mathfrak{m}_{1})_{C},\tilde{\mathfrak{a}}_{c})$ . Then we have the follow-
ing two lemmas (cf. p. 120 Proposition 29, part II and p. 60 Corollary
10, part I in [7]).

LEMMA 1. There exists a unique isomorphism $\gamma_{\mathfrak{g}/m_{1}}$ of 8 into $8(\mathfrak{m}_{1})$

such that $\gamma_{\mathfrak{g}}\sim=\gamma_{\mathfrak{m}_{1}/a}\backslash \circ\gamma_{\mathfrak{g}/t\mathfrak{n}_{1}}$ . Furthermore for each $z$ in 8, $ z-\gamma_{0/u_{1}}(z)\in$

$\theta(\mathfrak{n}_{c})u(\mathfrak{g})$ .
LEMMA 2. The algebra $8(\mathfrak{m}_{1})$ is a free $\gamma_{\mathfrak{g}/,\mathfrak{n}_{1}}(8)$ module with finiteindex.

Following Harish-Chandra we define an isomorphism $\mu_{P}=\mu_{/u_{1}}$ of 8into $8(\mathfrak{m}_{1})$ by

(1.5) $\mu_{\mathfrak{g}/\mathfrak{n}_{1}},(z)=d_{P}\circ\mu_{\epsilon/m_{1}}(z)\circ d_{P}^{-1}$ for $z$ in 3 .
Then we have

(1.6)
$\mu_{6/Q}\vee=\mu_{u\prime_{1}/a}^{\sim}\circ\mu_{\iota/\prime \mathfrak{n}_{1}}$ .

Finally we shall state the following two integral formulae on $G$ which
will be applied frequently to our arguments in this paper. For the
minimal p.s. $g.r$ . $P_{0}=M_{0}A_{0}N_{0}$ of $G$ , we choose a Cartan subalgebra $\tilde{\mathfrak{a}}_{0}$

containing $\mathfrak{a}_{0}$ and a positive root system $\Phi^{+}(\tilde{\mathfrak{a}}_{0})$ of $(\mathfrak{g}_{c}, (\tilde{\mathfrak{a}}_{0})_{G})$ satisfying
$\Phi(A_{0})=$ {$\alpha|_{a_{0}};\alpha\in\Phi^{+}(\tilde{\mathfrak{a}}_{0})$ and $\alpha\not\equiv 0$ on $\mathfrak{a}_{0}$ }. Define a function $\prime D=D_{a}$ on $A_{0}$ by
(1.7) $D(a)=$

$\prod_{\alpha e\Phi+t_{0}^{\sim}),\alpha\not\equiv 0ona_{0}^{0}}|\exp\alpha(\log a)-\exp(-\alpha(\log a))|$
, a $eA_{0}$ .

Let $dx,$ $da,$ $dn$ and $dk$ be the Haar measures on $G,$ $A_{0},$ $N_{0}$ and $K$ re-
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spectively. We normalize $dk$ as $\int dk=1$ . Then we have the following $twe$

lemmas (cf. Lemma 10.1.16 and Proposition 10.1.7 in [3]).

LEMMA 3. For each $C^{\infty}$-function $f$ on $G$ with compact support, $w\{$

have $\int_{a}f(x)dx=\int_{K}\int_{A_{0}}\int_{N_{0}}f(kan)d_{P_{0}}(a)^{8}dndadk$ .

LEMMA 4. There exists a positive constant $c_{a}$ such that

$\int_{a}f(x)dx=c_{a}\int_{A_{0}^{+}}\int_{KxK}f(kak^{\prime})D(a)dkdk^{\prime}da$

where $A_{0}^{+}$ is the positive Weyl chamber of $(P_{0}, A_{0})$ .
REMARK 1. The set $G_{0}=KA_{0}^{+}K$ is open dense in $G$ .

\S 2. Topological G-module $H(G, \chi)$ .
Let $K$ be a fixed maximal compact subgroup of $G$ . Then the homo

geneous space $G/K$ is a Riemannian symmetric space of noncompact type
Let $d(p, q)(p, q\in G/K)$ be the distance which induced from the $Killin_{\xi}$

form on $\mathfrak{g}$ and define a function $d$ on $G$ by

(2.1) $d(x)=d(xo, 0)$ , xeG where $0$ is the origin in $G/K$ .
Let $C^{\infty}(G)$ be the ring of $C^{\infty}$-functions on $G$ . For a given character $i$

of $\int$ , we define a subspace $H(G, \chi)$ of $C^{\infty}(G)$ as follows.

(2.2) A function $f$ in $C^{\infty}(G)$ belongs to $H(G, \chi)$ if $f$ satisfies
(1) $\lim_{\rightarrow+0}\epsilon\int_{c}|f(b_{1};x;b_{2})|^{2}\exp(-\epsilon d(x))dx<\infty$ for $b_{1},$ $b_{2}$ in $u(\mathfrak{g})$ ,

(2) $zf=x(z)f$ for all $z$ in 3.

We put

(2.3) $|f|^{2}=\lim_{\rightarrow+0}\epsilon\int_{a}|f(x)|^{2}$ exp $(-\epsilon d(x))dx$ for $f$ in $H(G, \chi)$ .

Then $H(G, \chi)$ is a topological vector space with the seminorm $|$ $|$ . Defin $($

two actions $R$ and $L$ on $C^{\infty}(G)$ by

$(RJ)(y)=f(yx)$ , $(L_{g}f)(y)=f(x^{-1}y)$ for $x,$ $y$ in $G$ .
In this section we shall prove that $H(G, \chi)$ is a topological G-module $b^{7}$.
these actions $R$ and $L$ .

LEMMA 1. Let $H(G, \chi)$ be the subspace of $C^{\infty}(G)$ defined by (2.2)
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Then $H(G, \chi)$ is a $L$ (resp. $R$) module (i.e., for each $f$ in $H(G, \chi)$ and $x$

in $G,$ $|R_{x}f|=|L_{x}f|=|f|$ and $R_{x}f$ (resp. $L_{x}f$) belongs to $H(G, \chi))$ .
PROOF. It will be seen that the arguments for L-module $H(G, \chi)$

also can be applied to the R-module. Thus it is enough to show that
$|L_{x}f|=|f|$ and $L_{x}f$ belongs to $H(G, \chi)$ . Immediately we have $|L_{x}f|^{2}=$

$\lim\epsilon\int_{\sigma}|f(y)|^{2}\exp(-\epsilon d(xy))dy$ . We put $V=\{y\in G;d(y)\leqq d(x)\}$ . Since
$\vec{d}(xy)\geqq|d(x)-d(y)|\epsilon+0$ we obtain

$|L_{x}f|^{2}\leqq\lim_{\epsilon\rightarrow+0}\epsilon\{\int_{G-V}|f(y)|^{2}\exp(-\epsilon d(y))dy+\int_{V}|f(y)|^{2}\exp(-\epsilon d(xy))dy\}$ .
Bearing in mind $V$ is compact, the first $term\leqq|f|^{2}$ and the second term $=0$

in the above inequality. Therefore $|L_{x}f|\leqq|f|$ for any $x$ in $G$ . Replacing
$L_{-1}f$ by $f$ we have $|f|\leqq|L_{x^{-1}}f|$ .

Consequently we get $|L_{x}f|=|f|$ for each $x$ in $G$ . It remains to prove
that $L_{x}f$ belongs to $H(G, \chi)$ . Since $L_{x}\circ z=z\circ L_{x}$ , we have $z(L_{x}f)=x(z)Laef$,
$ze\mathfrak{z}$ Let $b_{1}$ and $b_{2}$ be two elements in $u(\mathfrak{g})$ . A direct calculation verifies
that $(L_{r}f)(b_{1};y;b_{2})=L_{x}(f(Ad(x^{-1})b_{1};y;b_{2}))$ for all $y$ in $G$ . The element
$Ad(x^{-1})b_{1}$ is expressed as a finite linear combination of the elements in
$u(\mathfrak{g})$ . This implies that $|b_{1}(L_{x}f)b_{2}|=|(Ad(x^{-1})b_{1})fb_{2}|<\infty$ as desired.

A function $f$ in $C^{\infty}(G)$ is called left (resp. right) K-finite if the
subspace in $C^{\infty}(G)$ generated by the set $\{L_{k}f;k\in K\}$ (resp. $\{R_{k}f;k\in K\}$ ) is
finite dimensional. Especially if $f$ is left and right K-finite $f$ is called
K-finite. Let $g(K)$ be the set of all equivalence classes of irreducible
unitary representations of $K$. We put for each $\tau$ in $\mathscr{G}(K),$ $\chi_{\tau}(k)=trace\tau(k)$ ,
$k\in K$. Let us now define the convolution operators $\chi_{\tau}*and*x_{r}$ on $C^{\infty}(G)$

by

(2.4) $(x_{f}*f)(x)=\deg\tau\int K\chi_{C}(k)f(k^{-1}x)dk$ ,

$(f*\chi_{\tau})(x)=\deg\tau\int K\chi_{f}(k^{-1})f(xk)dk$ .
We remark that $x_{\tau}*x_{\tau}=x_{\tau}$ by this definition.

LEMMA 2. Let $H_{K}(G, \chi)$ be the set of all K-finite functions in $H(G, \chi)$ .
Then the space $H_{K}(G, \chi)$ is topologically dense in $H(G, \chi)$ .

PROOF. We fix $f$ in $H(G, \chi)$ and $x$ in $G$ . By Peter-Weyl theorem on
the compact group $K$, we have

(2.5)
$f(x)=\sum_{\sigma,\tau e8(K)}$ deg $\tau$ deg $\sigma(\chi_{\tau}*f*x_{\sigma})(x)$ .
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On the other hand by using the Schur orthogonality relations on $K,$ $w\epsilon$

have $|x_{\tau}*f|^{2}\leqq\deg\tau|f|^{2}$ and $|f*x_{\sigma}|^{2}\leqq\deg\sigma|f|^{2}$ . Therefore

(2.6) $|x_{\tau}*f*x_{\sigma}|\leqq(\deg\sigma$ deg $\tau)^{1/2}|f|$ .
Similarly we can prove that $|b_{1}(x_{\tau}*f*x_{\sigma})b_{2}|$ is finite for $\tau,$ $\sigma$ in $g(K)$ and
$b_{1},$ $b_{2}$ in $u(\mathfrak{g})$ . Hence we have that $x_{f}*f*x_{\sigma}$ belongs to $H_{K}(G, \chi)$ . It
remains to prove that the series in (2.5) converges to $f$ under the topology
in $H(G, \chi)$ . Let $\Omega_{K}$ be the Casimir operator on $K$. Then for a given $\tau$

in $g(K)$ there exists a positive constant $\tau(\Omega_{K})$ such that $\Omega_{K}x_{\tau}=\tau(\Omega_{K})\chi_{\tau^{}}$

Moreover choosing a positive integer $m$ suitably, we have

(2.7) $\sum_{\tau el(K)}\tau(\Omega_{K})^{-}$ is finite.

Let $m$ be the same as in (2.7). In view of (2.6) we have that

$|x_{\tau}*f*x_{\sigma}|\leqq(\deg\tau$ deg $\sigma)^{1/2}(\tau(\Omega_{K})\sigma(\Omega_{k}))^{-n}|\Omega_{K}^{*}f\Omega_{K}^{*}|$ .
Combining this inequality with (2.5) and (2.6) (See Lemma 2 in [4].), we
conclude that the series (2.5) converges to $f$ in the topological space
$H(G, \chi)$ . This completes our proof.

Let $C_{e}^{\infty}(G)$ be the set of all $C^{\infty}$-functions on $G$ with compact supporl
and consider an element $\phi$ in $C_{c}^{\infty}(G)$ . We define the operators $\phi*and*q$

on $C_{0}(G)$ by

(2.8) $(\phi*f)(x)=\int_{a}\phi(xy)f(y^{-1})dy$ , $(f*\phi)(x)=\int_{a}f(xy)\phi(y^{-1})dy$ .
The following lemma (cf. Theorem 1 in [1]) will be play an essential rolt
to prove that $H(G, \chi)$ is a topological G-module.

LEMMA 3. Let $f$ be a fixed element in $C^{\infty}(G)$ . Assume that $f$ is $K$

finite and the dimension of $8f$ is finite. Then there exists $\phi(resp. \psi)$ it
$C_{\iota}^{\infty}(G)$ such that $f*\phi=f$ (resp. $\psi*f=f$).

Let us now prove that the actions $x\rightarrow R_{x}f$ and $x\rightarrow L.f(feH(G, \chi)$

are continuous.

LEMMA 4. Let $\chi$ be a character of 8 $\cdot$ We define the space $H(G,$ $\chi$

by (2.2). Then $G$ continuously acts on $H(G, \chi)$ to the left (resp. right).

PROOF. Let $f$ be an element in $H(G, \chi)$ . We shall prove that tht
mapping $x\rightarrow R_{x}f$ of $G$ to $H(G, \chi)$ is continuous at the identity 1 in $G$

In view of Lemma 2.2 we have
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(2.9) for each positive real number $\delta$ , there exists $g$ in $H_{K}(G, \chi)$ such
that $|f-g|<\delta$ .

Applying Lemma 2.3 to $g$ we get $g*\phi=g$ for an element $\phi$ in $C_{c}^{\infty}(G)$ .
Let $V$ be a compact neighbourhood of 1 and $U$ the support of $\phi$ . Then
for any $x$ in $G$ we have

$|(R_{x}g-g)(y)|^{2}=|\int_{a}(\phi(z^{-1}x)-\phi(z^{-1}))g(yz)dz|^{2}$

$\leqq\int_{W}|\phi(z^{-1}x)-\phi(z^{-1})|^{2}dz\int_{W}|g(yz)|^{2}dz$

where $W=VU^{-1}\cup U^{-1}$ .
Since $W$ is compact, it follows from Fubini theorem that

$|R_{x}g-g|^{2}\leqq vol(W)|g|^{2}\int_{W}|\phi(z^{-1}x)-\phi(z^{-1})|^{2}dz$ .
Hence we have

(2.10) there exists a compact neighbourhood $V_{0}$ of 1 such that
$|R_{x}g-g|<\delta$ for all $x$ in $V_{0}$ .

Bearing in mind Lemma 2.1, (2.9) and (2.10) imply that for each positive
real number $\delta$ there exists a neighbourhood $V_{0}$ of 1 such that $|R_{x}g-g|\leqq$

$|R_{x}(f-g)|+|R_{x}g-g|+|g-f|<3\delta$ for all $x$ in $V_{0}$ . Hence the mapping
$x\rightarrow R.f$ is continuous at the identity in $G$ . Since $H(G, \chi)$ is a R-module
(See Lemma 1.) the mapping $x\rightarrow R_{x}f(f\in H(G, \chi))$ of $G$ to $H(G, \chi)$ is con-
tinuous. Replacing the above arguments for $R$ to $L$ we have the con-
clusion of the lemma.

REMARK 1. The space $H(G, \chi)$ and $H_{K}(G, \chi)$ are the algebraic $\mathfrak{g}-$

modules (for a proof of this fact see p. 440, Lemma 5 in [4]).

\S 3. Differential equation associated with a function in $H_{K}(G, \chi)$ .
Let $f$ be an element in $H(G, \chi)$ for a given infinitesimal character $\chi$

of 3 (see (2.2) for the definition of $H(G,$ $\chi)$). It will be seen that the
norm of $f$ is determined by the asymptotic behaviour of $f$ at the infinity.
This fact will be proved by reducing to the evaluation of a solution of
first order differential equation associated with $f$. Our arguments are a
modefication for the theory, which is due to Harish-Chandra, of asymptotic
behaviour for K-finite and 3-finite functions on $G$ .

In this section we shall state the first step of these procedure
following Harish-Chandra.
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DEFINITION 1. Let $\tau=(\tau_{1}, \tau_{2})$ be a double representation of $K$ on $V_{\tau}$

A $V_{f}$-valued function $f$ on $G$ is $\tau$-spherical if $f$ satisfies

(3.1) $f(kxk’)=\tau_{1}(k)f(x)\tau_{2}(k’)$ for $x$ in $G,$ $k,$ $k^{\prime}$ in $K$ .
We know that for each $g$ in $H_{K}(G, \chi)$ there exists a double representatiol
$(\tau, V_{\tau})$ of $K$, a vector $v$ in $V_{\tau}$ and a $\tau$-spherical function $f$ such $tha$ .

$g(x)=(f(x), v),$ $xeG$ . Let us consider a double representation $\tau=(\tau_{1},$ $\tau_{2}$

of $K$ and a character $\chi$ of $\int$ . We shall use the following notations;

$C^{\infty}(G;V_{f};\tau)$ : the linear space of all $\tau$-spherical $C^{\infty}$-mappings of $G$ to $V_{r}$

$H_{f}(G, \chi)$ : the subspace of $C^{\infty}(G;V_{\tau};\tau)$ consisting of those $f$ such tha

(1) $\lim_{*\rightarrow+0}\epsilon\int_{a}|f(b_{1};x;b_{2})|^{2}e^{-\cdot d(\alpha)}dx<\infty$ for all $b_{1},$ $b_{2}$ in $u(\mathfrak{g})an|$

(2) $zf=x(z)f$ for all $z$ in $\int$ .
Let $P_{0}A_{0}N_{0}$ be a minimal p.s. $g.r$ . of $G$ with $\theta$-stable split component $A_{(}$

For a standard p.s.$g.r$ . $P=MAN$ of $G$ , we denote the Lie algebras $0$

$M,$ $A,$ $N$ and $M_{1}=MA$ respectively by $m,$ a $,$

$n$ and $\mathfrak{m}_{1}$ . We fix $a$
.

element $f$ in $H_{\tau}(G, \chi)$ and put

(3.2) $z(f)=\{z\in 8;zf=0\}$ , $\int(\mathfrak{m}_{1};f)=\int(\mathfrak{m}_{1})\mu_{P}(\int(f))$

where $\mu_{P}$ is the same as in (1.5).

We know that these two sets in (3.2) form the ideals in 3 and $3(\mathfrak{m}$

respectively. Since $\int(\mathfrak{m}_{1})$ is a free $\mu_{P}(8)$-module of finite rank, th
dimension of the residue ring $\int(\mathfrak{m}_{1})/\int(\mathfrak{m}_{1};f)$ is finite. We denote th
canonical projection of $u$ in $\int(\mathfrak{m}_{1})$ to $\int(\mathfrak{m}_{1})/\int(\mathfrak{m}_{1};f)$ by $\overline{u}$ . Choose a bas
$\{\overline{u}_{1},\overline{u}_{2}, \cdots,\overline{u}_{p}\}(u_{1}=1)$ in $\int(\mathfrak{m}_{1})/\int(\mathfrak{m}_{1}, f)$ . Then for each fixed $u$ in $8(\mathfrak{m}$

there exist the complex numbers $\Gamma(u)_{i,j}$ and $\eta_{u,j}\in 8(\mathfrak{m}_{1};f)$ such ths
$uu_{j}=\Sigma_{l=1}^{p}\Gamma(u)_{j,i}u_{:}+\eta_{u,j}(j=1,2, \cdots, p)$ .

be
$thecanonica1b^{-}aseofC^{p}.Wedefinea1inearendomorphism\Gamma(u)(LetC^{p}bethepdimensiona1cartesianproductoverCand\{e_{1},e_{2},\cdots,e$

$V_{\tau}\otimes C^{p}$ for $u$ in $\int(\mathfrak{m}_{1})$ and a $V_{\tau}\otimes C^{p}$-valued $C^{\infty}$-function $\Phi$ on $M_{1}$ by

(3.3) $\Gamma(u)(v\otimes e_{i})=\sum_{;=1}v\otimes\Gamma(u)_{i,\dot{g}}e_{j}$ for $v$ in $V_{\tau}$ ,

(3.4) $\Phi(m)=\sum_{j=1}^{p}(d_{P}f)(m;u_{j})\otimes e_{j}$ for $m$ in $M_{1}$

where $f$ is the same as in (3.2) and $d_{P}(p)=|\det(Ad(p))_{n}|^{1/2}$ . We now sta
the following two lemmas due to Harish-Chandra.
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LEMMA 1. Let notations being as above. Then we have $\Phi(m;u)=$

$(\Gamma(u)\Phi)(m)+\Psi_{u}(m)$ for $u$ in $\int(\mathfrak{m}_{1})$ and $m$ in $M_{1}$ where $\Psi_{u}(m)=$:

$\sum_{j=1}^{p}(d_{P}f)(m;\eta_{u,j})\otimes e_{j}$ .
This lemma is a direct consequence of the definitions of (3.3) and

(3.4).
Let $f$ be a fixed function in $H_{\tau}(G, \chi)$ . Then the function $d_{P}f$ on $M_{1}$

can be estimated as follows.

LEMMA 2. Let $\eta$ be an element in $z(\mathfrak{m}_{1};f)$ and $\{X_{1}, X_{2}, \cdots, X_{q}\}a$

base of $\theta(\mathfrak{n})$ . Then there exists $b$ in $u(\mathfrak{g})$ such that

$|(d_{P}f)(m;\eta)|\leqq a$ const. $|Ad(m)|_{\theta(n)}|\sup_{1\leq i\leqq q}|d_{P}(m)f(X_{i};m;b)|$

for all $m$ in $M_{1}$ where $|Ad(m)|_{\theta(\mathfrak{n})}|$ is the norm of $Ad(m)|_{\theta(\mathfrak{n})}$ .
PROOF. Let $\eta=\zeta\mu_{P}(z)(\zeta\in \mathfrak{z}(\mathfrak{m}_{1}), ze\mathfrak{z}(f))$ be an element in $8(\mathfrak{m}_{1};f)$ .

Bearing in mind $d_{P}^{-1}\circ\mu_{P}(z)\circ d_{P}=\gamma_{a/m_{1}}(z)$ , we get

(3.5) $(d_{P}f)(m;\eta)=d_{P}(m)f(m;\zeta’\gamma_{\mathfrak{g}/\varpi_{1}}(z))$

where $\zeta^{\prime}=d_{P}^{-1}\circ\zeta\circ d_{P}$ and $m$ is an element in $M_{1}$ .
On the other hand by Lemma 1.1, we have $z-\gamma_{\mathfrak{g}/u\iota_{1}}(z)\in\theta(\mathfrak{n}_{\sigma})u(\mathfrak{g})$ . Since
$\mathfrak{m}_{1}$ normalizes $\theta(\mathfrak{n}_{c})$ , we see that there exists $Y$ in $\theta(\mathfrak{n}_{c})$ and $b$ in $u(\mathfrak{g})$

such that $\zeta^{\prime}(\gamma_{\mathfrak{g}/u_{1}},(z)-z)=Yb$ . Therefore (3.5) is rewriten as $(d_{P}f)(m;\eta)=$

$d_{P}(m)f(m;\zeta’ z)+d_{P}(m;Yb)$ . Hence, by $zf=0$ , we have $(d_{P}f)(m;\eta)=$

$d_{P}(m)f(Ad(m)Y;m;b)$ . This implies the conclusion of Lemma 2.
We keep the same notations as above. Let $\Phi(A)$ be the root system

of $(P, A)$ . In the following we shall assume that $P$ is of split rank one
p.s. $g.r$ . of $G$ (i.e. dimA $=1$). Let $\beta$ be a unique simple root in $\Phi(A)$ .
Choose an element $H_{0}$ in a satisfying $\beta(H_{0})=1$ . Then each element $a$ in
$A$ is parametrized by

(3.6) $a=a_{t}$ , $a=\exp(tH_{0})$ , $t\in R$ .
Let $f$ be a function in $H_{\tau}(G, \chi)$ , and define $\Gamma($ $)$ and $\Phi$ corresponding to
$f$ by (3.3) and (3.4) respectively. We now put $\Gamma=\Gamma(H_{0})$ and $\Psi=\Psi_{H_{0}}$ .
Therefore we have

(3.7) $\frac{\partial}{\partial t}\Phi(a_{t}m)=(\Gamma\Phi)(a_{t}m)+\Psi(a_{t}m)$ , $m\in M_{1}$ , $t\in R$ .

The endomorphism $\Gamma$ on $V_{\tau}\otimes C^{p}$ has the Jordan decomposition; $\Gamma=S+T$,
$S$ and $T$ are the linear endomorphisms of $V\otimes C^{p},$ $T$ is nilpotent, $S$ is
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semisimple, $T$ and $S$ are commute to each other. We define two $V_{f}\otimes C^{p}-$

valued $C^{\infty}$-functions on $M_{1}$ by

(3.8) $\tilde{\Phi}(a_{t}m)=\exp(-tT)\Phi(a_{t}m)$ , $\tilde{\Psi}(am)=\exp(-tT)\Psi(am)$ .
From (3.7) it follows that

(3.9) $\frac{\partial}{\partial t}\tilde{\Phi}(a_{t}m)=S\tilde{\Phi}(a_{t}m)+\tilde{\Psi}(a_{t}m)$ for $t$ in $R$ and $m$ in $M_{1}$ .
Let $\Phi(\Gamma)$ be the set of all eigenvalues of $\Gamma$ . We denote $E_{\lambda}$ the projection
to the eigenspace of $S$ for $\lambda\in\Phi(\Gamma)$ and write $\tilde{\Phi}_{\lambda}=E_{\lambda}\tilde{\Phi},\tilde{\Psi}_{\lambda}=E_{\lambda}\tilde{\Psi}$ . Then
we have

(3.10) $\frac{\partial}{\partial t}\tilde{\Phi}_{\lambda}=x\tilde{\Phi}_{\lambda}+\tilde{\psi}_{\lambda}$ , $\tilde{\Phi}=\sum_{\lambda e\phi(\Gamma)}\tilde{\Phi}_{\lambda}$ and $\tilde{\Psi}=\sum_{\lambda e\Phi\{\Gamma)}\tilde{\Psi}_{\lambda}$ .

\S 4. An estimation for $\tilde{\Phi}$.
Let $f$ be a 8-finite and K-finite function on G. Assume that $f$ satisfies

“the weak inequality”. We know that the asymptotic behaviour of $f$ at
the infinity can be calculated by using the evaluation in Lemma 3.2
concerning with first order of linear differential equations in Lemma 3.1.
In this paper we shall calculate, for a given function $f$ in $H_{\tau}(G, \chi)$ , the
asymptotic behaviour of $f$ at the infinity without the assumption; $f$

satisfies the weak inequality. Speaking more precisely, the asymptotic
behaviour of $f$ in $H_{\tau}(G, \chi)$ can be calculated by using the Tauberian
theorem of Hardy and Littlewood combining with the evaluation for the
solution of first order differential equation in (3.9).

Let $P_{0}=M_{0}A_{0}N_{0},$ $nb,$ $\mathfrak{a}_{0},$ $n_{0},$ $\Phi(A_{0})$ be the same as in the previous
section. Let $\tilde{\mathfrak{a}}_{0}$ be a $\theta$-stable Cartan subalgebra of $\mathfrak{g}$ containing $\mathfrak{a}_{0}$ .
Choosing a positive root system $\Phi^{+}(\tilde{\mathfrak{a}}_{0})$ of $(\mathfrak{g}_{\sigma}, (\tilde{\mathfrak{a}}_{0})_{C})$ suitably, we may
assume that $\Phi(A_{0})=$ {$\alpha|_{n_{0}};\alpha e\Phi^{+}(\tilde{\mathfrak{a}}_{0})$ and $\alpha\not\equiv 0$ on $\mathfrak{a}_{0}$ }. We denote the
positive Weyl chamber of $A_{0}$ by $A_{0}^{+}$ under this ordering. Let $c1(A_{0}^{+})$ be
the closure of $A_{0}^{+}$ . For each simple root $\beta$ in $\Phi(A_{0})$ and a real positive
number $r$ , we put

(4.1) $A(\beta, r)=\{a\in c1(A_{0}^{+});\beta(\log a)\geqq r\rho(\log a)\}$ where $\rho$ is one
half the sum of all roots in $\Phi^{+}(\tilde{\mathfrak{a}}_{0})$ .

LEMMA 1. There exists a positive real number $r_{0}$ such that $c1(A_{0}^{+})\subseteqq$

$\bigcup_{\alpha er_{0}}A(\beta, r_{0})$ where $\Psi_{0}$ is the simple root system of $\Phi(A_{0})$ .
(For the proof of this lemma, see Theorem 14.8, Part II in [7]).



SCHUR ORTHOGONALITY RELATIONS 315

Let $\beta$ be an element in $\Psi_{0}$ . We define a p.s. $g.r$ . $P=P_{\beta}$ of $G$ as
follows. Let $\mathfrak{a}_{\beta}$ be the subspace of $\mathfrak{a}_{0}$ defined by $\mathfrak{a}_{\beta}=\{H\in \mathfrak{a}_{0};\alpha(H)=0$ for
all $\alpha$ in $\Psi-\{\beta\}\}$ . We put the set of all roots in $\Phi(A_{0})$ which does not
vanish identically on $\mathfrak{a}_{\beta}$ by $\Phi_{\beta}(A_{0}),$ $u_{\alpha}=\{X\in n_{0}$ ; ad $(H)X=\alpha(H)X$ for all
$H$ in $\mathfrak{a}_{\beta}$ } for $\alpha$ in $\Phi_{\beta}(A_{0}),$ $\mathfrak{n}_{\beta}=\sum_{ae\Phi_{\beta}(A_{0})}u_{\alpha},$ $N_{\beta}=the$ analytic subgroup of
$G$ with Lie algebra $\mathfrak{n}_{\beta},$ $A_{\beta}=the$ analytic subgroup of $G$ corresponding to

$\mathfrak{a}_{\beta},$ $Z(A,)=the$ centralizer of $A_{\beta}$ in $G$ . Then there exists a reductive
subgroup $M_{\beta}$ of $G$ such that $Z(A_{\beta})=M_{\beta}A_{\beta}$ and $M_{\beta}\cap A_{\beta}=\{1\}$ . Therefore
$P_{\beta}=M_{\beta}A_{\beta}N_{\beta}$ is a Langlands decomposition of the p.s. $g.r$ . $P_{\beta}$ of $G$ . The
group $P_{\beta}$ is called the p.s.g.r. of $G$ corresponding to $\beta$ .

Let us now fix a simple root $\beta$ in $\Phi(A_{0})$ , and denote $P=P_{\beta},$ $M=M_{\beta}$ ,
$A=A_{\beta},$ $N=N_{\beta}$ . We put $\mathfrak{a}_{0}^{*}=\mathfrak{a}_{0}\cap \mathfrak{m},$ $A_{0}^{*}=\exp(\mathfrak{a}_{0}^{*})$ . Then we have $A_{0}=AA_{0}^{*}$

and $A\cap A_{0}^{*}=\{1\}$ .
Let us consider a minimal p.s. $g.r$ . $P_{0}^{*}$ of $M$ with split component $A_{0}^{*}$ .

Then the root system $\Phi(A_{0}^{*})$ of $(P_{0}^{*}, A_{0}^{*})$ is given by $\Phi(A_{0}^{*})=\{\alpha\in\Phi(A_{0})$ ;
$\alpha\equiv 0$ on $\mathfrak{a}$}. Define a function $D_{r}$ on $A_{0}^{*}$ by (1.7) and extend it to $A_{0}$ by

(4.2) $D_{H}(aa^{*})=D_{H}(a^{*})$ for $a$ in $A$ and $a^{*}$ in $A_{0}^{*}$ .
Let $\gamma$ and $r$

’ be two nonnegative real numbers. For each measurable
function $g$ on $A_{0}$ we define $|g|_{P,r,r^{\prime}}$ and $|g|_{P,r}$ by

(4.3) $|g|_{P,r,r^{\prime}}^{2}=\int_{A(\beta,r)}|g(a)|^{2}D_{H}(a)(1+d(a))^{r^{\prime}}da$ ,

(4.4) $|g|_{P,r}^{2}=\lim_{\epsilon\rightarrow+0}\epsilon\int_{A(\beta,r)}|g(a)|^{2}D_{X}(a)\exp(-\epsilon d(a))da$

where $\beta$ is a fixed simple root in $\Phi(A_{0})$ and $P=P_{\beta}$ is the same as above.

LEMMA 2. Let $\tau$ be a double representation of $K$ with finite dimen-
sion and $\chi$ is a character of 8 $\cdot$ Then, for each $g$ in $H,(G, \chi)$ and posi-
tive real number $r$ , we have that $|d_{P}g|_{P,r}$ is finite.

PROOF. By using the integral formula in (1.4), we get

(4.5) $|g|^{2}=\lim_{e\rightarrow+0}\epsilon c_{a}\int_{c1(A_{0}^{+})}|g(a)|^{2}D(a)e^{-*d(\alpha)}da$ .
On the other hand we see that

(4.6) there exists a positive constant $C$ such that
$D(a)\geqq Cd_{P}(a)^{2}D_{r}(a)$ for all $a$ in $A(\beta, \gamma)$ satisfying $\beta(\log a)\geqq 1$ .

Hence, from (4.5) it follows that the integral
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$\varliminf_{+0}\epsilon\int_{A(\beta.r) ,\beta(\log a)\geq 1}|(d_{P}g)(a)|^{2}D_{r}(a)e^{-\cdot d(a)}da$ is finite.

Furthermore, since the set {a $eA(\beta,$ $r);\beta(\log a)\leqq 1$ } is compact we conclude
that $|d_{P}g|_{P,r}$ is finite.

Let $P=MAN$ be the p.s.$g.r$ . of $G$ corresponding to a fixed simple
root $\beta$ in $\Psi_{0}$ . Then by the definition of $A$ , we have dim $A=1$ . We
enumerate the simple root system $\Psi_{0}$ of $\Phi(A_{0})$ by $\Psi_{0}=\{\beta=\beta_{1}, \beta_{2}, \cdots, \beta_{t}\}$ ,
and define the dual base $\{H_{i};1\leqq i\leqq l\}$ of $\Psi_{0}$ by

(4.7) $\beta(H_{\dot{f}})=\delta_{i,j}$ , $1\leqq i,$ $j\leqq l$ .
Then $A$ is parametrized by $A=\{a ; a=\exp(tH_{1}), t\in R\}$ . Let $P_{0}^{*}$ be a minimal
p.s. $g.r$ . of $M$. We can assume that the split $A_{0}^{*}$ of $P_{0}^{*}$ satisfies $A_{0}=AA_{0}^{*}$ .
We define a linear form $\overline{\beta}$ on $\mathfrak{a}_{0}$ by $\overline{\beta}=\beta$ on $\mathfrak{a}$ and $\overline{\beta}=0$ on $\mathfrak{a}_{0}^{*}$ .

LEMMA 3. Let $r$ be a positive real number and $\beta$ a fixed simple
root in $\Psi_{0}$ . Assume that $ A(\beta, r)\neq\emptyset$ . Then $r$ satisfies the following two
properties; (1) $1-r\rho(H_{1})>0$ , (2) the set $A(\beta, r)$ is given by $A(\beta, r)=$

{a $a^{*};a^{*}\in c1((A_{0}^{*})^{+}),$ $t\geqq 0$ and $(1-r\rho(H_{1}))t\geqq(r\rho-\beta)(\log a^{*})$} where $(A_{0}^{*})^{+}is$

the positive Weyl chamber of $A_{0}^{*}$ and $c1(A_{0}^{*+})is$ the closure of $(A_{0}^{*})^{+}$ .
PROOF. First we shall prove that

$(*)$ $\beta(\log a)\leqq\overline{\beta}(\log a)$ for all $a$ in $c1(A_{0}^{+})$ .
Choose a base $\{A_{1}, A_{2}, \cdots, A_{l}\}$ of $\mathfrak{a}_{0}$ satisfying $(A_{i}, H)=\beta(H)$ for all $i$ and
$H$ in $\mathfrak{a}_{0}$ where $(, )$ is the inner product on $\mathfrak{a}_{0}$ induced from the Killing
form on $\mathfrak{g}$ . Let $a$ be an element in $c1(A_{0}^{+})$ . Then $a$ is written as log $a=$

$\sum_{j=1}^{l}t_{j}A_{j}$ for some real numbers $t_{j}$ . Since $\beta_{i}(\log a)=\sum_{\dot{g}=1}^{l}t_{j}(\beta, \beta_{j})$ and
$(\beta, \beta_{\dot{f}})\leqq 0$ for $i\neq j$ , we get $t_{j}\geqq 0$ for $j\neq 1$ and $\beta_{1}(\log a)\leqq t_{1}|\beta|^{2}$ . Since
$\beta=\beta_{1}$ , we have the conclusion of $(^{*})$ .

Finally we shall prove the lemma by using $(^{*})$ . Let $a_{t}a^{*}$ be $an$

element in $A(\beta, r)$ . Then, by $(^{*})$ , we have $ t\beta(H_{1})=\beta(\log a)\geqq$

$\beta(\log a_{t}a^{*})\geqq 0$ . Hence we have $t\geqq 0$ . For $j\neq 1$ , we have $\beta_{j}(\log a^{*})=$

$\beta_{\dot{f}}(\log a_{t}a^{*})\geqq 0$ . Consequently $a^{*}$ belongs to $c1((A_{0}^{*})^{+})$ . Since $\beta$($\log$ a $a^{*}$ ) $\geqq$

$ r\rho$($\log$ a $a^{*}$), we conclude $(^{**})$ ; $a_{t}a^{*}$ satisfies $t\geqq 0$ , $a^{*}ec1((A_{0}^{*})^{+})$ and
$(1-r\rho(H_{1}))t\geqq(r\rho-\beta)(\log a^{*})$ . Conversely assume that an element $a$ $a^{*}$

in $A_{0}$ satisfies the properties $(^{**})$ . Immediately we have $ t\geqq r\rho$($\log$ a $a^{*}$),
for $j\geqq 2,$ $\beta_{j}(\log a^{*})\geqq 0$ . We see that $\rho$ is expressed as $\rho=\sum_{j=1}^{l}m_{j}\beta_{\dot{f}}$ on $\mathfrak{a}_{0}$

for suitable nonnegative real numbers $m_{\dot{f}}$ . Consequently the last property
of $a$ $a^{*}$ in $(^{**})$ is equivalent to the fact; $(1-r\rho(H_{1}))\beta$($\log$ a $a^{*}$ ) $\geqq$

$\sum_{\dot{g}=2}^{l}rm_{j}\beta_{j}(\log a^{*})$ . Therefore $\beta_{j}$($\log$ a $a^{*}$ ) $\geqq 0$ for all $j=1,2,$ $\cdots,$
$l$ . (since
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$ A(\beta, r)\neq\emptyset$ , we get $1-r\rho(H_{1})>0)$ . This completes our proof.
Let $\chi$ and $\tau$ be the same as in Lemma 4.2. We define the space

$H_{\tau}(G, \chi)$ by (3.2) and a maximal p.s. $g.r$ . $P=MAN$ of $G$ corresponding to
a fixed simple root $\beta$ in $\Phi(A_{0})$ . Define $\Phi,$ $\Psi,$ $\Phi(\Gamma),$

$T,\tilde{\Phi}_{\lambda}$ and $\tilde{\Psi}_{\lambda}$ for the
pair $(P, f)(f\in H_{f}(G, \chi))$ by (3.4), (3.7), $\cdots,$ . Since $T$ is a unipotent
endomorphism of the finite dimensional vector space $V.\otimes C^{p}$ , there exist
a positive constant $C$ and a number $k$ such that $|\exp(-tT)|\leqq C(1+|t|)^{k}$

for all $t$ in $R$ . Hence, by the definitions of $\tilde{\Phi}_{\lambda}$ and $\tilde{\Psi}_{\lambda}$ , we have

(4.8) there exist two positive constants $C_{1}$ and $C_{2}$ such that
$|\tilde{\Phi}_{\lambda}(aa^{*})|\leqq C_{1}(1+|t|)^{k}|\Phi(aa^{*})|$ and $|\tilde{\Psi}_{\lambda}(aa^{*})|\leqq C_{2}(1+|t|)^{k}|\Psi(a_{t}a^{*})|$

for all $a$ $a^{*}$ in $A_{0}$ .
Let $r$ be a positive real number satisfying $ A(\beta, r)\neq\emptyset$ . We put a subset
$B_{r}(t)(t\geqq 0)$ in $A_{0}^{*}$ by $B,(t)=\{a^{*}\in c1((A_{0}^{*})^{+});(1-r\rho(H_{1}))t\geqq(r\rho-\beta)(\log a^{*})\}$ .
We now define a function $g_{\Phi}$ on the interval $(0, \infty)$ by $g_{\Phi}(t)=$

$\int_{B,()}|\Phi(a_{t}a^{*})|^{2}D_{H}(a^{*})da^{*}$ .
LEMMA 4. Let the notations and assumptions being as above. Then

we have that $\lim_{N\rightarrow\infty}(1/N)\int_{0}^{N}g_{\Phi}(t)dt<\infty$ .
PROOF. By Tauberian theorem of Hardy-Littlewood (cf. Chapter 7

in [6]), it is enough to prove that $\lim_{\epsilon\rightarrow+0}\epsilon\int_{0}^{\infty}g_{\Phi}(t)e^{-\epsilon t}dt<\infty$ . In view of
the definition of $\Phi$ , we see that there exist $u_{1},$ $u_{2},$ $\cdots,$ $u_{p}$ in $8(\mathfrak{m}_{1})$ such
that $|\Phi(m)|^{2}=\sum_{\dot{g}=1}^{p}|(d_{P}f)(m;u_{j})|^{2}$ for all $m$ in $M_{1}$ . Therefore $\int_{0}^{\infty}g_{\Phi}(t)e^{-\epsilon t}dt=$

$\sum_{j=1}^{p}\int_{A}1(,r)|(d_{P}f)(a;u_{j})|^{2}e^{-\overline{\beta}(\log a)}D_{H}(a)da$ . Since $H_{K}(G, \chi)$ is a $\mathfrak{g}$-module (See

Remark 2.1.) and $d_{P}(a;u_{j})=aconst$ . $d_{P}(a)$ , our proof is reduced to the
following; $\lim_{\epsilon\rightarrow+0}\epsilon\int_{A(\beta,r)}|(d_{P}f)(a)|^{2}D_{K}(a)e^{-\overline{\beta}(\log a)}da<\infty$ for any function $f$ in
$H.(G, \chi)$ . Let $B$ be the Killing form on $\mathfrak{g}$ . By the Riemannian structure
on $G/K$ (See [2], Theorem 3.3 and Proposition 3.4, IV.) we have $d(a)^{2}=$

$B$($\log a$ , log a) for all $a$ in $A_{0}$ . Since $B(H, H)=\sum_{\alpha e\Phi_{(\alpha_{0})}^{\backslash }}\alpha(H)^{2}$ for $H$ in $\tilde{\mathfrak{a}}_{0}$ ,
we have

(4.9) there exist two positive constants $c_{1}$ and $c_{2}$ such that
$c_{1}\rho(\log a)\leqq d(a)\leqq c_{2}\rho(\log a)$ for all $a$ in $A_{0}^{+}$ .

Consequently, by $\beta(\log a)\geqq r\rho(\log a)$ for $a$ in $A(\beta, r)$ , we have $ e^{-\overline{\beta}(\log a)}\leqq$

$e^{-\beta(\log a)}\leqq e^{-r\rho^{(\log a)}}\leqq e^{-\iota d(a)}$ for $a$ in $A(\beta, r)$ where $ c=c_{2}^{-1}\gamma$ is positive. This
implies that $\lim_{\epsilon\rightarrow+0}\epsilon\int_{A(\beta,r)}|(d_{P}f)(a)|^{2}D_{H}(a)e^{-\cdot\overline{\beta}t\log a)}da\leqq c^{-1}|d_{P}f|_{P,r}^{2}$ (see (4.4)).

Hence by Lemma 4.2, we can prove the lemma.
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LEMMA 5. We keep the same notations as above. Let $\lambda$ be an
element in $\Phi(\Gamma)$ . Assume that Re(N) $=\sigma>0$ . Then we have $|\tilde{\Phi}_{\lambda}|_{P.t,r^{\prime}}<\infty$

for all nonnegative real numbers $r$ and $r^{\prime}$ .
PROOF. Since $\tilde{\Phi}_{\lambda}$ satisfies the differential equation in (3.10), we see

that $(\partial/\partial u)e^{-\lambda u}\tilde{\Phi}_{\lambda}(a_{t+}.a^{*})=e^{-\lambda u}\tilde{\Psi}_{\lambda}(a_{t+u}a^{*})$ for $t$ in $R$ and $a^{*}$ in $A_{0}^{*}$ . Integrat-
ing the both side of this identity over the interval $(0, N)$ we obtain

(4.10) $\tilde{\Phi}_{\lambda}(a_{t}a^{*})=e^{-\lambda N}\tilde{\Phi}_{\lambda}(a_{t+N}a^{*})-\int_{0}^{N}e^{-\lambda u}\tilde{\Psi}_{\lambda}(a_{+}.a^{*})du$ .
In view of Lemma 4.4 and (4.10), it is enough to verify that

(4.11) $\lim_{N\rightarrow\infty}\int_{0}^{N}dt\int_{B()}e^{\rightarrow 2\sigma N}|\tilde{\Phi}_{\lambda}(a_{+N}a^{*})|^{2}D_{r}(a^{*})(1+t)^{t^{\prime}}da^{*}<\infty$ ,

(4.12) $\lim_{N\rightarrow\infty}\int_{0}^{N}dt\int_{B,()}|\int_{0}^{N}e^{-\lambda u}\tilde{\Psi}_{\lambda}(a_{t+*}a^{*})du|^{2}D_{r}(a^{*})(1+t)^{r^{\prime}}da^{*}<\infty$ .
Let $I(N)$ be the integral of (4.12). Using Lemma 4.3 and (4.8), we have
$I(N)\leqq C_{1}e^{-2\sigma N}(1+2N)^{r^{\prime}+k}\int_{0}^{N}\int_{B_{f}(t)}|\Phi(a_{+N}a^{*})|^{2}D_{r}(a^{*})da^{*}dt$ . By the definition
of $B.(t)$ , we have $B_{f}(t+N)\ni a_{+N}a^{*}$ for all $aa^{*}$ in $B_{f}(t)$ . Hence $I(N)$ is
evaluated by

$I(N)\leqq C_{1}e^{-2\sigma N}(1+2N)^{r^{\prime}+k}\int_{N}^{2N}dt\int_{B,()}|\Phi(aa^{*})|^{2}D_{r}(a^{*})da$

$\leqq C_{1}e^{-2\sigma N}(1+2N)^{r^{\prime}+k}\int_{0}^{2N}g_{\partial}(t)dt$

where $k$ and $r^{\prime}$ are positive.
Since $\sigma$ is positive, Lemma 4.4 implies that the limit of (4.11) is

finite. It remains to prove the fact (4.12).
Combining Lemma 3.2 with (4.8), we have

$|\tilde{\Psi}_{\lambda}(aa^{*})|\leqq a$ const. $|Ad(a_{t}a^{*})|_{\theta(n)}|d_{P}(a_{t}a^{*})\sup_{1\leq\dot{g}5q}|f(X_{j};a_{t}a^{*};b)|(1+|t|)^{k}$

for some $X_{i}$ in $\theta(\mathfrak{n}_{0})$ and $b$ in $\mathfrak{n}(\mathfrak{g})$ .
Since $|Ad(a_{t}a^{*})|_{\theta(\mathfrak{n})}\leqq e^{-\prime 1logo_{t}a\cdot)}\leqq e^{-r\rho^{(l}oga_{t}a\cdot)}\leqq e^{-\kappa}(\kappa=r\rho(H_{1}))$ for all $a_{\iota}a$

in $A(\beta, r)$ , the proof of (4.12) is reduced the following;

(4.13) $\lim_{N\rightarrow\infty}\int_{0}^{N}dt\int_{B_{f}(t)}\{\int_{0}^{N}d_{P}(a_{+}.a^{*})|f(X_{j};a_{+}.a^{*};b)e^{-\kappa(t+\cdot)}|du\}^{2}$

$\times D_{r}(a^{*})(1+d(a_{t}a^{*}))^{r^{\prime}}da^{*}<\infty$ .
By Schwarz inequality, the integrant $\{$ $\}$ of (4.13) is estimated as follows;
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$|\{$ $\}|^{2}\leqq(\int_{0}^{N}e^{-\kappa(t+u)}du)^{2}(\int_{0}^{N}e^{-\kappa(t+u)}|d_{P}(a_{t+u}a^{*})f(X_{j};a_{t+u}a^{*}; b)|)^{2}$

$\times D_{K}(a^{*})(1+d(a_{t}a^{*}))^{t^{\prime}}du$ .
Hence we have

$\int_{B_{r}(t)}da^{*(\int_{0}^{N}}|d_{P}(a_{t+u}a^{*})f(X_{j};a_{t+u}a^{*}; b)e^{-\kappa(t+u)}|du)^{2}D_{H}(a^{*})(1+d(a_{t}a^{*}))^{r^{\prime}}$

$\leqq\kappa^{-1}e^{-\kappa t}\int_{0}^{N}du\int_{B_{f}(u)}e^{-\kappa u}|f(X_{j};a_{u}a^{*}; b)|^{2}d_{P}(a_{u}a^{*})^{2}D_{H}(a^{*})(1+d(a_{t}a^{*}))^{r^{\prime}}da^{*}$ .

By (4.9) and $(^{*})$ in the proof of Lemma 4.3, we have $ d(a_{t}a^{*})\leqq c_{2}\rho(\log a_{t}a^{*})\leqq$

$rc_{2}\beta(\log a_{t}a^{*})\leqq rc_{2}\overline{\beta}(\log a_{t})=rc_{2}t$ for all $a_{t}a^{*}$ in $A(\beta, r)$ . Hence the above
integral $\leqq\kappa^{-1}(1+c_{2}t)^{r^{\prime}}e^{-\kappa t}\int_{A(\beta,r)}e^{-0\kappa d(a)}|(d_{P}(X_{j}fb))(a)|^{2}D_{H}(a)da$ where $ c=c_{2}^{-1}\gamma$ .
Therefore the term in (4.13)

$\leqq a$ const. $\int_{0}^{\infty}(1+c_{2}t)^{r^{\prime}}e^{-\kappa t}dt\int_{A(\beta,r)}e^{-0\kappa d(a)}|(d_{P}(X_{j}fb))(a)|^{2}D_{K}(a)da$ .
By Lemma 4.2, the last integral in the above integrals is finite. Con-
sequently the term in (4.13) is also finite.

REMARK 1. In view of the proof of (4.11) we see that for each $\lambda$ in $\Gamma$ ,
$\int_{A(\beta,r)}|\Psi_{\lambda}(a_{t}a^{*})|^{2}D_{H}(a^{*})e^{wt}da^{*}dt<\infty$ for suitable real number $w>0$ .

LEMMA 6. Assume that an eigenvalue $\lambda$ of $\Gamma$ satisfies ${\rm Re}(\lambda)=\sigma<0$ .
Then we have $|\Phi_{\lambda}|_{P,r,t^{\prime}}<\infty$ for positive real numbers $r$ and $r$ .

PROOF. Since $(\partial/\partial u)e^{-\lambda ut}\tilde{\Phi}_{\lambda}(a_{ut}a^{*})=te^{-ut}\tilde{\Psi}_{\lambda}(a_{ut}a^{*})$ , we have $\tilde{\Phi}_{\lambda}(aa^{*})=$

$e^{\sigma(1-\delta)t}\tilde{\Phi}_{\lambda}(a_{ut}a^{*})+te^{\lambda t}\int_{\delta}^{1}e^{-\lambda ut}\tilde{\Psi}_{\lambda}(a_{ut}a^{*})du$ for each positive real number $\delta$

satisfying $\delta<1$ . We put

$J_{1}=\int_{A(\beta_{f})}e^{\sigma(1-\delta)t}|\tilde{\Phi}_{\lambda}(a_{t}a^{*})|^{2}D_{r}(a^{*})(1+t)^{t^{\prime}}da^{*}dt$ ,

$J_{2}=\int_{A(\beta,r)}\{e^{\sigma t}\int_{\delta}^{1}te^{-\sigma ut}|\tilde{\Psi}_{\lambda}(a_{u}a^{*})|du\}^{2}D_{H}(a^{*})(1+t)^{r^{\prime}}tda^{*}dt$ .

Therefore it is enough to verify $J_{1}$ and $J_{2}$ are finite for a positive
number $\delta$ .

Put $s=\rho(H_{1})^{-1}(1-\delta(1-r\rho(H_{1})))$ . Since $1>r\rho(H_{1})$ (See (1) in Lemma
4.3.) we have $s>0$ . Furthermore we get (See (2) in Lemma 4.3.)



320 HISAICHI MIDORIKAWA

(4.14) $a_{\delta\iota}a^{*}\in A(\beta, s)$ for all $a$ $a^{*}$ in $A(\beta, r)$ .
Hence we have

$J_{1}\leqq\delta^{-(r^{\prime}+1)}\int_{0}^{\infty}dt\int_{B()}e^{-\iota^{\prime}t}|\tilde{\Phi}_{\lambda}(aa^{*})|^{2}D_{r}(a^{*})(\delta+t)^{r^{\prime}}da^{*}$

where $\kappa’=(1-\delta)\delta^{-1}(-\sigma)$ is positive. Combining Lemma 4.2 with Lemma
4.3 and (4.8), we see that $J_{1}$ is finite

Let us now consider the integral $J_{2}$ . From $\sigma(1-u)t\leqq 0$ for $\delta\leqq u<1$

and $t\geqq 0$ , it follows that

$\{e^{\sigma t}\int_{\delta}^{1}e^{-\sigma*t}t|\tilde{\Psi}_{\lambda}(a_{*}a^{*})|du\}^{g}\leqq\int_{\delta}^{1}|t\tilde{\Psi}_{\lambda}(a_{st}a^{*})|^{2}du$ .
Therefore

$J_{2}\leqq a$ const. $\int_{\delta}^{1}\int_{0}^{\infty}\int_{B,(t)}|\tilde{\Psi}_{\lambda}(a_{ut}a^{*})|^{2}D_{K}(a^{*})(1+t)^{f^{\prime}+1}dudtda^{*}$ .
Let $a$ $a^{*}$ be one of each element in $A(\beta, r)$ . By (4.14), we have
$a_{\delta}a^{*}eA(\beta, s)$ . Since $(1-s\rho(H_{1}))ut\geqq(1-s\rho(H_{1}))\delta t\geqq(r\rho-\beta)(\log a^{*})$ (See
Lemma 4.3.), we get $a_{u}a^{*}\in A(\beta, s)$ for all $a$ $a^{*}$ in $A(\beta, r)$ . Hence we
have

$J_{2}\leqq a$ const. $\int_{\delta}^{1}du\int_{A(\beta..1}|\tilde{\Psi}_{\lambda}(aa^{*})|^{2}\delta^{-1}(1+\delta^{-1}t)^{t^{\prime}+1}D_{r}(a^{*})da^{*}dt$ .
By Remark 4.1 the integral on $A(\beta, s)$ in the above inequality is finite.
Consequently $J_{2}$ is finite. This implies our conclusion.

LEMMA 7. Let $\lambda$ be an element in $\Phi(\Gamma)$ , and assume that $\lambda$ is a
purely imaginary number. Then there exists a $V_{\tau}\otimes C^{p}$-valued measurable
function $Z_{\lambda}$ on $c1((A_{0}^{*})^{+})$ such that $|\tilde{\Phi}_{\lambda}-e^{\lambda}Z_{\lambda}|_{P,t.t^{\prime}}<\infty$ for all positive real
numbers $r$ and $r^{\prime}$ , where $e^{\lambda}Z_{\lambda}$ is defined by $(e^{\lambda}Z_{\lambda})(a_{\iota}a^{*})=e^{\lambda t}Z_{\lambda}(a^{*})$ for $a$ in
$A$ and $a^{*}$ ,in $c1((A_{0}^{*})^{+})$ .

PROOF. Let $n$ be a positive integer. Then, for each $m$ in $M$, we
have $(\partial/\partial t)\{e^{-\lambda t}\tilde{\Phi}(am)+\int_{t}^{n}e^{-\lambda*}\tilde{\Psi}_{\lambda}(a_{u}m)du\}=0$ . We put $Z_{n}(m)=e^{-\lambda t}\tilde{\Phi}_{\lambda}(am)+$

$\int_{t}^{n}e^{-\lambda u}\tilde{\Psi}_{\lambda}(a.m)du$ . We claim that the series $\{Z_{n}(a^{*})\}_{n}(a^{*}\in c1((A_{0}^{*})^{+}))$ is a
Cauchy sequence. In view of Remark 4.1, we have $\int_{4(}|\tilde{\Psi}_{\lambda}(a)|^{2}D_{K}(a)d\alpha<\infty$ .
Consequently

(4.15) $\int_{0}^{\infty}|\tilde{\Psi}_{\lambda}(a_{\iota}a^{*})|^{2}dt<\infty$ for almost everywhere $a^{*}$ in $c1((A_{0}^{*})^{+})$ .
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Since the set $\{a^{*}\in A_{0}^{*}; D_{M}(a^{*})\neq 0\}$ is open dense in $A_{0}^{*}$ , we have
$\int_{0}^{\infty}|\tilde{\Psi}_{\lambda}(aa^{*})|^{2}dt$ is finite. From this fact the sequence $Z_{n}$ converges to a
measurable function $Z_{\lambda}$ (i.e., $Z_{\lambda}(a^{*})=e^{-\lambda t}\tilde{\Phi}_{\lambda}(a_{t}a^{*})+\int_{t}^{\infty}e^{-\lambda*}\tilde{\Psi}_{\lambda}(a_{*}a^{*})du$ . Let
$r$ and $r^{\prime}$ be two positive real numbers. Then we have (See (4.3).)

$|\tilde{\Phi}_{\lambda}-e^{\lambda}Z|_{P,r,r^{\prime}}\leqq\int_{A\{\beta,\gamma)}|(\tilde{\Phi}_{\lambda}-e^{\lambda}Z_{\lambda})(a)|^{2}D_{H}(a)(1+d(a))^{r^{\prime}}da$ ,

hence by Lemma 4.3,

$\leqq\int_{0}^{\infty}dt\int_{B_{r}(t)}(\int_{t}^{\infty}|\tilde{\Psi}_{\lambda}(a_{u}a^{*})|du)^{2}D_{H}(a)(1+d(a_{t}a^{*}))^{r^{\prime}}da^{*}dt$ .
Let $\delta$ be a positive real number. By Schwarz inequality, we have

$(\int_{t}^{\infty}|\tilde{\Psi}_{\lambda}(a_{u}a^{*})|du)^{2}\leqq(\int_{t}^{\infty}e^{-\delta u}du)(\int_{t}^{\infty}e^{\delta u}|\tilde{\Psi}_{\lambda}(a_{u}a^{*})|^{2}du)$

$\leqq e^{-\delta t}(\int_{t}^{\infty}e^{-\delta u}du)(\int_{t}^{\infty}e^{2\delta u}|\tilde{\Psi}_{\lambda}(a_{u}a^{*})|^{2}du)$ .
Consequently

$|\tilde{\Phi}_{\lambda}-e^{\lambda}Z|_{P,r,r^{\prime}}\leqq\int_{0}^{\infty}e^{-\delta l}(\int_{t}^{\infty}e^{-\delta u}du)(\int_{t}^{\infty}\int_{B.(l)}e^{2\delta u}|\tilde{\Psi}_{\lambda}(a_{u}a^{*})|^{2}D_{H}(a^{*})$

$\times(1+d(a_{t}a^{*}))^{r^{\prime}}da^{*})dt$ .
By Lemma 4.3, we have $\{a_{u}a^{*}; u\geqq t, a^{*}\in B_{r}(t)\}\subset A(\beta, r)$ . Hence

$|\tilde{\Phi}_{\lambda}-e^{\lambda}Z_{\lambda}|_{P,r,r^{\prime}}\leqq(\int_{0}^{\infty}e^{-\delta t}dt)(\int_{A(\beta,r)}e^{2\delta t}|\tilde{\Psi}_{\lambda}(a_{t}a^{*})|^{2}D_{r}(a^{*})da^{*}dt)$

$\times(\int_{0}^{\infty}e^{-\delta t}(1+c_{2}r^{-1}t)^{r^{\prime}}dt)$

where $c_{2}$ is the same constant as in (4.9). We now choose a sufficiently
small positive real number $\delta$ . Then the second integral is finite (see

Remark (4.1)). This completes our proof.
Let us summarize Lemmas 4.5, 4.6 and 4.7. Let $\beta$ be a simple root

in $\Phi(A_{0})$ and $P=MAN$ be the p.s. $g.r$ . of $G$ corresonding to $\beta$ . For a
function $f$ in $H_{\tau}(G, \chi)$ , we define $\Phi,$ $\Psi$ as in \S 3. Let $P_{0}^{*}=M_{0}^{*}A_{0}^{*}N_{0}^{*}$ be a
minimal p.s.g.r. of $M$ satisfying $A_{0}^{*}\subset A_{0}$ . We put $K_{r}=K\cap M$. Then
$M=K_{H}P_{0}^{*}=K_{M}c1((A_{0}^{*})^{+})K_{H}$ . By the definition of $\Phi$ and $\Psi$ , we see that

(4.16) $\Phi(k_{1}mk_{2})=\tau_{1}(k_{1})\Phi(m)\tau_{2}(k_{2})$ and $\Psi(k_{1}mk_{2})=\tau_{1}(k_{1})\Psi(m)\tau_{2}(k_{2})$

for all $k_{1},$ $k_{2}$ in $K_{H}$ and $m$ in $M$.
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Define a double unitary representation $\tau_{K_{K}}$ of $K_{r}$ by

(4.17) $\tau_{K_{P}}=(\tau_{1}|_{K_{K}}, \tau_{2}|_{K}r)$ where $\tau_{i}|_{K_{K}}$ is the restriction of $\tau_{i}$ of
$K$ to $K_{r}$ .

Then $\tilde{\Phi}_{\lambda}$ and $\tilde{\Psi}_{\lambda}(\lambda\in\Phi(\Gamma))$ are $\tau_{K_{K}}$-spherical. So $Z_{\lambda}$ in Lemma 4.7 can be
extended canonically to a function on $M$ which is $T_{K}r$-spherical. We
define a $V_{\tau}\otimes C^{p}$-valued $T_{K}r$-spherical function $\Phi_{P}$ on $M$ by

(4.18) $\Phi_{P}(a_{t}m)=\sum_{\lambda e\phi(\Gamma)}e^{\lambda t}\exp(tT)Z_{\lambda}(m)$ for $t$ in $R$ and $m$ in $M$.
Then we have

(4.19) $\Phi(a_{t}m)=\sum_{\lambda e\phi(\Gamma)}\exp(tT)\tilde{\Psi}_{\lambda}(a_{\iota}m)+\Phi_{P}(a_{t}m)$ (see (3.8) and (3.10)).

Combining Lemma 4.5, Lemma 4.6 with Lemma 4.7 we conclude the
following.

LEMMA 8. Let notations being as above, and $\Omega$ be a compact subset
in M. Then, for each two positive real numbers $r$ and $r^{\prime}$ , we have

(1) $\int_{0}^{\infty}\int_{\Omega}|\Phi(a_{t}m)-\Phi_{P}(am)|^{2}D_{K}(a)(1+d(a_{\iota}m))^{t^{\prime}}dmdt<\infty$ ,

(2) $\int_{A(\beta,)}|\Phi(a)-\Phi_{P}(a)|^{2}D_{K}(a)(1+d(a))^{r^{\prime}}da<\infty$ .

\S 5. The constant term of a function in $H.(G, \chi)$ .
For a fixed simple root $\beta$ in $\Phi(A_{0})$ , we consider the maximal p.s. $g.r$ .

$P=MAN$ corresponding to $\beta$ (see \S 3). Let $\chi$ be a character of 3 and
$(\tau, V_{\tau})$ be a finite dimensional double unitary representation of $K$. For
a function $f$ in $H_{\tau}(G, \chi)$ and $P$, we define $V.\otimes C^{p}$-valued functions $\Phi$ and
$\Phi_{P}$ by (3.8) and (4.18) respectively. Then $\Phi_{P}$ is of the form; $\Phi_{P}(am)=$

$f_{P}(a_{t}m)\otimes e_{1}+\sum_{\dot{g}=2}^{p}f_{P,\dot{g}}(a_{t}m)\otimes e_{j}$ for the suitable $\tau_{K_{H}}$-spherical functions $f_{P.j}$ on
$AM$. Consequently, by the definition of $\Phi_{P}$ , there exist a finite number
of purely imaginary numbers $\lambda_{1},$ $\lambda_{2},$ $\cdots,$ $\lambda_{q}$ , the polynomials $p_{1},$ $p_{2},$ $\cdots,$ $p_{q}$

in $t$ and $\tau_{K_{K}}$-spherical measurable functions $f_{1},$ $f_{2},$
$\cdots,$

$f_{q}$ on $M$ such that

(5.1) $f_{P}(a_{t}m)=\sum_{j=1}^{q}e^{(\lambda t)}p_{i}(t)f_{i}(m)$ for all $t$ in $R$ and $m$ in $M$ .
Our main purpose in this section is to prove that $f_{P}$ is a $8(\mathfrak{m}_{1})- finite$ ,
$\tau_{K_{K}}$-spherical $C^{\infty}$-function on $M$.

The following lemma is a direct consequence of Lemma 4.8.
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LEMMA 1. Let $\Omega$ be a compact subset in $M$ and $r$ (resp. $r^{\prime}$) be a
positive real number. Then we have

(1) $\int_{0}^{\infty}\int_{\Omega}|(d_{P}f-f_{P})(a_{t}m)|^{2}D_{H}(a)(1+d(a_{t}m))^{r^{\prime}}dmdt<\infty$ ,

(2) $\int_{A\{\beta,r)}|(d_{P}f-f_{P})(a)|^{2}D_{H}(a)(1+d(a))^{r^{\prime}}da<\infty$ .
LEMMA 2. Let $\Omega$ be a compact subset in $M$ and $f_{l}$ be the same as

in (5.1). Then $f_{i}$ is square integrable on each compact subset in $M$.
PROOF. In view of the definitions for $f_{i},$ $f_{P}$ and $\Phi_{P}$ , it is sufficient

to prove that $\int_{\rho}|Z_{\lambda}(m)|^{2}dm$ are finite for all purely imaginary numbers
$\lambda$ in $\Phi(\Gamma)$ . Since $Z_{\lambda}(m)=e^{-\lambda t}\tilde{\Phi}_{\lambda}(a_{t}m)+\int_{t}^{\infty}e^{-\lambda u}\tilde{\Psi}_{\lambda}(a_{u}m)du$ , so what must be
shown is that there exists a positive real number $\delta$ such that

(5.2) $\int_{\Omega}|\tilde{\Phi}_{\lambda}(a_{\delta}m)|^{2}dm<\infty$ and $\int_{\rho}|\int_{\delta}^{\infty}e^{-\lambda u}\tilde{\Psi}_{\lambda}(a_{u}m)du|^{2}dm<\infty$

Since $\tilde{\Phi}_{\lambda}$ is a $C^{\infty}$-function on $AM$ and $\Omega$ is compact the first integral is
finite for all positive real number $\delta$ . Let $\Omega^{*}$ be a compact subset in
$c1((A_{0}^{*})^{+})$ satisfying $\Omega\subset K_{H}\Omega^{*}K_{K}$ . Choosing sufficiently large positive real
number $\delta$ , we get $a_{\delta}\Omega^{*}\subseteqq A(\beta, r)$ . Therefore, since $\tilde{\Psi}_{\lambda}$ is $\tau_{K_{M}}$-spherical we
have

$\int_{\Omega}|\int_{\delta}^{\infty}e^{-\lambda u}\tilde{\Psi}_{\lambda}(a_{u}m)du|^{2}dm\leqq\int_{\rho*}|\int_{\delta}^{\infty}|\tilde{\Psi}_{\lambda}(a_{u}a^{*})|du|^{2}D_{H}(a^{*})da^{*}$

$\leqq\int_{\rho}.(\int_{\delta}^{\infty}e^{-wu}du)(\int_{\delta}^{\infty}e^{wt}|\tilde{\Psi}_{\lambda}(a_{u}a^{*})|^{2}du)da^{*}$

$\leqq a$ const. $\int_{A(\beta,r)}e^{wt}|\tilde{\Psi}_{\lambda}(a_{t}a^{*})|^{2}D_{K}(a^{*})da^{*}dt$ .
where $w$ is a sufficiently small positive real number. Hence by Remark
4.1, the second integral in (5.2) is finite as desired.

LEMMA 3. For the functions $f_{i}$ and $p_{l}$ in (5.1), we have (1) all $ps$
are constant, (2) all $f_{i}’ s$ are square integrable on $M$.

PROOF. We put, for each positive integer $n,$ $M_{n}=\{m\in M;d(m)\leqq n\}$ .
Combining Lemma 4.1 with Lemma 5.1 (See also the integral formula in
Lemma 1.4), we get

$|f|^{2}\geqq a$ const. $\lim_{e\rightarrow+0}\epsilon\int_{0}^{\infty}\int_{\kappa_{n}}\sum_{i,j=1}^{q}e^{(\lambda_{i}-\lambda_{j}-\epsilon\delta)t}p_{i}(t)\overline{p_{\dot{f}}(t)}f_{i}(m)\overline{f_{\dot{f}}(m)}dmdt$

where $\delta$ is some positive real number. Since
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$\lim_{e\rightarrow+0}\epsilon\int_{0}^{\infty}e^{(\lambda_{i}-\lambda_{\dot{f}}-\cdot\delta)}p_{i}(t)\overline{p_{\dot{f}}(t)}dt=0$ for $i\neq j$ and $\int_{r}$. $|f_{i}(m)|^{2}dm<\infty$

for all $i$ (cf.Lemma 5.2), the above inequality leads to the following;
$|f|^{2}\geqq a$ const. $\sum_{=1}^{q}(\lim_{*\rightarrow+0}\epsilon\int_{0}^{\infty}e^{-\cdot\delta t}|p(t)|^{2}dt\int_{r}$. $|f(m)|^{2}dm$ . This implies that $p_{i}’ e$

are constant and $|f|^{2}\geqq a$ const. $\int_{r}$. $|f_{i}(m)|^{2}dm$ for all positive integer $n$ ,

where the constant is independent on $n$ . Consequently, since $\lim_{n\rightarrow\infty}M_{n}=$

$M$, we have our conclusion.

REMARK 1. For the above functions $f$ and $f_{i},$ $|f|\geqq a$ const. $\int_{r}|f_{i}(m)|^{2}dm$

Let $\langle, \rangle$ be a positive definite Hermitian form on $V_{\tau}$ , and $\lambda$ a fixed
imaginary number. For $a$ given $f$ in $H.(G, \chi)$ , we define $a$ linear form

$f_{\lambda}$ by

(5.3) $f_{\lambda}(\phi)=\lim_{*\rightarrow+0}\epsilon\int_{0}^{\infty}dt\int_{K}\langle(d_{P}f)(a_{t}m), (e^{\lambda}\phi)(am)\rangle e^{-(d(a_{t}n))}dm$

where $\phi\in C_{0}^{\infty}(M:V_{\tau}),$ $ e^{\lambda}\phi$ is defined by $(e^{\lambda}\phi)(a_{t}m)=e^{\lambda t}\phi(m)$ . We have im.
mediately $|f_{\lambda}(\phi)|^{2}\leqq a$ const. $|f|^{2}\int_{K}|\phi(m)|^{2}dm$ for all $\phi$ in $C_{e}^{\infty}(G:V_{f})$ . There.
fore $f_{\lambda}$ is a $V_{f}$-valued distribution on $M$. Bearing in mind (1) in Lemma
5.1 and $\lim_{t\rightarrow\infty}\rho(\log a_{t})d(a_{t})^{-1}=1$ , the same arguments as in the proof oi
Lemma 5.3 implies

(5.4) $f_{\lambda}(\phi)=p_{i}\cdot\rho(H_{0})^{-1}\int_{r}\langle f_{i}(m), \phi(m)\rangle dm$ for $\phi$ in $C_{c}^{\infty}(G:V_{\tau})$ .

We shall prove that $f_{\lambda_{i}}$ is a $\int(\mathfrak{m})- finite$ and $K_{r}$-finite distribution on $G$

after the following lemma.

LEMMA 4. We define a function $g_{\epsilon}$ on $G$ by $g_{e}(x)=e^{-\cdot d(g)}$ for a given
positive real number $\epsilon$ . Let $X$ be an element in the Lie algebra $\mathfrak{g}$ of $G$

Then we have $g_{e}(X;x)\leqq a$ const. $g_{\iota}(x)$ for all $x$ in $KA_{0}^{+}K$ where the $con$.
stant does not depend on $\epsilon$ .

PROOF. Let $\tilde{\mathfrak{a}}_{0}$ be a $\theta$-stable Cartan subalgebra of $\mathfrak{g}$ containing $a_{0^{\{}}$

and $\Phi(\tilde{\mathfrak{a}}_{0}),$
$\mathfrak{g}_{\alpha},$ $\cdots$ be the same as in \S 1. We choose $X_{\alpha}$ in $\mathfrak{g}_{\alpha}$ satisfying

$B(X_{\alpha}, X_{-\alpha})=1$ ($B$ is the Killing form on $\mathfrak{g}_{\iota}$). Let $\mathfrak{g}=f\oplus \mathfrak{p}$ be the Cartan
decomposition of $\mathfrak{g}$ . Then $X_{\alpha}$ can be expressed as $X_{\alpha}=Y_{\alpha}+Z_{\alpha}$ , $Y_{\alpha}$ el
and $Z_{\alpha}\in \mathfrak{p}$ . Therefore, for each root $\alpha$ in $\Phi(\tilde{\mathfrak{a}}_{0})$ , $Ad(a)Y_{\alpha}=$

$(1/2)Ad(a)(X_{\alpha}+\theta(X_{\alpha}))=\cosh(\alpha(\log a))Y_{\alpha}+\sinh(\alpha(\log a))Z_{a},$ $a\in A_{0}$ . We now
assume that $a$ is a regular element in $A_{0}$ . Then

(5.5) $Z_{\alpha}=(\sinh(\alpha(\log a))^{-1}(Ad(a)Y_{\alpha}-\cosh(\alpha(\log a))Y_{\alpha})$ .
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Put $G_{0}=KA_{0}^{+}K$. We see that the mapping $(k_{1}, a, M_{0}k_{2})\rightarrow k_{1}ak_{2}$ of $ K\times A_{0}^{+}\times$

$(M_{0}\backslash K)$ into $G$ is an analytic diffeomorphism. Consequently if $k_{1}ak_{2}=$

$k_{1}^{\prime}a’ k_{2}^{\prime}$ , then $a=a^{\prime}$ and $k_{1}^{-1}k_{1}^{\prime}=k_{2}^{\prime}k_{2}^{-1}\in M_{0}$ where $k_{1},$ $k_{2},$ $k_{1}^{\prime},$ $k_{2}^{\prime}\in K,$
$a,$ $a^{\prime}\in A_{0}^{+}$ .

Let us prove Lemma 5.4. Let $x=k_{1}ak_{2}$ be an element in $KA_{0}^{+}K$. Then
the value $(d/dt)g_{\epsilon}(\exp(tAd(k_{1})^{-1}Xx)|_{t=0}$ is uniquely determined by $x$ . Select
a base $\{H_{1}, H_{2}, \cdots, H_{m}\}$ of $\tilde{\mathfrak{a}}_{0}$ as follows; $H_{1},$ $H_{2},$

$\cdots,$
$H_{l}\in \mathfrak{a}_{0}$ and $H_{l+1}$ ,

$H_{\iota+2},$
$\cdots,$ $H_{m}\in\tilde{\mathfrak{a}}_{0}\cap f$ . Then Ad $(k_{1})^{-1}X$ is of the form $Ad(k_{1})^{-1}X=$

$\sum_{i=1}^{n}u_{i}(k_{1})H_{i}+\sum_{\alpha e\Phi(a_{0})}\sim u_{\alpha}(k_{1})X_{\alpha}$ where $u_{i}$ and $u_{\alpha}$ are analytic on $K$.
Bearing in mind the function $g_{\epsilon}$ is K-invariant, we have immediately
$g_{\epsilon}(Y_{\alpha};a)=g_{\epsilon}(a;Y_{\alpha})=0$ for all roots $\alpha,$ $g_{\epsilon}(H_{l};a)=g_{\epsilon}(a;H_{i})=0$ for $i>l$ and
$g_{\epsilon}(X_{\alpha};a)=g_{\epsilon}(a;X_{\alpha})=0$ for all roots $\alpha$ in $\Phi(\tilde{\mathfrak{a}}_{0})$ which vanish identically on
$\mathfrak{a}_{0}$ . Therefore

$g_{\epsilon}(X;x)=g_{e}((Ad(k_{1})^{-1}X);a)=\sum_{i=1}^{l}u_{l}(k_{1})g_{\epsilon}(H_{i};a)+$

$\sum_{(\alpha a_{0},\alpha\neq 0on_{a_{0}}}u_{\alpha}(k_{1})g_{\epsilon}(X_{\alpha};a)$
.

For $i\leqq l,$ $g_{\epsilon}(H_{i}:a)=d(a)^{-1}B$( $H_{i}$ , log $a$).

Hence, we have $|g_{\epsilon}(H_{i};x)|\leqq\epsilon|H_{i}|$ for all $i\leqq l$ . Let $\alpha$ be an element
in $\Phi(\tilde{\mathfrak{a}}_{0})$ which does not vanish on $\mathfrak{a}_{0}$ . By (5.5), we get $g_{e}(X_{\alpha};a)=$

$g_{e}(Z_{\alpha};a)=g_{\epsilon}(a;Ad(a^{-1})Z_{\alpha})=(\sinh\alpha(\log a^{-1}))g_{e}(a;Y_{\alpha})=0$ . Consequently we
have $|g_{\epsilon}(X;a)|\leqq a$ const. $\times\epsilon g_{\epsilon}(x)$ for all $x$ in $KA_{0}^{+}K$.

Let $\sigma$ be the conjugation of $\mathfrak{g}_{0}$ with respect to $\mathfrak{g}$ . We define an
antilinear automorphism *of $\mathfrak{g}_{0}$ by

(5.6) $X^{*}=-\sigma(X)$ for $X$ in $\mathfrak{g}_{e}$ .
We extend *canonically to the universal enveloping algebra $u(\mathfrak{g})$ of $\mathfrak{g}_{0}$ .

LEMMA 5. Let $f$ be an element in $H_{f}(G, \chi),andf_{P},$ $f_{i}$ be the same
as in (5.2). Then we have that $f_{i}$ is $8(\mathfrak{m})- finite$ , and $f_{P}$ satisfies $\mu_{P}(z)f_{P}=$

$\chi(z)f_{P}$ for all $z$ in 8 $\cdot$

PROOF. We fix a number $i(1\leqq i\leqq q)$ , and let $f_{\lambda_{\ell}}$ be the distribution
on $M$ defined by (5.4). It is easy to see that $f_{\lambda}$, is $\tau_{K_{H}}$-spherical. Let
$z$ be an element in 8 $\cdot$ By using Lemma 1.1, we have $b=z-\gamma_{g/m}(z)e$
$\theta(\mathfrak{n}_{0})u(\mathfrak{g})$ . From $\gamma_{q/m_{1}}(z)=d_{P}^{-1}\circ\mu_{P}(z)\circ d_{P}$ , it follows that $d_{P}(a_{t}m)f(am;z)=1$

$(d_{P}f)(a_{t}m;\mu_{P}(z))+d_{P}(a_{t}m)f(a_{t}m;b)$ . Since $b$ is of the form $b=Xb$ ’ for
some $X$ in $\theta(\mathfrak{n}_{0}),$ $b^{\prime}$ in $u(\mathfrak{g}_{0}),$ $f(a_{t}m;b)$ is estimated as follows;

$|f(am;b)|\leqq aconst.|Ad(a_{t}m)|_{\theta(\mathfrak{n})}|\sup_{1\leq i\leqq k}|f(X_{i};a_{t}m;b^{\prime})|$

where $X_{1},$ $X_{2},$
$\cdots,$ $X_{k}$ is a base of $\theta(\mathfrak{n})$ . Since $X_{i}fb^{\prime}$ belongs to $H_{\tau^{\prime}}(G, \chi)$
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for a suitable double representation $\tau^{\prime}$ (See Remark 2.1.), the above
estimation for $fb^{\prime}$ and Lemma 4.2 imply that

$\lim_{l\rightarrow+0}\epsilon\int_{0}^{\infty}dt\int_{K}\langle d_{P}(am)f(a_{t}m;b’), e^{(\lambda_{i}t)}\phi(m)\rangle e^{-ed(a_{t}\prime*)}dm=0$ .
Hence we have

(5.7) $(zf)_{\lambda_{i}}(\phi)=\lim_{e\rightarrow+0}\epsilon\int_{0}^{\infty}dt\int_{r}\langle(d_{P}f)(a_{\iota}m), (e^{\lambda_{i}}\phi)(a_{t}m;\mu_{P}(z)^{*})\rangle e^{-\cdot d(a_{t}n)}dm$ .

Define a ring homomorphism $\eta_{i}$ of $\int(\mathfrak{m}_{1})$ onto $\int(\mathfrak{m})$ as follows; $\eta_{i}(z)=zfol$

$z$ in $8(\mathfrak{m})$ and $\eta_{i}(H)=(x_{i}-\rho_{P})(H)$ for $H$ in $\mathfrak{a}$ . By definition, we havt
$\chi(z)f_{\lambda}(\phi)=f_{\lambda_{i}}((\eta_{i}\circ\mu_{P}(z))\phi)$ for all $z$ in 8 $\cdot$ On the other hand, $8(\mathfrak{m}_{1})$ is a finitely
generated free $\mu_{P}(3)$-module, that is, there exist $z_{1},$ $z_{2},$ $\cdots,$ $z_{n}$ in $3(\mathfrak{m}_{1}$

such that $8(\mathfrak{m}_{1})=\mu_{P}(8)z_{1}+\cdots+\mu_{P}(8)z_{n}$ . This implies $3(\mathfrak{m})=\eta_{i}(8(\mathfrak{m}_{1}))=$

$(\eta_{i}\circ\mu_{P})(\int)\eta_{i}(z_{1})+\cdots+(\eta\circ\mu_{P})(\int)\eta(z_{n})$ . Hence the dimension of $\int(\mathfrak{m})f_{\lambda_{i}}$ if
finite. It remains to prove $f$ is analytic on $M$ and $f_{P}$ satisfies $\mu_{P}(z)f_{P}=$

$\chi(z)f_{P}$ . In view of the formula in (5.5), the finiteness for dim $8(\mathfrak{m})f_{i}$ ig

obvious. Consequently $f_{i}$ is a finite linear combination of the eigen.
functions for a certain elliptic differential operator on $M$. Therefore $f$

is real analytic on $M$, and by (5.7) $\mu_{P}(z)f_{P}=x(i)f_{p}$ for all $z$ in 3. Thi\dagger

completes our proof.
Sumarizing the previous five lemmas we have the following.

THEOREM 1. Let $f$ be an element in $H.(G, \chi)$ and $P=MAN$ the $p.s.g.r$

of $G$ corresponding to a fixed simple root $\beta$ in $\Phi(A_{0})$ . Then there is an
analytic function $f_{P}$ on $M$ with the following properties;
(5.8) (1) $f_{P}$ is of the form $f_{P}(am)=\sum_{i=1}^{q}e^{\lambda}{}^{t}f_{i}(m)$ for $a_{t}$ in $A,$ $mir$

$M$ where all $\lambda_{i}s$ are purely imaginary and $f_{i}’ s$ are square $integrabl_{(}$

on $M$,
(2) for each positive real numbers $r$ and $r$ ,

$\int_{A(\beta,)}|(d_{P}f-f_{P})(a)|^{2}D_{K}(a)(1+d(a))^{r^{\prime}}da<\infty$ ,

(3) $\mu_{P}(z)f_{P}=x(z)f_{P}$ for all $z$ in 8 $\cdot$

REMARK 2. The function $f_{P}$ on $M$ has the similar properties to th $($

constant term along $P$ in the sense of Harish-Chandra (see Lemmas 57
58 in [1], or Theorems 14.1, 14.2, Part II in [7]). In [1], the constan
term of $f$ was calculated under the assumption $f$ satisfies the weal
inequality”. In the above theorem, we assume that $f$ is a $\tau$-spherica

eigenfunction of 3 and $\lim_{\epsilon\rightarrow+0}\epsilon\int_{a}|f(x)|^{2}e^{-\cdot d(x)}dx$ is finite.
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Let $f$ be an element in $H_{\tau}(G, \chi)$ . We shall prove $f$ satisfies the weak
inequality which is an application of Theorem 5.1. From this fact we
see that $f_{P}$ is actually the constant term of $f$ along $P$ (cf., [7]).

Let $\rho$ be one half the sum of all positive roots in $\Phi(\mathfrak{a}_{0})$ . We define
a function : on $G$ , which is called elementary spherical function on $G$ ,
by

(5.9) $\Xi(x)=\int_{K}e^{-\rho^{(}H(xk))}dk$ , $x\in G,$ $k\in K$ ,

where $H(xk)$ is determined by $xk\in K\exp(H(xk))N_{0}$ , $H(xk)\in \mathfrak{a}_{0}$ . It is
known that there exists a positive constant $c$ and a number $m>0$ such
that

(5.10) $e^{-\rho^{(\log a)}}\leqq\Xi(a)\leqq ce^{-\rho^{(\log a)}}(1+d(a))^{n}$ for all $a$ in $c1(A_{0}^{+})$

(cf. Proposition 8.3.7.3 and Proposition 8.7.7.4 in [8]).
The Schwarz space $\mathfrak{C}(G)$ on $G$ is defined by

(5.11) $\mathfrak{C}(G)=$ {$ feC^{\infty}(G);\nu_{r,b_{1},b_{2}}(f)<\infty$ for all $r\geqq 0,$ $b_{1},$ $b_{2}\in u(\mathfrak{g})$ }

where
$\nu_{r,b_{1},b_{2}}(f)=\sup_{xeG}|(b_{1}fb_{2})(x)|\overline{\underline{\sim}}(x)^{-1}(1+d(x))^{r}$

We see that $\mathfrak{C}(G)$ is a topological vector space.

DEFINITION. A distribution $T$ on $G$ is called tempered if $T$ is
extended to a continuous linear form on $\mathfrak{C}(G)$ .

THEOREM 2. Let $\chi$ be a character of 8 and $f$ a $C^{\infty}$-function on $G$

with the properties; $zf=x(z)f$ for all $z$ in 3, $f$ is K-finite and
$\lim_{\epsilon\rightarrow+0}\epsilon\int_{a}|f(x)|^{2}e^{-\epsilon d(x)}dx$ is finite. Define a distribution $T=T_{f}$ by $T(\phi)=$

$\int_{a}f(x)\phi(x)dx,$ $\phi\in C_{o}^{\infty}(G)$ . Then $T$ is tempered.

REMARK 3. Since $T$ is tempered, the function $f$ in the above theorem
satisfy the weak inequality (see for example, Lemma 8.3.8.7 in [9]), and
consequently $f_{P}$ is actually the constant term of $f$ along $P$.

PROOF OF THEOREM 2. By the assumption for $f$, there exists a finite
dimensional double representation $(\tau, V_{\tau})$ of $K$ such that $f(x)=(h(x), v)$

for some $h$ in $H_{\tau}(G, \chi)$ and $v$ in $V_{\tau}$ . On the other hand, since $ D(a)\leqq$

$e^{2\rho^{(\log a)}}$ for all $a$ in $c1(A_{0}^{+}),$ $(5.10)$ implies that for a positive number $p$ the
integral $L=\int_{A_{0}^{+}}|\Xi(a)|^{2}D(a)(1+d(a))^{-p}da$ is finite. We put $\nu_{p}(\phi)=$
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$\sup_{xea}|\phi(x)|\Xi(x)^{-1}(1+d(x))^{p}$ for $\phi$ in $C_{0}(G)$ . Using the integral formula in
Lemma 1.4, we get

$|T(\phi)|\leqq\nu_{p}(\phi)C_{a}|v|\int_{A_{0}^{+}}|h(a)|\Xi(a)(1+d(a))^{-p}D(a)da$

$\leqq\nu_{p}(\phi)C_{c}|v|L\int_{A_{0}^{+}}|h(a)|^{2}(1+d(a))^{-p}D(a)da$ .

Therefore our proof is reduced the following: The integrals $I=$

$\int_{A(\beta,)}|h(a)|^{2}D(a)(1+d(a))^{-p}da$ are finite for all $\beta$ in $\Psi_{0}$ . (See Lemma 4.1.)

Let $P$ be the maximal p.s. $g.r$ . of $G$ corresponding to a fixed element $\beta$

in $\Psi_{0}$ . Then we have

$I\leqq\int_{A(\beta,r)}|(d_{P}f)(a)|^{2}D(a)(1+d(a))^{-2}da$

$\leqq|d_{P}f-f_{P}|_{P,r.1}^{2}+2|d_{P}f-f_{P}|_{P,r.1}(\int_{A(\beta,r)}|f_{P}(a)|^{2}(1+d(a))^{-}da)^{1/2}$

$+\int_{A(\beta_{f})}|f_{P}(a)|^{2}D_{r}(a)(1+d(a))^{-4}da$ .
By Theorem 1, we have

$|d_{P}f-f_{P}|_{P.t,1}<\infty$ and $\int_{4(’.r)}|f_{P}(a)|^{2}D_{r}(a)(1+d(a))^{-2}da<\infty$ .

Hence the theorem follows.

THEOREM 3. Let $f$ be an element in $H_{\tau}(G, \chi)$ . Then the following
three conditions are equivalent

(1) $|f|=0$

(2) $f$ is square integrable on $G$

(3) $ f_{P}=0\beta$ for all $\beta$ in $\Psi_{0}$ .
REMARK 3. The equivalence between (2) and (3) is a result of

Harish-Chandra.

PROOF. By Theorem 5.1, $f$ is square integrable if and only if
$ f_{P}=0\beta$ for all $\beta$ in $\Psi_{0}$ . Therefore (2) is equivalent to (3). We shall
prove that (1) is equivalent to (2). If $f$ is square integrable on $G$ , then
by the definition of $|f|$ we have immediately $|f|=0$ . Conversely assume
that $|f|=0$ . By Remark 5.1 and (1) in Theorem 5.1, we get $f_{P_{\beta}}=0$ for
all $\beta$ in $\Psi_{0}$ . Hence $f$ is square integrable on $G$ . This completes our
proof.
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\S 6. Schur orthogonality relations.

Let us consider an irreducible unitary representation $(\pi, H)$ of $G$

with the following property;

(6.1) there exists a K-finite vector $\phi_{0}$ in $H$ such that
$ 0<\lim_{\epsilon\rightarrow+0}\epsilon\int_{a}|(\pi(x)\phi_{0}, \phi_{0})|^{2}e^{-ed(x)}dx<\infty$ .

In this section we shall state the Schur orthogonality relations for a
nonsquare integrable representation $\pi$ of $G$ satisfying (6.1).

THEOREM 1. Let $\chi$ be a character of 8 $\cdot$ We define $H(G, \chi)$ by (2.2)

and a bilinear form $(, )$ on $H(G, \chi)$ by $(f, g)=\lim_{\epsilon\rightarrow+0}\epsilon\int_{G}f(x)\overline{g(x)}e^{-\epsilon d()}xdx$ .
Assume that there exists a K-finite function $f_{0}$ in $H(G, \chi)$ such that
$|f_{0}|=(f_{0}, f_{0})^{1/2}>0$ . Then $(, )$ is a positive definite Hermitian form on
$H(G, \chi)$ .

PROOF. We first show that $L^{2}(G)\cap H(G, \chi)=\{0\}$ . Suppose that
$L^{2}(G)\cap H(G, \chi)\neq\{0\}$ . Then we have $L^{2}(G)\cap H_{K}(G, \chi)\neq\{0\}$ . Let $f$ be a
nontrivial element in $L^{2}(G)\cap H_{K}(G, \chi)$ . Since $f$ is square integrable 3-
finite and K-finite function on $G,$ $\chi$ is real regular (see \S 7, for the fact
and definition of real regular character of 8). On the other hand $H(G, \chi)$

contains K-finite function $f_{0}$ on $G$ satisfying $|f_{0}|>0$ . Consequently by
Theorem 5.3, $f_{0}$ has a nontrivial constant term $(f_{0})_{P}$ for a maximal p.s. $g.r$ .
of $G$ . Therefore by (3) in Theorem 5.1, $\chi$ is not real regular. Hence
we have a contradiction. This implies that $L^{2}(G)\cap H(G, \chi)=\{0\}$ as claimed.
Finally we shall prove the lemma. Let $f$ be an element in $H(G, \chi)$ , and
assume $|f|=0$ . In view of (2.6), we have $|\chi_{\tau}*f*x_{\sigma}|=0$ for all $\sigma,$ $\tau$ in
$g(K)$ . Using Theorem 5.3, $\chi.*f*X$. belongs to $L^{2}(G)\cap H(G, \chi)$ . Hence
by the above fact $f=\sum_{\sigma.\tau e8(K)}\chi_{\tau}*f*x_{\sigma}=0$ . This completes our proof.

Let $\chi$ and $H(G, \chi)$ be the same as above theorem. We denote the
completion of $H(G, \chi)$ by $H^{\chi}$ . For each $x$ in $G$ and $\phi$ in $H^{\chi}$ , we define
$\pi^{\chi}(x)$ by $(\pi^{\chi}(x)\phi)(y)=\phi(xy)$ for $y$ in $G$ . Since $H(G, \chi)$ is a unitary G-module
(See Lemmas 2.1 and 2.4), $(\pi^{\chi}, H^{\chi})$ is a unitary representation of $G$ .

Let $(\pi, H)$ be an irreducible unitary representation of $G$ and $\phi_{0}$ an
element in $H$ satisfying (6.1). We denote the set of all K-finite func-
tions in $H$ by $H_{K}$ . Since $\pi$ is irreducible, there exists an infinitesimal
character $\chi$ of 8 such that $ z\phi=x(z)\phi$ for all $z$ in 3. For this character
$\chi$ , we define a representation $(\pi^{\chi}, H^{\chi})$ as above. Then the function $f_{0}(x)=$

$(\pi(x)\phi_{0}, \phi_{0})$ belongs to $H(G, \chi)$ (see the proof of Lemma 13 in [4]). We
shall prove that $\pi$ is equivalent to a subrepresentation of $(\pi^{\chi}, H^{\chi})$ after
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the following preparations. Let $\tau$ be an element in $g(K)$ . Define a
projection operator of $H$ to $H_{K}$ by

(6.2) $E(\tau)\phi=\int_{K}\deg(\tau)\pi(k)\phi dk$ .
Let $\tau$ be an element in $\mathscr{G}(K)$ appearing in the restriction of $\pi$ to $K$,

We choose an element $\phi_{0}(\neq 0)$ in $H_{K}$ with the property; $E(\tau)\phi_{0}=\phi_{0}$ . We
put $\pi(f)=\int_{c}f(x)\pi(x)dx$ for $f$ in $C_{0}^{\infty}(G)$ and $H(\phi_{0})=\{\pi(f)\phi_{0};feC_{0}^{\infty}(G)\}$ . Since
$\pi$ is irreducible, the space $H(\phi_{0})$ is dense in $H$. For a given $\psi$ in $H_{K}$

we define a linear operator $S_{\psi}$ of $H(\phi_{0})$ to $C_{t}^{\infty}(G)$ by

(6.3) $S_{\psi}(\pi(f)\phi_{0})(y)=(\pi(y)\pi(f)\phi_{0}, \psi)$ , $yeG$ .
Then the image of $S_{\psi}$ is contained in $H(G, \chi)$ , and we have $S_{\psi}\circ\pi(x)=$

$\pi^{\chi}(x)\circ S_{\psi}$ for all $x$ in $G$ (see Lemma 2.1).

LEMMA 1. Let notations and assumptions being as above. We denot‘
the minimal invariant subspace of $H^{\chi}$ containing $(\pi(y)\phi_{0}, \psi)$ by $H_{\psi}$ ant
the restriction of $\pi^{\chi}$ to $H_{\psi}$ by $\pi_{\psi}$ . Then $(\pi_{\psi}, H_{\psi})$ is unitary $equivalen_{l}$.

to $(\pi, H)$ .
PROOF. By definition, it is enough to show that $(\pi_{\psi}, H_{\psi})$ is irredu,

cible and $(\pi, H)$ is infinitesimal equivalent to $(\pi_{\psi}, H,)$ (cf. corollary 4.5.5..:
in [7]). We first prove $\pi_{\psi}$ is irreducible. From $H(\phi_{0})$ is dense in $Han($

$\pi$ is irreducible, it follows that $S_{\psi}$ is injective. We put $H(\tau)=E(\tau)F$.

and

$V(\tau)=\{feC_{\epsilon}^{\infty}(G);x_{\tau}*f=f$ and $\int_{K}f(kxk^{-1})dk=f(x)$ for all $x$ in $G\}$ .

Then $V(\tau)$ is an algebra with the convolution product, and each elemen
$f$ in $V(\tau)$ operates on $H(\tau)$ canonically. It is known (cf. [2], Theorem 6
\S 2) that the representation $f\rightarrow\pi(f)$ of $V(\tau)$ is irreducible. Consequently
since $H(\tau)$ is finite dimensional, the representation $f\rightarrow\pi_{\psi}(f)$ of $V(\tau)0l$

$S_{\psi}(H(\tau))$ is irreducible. Let $W$ be a nontrivial closed invariant subspac $($

of $H_{\psi}$ and $W^{\perp}$ the orthogonal complement of $W$ in $H_{\psi}$ . Then we $hav($

$S_{\psi}(H(\tau))\subseteqq E(\tau)W+E(\tau)W^{\perp}$ , and hence by the above fact, $E(\tau)W\supseteqq S_{\psi}(H(\tau)$

or $E(\tau)W^{\perp}\supseteqq S_{\psi}(H(\tau))$ . But $H_{\psi}$ is the minimal closed invariant $subspac|$

of $H^{\chi}$ containing $S_{\psi}(\phi_{0})$ . Therefore $E(\tau)W\supseteqq S_{\psi}(H(\tau))$ . Thus $W=H_{\psi}an($

$(\pi_{\psi}, H_{\psi})$ is irreducible. Since $S_{\psi}\circ\pi(x)=\pi_{\psi}(x)\circ S_{\psi}$ on $H(\phi_{0})$ , the infinites
imal equivalence is obvious. Hence the lemma follows.

THEOREM 2. Let $(\pi, H)$ be an irreducible unitary representation $0$
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$G$ , and assume that there exists a K-finite vector $\phi_{0}$ such that $0<$

$\lim_{e\rightarrow+0}\epsilon\int_{0}|(\pi(x)\phi_{0}, \phi_{0})|^{2}e^{-\epsilon d(x)}dx<\infty$ . Then for a suitable constant $d_{\pi}$ , we
have

$\lim_{e\rightarrow+0}\epsilon\int_{a}|(\pi(x)\phi, \psi)|^{2}e^{-\epsilon d(x)}dx=d_{\pi}^{-1}|\phi|^{2}|\psi|^{2}$

for all K-finite vectors $\phi,$ $\psi$ in $H_{K}$ .
PROOF. Let $\phi_{0}$ be a fixed element in $H_{K}$ . We define $S_{\psi}$ and $(\pi_{\psi}, H_{\psi})$

as in (7.2) for $\phi_{0}$ in $H_{K}$ . Since $\pi$ and $\pi\psi$ are unitary equivalent to each
other, there is a unitary mapping $Q_{\psi}$ of $H_{\psi}$ to $H$ such that $\pi(x)\circ Q_{\psi}=$

$Q_{\psi}\circ\pi_{\psi}(x)$ for all $x$ in $G$ . We put $D_{\psi}=Q_{\psi}\circ S_{\psi}$ . Therefore $D_{\psi}$ and $\pi(x)$

are commutative. Since $\pi$ is irreducible, $D_{\psi}=\lambda\psi I$ for a suitable complex
number $\lambda\psi$ where $I$ is the identity mapping of $H(\phi_{0})$ . Consequently we
have

$|\lambda\psi|^{2}|\pi(f)\phi_{0}|^{2}=|S_{\psi}(\pi(f)\phi_{0})|^{2}=\lim_{\epsilon\rightarrow+0}\epsilon\int_{a}|(\pi(x)\pi(f)\phi_{0}, \psi)|^{2}e^{-ed(x)}dx$ ,

for all $f$ in $C_{c}^{\infty}(G)$ . By using the same argument as above, we can prove
that for a fixed element $\psi_{0}$ in $H_{k}$ ,

$|x_{\phi}|^{2}|\pi(f)\psi_{0}|^{2}=\lim_{\epsilon\rightarrow+0}\epsilon\int_{a}|(\pi(x)\pi(f)\phi, \psi_{0})|^{2}e^{-ed(x)}dx,$ $feC_{e}^{\infty}(G),$ $\phi\in H_{K}$ ,

where $\lambda_{\phi}$ is a complex number. Combining these two equations, we
obtain $\lim_{\epsilon\rightarrow+0}\epsilon\int_{a}|(\pi(x)\phi, \psi)|^{2}e^{-ed(x)}dx=|x_{\phi}|^{2}|\psi|^{2}=|\lambda\psi|^{2}|\phi|^{2}$ for all $\phi,$ $\psi$ in $H_{K}$ .
We now put $d_{\pi}=|x_{\phi_{0}}|^{-2}|\phi_{0}|^{2}$ . Since $d_{\pi}^{-1}|\phi_{0}|^{2}|\psi|^{2}=|\lambda\psi|^{2}|\phi_{0}|^{2}=(|\lambda\psi|^{2}|\psi|^{-2})(|\phi_{0}|^{2}|\psi|^{2})$ ,
we get $d_{\pi}=|\lambda\psi|^{-2}|\psi|^{2}$ for all $\psi$ in $H_{K}$ . Hence we have our conclusion.

THEOREM 3. Let $(\pi_{\ell}, H_{l})(i=1,2)$ be two irreducible unitary repre-
sentation of $G$ satisfying (6.1). Suppose $\pi_{1}$ and $\pi_{2}$ are inequivalent.
Then we have, for each $\phi,$ $\phi$ in $H_{1,K}$ and $\psi,$ $\psi^{\prime}$ in $H_{2.K}$ ,

$\lim_{\epsilon\rightarrow+0}\epsilon\int_{0}(\pi_{1}(x)\phi, \phi^{\prime})\overline{(\pi_{2}(x)\psi,\psi)}e^{-ed(x)}dx=0$

where $H_{i,K}$ is the set of all K-finite vectors in $H_{i}$ .
PROOF. Let $\phi_{0}$ and $\psi_{0}$ be two fixed elements in $H_{1,K}$ and $H_{2,K}$

respectively. We define a bilinear form $\langle, \rangle$ on $H_{1.K}\times H_{2,K}$ by $\langle\phi, \psi\rangle=$

$\lim_{\epsilon\rightarrow+0}\epsilon\int_{0}(\pi_{1}(x)\phi, \phi_{0})\overline{(\pi_{2}(x)\psi,\psi_{0})}e^{-\epsilon d(x)}dx$ for $\phi$ in $H_{1,K}$ and $\psi$ in $H_{2,K}$ . Using

the Schwarz inequality and Theorem 6.2, we have $|\langle\phi, \psi\rangle|\leqq$

$(d_{\pi_{1}}d_{\pi_{2}})^{-1}|\phi_{0}||\psi_{0}||\langle\phi, \psi\rangle|$ for all $\phi eH_{1,K}$ and $\psi$ in $H_{2,K}$ .
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Consequently the bilinear form can be extended to a continuouf
linear form on $H_{1}\times H_{2}$ . Let $S$ be the linear operator of $H_{1,K}$ to $H_{2,B}$

defined by $(S\phi, \psi)=\langle\phi, \psi\rangle$ . Then $S$ is continuous and $S\circ\pi_{1}(x)=\pi_{2}(x)\circ\underline{\sigma}$

for all $x$ in $G$ . Since $\pi_{i}’ s$ are irreducible and inequivalent to each other,
we get $S=0$ . Thus the conclusion follows.

Let $(\pi, H)$ be an irreducible unitary representation of $G$ . We define
a linear form $\theta_{\pi}$ on $C_{0}^{\infty}(G)$ by

(6.4) $\theta_{\pi}(f)=trace(\int_{a}f(x)\pi(x)dx)$ .
It is known that $\theta_{\pi}$ is a distribution on $G$ (see, for instance, Theorem
4.5.7.6 in [8]).

THEOREM 4. Let $(\pi, H)$ be an irreducible unitary representation of
G. Assume that there exists a K-finite vector $\phi_{0}$ such that

$ 0<\lim_{e\rightarrow+0}\epsilon\int_{a}|(\pi(x)\phi_{0}, \phi_{0})|^{2}e^{-\epsilon dta)}dx<\infty$ .
Then $\theta_{\pi}$ is tempered.

PROOF. Choose orthogonal base $\phi_{1},$ $\phi_{2},$ $\cdots,$ $\phi_{n},$ $\cdots$ in $H$ such that
$E(\tau_{i})\phi_{i}=\phi_{i}$ for some $\tau_{i}$ in $g(K)$ . We put $N(\tau)=the$ number of elements
in the set $\{i:E(\tau)\phi_{i}=\phi_{i}\}$ . Then we have $N(\tau)\leqq aconst.(\deg\tau)^{2}$ (cf. Theorem
4.5.2.10 in [8]). Let $\Omega_{K}$ be the Casimir operator on $K$ and $\tau(\Omega_{K})$ the
positive constant defined by $\Omega_{K}x_{\tau}=\tau(\Omega_{K})\chi_{\tau}$ . Choosing a suitable positive
number $m$ , we have $\sum_{\tau e8(K)}N(\tau)\tau(\Omega_{K})^{-n}<\infty$ . Let $h$ be an element in the
Schwarz space $\mathfrak{C}(G)$ of $G$ (see (5.11) for definition). We have immediately

(6.5) $|\theta_{\pi}(h)|\leqq\sum_{\tau e8(K)}\tau(\Omega_{K})^{-*}(\sum_{\tau_{i}=\tau}\int_{a}|h(x;\Omega_{K}^{*})||(\pi(x)\phi_{i}, \phi_{i})|dx)$ .
On the other hand,

$\int_{a}|h(x;\Omega_{K}^{*})||(\pi(x)\phi_{i}, \phi)|dx\leqq\lim_{\tau\rightarrow\infty}\int_{r\geq d(x)}|h(x;\Omega_{\dot{K}}^{\alpha})||(\pi(x)\phi_{i}, \phi_{i})|dx$

$\leqq\lim_{T\rightarrow\infty}(\int_{\tau\geq d(x)}|h(x;\Omega_{K}^{n})|^{2}T^{2}dx)^{1/2}((1/T)^{2}\int_{\tau\geq d(x)}|(\pi(x)\phi_{i}, \phi_{i})|^{2}dx)^{1/2}$ .
Bearing in mind Lemma 1.4 and (5.10), we find a positive number $p$ so
that $\lim_{T\rightarrow\infty}\int_{\tau\geq d(x)}T\Xi(x)^{2}(1+d(x))^{-2p}dx<\infty$ . Hence we obtain

\langle 6.6) $\lim_{T\rightarrow\infty}T\int_{\tau\geq d(x)}|h(x;\Omega_{K}^{*})|^{2}dx\leqq\nu(h)^{2}\lim_{T\rightarrow\infty}T\int_{\tau\geq d(x)}\Xi(x)^{2}(1+d(x))^{-2p}$



SCHUR ORTHOGONALITY RELATIONS 333

where $\nu(h)=\sup_{xeG}|h(x;\Omega_{K}^{m})|\Xi(x)^{-1}(1+d(x))^{-p}$ . Consequently our proof of
the theorem is reduced the following.

LEMMA 2. Let $H(G, \chi)$ be the same as in (2.2) and $H_{K}(G, \chi)$ the set
of all K-finite functions in $H(G, \chi)$ . Then there exists a positive real
constant $C_{0}$ such that $\lim_{T\rightarrow\infty}(1/T)\int_{\tau\geq d(x)}|f(x)|^{2}dx\leqq C_{0}|f|^{2}$ for all $f$ in
$H_{K}(G, \chi)$ .

PROOF. Let $\beta$ be a fixed element in the simple root system $\Psi_{0}$ of
$\Phi(A_{0})$ and $A(\beta, \gamma_{0})$ the same as in Lemma 4.1. Then, by the integral
formula in Lemma 1.4, we have

$|f|^{2}\geqq\lim_{\epsilon\rightarrow+0}\epsilon\int_{A(\beta,r)}0h(a)e^{-ed(x)}dx$ where $h(a)=\int_{K\times K}|f(kak^{\prime})|^{2}D(a)dkdk^{\prime}$ ,

hence by Lemma 4.1

$\geqq\lim_{\epsilon\rightarrow+0}\epsilon\int_{0}^{\infty}\int_{B_{r0}(t)}h(a_{t}a^{*})e^{-*d(a_{t}a*)}da^{*}dt$ .
We choose an element $H$ in $\mathfrak{a}$ ( $=\{X\in a_{0};\alpha(X)=0$ for all $\alpha$ in $\Psi_{0}-\{\beta\}\}$ )
satisfying $\beta(H)=1$ . By (4.8) $ r_{0}d(a_{t}a^{*})\leqq c_{2}\rho(\log a_{t}a^{*})\leqq c_{2}\beta(\log a_{t}a^{*})\leqq$

$c_{2}\overline{\beta}(\log a_{t}a^{*})=c_{2}t$ . This implies that

(6.7)
$|f|^{2}\geqq\lim_{\epsilon\rightarrow+0}\epsilon\int_{0}^{\infty}\int_{B_{r_{0}}(t)}h(a_{t}a^{*})e^{-\epsilon e^{-1}}{}^{t}da^{*}dt$

(6.8) $\geqq\lim_{\epsilon\rightarrow+0}\int_{0}^{\infty}\int_{B_{t0}(t)}h(a_{t}a^{*})e^{-\epsilon 0^{-1}}{}^{t}da^{*}dt$

where $c=r_{0}c_{2}^{-1}$ .
Applying Tauberian theorem of Hardy-Littlewood to the integral

(6.8), we have

$|f|^{2}\geqq c\lim_{T\rightarrow+\infty}(1/T)\int_{\tau\geq t,a_{t}a^{l}eA(\beta,r_{0})}h(a_{t}a^{*})da^{*}dt$ .
Again by (4.8), $d(aa^{*})\geqq c_{1}\rho(\log a_{t}a^{*})\geqq c_{1}\beta(\log a_{t})=c_{1}t$ . Therefore

$\int_{\tau\geqq t,aa^{e}eA(\beta,r)}h(a_{t}a^{*})da^{*}dt\geqq\int_{oT\geq d(x)}h(a)dat0a^{1}eA(\beta,r_{0})$

Consequently we have $|f|^{2}\geqq c_{1}^{-1}c\lim_{T\rightarrow+\infty}(1/T)\int_{\tau\geqq d(x)}$ $|f(x)|^{2}dx$ for all $f$

in $H_{K}(G, \chi)$ . Let $l$ be the number of elements $in^{0}\Psi_{0}$

xeKA $(\beta,r)K$

By the above
inequality, we have immediately $lc{}_{1}C^{-1}|f|^{2}\geqq\lim_{T\rightarrow+\infty}(1/T)\int_{\tau\geqq d(x)}|f(x)|^{2}dx$ for
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all $f$ in $H(G, \chi)$ . This completes our proof.

\S 7. Appendix.

Let $\chi$ be a character of 8, and define the space $H_{\tau}(G, \chi)$ by (3.2) for
a finite dimensional double unitary representation $\tau$ of $K$. In this section
we shall calculate the constant term $f_{P}$ of $f$ in $H_{f}(G, \chi)$ more explicitely
after the following preparations. Let $\tilde{\mathfrak{a}}$ be a $\theta$-stable Cartan subalgebra
of $\mathfrak{g}$ and $\mu=\mu_{\iota/a}^{\vee}$ the Harish-Chandra isomorphism of $\int$ onto $I(\tilde{\mathfrak{a}})$ . For
each character $\chi$ of 3, there is a linear form $\Lambda$ on $\tilde{\mathfrak{a}}_{0}$ such that $\mu(z)(\Lambda)=$

$\chi(z)$ for all $z$ in $\int$ . We shall denote $x=x_{I}$ . Let $\mathfrak{a}_{R}$ and $\mathfrak{a}_{I}$ be the sub-
spaces of a defined by $\mathfrak{a}_{R}=\{H\in\tilde{\mathfrak{a}};\theta(H)=-H\}$ and $\mathfrak{a}_{I}=\{He\tilde{\mathfrak{a}};\theta(H)=H\}$

respectively. Then we have $\tilde{\mathfrak{a}}=\mathfrak{a}_{R}\oplus \mathfrak{a}_{I}$ .
DEFINITION. A character $x=x_{A}$ of 8 is called real if $\Lambda$ is real on

$\sqrt{-1}\mathfrak{a}_{I}\oplus \mathfrak{a}_{R}$ , and $\chi$ is regular if $\Lambda$ satisfies $(\Lambda, \alpha)\neq 0$ for all roots $\alpha$ in
$\Phi(\tilde{\mathfrak{a}}_{0})$ .

Let $\tau$ be a finite dimensional double representation of $K$ and $P=MAN$
the p.s. $g.r$ . of $G$ corresponding to a simple root $\beta$ in $\Phi(A_{0})$ . We shall
use the following notations;

$x^{*};$ a character of the center 3(m) of $u(\mathfrak{m})$ ,
$L_{\tau}^{2}(M;X^{*})$ : the set of all square integrable $\tau_{K_{K}}$-spherical functions $f$

which satisfy $zf=\chi*(z)f$ for all $z$ in $8(\mathfrak{m})$ .
Let $f$ be an element in $H_{\tau}(G, \chi)$ . Then by Theorem 5.1, $f_{P}$ is of the form

(7.1) $f_{P}(a_{t}m)=\sum_{i=1}^{q}e^{\lambda_{i}t}f(m)$

for some $f_{i}$ in $L_{f}^{2}(M;x_{l^{*}})$ and $\lambda_{i}$ in $\sqrt{-1}R$ ( $\lambda_{i}\neq\lambda_{j}$ for $i\neq j$) where $\chi_{i}*$ is
a character of $8(\mathfrak{m}),$ $a_{t}=\exp(tH)$ and $H$ is an element in $\mathfrak{a}$ satisfying
$\beta(H)=1$ . We now assume $f_{P}\neq 0$ . By the results of Harish-Chandra (cf.

[7], Proposition 15.7 and Proposition 15.13), we have rank$(M)=rank(K\cap M)$ ,

and all $x_{i^{*}}s$ are real regular. Let $\tilde{\mathfrak{a}}^{*}$ be a compact Cartan subalgebra

of $\mathfrak{m}$ . Then $\tilde{\mathfrak{a}}=\mathfrak{a}\oplus\tilde{\mathfrak{a}}^{*}$ is a Cartan subalgebra of $\mathfrak{g}$ . We define a linear
form $\overline{\beta}$ on $\tilde{\mathfrak{a}}$ by

(7.2) $\overline{\beta}=0$ on $\tilde{\mathfrak{a}}^{*}$ and $\overline{\beta}=\beta$ on $\mathfrak{a}$ .
Since $\mu_{P}(z)(e^{\lambda_{i}}f_{i})=\chi(z)(e^{\lambda_{i}}f_{i})$ for $z$ in 8, $X$ is given by $x=\chi(\lambda\overline{\beta}+t_{i})$ for a
suitable real regular linear form $A_{i}$ on $\tilde{\mathfrak{a}}^{*}$ satisfying $\chi_{l}*=\chi_{A_{i}}*$ . This implies
that there exists $s_{i}$ in $W(\tilde{\mathfrak{a}})$ such that $s_{i}(\sqrt{-1}\lambda_{i}\overline{\beta}+\Lambda_{i})=\sqrt{-1}\lambda_{1}\overline{\beta}+\Lambda_{i}$ for
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$i=2,3,$ $\cdots,$ $q$ . Therefore $s_{i}(\lambda_{i}\overline{\beta})=\lambda_{1}\overline{\beta}$ for all $i$ . This conclude that $i\leqq 2$

and $\lambda_{i}=\pm\lambda_{1}$ , and hence we have the following.

LEMMA 1. Let $f$ be an element in $H_{\tau}(G, \chi)$ . Assume that $f_{P_{\beta}}\neq 0$ .
Then $P_{\beta}$ is cuspidal and $f_{P_{\beta}}$ is of the form

$f_{P}\beta(a_{t}m)=e^{\sqrt{}}\overline{-1}\lambda tf_{+}(m)+e^{-\sqrt{-1}\lambda t}f_{-}(m)$

where $a_{t}=\exp(tH)$ , His an element in a satisfying $\beta(H)=1,$ $\lambda$ is a real
number, $f_{+}$ and f-belong to $L_{\tau}^{2}(M;x*),$ $\chi*is$ a real regular character of
$\int(\mathfrak{m})$ .

LEMMA 2. Let $P=P_{\beta}$ and $P’=P_{\beta^{\prime}}$ be two maximal $p.s.g.r$ . of $G$ .
Assume that there are two functions $f$ in $H_{\tau}(G, \chi)$ and $f$

’ in $H.,(G, \chi)$

such that $f_{P}\neq 0$ and $ f_{P}^{\prime},\neq 0(\tau$ and $\tau^{\prime}$ are some finite dimensional double
representations of $K$). Then we have $P=P’$ .

PROOF. Let $\tilde{\mathfrak{a}}_{0}$ be Cartan subalgebra of $\mathfrak{g}$ containing $\mathfrak{a}_{0}$ and $\overline{\beta}$ (resp.
$\overline{\beta})$ be the same as in (7.2) coresponding to $\beta$ (resp. $\beta^{\prime}$). Choosing two
elements $y_{\beta}$ in $M_{0}$ and $y_{\beta^{\prime}}$ in $M_{c}^{\prime}$ we have

(7.3) ${}^{t}Ad(y_{\beta})\overline{\beta}=\beta$ on $\mathfrak{a},{}^{t}Ad(y_{\beta})\overline{\beta}=0$ on $\mathfrak{a}^{\perp},$ $Ad(y_{\beta})(\tilde{\mathfrak{a}}_{0})_{c}=\tilde{\mathfrak{a}}_{0^{\prime}}$

${}^{t}Ad(y_{\beta})\overline{\beta}^{\prime}=\beta^{\prime}$ on $\mathfrak{a}’,{}^{t}Ad(y_{\beta^{\prime}})\overline{\beta}=0$ on $(\mathfrak{a}’)^{\perp},$ $Ad(y_{\beta^{\prime}})(\mathfrak{a}_{0})_{c}=\mathfrak{a}_{c}^{\prime}$

where $\mathfrak{a}^{\perp}$ is the orthogonal complement of $\mathfrak{a}$ in $\tilde{\mathfrak{a}}_{0}$ .
We see that ${}^{t}Ad(y_{\beta})\overline{\beta}$ and ${}^{t}Ad(y_{\beta^{\prime}})\overline{\beta}^{\prime}$ are dominant on $\mathfrak{a}_{0}$ . Let $\chi*and$

$(x^{\prime})^{*}$ be the same as in Lemma 7.1 corresponding to $P$ and $P$ ’ respectively.
Then $\chi*=\chi_{A}*$ and $(\chi)^{*}=(\chi)_{A}^{*}$ for two linear forms $\Lambda$ and $\Lambda^{\prime}$ . Consequently
we have $x=x_{t\prime}Ad(y_{\theta})(-1\lambda\beta+A)=x_{t}$ , for $\lambda,$ $\lambda$ in $\sqrt{-1}R$ . Therefore
$s{}^{t}Ad(y_{\beta})(\sqrt{-1}x\beta+\Lambda)={}^{t}Ad(y_{\beta^{\prime}})(\sqrt{-1}x’\beta^{\prime}+\Lambda’)$ for a suitable element $s$ in
$W(\tilde{a}_{0})$ , and hence $s^{t}Ad(y_{\beta})\overline{\beta}={}^{t}Ad(y_{\beta^{\prime}})\overline{\beta}’$ . Since ${}^{t}Ad(y_{\beta})\overline{\beta}$ and ${}^{t}Ad(y_{\beta^{\prime}})\overline{\beta}$ are
dominant, we have $\beta=\beta^{\prime}$ . This completes our proof.

Finally we shall state an example $G$ having a maximal cuspidal p.s. $g.r$ .
of $G$ .

LEMMA 3. Let $G$ be a connected noncompact real semisimple Lie
group with finite center. Assume that $G$ has a compact Cartan subgroup.
Then there exists a maximal $ p.s.g.\gamma$ . of $G$ which is cuspidal.

PROOF. We choose, for each $\alpha$ in $\Phi(\tilde{\mathfrak{a}}_{0}),$ $X_{\alpha}$ in $\mathfrak{g}_{\alpha}$ satisfying $B(X_{\alpha}, X_{-\alpha})=$

1. Then we have $B(H, H_{\alpha})=\alpha(H)$ for all $H$ in $\tilde{\mathfrak{a}}_{0}$ . By our assumption for
$G$ , there exists a strongly orthogonal system $\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{l}\}$ in $\Phi(\tilde{\mathfrak{a}}_{0})$ such
that $\{H_{\alpha},;1\leqq i\leqq l\}$ generates $\mathfrak{a}_{0}$ over $R$ (see, for instance, Lemma 3 in [5]).
We may assme all $\alpha_{i}’ s$ are positive. We put $\Phi^{*}=\{\alpha\in\Phi(A_{0});(\alpha, \alpha_{1})=0\}$ .
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Then $\Phi^{*}$ is an abstruct root system, and $\Psi_{0}-\Phi^{*}$ consists of exactly one
root $\beta$ . Let $P=P_{\beta}$ be the p.s. $g.r$ . of $G$ corresponding to $\beta$ . We shall
prove $P$ is cuspidal. Let $\alpha$ be one of each element in the strongly
orthogonal system. Since $\alpha$ is real on $\tilde{\mathfrak{a}}_{0}$ , we can assume $X_{\alpha}eg_{a}$ and
$\theta(X_{\alpha})=-X_{-\alpha}$ . Put $Y_{\pm\alpha}=\sqrt{2}|\alpha|^{-2}X_{\pm\alpha}$ , $Z_{\alpha}=2|\alpha|^{-2}H_{\alpha}$ . Then we have
$[Y_{\alpha}, Y_{-\alpha}]=Z_{\alpha}$ and $[Z_{\alpha}, Y_{\pm\alpha}]=2Y_{\pm\alpha}$ . Let $Y_{\alpha}$ be the element in $G_{o}$ defined
by $y_{\alpha}=\exp(\sqrt{-1}\pi/4)(Y_{\alpha}+Y_{-\alpha})$ . Using the above relations between $Z_{\alpha}$ and
$Y_{\pm\alpha}$ , we can calculate that $Ad(y_{\alpha})\sqrt{-1}Z_{\alpha}=Y_{\alpha}-Y_{-\alpha}$ and $Ad(y_{\alpha})H=H$ for
all $H$ in the set $\{X_{\alpha}\in\tilde{\mathfrak{a}}_{0};\alpha(X)=0\}$ . From these facts it follows that $\tilde{\mathfrak{a}}^{*}=$

$Ad(y)(\mathfrak{a}_{0}\cap f+\sum_{=2}^{l}RZ_{\alpha})\subseteqq f\cap \mathfrak{m}$ where $y=\sum_{i=2}^{l}y_{\alpha_{i}}$ . Furthermore, since $\tilde{\mathfrak{a}}^{*}\oplus \mathfrak{a}$

is a Cartan subalgebra of $\mathfrak{g}$ , we conclude $\tilde{\mathfrak{a}}^{*}$ is a Cartan subalgebra of
$\mathfrak{m}$ . This conclude that $P$ is a maximal cuspidal p.s. $g.r$ . of $G$ .
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